当前位置:文档之家› 数电部分概念总结

数电部分概念总结

数电部分概念总结
数电部分概念总结

数电部分概念总结

第一章

1.数制的表示方法以及相互之间的转换:十进制数、二进制数、八进制数和十六进制数2.码制

(1)n位有符号二进制数的编码——正数编码的符号位为0、负数编码的符号位为1。

正数的原码、反码、补码相同。

负数原码的数值位等于二进制真值的绝对值。

负数反码的数值位为二进制真值的绝对值各位取反;

负数补码的数值位为二进制真值的绝对值各位取反后加1。

(2)二——十进制编码——BCD码是用四位二进制码对十进制数符编码,分为8421BCD、5421BCD、2421BCD等有权码和余三BCD、格雷BCD等无权码。

有权BCD码的码符权值叠加后等于其代表的十进制数符值,无权BCD码的码符没有权值意义。

十进制数用BCD码表示时,各码组的位权仍为10的n次幂,例如,个位组码的位权为100、十位组码的位权为1 01、百位组码的位权为102、……。

(3)可靠性代码具有易于交错的编码规则——格雷码相邻码组只有一位码符不同,奇偶校验码的校验位反映了信息位中1符个数的奇偶性(校验位与信息位中1符的总个数为奇或偶)。

第二章

1.逻辑函数的基本概念和表示方法(真值表、逻辑式、逻辑图、波形图)。

2.逻辑代数的基本定律(德?摩根定律)和常用公式。

3.逻辑代数的对偶规则、反演规则、代入规则。

4.逻辑函数的最小项(包含函数所有变量的与项)和最大项(包含函数所有变量的或项)及其对应的编号m i和M i。

5.逻辑函数的两种标准形式是标准与或表达式和标准或与表达式。

(1)最小项表达式—标准与或式及最小项和式(用编号表示)。

(2)最大项表达式—标准或与式及最大项积式(用编号表示)

(3)函数最小项和式的编号与其最大项积式的编号互补;相同编号的最小项和式与最大项积式互为反函数。

6.一般与或表达式可以通过对与项乘互补缺失变量之和构成最小项表达式。

7.逻辑函数的最简与或表达式是与项最少、与项中变量最少的函数式;最简或与表达式是或项最少、或项中变量最少的函数式。

8.逻辑函数的化简

(1)公式法化简。

(2)卡诺图法化简。

(3)具有无关项的逻辑函数表达式及其化简。

与或表达式及或与表达式表示的逻辑函数的无关项(约束条件)用逻辑等式表示,如SR=0;最小项和式及最大项积式表示的逻辑函数中的无关项用d i表示。

第三章

1.TTL逻辑门电路的输入级和输出级都采用三极管。TTL电路的速度高,输出级采用推挽形式,带负载能力强。

2.CMOS逻辑门是用成对沟道互补(N、P)、开启电压绝对值相同的MOS管组成逻辑门电路。CMOS电路的工作电源范围宽,静态功耗极小、输出摆幅大,抗干扰能力强。

3.集电极开路(OC)或漏极开路(OD)逻辑门的输出为低电平或高阻状态。OC(OD)逻辑门可以互相连接并接上拉电阻后实现“线与”功能(并接后的输出函数等于各OC(OD)

逻辑门的输出函数相与)。

4.三态(TS )逻辑门具有输出使能控制,使电路的输出有高电平、低电平、高阻三种状态。

5.当三态门的使能无效时,输出为高阻状态;当三态门的使能有效时,输出与输入满足逻辑门的运算功能。当三态逻辑门的输出并接时,任意时刻只能有一个三态门的使能有效。

6.传输门是控制模拟信号的开关器件,从多路模拟信号中选择一路信号必须采用传输门;而从多路数字信号中选择一路信号可以采用数据选择器、三态门或传输门。

7.TTL 的主要参数。开门电压U ON (输入高电平的最小值U iHmin )的典型值为2V ,关门电压U OFF (输入低电平的最大值U iLmax )的典型值为0.8V 。输入端实现高电平的最小接地电阻R ON 的典型值为2k Ω,实现低电平的最大接地电阻R OFF 的典型值为700Ω.

第四章

1. 组合逻辑电路的输出只受当前的输入信号控制,与电路原来的状态无关,电路中没有反

馈通路,不含记忆元件。典型组合逻辑功能电路有编码器、译码器、数据选择器、数字比较器、并行多位.加法器、只读存储器等。

2. 8线-3线优先编码器(74LS148)输入8个低电平有效的信号,输出优先级别最高的有

效输入信号的3位二进制反码。

3.3线-8线译码器74LS138输入3位二进制码,输出8个表示不同输入码组的低电平有效信号。当使能有效时,3线-8线译码器的各输出是对应输入码变量最小项的反函数。采用逻辑门综合74LS138的输出可以实现3变量的组合逻辑函数。

4.七段显示译码器输入4位二进制代码,输出7个控制数码显示管段极的信号。正常显示时,共阴显示管的公共极接低电位,段极信号高电平有效;共阳显示管的公共极接高电位,段极信号低电平有效。

5.数据选择器的逻辑功能是根据n 位选择码的状态从2n 个数据输入中选择一个到输出。如4选1数据选择器74LS153、8选1数据选择器74LS151。

6.当多位数二进制数相加时,每一位的加运算不仅需要考虑本位的两个加数,还要考虑低位的进位,称为“全加”运算。全加器实现的是3个一位的二进制数加法运算,输出1位二进制运算和以及1位向高位的进位信号。

7.集成4位加法器74283输入两组4位的二进制数A (A 3~A 0)和B (B 3~B 0)及最低位的进位C 0,输出A 加B 加C 0的和以及最高位的进位C 4。

7.数值比较器7485的功能是对输入的两组4位二进制数A (A 3~A 0)和B (B 3~B 0)进行比较,用三个高电平有效的电平信号F A>B 、F AB ,A

8.逻辑函数式中的互补变量是存在竞争条件的变量,该变量变化时可能产生冒险现象。消除竞争冒险的方法有加选通信号、修改逻辑设计增加冗余项、加滤波电容。

第五章

1.双稳态触发器是时序逻辑电路的基本元件。根据激励功能分为 RS 、D 、JK 、T 和T ’触发器。触发器的触发方式分为直接触发、电平触发和边沿触发。直接触发的触发器状态变化只受激励信号控制;电平触发的触发器在使能电平有效时状态随激励功能改变;边沿触发的触发器在CP 脉冲信号的有效边沿时状态随激励功能改变。

