当前位置:文档之家› 地源热泵分析及造价讲诉

地源热泵分析及造价讲诉

地源热泵分析及造价讲诉
地源热泵分析及造价讲诉

地源热泵工程造价分析众所周知,地源热泵是一种利用浅层和深层的大地能量,包括土壤、地下水、地表水等天然能源作为冬季热源和夏季冷源,然后再由热泵机组向建筑物供冷供热的系统,是一种利用可再生能源的既可供暖又可制冷的新型中央空调系统。

抽取地下水的水源热泵,由于技术限制,全部回灌不易做到,监督实施也比较困难,而且容易造成地下水污染。

在国外目前大面积推广使用的是埋管式地源热泵技术,是充分利用浅层地热的最佳技术途径。在我国,建设部和一些省市的建筑节能政策中明确提出要推广使用埋管式地源热泵。

水源热泵系统的存在的困感:

1、回灌困难,许多水源热泵工程难以回灌,只能将大量地下水排向市政排水管道。一般来说

回灌井与抽水井回灌比超过3,都不适合水源热泵工程。

2、容易污染地下水资源

蒸发器压缩机冷凝器

机组内工质一旦泄漏,将对地下水造

成难以挽救化学污染;其次,不能严

格做到同层回

灌,造成不同地下层地下水的混合,使得优质地下水层的水质受到污染。

3、取水井长时间取水后,易出现水量不足。主要原因是取水井被细沙堵塞,运行期间每

隔一段时间就需要洗井,而且洗井费用较高,长期来看,系统运行费用较高。另外一个

原因就是地下水位的下降,很多地区的地下水位每年都在下降。

4、抽水井、回水井之间互相影响。

很多项目根本不具备采用水源热泵,项目硬上,水井之间距离过近,造成抽水温度接近于回水温度,热源温度越来越差,机组能效比降低。

5、水源热泵工程中,潜水泵扬程都较大,一般都在80米以上,甚至更高,系统耗电量大。而且潜水泵一旦损坏,维修困难。

地源热泵系统一般情况下的造价

造价在80?100元/m之间,混合地质类型约为85元/m。(各地地质情况、环境不同,仅供参考)。

以10000R1办公楼为例估算地埋管系统造价(仅供参考)

土质类型单井

造价

所需地下提热

所需井数

地埋管井

总价

水平管及附件安装合价平米造价

单位元个个元元元元元/平米

沙土

39385251877364062350351055601077001108

黄土51385251879608062350351055601301401130

风化岩1153852518721576062350351055602498201250

说明:热负荷指标按7ow/m,冷负荷指标按ioow/m;地源井冬季单位井深提热量按35 W/m 夏季地源井单位井深散热量按70W/ m计算。

土壤源热泵系统与基础设计

土壤源系统是一种利用地下浅层土壤资源的热能,既可供热又可制冷的高效节能系统。土壤源热

泵通过输入少量的高品位能源(如电能),实现低温位热能向高温位转移。地能分别在冬季作为热泵供暖的热源和夏季空调的冷源,即在冬季,把地能中的热量“取”岀来,提高温度后,供给室内采暖;夏季,把室内的热量排岀来,释放到地下去。

土壤源热泵系统设计

系统冬季从地下提热量=末端空调热负荷-冬季机组输入功率

系统夏季向地下排热量=末端空调冷负荷+夏季机组输入功率

按冬季从地下提热量计算地源井米数为:地源井米数=系统冬季从地下提热量/单位井深

提热量

按夏季向地下排热量计算地源井米数为:地源井米数=系统夏季向地下排热量/单位井深排热量打井数目=地源井米数/地源孔深

某项目不同管材单位井深换热量比较

运行工况

25单U

单位井深换热量W/m

25双U32单U32双U

246524958

343484553

制热工况439444149

536403844

632353440

影响单位井深换热量的首要因素是土壤温度,其次为土壤导热系数等,东北地区土壤温度约为12C,夏季制冷时地埋管散热量大,比其他地区有优势,制热时地埋管提热量相对华北及南方地区略小些。

通过分析对比以上几个热物性测试,初步估算东北地区采用双U型管埋管形式时, 冬季提热量按35W/m夏季散热量可取70W/m

具体准确数值需通过项目所在地的土壤热物性测试得到。

地埋管公称压力的确定

1、垂直埋管承受的最大压力=地埋管系统定压+水泵扬程的一半+地源井深度选用管材时,PE管的公称压

力不能低于这个压力值。

2、水平主管路承受的最大压力=地埋管系统定压+水泵扬程;

一般来说,水平主管路公称压力不低于 1.0MPa即可。

例:某项目地源井总计200 口,分成10组,每组20 口井,每组供回水主管路分别设置检查井。

地埋管管路连接实例1

r !