2.触发器的特征方程描述了触发条件满足时次态与激励、现态的逻辑关系。

D 触发器的特征方程Q n+1=D ,JK 触发器的特征方程n n n Q K Q J Q +=+1,T 触发器的特征方程n

n Q T Q ⊕=+1。 3.计数型触发器的次态方程,1n n Q Q =+计数型触发器具有二分频功能,即输出Q 的频率是

CP 频率的一半。

4.主从JK 触发器的一次变化问题是指在时钟信号为高电平期间主触发器状态只能改变一次。

第六章

1.时序逻辑电路的输出不仅与当前的输入有关,还与其原来的输出状态有关,具有记忆功能。电路含有记忆元件(双稳态触发器),电路中有反馈路径。时序逻辑电路典型功能器件有寄存器、锁存器、计数器、静态随机存储器等。

2. 时序逻辑电路根据电路中触发器的时钟控制方式分为同步和异步两种。同步时序电路中所有触发器由同一时钟信号控制,触发器的状态变化是同时进行的;异步时序电路中至少有一个触发器的时钟信号源与其他触发器不同,各触发器的次态是在其自身的时钟控制有效时才会产生,电路的状态变化不同步。

3.从电路输出的控制方式分类,时序逻辑电路可分为米利(Mealy)型时序电路和莫尔(Moore)型时序电路。米利型时序逻辑电路的输出是触发器状态和外部输入控制的组合逻辑函数;莫尔型时序逻辑电路的输出仅受触发器状态控制,与外部输入无关。

4.计数器在数字系统中可以实现对CP 脉冲计数、对CP 信号分频、状态机、定时、延时等功能,移位寄存器在数字系统中可以实现移存型计数、状态机、信号传输方式转换等功能。

5.集成计数器可以利用输出状态控制反馈清零或反馈置数来减少有效状态数。当计数器的清零或预置控制为异步方式时,产生控制信号的状态为无效状态;当计数器的清零或预置控制方式为同步方式(CP 脉冲必须同时有效)时,产生控制信号的状态为有效效态。

6.集成计数器可以通过级联使有效状态数增加(级联计数器的模相乘)。

7.移存型计数器的状态码周期性循环变化,并且具有移位特性。移位寄存器采用输出状态控制串行输入可以实现移存型计数器。

第七章

1.多谐振荡器没有稳定状态,能够自动产生频率一定的矩形脉冲信号。

2.施密特触发器的输入可以是模拟信号,输出是数字信号。在输入信号上升达到上触发电平U +时或下降达到下触发电平U -时,输出电平翻转。施密特触发器能够对输入信号进行幅度整形。

3. 单稳态触发器在输入信号激励下,输出宽度恒定的脉冲信号,可以对输入信号进行宽度

整形或实现延时或定时功能。

4. 555定时器有两个模拟量的输入,一个开关量输出和一个放电管的OC 输出。两个输入

分别和两个参考电平U +、U -比较。当两个输入都高于其比较电平时,输出为低电平、放电管导通;当两个输入都低于其比较电平时,输出为高电平、放电管截止;当输入信号的幅度都在两个参考电平之间时,输出保持原状态。

5. 555定时器的参考电平U +=31

U -。U +可以通过555定时器的CON 端(5脚)外加电压

控制,当CON 端(5脚)不加控制电压时,U +等于32

的电源电压值。

6. 555定时器构成的单稳态触发器不可重复触发,当电路处于暂稳态时,新输入的触发脉

冲无效。

7. 可重复触发的单稳态触发器在电路处于暂稳态时,新的触发脉冲可以使暂稳态过程重新

开始,输出脉冲的宽度可以由触发信号控制无限延长。在输入脉冲周期小于电路的暂稳态时间时,电路不能回到稳态。

第八章

1. 随机存储器RAM 采用触发器或电容存储信息,当系统运行时,RAM 能够随时在存储器

任意指定的单元中存、取信息,但系统断电后存储信息丢失。

2. 只读存储器ROM 采用可编程或阵列存储信息,系统断电存储器的信息不会丢失。在系

统运行中ROM 只能读出指定单元中的信息但不能修改信息。

3. 存储器的地址码位数n 决定了存储器所含的存储单元的个数N (N =2 n ),即存储器的字数。存储器数据线的位数m 决定了存储器的字长。存储器含有的存储元总数称为存储容量M , M = N × m (容量等于字数乘以字长)。

4. 当存储系统的信息字数或字长超过所选存储器的的字数或字长时需要扩展。扩展需要的存储器数量=扩展后的总存储容量÷单片存储器容量。

5.只读存储器ROM 的电路结构是固定的与阵列和可编程的或阵列。ROM 的输入是地址码,输出地址码寻访字单元的存储信息(数据)。

6.当ROM 的地址端输入函数变量时,每条字选线是函数变量的一个最小项。通过对或阵列的编程,每个数据输出是一个组合逻辑函数的最小项表达式。

第九章

1. R-2R 倒T 形电阻网络D/A 转换器的输出电压范围与参考电压的幅值有关,转换分辨率

LSB 取决于输入数字码的位数n (n LSB 21

=)。

2. 数模转换器输出的模拟电压U o 与输入的数字值N D 成正比,U o =N D U LSB ;其中分辨电压n ref

U U 2LSB =,U ref 是参考基准电压。

3.模数转换器的输出数字值N D LSB U U i ≈

,转换误差ε≈U i -N D U LSB 。模数转换器的最大输入电压U imax =(2n -1)U LSB ref n ref

n U U ≈-=2)

12(.

4. 并行ADC 的转换速度最快,但分辨率提高时器件成本剧增。逐位逼近ADC 的性价比高,分辨率较高,转换速度较快。双积分ADC 的分辨率可以很高,抗周期性干扰能力强,转换速度最低。

5.分辨率和转换速率模数转换器和数模转换器的两个主要技术指标。

参考习题:1-1,1-2,1-6;2-2,2-7,2-12,2-13,2-14,3-3,3-5,3-6;4-9,4-13,4-14,4-25,4-28;5-4,5-6;6-7,6-16,6-18,6-19,6-30,6-39,6-40;7-6,7-7,8-1,8-2,8-6,8-9;9-1,9-2,9-3,9-5。

数电填空题知识点总结

1、逻辑代数有与、或和非三种基本运算。 2、四个逻辑相邻的最小项合并,可以消去__2________个因子; __2n _______个逻辑相邻的最小项合并,可以消去n 个因子。 3、逻辑代数的三条重要规则是指反演规则、代入规则和对偶规则。 4、 n 个变量的全部最小项相或值为1。 6、在真值表、表达式和逻辑图三种表示方法中,形式唯一的是真值表。 8、真值表是一种以表格描述逻辑函数的方法。 9 、与最小项ABC 相邻的最小项有AB ’C’,ABC, A’BC ’。 2n 10、一个逻辑函数,如果有n 个变量,则有个最小项。 11、 n 个变量的卡诺图是由2n个小方格构成的。 13、描述逻辑函数常有的方法是真值表、逻辑函数式和逻辑图三种。 14、相同变量构成的两个不同最小项相与结果为0。 15、任意一个最小项,其相应变量有且只有一种取值使这个最小项的值为1。1.在数字电路中,三极管主要工作在和两种稳定状态。 饱和、截止 2.二极管电路中,电平接近于零时称为,电平接近于 VCC是称为。低电平、高电平 3. TTL 集成电路中,多发射极晶体管完成逻辑功能。 与运算 4. TTL 与非门输出高电平的典型值为,输出低电平的典型值为。 3.6V 、 0.2V 5.与一般门电路相比,三态门电路中除了数据的输入输出端外,还增加了一个片选信号端,这个对芯片具有控制作用的端也常称为。 使能端 6.或非门电路输入都为逻辑 1 时,输出为逻辑。 7.电路如图所示,其输出端 F 的逻辑状态为。 1 8.与门的多余输出端可,或门的多余输出端可。与有用输入端并联或接高电平、与有用输入端并联或接低电平 10.正逻辑的或非门电路等效于负逻辑的与非门电路。 与非门 11.三态门主要用于总线传输,既可用于单向传输,也可用于双向传输。单向传送、双向传送 12.为保证TTL 与非门输出高电平,输入电压必须是低电平,规定其的最大值称 为开门电平。 低电平、开门电平

数字电路总结

数字电路总结 第一章数制和编码 1.能写出任意进制数的按权展开式; 2.掌握二进制数与十进制数之间的相互转换; 3.掌握二进制数与八进制、十六进制数之间的相互转换; 4.掌握二进制数的原码、反码及补码的表示方法; 5.熟悉自然二进制码、8421BCD码和余3 BCD码 6.了解循环码的特点。 第二章逻辑代数基础 1.掌握逻辑代数的基本运算公式; 2.掌握代入规则,反演规则,对偶规则; 熟悉逻辑表达式类型之间的转换---“与或”表达式转化为“与非”表达式; 3.熟悉逻辑函数的标准形式---积之和(最小项)表达式及和之积(最大项)式表达式。(最小项与最大项之间的关系,最小项表达式与最大项表达式之间的关系)。 4.了解正逻辑和负逻辑的概念。 第三章:数字逻辑系统建模 1.熟悉代数法化简函数 (A +,B A= AB = +, C A+ A B A = + AB+ +, A+A=A AA=A ) A AB A BC C 2.掌握图解法化简函数 3.了解列表法化简函数(Q-M法的步骤) 4.能够解决逻辑函数简化中的几个实际问题。 a. 无关项,任意项,约束项的处理; b. 卡诺图之间的运算。 5.时序逻辑状态化简 掌握确定状态逻辑系统的状态化简; 了解不完全确定状态逻辑系统的状态化简。 第四章:集成逻辑门 1.了解TTL“与非”门电路的简单工作原理; 2.熟悉TTL“与非”门电路的外特性:电压传输特性及几个主要参数,输出高电平,输出低电平、噪声容限、输入短路电流、扇出系数和平均传输延迟时间。 3.熟悉集电集开路“与非”门(OC门)和三态门逻辑概念,理解“线与”的概念;4.掌握CMOS“与非”门、“或非”门、“非”门电路的形式及其工作原理。 5.熟练掌握与、或、非、异或、同或的逻辑关系。 7.掌握R-S、J-K、D、T触发器的逻辑功能、特征方程、状态转换图、状态转换真值表。 不要求深入研究触发器的内部结构,只要求掌握它们的功能,能够正确地使用它们;8.了解触发器直接置“0”端R D和直接置“1”端S D的作用。 9.了解边沿触发器的特点;

六年级上册数学知识点概念总结

小学6年级数学知识点归纳汇总 六年级上册 知识点概念总结 1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。 2.分数乘法的计算法则: 分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零.。 3.分数乘法意义 分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。 4.分数乘整数:数形结合、转化化归 5.倒数:乘积是1的两个数叫做互为倒数。 6.分数的倒数 找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/3。3/4是4/3的倒数,也可以说4/3是3/4的倒数。 7.整数的倒数 找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12 ,12是1/12的倒数。 8.小数的倒数: 普通算法:找一个小数的倒数,例如,把化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/1 9.用1计算法:也可以用1去除以这个数,例如,1/等于4 ,所以的倒数4 ,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。 10.分数除法:分数除法是分数乘法的逆运算。 11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。 12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。 13.分数除法应用题:先找单位1。单位1已知,求部分量或对应分率用乘法,求单位1用除法。 14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。 所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。表示两个比相等的式子叫做比例,是比的意义。比例有4项,前项后项各2个. 15.比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。 比的性质用于化简比。 比表示两个数相除;只有两个项:比的前项和后项。 比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。 16.比例的性质:在比例里,两个外项的乘积等于两个内项的乘积。比例的性质用于解比例。

数字集成电路必备考前复习总结

Digital IC:数字集成电路是将元器件和连线集成于同一半导体芯片上而制成的数字逻辑电路 或系统 第一章引论 1、数字IC芯片制造步骤 设计:前端设计(行为设计、体系结构设计、结构设计)、后端设计(逻辑设计、电路设计、版图设计) 制版:根据版图制作加工用的光刻版 制造:划片:将圆片切割成一个一个的管芯(划片槽) 封装:用金丝把管芯的压焊块(pad)与管壳的引脚相连 测试:测试芯片的工作情况 2、数字IC的设计方法 分层设计思想:每个层次都由下一个层次的若干个模块组成,自顶向下每个层次、每个模块分别进行建模与验证 SoC设计方法:IP模块(硬核(Hardcore)、软核(Softcore)、固核(Firmcore))与设计复用Foundry(代工)、Fabless(芯片设计)、Chipless(IP设计)“三足鼎立”——SoC发展的模式 3、数字IC的质量评价标准(重点:成本、延时、功耗,还有能量啦可靠性啦驱动能力啦 之类的) NRE (Non-Recurrent Engineering) 成本 设计时间和投入,掩膜生产,样品生产 一次性成本 Recurrent 成本 工艺制造(silicon processing),封装(packaging),测试(test) 正比于产量 一阶RC网路传播延时:正比于此电路下拉电阻和负载电容所形成的时间常数 功耗:emmmm自己算 4、EDA设计流程 IP设计系统设计(SystemC)模块设计(verilog) 综合 版图设计(.ICC) 电路级设计(.v 基本不可读)综合过程中用到的文件类型(都是synopsys版权): 可以相互转化 .db(不可读).lib(可读) 加了功耗信息