V?V

^?V ^^I ^V

V 9oa " 0

地源井总计200 口,分成10组,每组20 口井,每组分别通过主管汇集到分集水器

地埋管管路连接实例2

地源热泵系统设计要点

地埋管各竖井流量平衡(管路同程连接可以做到),单U型管流速0.6m/s,双U型管流速0.4m/s 。

冬季系统运行时,地下管路尽量不加防冻液。

夏季运行期间,地埋管换热器岀口温度宜低于33C;

冬季运行期间,地埋管换热器进口温度宜高于4Co

地源热泵系统总释热量宜与其总吸热量相平衡。

竖直地埋管换热器埋管深度宜大于20m,钻孔孔径不宜小于0.11m,钻孔间距应满足换热

需要,间距宜为3?6m水平连接管的深度应在冻土层以下0.6m,且距地面不宜小于1.5m。

每对供、回水环路集管连接的地埋管环路数宜相等。供、回水环路集管的间距不应小于

0.6m。

地埋管系统施工要点

1.如果水平地埋管管沟杂物较多,铺设前,沟槽底部应先铺设相当于管径厚度的细砂。

2.竖直地埋管换热器U形管安装完毕后,应立即灌浆回填封孔。回填材料导热系数不能低于钻孔周围土壤的导热系数。

3.当钻孔孔壁不牢固或者存在孔洞、洞穴等导致成孔困难时,应设护壁套管。下管过程中,U形管内宜充满水,并宜采取措施使U形管两支管处于分开状态。

4.地埋管施工过程的水压检验;

5.检验压力大小的确定

当工作压力小于等于 1.0MPa时,应为工作压力的 1.5倍,且不应小于0.6MPa;当工作压力大于

1.0MPa时,应为工作压力加0.5MPa。

水压试验的步骤(4次水压试验)

1)竖直地埋管换热器插入钻孔前,应做第一次水压试验。在试验压力下,稳压至少15min,稳压后压力降不应大于3%且无泄漏现象;将其密封后,在有压状态下插入钻孔,完成灌浆之后保压I h。

2)竖直环路集管装配完成后,回填前应进行第二次水压试验。在试验压力下,稳压至少

30min,稳压后压力降不应大于3%且无泄漏现象。

3)环路集管与机房分集水器连接完成后,回填前应进行第三次水压试验。在试验压力下,稳压至少2h,且无泄漏现象。

4)地埋管安装完毕,且冲洗、排气及回填完成后,应进行第四次水压试验。在试验压力下,稳压至少12h,稳压后压力降不应大于3%

地埋管系统主要设备材料

地埋钻井机双u型头地埋管系统主要材料下管完毕的地源井

地理管施工现场區片

地理管施工现场區片

地源热泵、冰蓄冷综合应用的经济性分析方案说明

浅析地源热泵、冰蓄冷综合应用的经济性 摘要:建筑节能是近年来世界建筑发展的一个基本趋向,也是当代建筑科学技术的一个新的生长点。由于建筑能源的消耗占总能源消耗的60%以上,因此,在建筑节能中,冰蓄冷、地源热泵等节能技术的应用有着重要的影响力,同时有利于优化传统的空调冷热源型式,促进节能减排。本文以省图书馆项目为例,浅析地源热泵与冰蓄冷技术综合运用的可行性方案和经济性分析。 关键字:公共建筑节能冰蓄冷地源热泵经济效益 目前国建筑能耗占能源消耗总量的比重很大,而大型公共建筑中空调能耗约占整个建筑总能耗的40~60%;在空调系统中,能耗最大的部分集中在冷热源系统,因此,采取节能的冷热源技术对于降低大型公共建筑的总能耗具有显著效果。冰蓄冷、地源热泵作为目前较为先进的节能技术,已经得到了广泛的应用,本文以某项目为例对其采用冰蓄冷和地源热泵空调系统方案与采用常规空调系统方案进行比较,分析综合采用冰蓄冷和地源热泵技术的经济性。 1、可再生能源利用技术——地源热泵 土壤源热泵是利用了地球表面浅层地热资源(通常小于400米深)作为冷热源,进行能量转换的供暖空调系统。 地表浅层土壤的温度一年四季相对稳定,冬季比环境空气温度高,夏季比环境空气温度低,是热泵很好的供热热源和供冷冷源,这种温度特性使得地源热泵比传统空调系统运行效率要高,供热时比燃油锅炉节省70%以上的能源;制冷时比普通空调节能40%~50%。 2、移峰填谷——冰蓄冷系统 冰蓄冷空调系统即在夜间用电低谷期采用电制冷机制冷,将制得冷量以冰的