数字电路期末总复习知识点归纳详细

第1章 数字逻辑概论 一、进位计数制 1.十进制与二进制数的转换 2.二进制数与十进制数的转换 3.二进制数与16进制数的转换 二、基本逻辑门电路 第2章 逻辑代数 表示逻辑函数的方法,归纳起来有:真值表,函数表达式,卡诺图,逻辑图及波形图等几种。 一、逻辑代数的基本公式和常用公式 1)常量与变量的关系A+0=A与A=?1A A+1=1与00=?A A A +=1与A A ?=0 2)与普通代数相运算规律 a.交换律:A+B=B+A b.结合律:(A+B)+C=A+(B+C) c.分配律:)(C B A ??=+?B A C A ? ))()(C A B A C B A ++=?+) 3)逻辑函数的特殊规律 a.同一律:A+A+A b.摩根定律:B A B A ?=+,B A B A +=? b.关于否定的性质A=A 二、逻辑函数的基本规则

代入规则 在任何一个逻辑等式中,如果将等式两边同时出现某一变量A的地方,都用一个函数L表示,则等式仍然成立,这个规则称为代入规则 例如:C B A C B A ⊕?+⊕? 可令L=C B ⊕ 则上式变成L A L A ?+?=C B A L A ⊕⊕=⊕ 三、逻辑函数的:——公式化简法 公式化简法就是利用逻辑函数的基本公式和常用公式化简逻辑函数,通常,我们将逻辑函数化简为最简的与—或表达式 1)合并项法: 利用A+1=+A A 或A B A B A =?=?, 将二项合并为一项,合并时可消去一个变量 例如:L=B A C C B A C B A C B A =+=+)( 2)吸收法 利用公式A B A A =?+,消去多余的积项,根据代入规则B A ?可以是任何一个复杂的逻辑式 例如 化简函数L=E B D A AB ++ 解:先用摩根定理展开:AB =B A + 再用吸收法 L=E B D A AB ++ =E B D A B A +++ =)()(E B B D A A +++ =)1()1(E B B D A A +++ =B A + 3)消去法 利用B A B A A +=+ 消去多余的因子

(完整版)计算机网络概念知识点总结

第一章计算机网络概念 1.网络的定义 A 将地理位置不同但具有独立功能的多个计算机系统,通过通信设备和通信线路连接起来,在功能完善的网络软件(网络协议、网络操作系统、网络应用软件等)的协调下实现资源共享的计算机系统的集合。 B 以资源共享为目的的自主互联的计算机系统的集合。 C 四个元素:独立自主的计算机系统的集合; 要通过通信介质将计算机连接起来; 要有一个共同遵守的规则或协议; 以资源共享和数据通信为目的。 2.使用网络的目的:a资源共享:可共享的资源包括:硬件资源、软件资源和数据资源。 B在线通信:视频会议、远程医疗会诊和远程教育等。 3.计算机网络是计算机技术和通信技术相结合的产物。 4.网络的发展阶段 A计算机终端网络 1)分时多用户联机系统、面向终端网络 2)具有通信功能的单机系统 3)开始标志:1952年美国SAGE系统的诞生被誉为计算机通信发展史上的里程 碑。 4)实现了“计算机—终端”的通信,传输特点:主机(PC)--通信线路—终端 5)主机任务:数据处理、数据通信、数据存储 6)终端:不具备处理能力和存储功能 7)缺点:主机负荷重;线路利用率低 8)硬件设备:主机、终端、通信线路 9)模型 B 计算机通信网络 1)具有通信功能的多机系统 2)20世纪60年代中期 3)主要目的:传输信息 4)实现了“计算机—计算机”的通信 5)硬件设备:主机、终端、集中器(HUB)、通信控制处理机(CCP)、通信线路 6)通信控制处理机:数据通信 7)集中器:数据的收集和分发

8)缺点:缺乏统一的软件控制信息交换和资源共享。 9)模型 C 计算机网络 1)开始标志:ARPANET的诞生 a)1969年 b)第一个以资源共享为目的的计算机网络 c)采用分组交换技术 d)是Internet的前身 e)将网络分为资源子网和通信子网 f)实现了“计算机—计算机”的通信 g)采用分层的协议 h)是广域网 i)标志着计算机网络进入到了第三个阶段 2)硬件组成:与计算机通信网络组成相同 3)与计算机通信网络的区别:计算机网络是由网络操作系统软件来实现网络的共 享和管理的,而计算机通信网络中,用户只能把网络看作是若干个功能不同的 计算机系统的集合,为了访问这些资源用户需要自行确定其所在的位置,然后 才能调用。 4)模型:参考计算机通信网络 5.计算机网络按照功能(逻辑)划分:通信子网和资源子网 1)资源子网 a)层次:上三层,会话层、表示层、应用层 b)功能:数据处理 c)硬件设备:主机(服务器)、终端(用户工作站)、打印机 2)通信子网 a)层次:下三层,物理层、数据链路层、网络层 b)功能:数据传输、数据通信 c)硬件设备:通信介质、集线设备 6.书上划分方法,计算机网络划分成四个阶段 1)面向终端的计算机网络 a)定义:以传输信息为目的而连接起来,实现远程信息处理或进一步达到资 源共享的系统 b)代表:1台主机2000多个终端组成的订票系统 2)多主机互联计算机网络 a)定义:以能够互相共享资源为目的互联起来的具有独立功能的计算机的集 合体

数电知识点总结(整理版)

数电复习知识点 第一章 1、了解任意进制数的一般表达式、2-8-10-16进制数之间的相互转换; 2、了解码制相关的基本概念和常用二进制编码(8421BCD、格雷码等); 第三章 1、掌握与、或、非逻辑运算和常用组合逻辑运算(与非、或非、与或非、异或、同或)及其逻辑符号; 2、掌握逻辑问题的描述、逻辑函数及其表达方式、真值表的建立; 3、掌握逻辑代数的基本定律、基本公式、基本规则(对偶、反演等); 4、掌握逻辑函数的常用化简法(代数法和卡诺图法); 5、掌握最小项的定义以及逻辑函数的最小项表达式;掌握无关项的表示方法和化简原则; 6、掌握逻辑表达式的转换方法(与或式、与非-与非式、与或非式的转换); 第四章 1、了解包括MOS在内的半导体元件的开关特性; 2、掌握TTL门电路和MOS门电路的逻辑关系的简单分析; 3、了解拉电流负载、灌电流负载的概念、噪声容限的概念; 4、掌握OD门、OC门及其逻辑符号、使用方法; 5、掌握三态门及其逻辑符号、使用方法; 6、掌握CMOS传输门及其逻辑符号、使用方法; 7、了解正逻辑与负逻辑的定义及其对应关系; 8、掌握TTL与CMOS门电路的输入特性(输入端接高阻、接低阻、悬空等); 第五章 1、掌握组合逻辑电路的分析与设计方法; 2、掌握产生竞争与冒险的原因、检查方法及常用消除方法; 3、掌握常用的组合逻辑集成器件(编码器、译码器、数据选择器); 4、掌握用集成译码器实现逻辑函数的方法; 5、掌握用2n选一数据选择器实现n或者n+1个变量的逻辑函数的方法; 第六章 1、掌握各种触发器(RS、D、JK、T、T’)的功能、特性方程及其常用表达方式(状态转换表、状态转换图、波形图等); 2、了解各种RS触发器的约束条件; 3、掌握异步清零端Rd和异步置位端Sd的用法; 2、了解不同功能触发器之间的相互转换; 第七章 1、了解时序逻辑电路的特点和分类; 2、掌握时序逻辑电路的描述方法(状态转移表、状态转移图、波形图、驱动方程、状态方程、输出方程); 3、掌握同步时序逻辑电路的分析与设计方法,掌握原始状态转移图的化简;

数电模电超有用知识点,值得拥有

《数字电子技术》重要知识点汇总 一、主要知识点总结和要求 1.数制、编码其及转换:要求:能熟练在10进制、2进制、8进制、16进制、8421BCD 、格雷码之间进行相互转换。 举例1:(37.25)10= ( )2= ( )16= ( )8421BCD 解:(37.25)10= ( 100101.01 )2= ( 25.4 )16= ( 00110111.00100101 )8421BCD 2.逻辑门电路: (1)基本概念 1)数字电路中晶体管作为开关使用时,是指它的工作状态处于饱和状态和截止状态。 2)TTL 门电路典型高电平为3.6 V ,典型低电平为0.3 V 。 3)OC 门和OD 门具有线与功能。 4)三态门电路的特点、逻辑功能和应用。高阻态、高电平、低电平。 5)门电路参数:噪声容限V NH 或V NL 、扇出系数N o 、平均传输时间t pd 。 要求:掌握八种逻辑门电路的逻辑功能;掌握OC 门和OD 门,三态门电路的逻辑功能;能根据输入信号画出各种逻辑门电路的输出波形。 举例2:画出下列电路的输出波形。 解:由逻辑图写出表达式为:C B A C B A Y ++=+=,则输出Y 见上。 3.基本逻辑运算的特点: 与 运 算:见零为零,全1为1;或 运 算:见1为1,全零为零; 与非运算:见零为1,全1为零;或非运算:见1为零,全零为1; 异或运算:相异为1,相同为零;同或运算:相同为1,相异为零; 非 运 算:零 变 1, 1 变 零; 要求:熟练应用上述逻辑运算。 4. 数字电路逻辑功能的几种表示方法及相互转换。 ①真值表(组合逻辑电路)或状态转换真值表(时序逻辑电路):是由变量的所有可能取值组合及其对应的函数值所构成的表格。 ②逻辑表达式:是由逻辑变量和与、或、非3种运算符连接起来所构成的式子。 ③卡诺图:是由表示变量的所有可能取值组合的小方格所构成的图形。

人教版小升初数学总复习知识点归纳+概念总结

小升初数学总复习资料 一、基本概念 第一章数和数的运算 一概念 (一)整数 1 整数的意义 自然数和0都是整数。 2 自然数 我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。0也是自然数。 3计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。 每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。 4 数位 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。 5数的整除 整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。 如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数(或a的约数)。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。 一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。例如:10的因数有1、2、5、10,其中最小的因数是1,最大的因数是10。 一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。 个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。。个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。 一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。 一个数各位数上的和能被9整除,这个数就能被9整除。 能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。 一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。 能被2整除的数叫做偶数。 不能被2整除的数叫做奇数。 0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。 一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。 一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如 4、6、8、9、12都是合数。 1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其因数的个数的不同分类,可分为质数、合数和1。 每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。 把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 例如把28分解质因数 几个数公有的因数,叫做这几个数的公因数。其中最大的一个,叫做这几个数的最大公因数,例如12的因数有1、2、3、4、6、12;18的因数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公因数,6是它们的最大公因数。 公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况: 1和任何自然数互质。 相邻的两个自然数互质。 两个不同的质数互质。 当合数不是质数的倍数时,这个合数和这个质数互质。 两个合数的公因数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。 如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。 如果两个数是互质数,它们的最大公因数就是1。 几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……

数字电路知识点汇总精华版

数字电路知识点汇总(东南大学) 第1章 数字逻辑概论 一、进位计数制 1.十进制与二进制数的转换 2.二进制数与十进制数的转换 3.二进制数与16进制数的转换 二、基本逻辑门电路 第2章 逻辑代数 表示逻辑函数的方法,归纳起来有:真值表,函数表达式,卡诺图,逻辑图及波形图等几种。 一、逻辑代数的基本公式和常用公式 1)常量与变量的关系A+0=A与A=?1A A+1=1与00=?A A A +=1与A A ?=0 2)与普通代数相运算规律 a.交换律:A+B=B+A A B B A ?=? b.结合律:(A+B)+C=A+(B+C) )()(C B A C B A ??=?? c.分配律:)(C B A ??=+?B A C A ? ))()(C A B A C B A ++=?+) 3)逻辑函数的特殊规律 a.同一律:A+A+A

b.摩根定律:B A B A ?=+,B A B A +=? b.关于否定的性质A=A 二、逻辑函数的基本规则 代入规则 在任何一个逻辑等式中,如果将等式两边同时出现某一变量A的地方,都用一个函数L表示,则等式仍然成立,这个规则称为代入规则 例如:C B A C B A ⊕?+⊕? 可令L=C B ⊕ 则上式变成L A L A ?+?=C B A L A ⊕⊕=⊕ 三、逻辑函数的:——公式化简法 公式化简法就是利用逻辑函数的基本公式和常用公式化简逻辑函数,通常,我们将逻辑函数化简为最简的与—或表达式 1)合并项法: 利用A+1=+A A 或A B A B A =?=?,将二项合并为一项,合并时可消去一个变量 例如:L=B A C C B A C B A C B A =+=+)( 2)吸收法 利用公式A B A A =?+,消去多余的积项,根据代入规则B A ?可以是任何一个复杂的逻辑式 例如 化简函数L=E B D A AB ++ 解:先用摩根定理展开:AB =B A + 再用吸收法 L=E B D A AB ++