形式储存起来;在白天电价高峰期将冰融化释放冷量,用以部分或全部满足供冷需求。蓄冰系统具有巨大的社会效益:蓄冰系统能够转移电力高峰用电量,平衡电网峰谷差,缓解供电压力,同时,也具有良好的经济效益,节省运行费用。一、工程概况 本项目位于省,建筑主体为图书馆,总建筑面积约10万㎡。冬夏季冷负荷指标为130W/㎡,夏季空调冷负荷为13000KW,冬季热负荷指标为90W/㎡,冬季空调热负荷为5200KW。 二、空调系统方案概述 本项目既有夏季供冷需求又有冬季供暖需求,因此采用地源热泵系统,能够同时满足冬季供暖和夏季供冷的要求。而地区夏季负荷较大,且供冷时间长,冬季负荷较小且供暖时间较短,因此考虑到地源侧热平衡问题,按照冬季供暖需求配置地源热泵系统。 地源热泵系统承担部分夏季负荷,不足部分考虑采用冰蓄冷系统方案,具有显著的节能优势。 三、土壤热泵系统方案设计 1、土壤热泵机组 根据本项目冬季空调热负荷为5200KW,由地源热泵系统承担冬季全部供热需求,选择2台土壤热泵机组,夏季制冷量2900kw,冬季制热量为2853kW;本项目用户侧空调冷热水供回水系统冬季供暖的供、回水温度为45/40℃,夏季供冷的供回水温度为7/12℃;地源热泵系统地源侧冬季设计供回水温度为5/10℃,夏季设计供回水温度为35/30℃。 2、地下换热器的初步估计

2014年全球及中国地热能及地源热泵市场报告

正文目录 第一章、地热资源行业总体状况分析 (4) 第一节、地热能优势分析 (4) 一、地热是环境污染小的清洁能源 (4) 二、地热设备利用率高 (4) 三、载荷系数大,产生热量高 (5) 第二节、地热资源丰富,直接利用和发电是主要利用方式 (5) 一、全球及中国地热资源分布 (5) 二、地热能分类 (6) 第三节、未来全球地热产业发展目标 (7) 第二章、地热直接利用:地源热泵技术最受青睐 (8) 第一节、地源热泵市场发展状况 (8) 一、全球地热直接利用市场快速发展 (8) 二、到2050 年全球地源热泵年产生热能将达到8EJ 左右 (9) 三、美国地源热泵发展分析 (10) 1、美国地源热泵发展历程、现状及趋势 (10) 2、美国地源热泵发展经验总结 (12) (1)、政策扶持起到重要作用 (12) (2)、公共机构和学会/协会功不可没 (13) 3、美国地热公司运行分析 (14) (1)、美国地热:受益美国地热政策,快速增长 (14) (2)、奥玛特:一家地热发电企业的成绩单 (17) 4、地源热泵在美国发展中遇到的问题 (18) 第二节、我国地热直接利用分析 (19) 一、我国地热直接利用发展迅速 (19) 二、我国地源热泵项目商业模式 (21) 三、我国我国地源热泵未来空间 (25) 1、短期百亿投资 (25) 2、长期千亿蓝海 (25) 四、我国发展地源热泵问题及应对 (26) 1:行业主管不明确,支持政策偏弱 (26) 2:运营模式不理想,规模化利用存障碍 (27) 第三节、地源热泵技术状况 (27) 第三章、地热发展状况分析 (30) 第一节、全球地热发电概述 (30) 一、地热发电发展历程 (30) 二、世界发电装机中地热占比非常低 (31) 三、2013年世界地热发电爆发式增长 (33) 第二节、我国地热发电发展历史及现状 (35) 一、我国地热发电发展历程 (35) 二、我国地热发电发展目标 (37) 三、地热发电技术升级路线描摹 (38)