数电知识点总结整理版

精品文档 数电复习知识点 第一章 1、了解任意进制数的一般表达式、2-8-10-16进制数之间的相互转换; 2、了解码制相关的基本概念和常用二进制编码(8421BCD、格雷码等); 第三章 1、掌握与、或、非逻辑运算和常用组合逻辑运算(与非、或非、与或非、异或、同或)及其逻辑符号; 2、掌握逻辑问题的描述、逻辑函数及其表达方式、真值表的建立; 3、掌握逻辑代数的基本定律、基本公式、基本规则(对偶、反演等); 4、掌握逻辑函数的常用化简法(代数法和卡诺图法); 5、掌握最小项的定义以及逻辑函数的最小项表达式;掌握无关项的表示方法和化简原则; 6、掌握逻辑表达式的转换方法(与或式、与非-与非式、与或非式的转换); 第四章 1、了解包括MOS在内的半导体元件的开关特性; 2、掌握TTL门电路和MOS门电路的逻辑关系的简单分析; 3、了解拉电流负载、灌电流负载的概念、噪声容限的概念; 4、掌握OD门、OC门及其逻辑符号、使用方法; 5、掌握三态门及其逻辑符号、使用方法; 6、掌握CMOS传输门及其逻辑符号、使用方法; 7、了解正逻辑与负逻辑的定义及其对应关系; 8、掌握TTL与CMOS门电路的输入特性(输入端接高阻、接低阻、悬空等); 第五章 1、掌握组合逻辑电路的分析与设计方法; 2、掌握产生竞争与冒险的原因、检查方法及常用消除方法; 3、掌握常用的组合逻辑集成器件(编码器、译码器、数据选择器); 4、掌握用集成译码器实现逻辑函数的方法; 5、掌握用2n选一数据选择器实现n或者n+1个变量的逻辑函数的方法; 第六章 1、掌握各种触发器(RS、D、JK、T、T')的功能、特性方程及其常用表达方式(状态转换表、状态转换图、波形图等); 2、了解各种RS触发器的约束条件; 3、掌握异步清零端Rd和异步置位端Sd的用法; 2、了解不同功能触发器之间的相互转换; 第七章 1、了解时序逻辑电路的特点和分类; 2、掌握时序逻辑电路的描述方法(状态转移表、状态转移图、波形图、驱动方程、状态方程、

数字电子技术基础第五版期末知识点总结 (1)

数电课程各章重点 第一、二章 逻辑代数基础知识要点 各种进制间的转换,逻辑函数的化简。 一、二进制、十进制、十六进制数之间的转换;二进制数的原码、反码和补码 .8421码 二、逻辑代数的三种基本运算以及5种复合运算的图形符号、表达式和真值表:与、或、非 三、逻辑代数的基本公式和常用公式、基本规则 逻辑代数的基本公式 逻辑代数常用公式: 吸收律:A AB A =+ 消去律:B A B A A +=+ A B A AB =+ 多余项定律:C A AB BC C A AB +=++ 反演定律:B A AB += B A B A ?=+ 基本规则:反演规则和对偶规则,例1-5 四、逻辑函数的三种表示方法及其互相转换 逻辑函数的三种表示方法为:真值表、函数式、逻辑图 会从这三种中任一种推出其它二种,详见例1-7 五、逻辑函数的最小项表示法:最小项的性质;例1-8 六、逻辑函数的化简:要求按步骤解答 1、 利用公式法对逻辑函数进行化简 2、 利用卡诺图对逻辑函数化简 3、 具有约束条件的逻辑函数化简 例1.1 利用公式法化简 BD C D A B A C B A ABCD F ++++=)( 解:BD C D A B A C B A ABCD F ++++=)( 例 利用卡诺图化简逻辑函数 ∑=)107653()(、、、、 m ABCD Y 约束条件为 ∑8)4210(、、、、 m 解:函数Y 的卡诺图如下:

第三章 门电路知识要点 各种门的符号,逻辑功能。 一、三极管开、关状态 1、饱和、截止条件:截止:T be V V <, 饱和:β CS BS B I I i => 2、反相器饱和、截止判断 二、基本门电路及其逻辑符号 与门、或非门、非门、与非门、OC 门、三态门、异或; 传输门、OC/OD 门及三态门的应用 三、门电路的外特性 1、输入端电阻特性:对TTL 门电路而言,输入端通过电阻接地或低电平时,由于输入电流流过该电阻,会在电阻上产生压降,当电阻大于开门电阻时,相当于逻辑高电平。 习题2-7 5、输出低电平负载电流I OL 6、扇出系数N O 一个门电路驱动同类门的最大数目 第四章 组合逻辑电路知识要点 组合逻辑电路的分析、设计,利用集成芯片实现逻辑函数。 (74138, 74151等) 一、组合逻辑电路:任意时刻的输出仅仅取决于该时刻的输入,与电路原来的状态无关 二、 组合逻辑电路的分析方法(按步骤解题) 三、 若干常用组合逻辑电路 译码器(74LS138) 全加器(真值表分析) 数据选择器(74151和74153) 四、 组合逻辑电路设计方法(按步骤解题) 1、 用门电路设计 2、 用译码器、数据选择器实现 例3.1 试设计一个三位多数表决电路

数电知识点汇总

数电知识点汇总 第一章: 1, 二进制数、十六进制与十进制数的互化,十进制化为8421BCD代码 2,原码,补码,反码及化为十进制数 3,原码=补码反码+1 重点课后作业题:题 1.7,1.10 第二章: 1,与,或,非,与非,或非,异或,同或,与或非的符号(2 种不同符号,课本 P22,P23 上侧)及其表达式。 A o A o A……A=?(当A的个数为奇数时,结果为A,当A的个数为偶数时,结果为1) A十A十A??…A=?(当A的个数为奇数时,结果为A,当A的个数为偶数时,结果为0) 2,课本P25,P26 几个常用公式(化简用)3,定理(代入定理,反演定理,对偶定理),学会求一表达式的对偶式及其反函数。 4,※※卡诺图化简:最小项写1,最大项写0,无关项写X。画圈注意事项:圈内的“T必须是2n个;“ 1可以重复圈,但每圈一次必须包含没圈过的“ 1”;每个圈包含“ 1”的个数尽可能多,但必须相邻,必须为2n个;圈数尽可能的少;要圈完卡诺图上所有的“ 1”。 5,一个逻辑函数全部最小项之和恒等于1 6,已知某最小项,求与其相邻的最小项的个数。 7,使用与非门时多余的输入端应该接高电平,或非门多余的输入端应接低电平8,三变量逻辑函数的最小项共有8个,任意两个最小项之积为0. 9,易混淆知识辨析: 1)如果对72个符号进行二进制编码,则至少需要7 位二进制代码。 2)要构成13 进制计数器,至少需要 4 个触发器。 3)存储8 位二进制信息需要8 个触发器。 4)N 进制计数器有N 个有效状态。 5)—个具有6位地址端的数据选择器的功能是2A6选1. 重点课后作业题:P61题2.10~2.13题中的(1)小题,P62-P63题2.15 (7),题2.16 (b),题2.18 (3)、(5)、(7),P64题2.22 (3)、2.23 (3)、2.25 (3)。 第三章: 1,二极管与门,或门的符号(课本P71,P72) 2, 认识N沟道增强型MOS管,P沟道增强型MOS管,N沟道耗尽型,P沟道耗尽

数电学习数字电路学习心得体会

数电学习数字电路学习心得体会 学习数字电路之心得体会 不知不觉中,本学期数字电路的学习就要结束了,现在回想一下, 到底学了哪些东西呢?如果不看书的话,真有点记不住学习内容的先 后顺序了,看了目录以后,就明白到底学了什么东西了,最开始学的内容还比较简单,而后面的内容就学得糊里糊涂了,似懂非懂,按老师的说法,就是前面的东西只有十几度的水温,而到了后面,温度就骤升了,需要花更多的时间。 其实吧,总的来说,学习的思路还是很清楚的,最开始学的是数制与码制,特别是二进制的一些东西,主要是为后面的学习打基础,因为对于数字电路来说,输入就是0和1,输出也是这样,可以说,明白二进制是后面学习最基础的要求。到第二章,又学了一些逻辑代数方面的基本知识,首先就有很多的逻辑代数的公式,然后就是逻辑函数了,我感觉这里的函数和原来学的其实都差不多,只不过这里是逻辑函数,每一个变量的取值只有0和1罢了,然后就是用不同的方式来表达逻辑函数,学了很多方法,有逻辑图,波形图等等,过后又学了逻辑函数的两种标准形式—最小项之和和最大项之积,还有逻辑函数的化简方法,之后还有一些无关项和任意项的知识。总而言之,前两章的内容还是比较简单的,都是一些基础的东西,没有多大的难度,学习起来也相对轻松。

第三章老师没有讲,是关于门电路的知识,我认为还是比较重要的,因为数字电路的构成就是一系列的门电路的组合,以此来完成一定的功能。第四章讲的是组合电路,说白了,就是组合门电路来实现 特定的功能,其最大的特点就是此时的输出只与此时的输入有关,并且电路中不含记忆原件。首先,学习组合电路,我们要知道如何去分析,确定输入与输出,写出各输出的逻辑表达式并且化简,然后就可以列出真值表了,那么,这个电路的功能也就一目了然了,而关于组合电路的设计,其实就是组合电路分析方法的逆运算,设计思路很简单,只要按着步骤来,一般没什么问题,在数电实验课上,就有组合逻辑电路的设计,需要我们自己去设计一些具有特定功能的组合电路,还是挺有趣的。过后还学了一些常用的组合逻辑电路,比如编码器,译码器,数据选择器,加法器等等,我感觉这些电路都挺复杂的,分析起来都很麻烦,更别说设计了,我要做的就是明白它的工作原理,知道它的设计思想就行了。最后了解了一下组合逻辑电路中存在的竞争冒险现象。 我觉得第五章和第六章是比较难的,第五章讲的是触发器,就是一种具有记忆功能的电路,我感觉这一章是学得比较乱的,首先,触发器的种类有点多,有SR锁存器,D触发器,JK触发器,每种触发器有不同的功能,其次,触发器还有不同的触发方式,很容易弄混淆,

热统知识点总结

第一类知识点 1. 大量微观粒子的无规则运动称作物质的热运动. 2. 宏观物理量是微观物理量的统计平均值. 3. 熵增加原理可表述为:系统经绝热过程由初态变到终态,它的熵永不减小.系统经可逆绝热过程后熵不变. 系统经不可逆绝热过程后熵增加. 孤立系中所发生的不可逆过程总是朝着熵增加的方向进行. 4. 在某一过程中,系统内能的增量等于外界对系统所做的功与系统从外界吸收的热量之和. 5. 在等温等容条件下,系统的自由能永不增加. 在等温等压条件下,系统的吉布斯函数永不增加. 6. 理想气体的内能只是温度的函数,与体积无关,这个结论称为焦耳定律. 7. V S S p V T ??? ????-=??? ???? 8. V T T p V S ??? ????=??? ???? 9. p S S V P T ??? ????=??? ???? 10. p T T V P S ??? ????-=??? ???? 11. pdV TdS dU -= 12. Vdp TdS dH += 13. pdV SdT dF --= 14. Vdp SdT dG +-= 15. 由pdV TdS dU -=可得,V S U T ??? ????= 16. 由Vdp TdS dH +=可得,S p H V ???? ????= 17. 单元复相系达到平衡所要满足的热平衡条件为各相温度相等. 18. 单元复相系达到平衡所要满足的力学平衡条件为各相压强相等. 19. 单元复相系达到平衡所要满足的相变平衡条件为各相化学势相等. 20. 对于一级相变,在相变点两相的化学势相等.在相变点两相化学势的一阶偏导数不相等. 21. 对于二级相变,在相变点两相的化学势相等.在相变点两相化学势的一阶偏导数相等.在相变点两相化学势的二阶偏导数不相等.

数字电路期末总复习知识点归纳详细.doc

第1章数字逻辑概论 一、进位计数制 1.十进制与二进制数的转换 2.二进制数与十进制数的转换 3.二进制数与16进制数的转换 二、基本逻辑门电路 第2章逻辑代数 表示逻辑函数的方法,归纳起来有:真值表,函数表达式,卡诺图,逻辑图及波形图等几种。 一、逻辑代数的基本公式和常用公式 1)常量与变量的关系A+0=A与A= ?1A A+1=1与0 ?A 0= A?=0 A+=1与A A 2)与普通代数相运算规律 a.交换律:A+B=B+A ? A? = B A B b.结合律:(A+B)+C=A+(B+C) A? B ? C ? = ? ) A ( ) B (C c.分配律:) ?=+ A? (C B A? A C ?B A+ + +) B ? = A )() ) (C A B C 3)逻辑函数的特殊规律 a.同一律:A+A+A b.摩根定律:B A+ B ? A = A B A? = +,B

b.关于否定的性质A=A 二、逻辑函数的基本规则 代入规则 在任何一个逻辑等式中,如果将等式两边同时出现某一变量A的地方,都用一个函数L表示,则等式仍然成立,这个规则称为代入规则 例如:C ? ⊕ ? A⊕ + A C B B 可令L=C B⊕ 则上式变成L ?=C + A A? L = ⊕ ⊕ A⊕ B A L 三、逻辑函数的:——公式化简法 公式化简法就是利用逻辑函数的基本公式和常用公式化简逻辑函数,通常,我们将逻辑函数化简为最简的与—或表达式 1)合并项法: 利用A+1 A= ? ?, 将二项合并为一项,合并时可消去一个变量 B = A = A或A +A B 例如:L=B B C + ( A +) = A= A B C C A C B 2)吸收法 利用公式A A?可以是任何一个复杂的逻辑? +,消去多余的积项,根据代入规则B A B A= 式 例如化简函数L=E AB+ + A D B 解:先用摩根定理展开:AB=B A+再用吸收法 L=E AB+ A + B D =E + + B A+ B D A =) A A+ + D + B ( ) (E B =) A A+ D + + 1(E 1( ) B B

数电知识点汇总

数电知识点汇总 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

数电知识点汇总 第一章: 1,二进制数、十六进制与十进制数的互化,十进制化为8421BCD代码 2,原码,补码,反码及化为十进制数 3,原码=补码反码+1 重点课后作业题:题, 第二章: 1,与,或,非,与非,或非,异或,同或,与或非的符号(2种不同符号,课本P22,P23上侧)及其表达式。 A☉A☉A……A=(当A的个数为奇数时,结果为A,当A的个数为偶数时,结果为1) A⊕A⊕A……A=(当A的个数为奇数时,结果为A,当A的个数为偶数时,结果为0) 2,课本P25,P26几个常用公式(化简用) 3,定理(代入定理,反演定理,对偶定理),学会求一表达式的对偶式及其反函数。 4,※※卡诺图化简:最小项写1,最大项写0,无关项写×。画圈注意事项:圈内的“1”必须是2n个;“1”可以重复圈,但每圈一次必须包含没圈过的“1”;每个圈包含“1”的个数尽可能多,但必须相邻,必须为2n个;圈数尽可能的少;要圈完卡诺图上所有的“1”。 5,一个逻辑函数全部最小项之和恒等于1 6,已知某最小项,求与其相邻的最小项的个数。 7,使用与非门时多余的输入端应该接高电平,或非门多余的输入端应接低电

平。 8,三变量逻辑函数的最小项共有8个,任意两个最小项之积为0. 9,易混淆知识辨析: 1)如果对72个符号进行二进制编码,则至少需要7位二进制代码。 2)要构成13进制计数器,至少需要4个触发器。 3)存储8位二进制信息需要8个触发器。 4)N进制计数器有N个有效状态。 5)一个具有6位地址端的数据选择器的功能是2^6选1. 重点课后作业题:P61 题~题中的(1)小题,P62-P63题(7),题(b),题(3)、(5)、(7),P64题(3)、(3)、(3)。 第三章: 1,二极管与门,或门的符号(课本P71,P72) 2,认识N沟道增强型MOS管,P沟道增强型MOS管,N沟道耗尽型,P沟道耗尽型的符号,学会由符号判断其类型和由类型推其符号。(课本P79) 3,CMOS反相器的符号(课本P80) 4,噪声容限(课本P82) 5,CMOS与非门和或非门的符号(课本P92) 6,CMOS类型的OD与非门符号,功能。CMOS类型的OD线与符号及功能(课本P94,95) 7,C MOS类型的传输门,三态门功能及符号。(课本P97,P99) 8,TTL门电路中的三极管反相器符号(课本P114)。关于三极管,当Vbc<0,三极管处于放大状态,当vbc>0,三极管处于饱和状态。

数电知识总结

第一部分内容逻辑代数基础 掌握逻辑代数得基本公式、基本规则;逻辑代数得表示方法及相互转换。熟练掌握逻辑 函数得公式化简法及卡诺图化简法。 1、数字量与模拟量 数字量:变化在时间与空间上都就是离散得 模拟量:变化在时间与空间上都就是连续得 2、逻辑代数中得三种基本运算 布尔代数被广泛应用于解决开关电路与数字逻辑电路得分析与设计上,所以又将布尔代数叫做开关代数或逻辑代数。 在二值逻辑中,每个逻辑变量得取值只有0与1,这里得0与1只代表两种不同得逻辑状态。 基本运算有与、或、非三种。 常见得复合逻辑运算有与非、或非、与或非、异或、同或等。 3、逻辑代数得基本公式——布尔恒等式(20个);常用公式——由基本公式导出(6个) 4、逻辑代数得基本定理 (1)代入定理 (2)反演定理 Y将其中所有得“·”换成“+”,“+”换成“·”,0换成1,1换成0,原变量换成反变量,反变量换成原变量,得到得结果为Y。 用反演定理时有两个规则: 1)“先括号、然后乘、最后加” 2)不属于单个变量上得反号应保留 (3)对偶定理 若两逻辑式相等,则它们得对偶式也想等,这就就是对偶定理。 对偶式:对于任何一个逻辑或Y,若将其中得“·”换成“+”,“+”换成“·”,0换成1,1换成0,则得到一个新得逻辑式Y′,即为Y得对偶式。

【注意】这里得0与1就就是形式上得0与1。 5、逻辑函数及其表示方法 (1)逻辑函数 以逻辑变量作为输入,运算结果作为输出,那么输入与输出之间就是一种函数关系,写作 Y=F(A,B,C…)------二值逻辑函数 (2)逻辑函数得表示方法 这些方法包括了(逻辑)真值表、逻辑函数式(又称为逻辑式或函数式)、逻辑图与卡诺图。 逻辑图:用逻辑运算得图形符号画出得图,如Y=A(B+C) ★这些方法之间相互转化 (3)逻辑函数得两种标准形式——“最小项之与”及“最大项之与” 1)最小项 有一组变量有n个,m为包含n个因子得乘积,而且这几个变量均以原变量或反变量得形式在m中出现一次,则称m为该组变量得最小值。 n变量得最小项有2n个。每一组取值都使一个对应得最小项得值等于1。 有如下重要性质: ①必有一个最小项,而且仅有一个最小项得值为1 ②全体最小项之与为1 ③任意两个最小项得乘积为0 ④具有相邻性得两个最小项只有一个因子不同,其与可以合并成一项并消去一对因子, 例如 2)逻辑函数得最小项之与形式 利用基本公式可以把任何一个逻辑函数化为最小项之与得标准形式。 3)最大项 M为n个变量之与,而且这n个变量均以原变量或反变量得形式在M中出现一次。 n变量得最大项有2n个。每一组取值都使一个对应得最大项得值等于0。 有如下重要性质: ①必有一个最大项,而且仅有一个最大项得值为0 ②全体最大项之积为0 ③任意两个最大项得之与为1 ④只有一个变量不同得两个最大项得乘积等于各相同变量之与 【结论】M i=m i 4)逻辑函数得最大项之积形式 任何一个逻辑函数都可以化成最大项之积得标准形式。 6、逻辑函数得公式化简法 (1)逻辑函数得最简形式 (2)常用得化简方法 1)并项法 2)吸收法 3)消项法 4)消因子法 5)配项法——A+A=A或 7、逻辑函数得卡诺图化简法

相关主题
文本预览