地源热泵与传统空调运行费用比较

XXX电子厂空调运行比较分析1.冷、热源及空调方式选择比较

2.运行费用分析比较: 制冷机选用二大一小三台机组,300冷吨两台,150冷吨一台,(共2637KW计算),以适应不同负荷时制冷机能处于高效状态下运行。采暖总热量约1.2MW(1200KW)。 选用地源热泵机组LTLHM-370,制冷量1300KW,功率245. 4KW;制热量1400KW,功率324.6KW。 循环泵功率(估算):37KW(一用一备) 补水泵功率(估算):4KW(一用一备) 地埋管循环泵功率(估算):30KW(一用一备) 冬季使用一台机组。 A、地源热泵系统,冬夏两用 ·夏季各设备的配电功率 · a.地源热泵机组:夏季245.4kW/台*2台。 · b.空调侧循环泵:37kW/台。 · c.地埋管侧循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。

· e.埋管侧电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·地埋管热泵工程运行费用如下: ·1、电价按0.80元/KWH。 ·2、夏季制冷90天,每天间歇运行8小时。 ·3、空调同时使用率取0.8。 ·4、机组运行率取65%。 夏季运行费用: 90×8×0.8×(0.2×2+4+30+245.4×2+37)×65%×0.8=16.8万元。·冬季各设备的配电功率 · a.地源热泵机组:夏季324.6kW/台*2台。 · b.空调侧循环泵:37kW/台。 · c.地埋管侧循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。 · e.井水电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·地埋管热泵工程运行费用如下: ·1、电价按0.80元/KWH。 ·2、冬季制热120天,每天间歇运行8小时。 ·3、空调同时使用率取0.8。 ·4、机组运行率取65%。 冬季运行费用:

中国中央空调冷水机组市场分析报告

2010年度中国中央空调冷水机组市场分析报告时间:2011-03-15 来源:暖通空调在线手机免费访问:https://www.doczj.com/doc/7713639946.html, (本报告中所指的冷水机组包括离心机、风冷螺杆、水冷螺杆、模块机等在内的常规冷水机组主机设备,为了陈述的简便,在以下内容中将统称为冷水机组。而溴化锂机组、水环热泵以及水地源热泵这三大产品由于市场情况的特殊性,故将在后面的章节中进行单独的分析和阐述。) 冷水机组产品历来都是中央空调各大类产品中最为重要的一类产品,多年来,随着整体市场规模的不断扩张,冷水机组的整体规模也在不断的加大。2010年度,我国的中央空调整体市场容量出现了较大幅度的增长,而冷水机组也依然维持了较高的市场占有率。纵观 (图1.0.1),冷水机始终保持了较为稳定的态势,09年比08年下滑了大约1个百点,10年比09年下滑了0.1个百分点,而如此微弱的振动幅度在很大程度表明了市场对于这一类产品的需求始终处于较为旺盛的水平,尽管2010年变频多联、水地源热泵以及单元机等产品的整体规模也出现了罕见的增长幅度,但仍没有撼动冷水机组原有的市场地位。

在冷水机组的品牌格局中,欧美系品牌依然是毫无疑问的主导,约克、开利、特灵、麦克维尔,以及逐渐崛起的顿汉布什等品牌在冷水机市场中一直以来都占据着较高的市场份额,同样,2010年也没有例外。从(图1.0.2)中,我们不难发现,四大美资品牌的冷水机产品始终占绝着其一半以上的出货额,尤其是特灵,在2010年已经超过了60%,而这基本反映了冷水机产品在四大美资品牌产品结构中的重要地位。而从(图1.0.3)中,通过三年的数据变化,我们已经不难发现一个信号,那就是随着部分国产品牌在冷水机领域,尤其是水冷螺杆以及模块机两大产品中的有所作为,冷水机的品牌集中度正在逐步下滑,四大美资品牌的整体占有率已经从2008年的57.4%下滑到了2010年的50.1%,冷水机市场却雄逐鹿的时代也许就要来临。

地源热泵系统项目可行性分析报告

地源热泵系统项目可行性分析报告

目录 一、地源热泵发展史 (3) 二、地源热泵的相关推广政策 (4) 1、国外政府关于地源热泵空调技术的推广政策 (4) 2、全国各地地源热泵推广状况 (4) 3、国家政策文件 (5) 三、地源热泵简介 (7) 1、地源热泵简介 (7) 2、地源热泵系统分类及其优劣性简单介绍 (7) 四、香樟园中央空调地源热泵系统的可行性分析 (9) 1、埋管式地源热泵系统可行性分析 (9) 1.1 地下温度条件 (9) 1.2地质条件 (10) 1.3面积、施工对周围环境影响 (10) 2、地表水形式地源热泵系统可行性分析 (11) 2.1水量条件 (11) 2.2水温条件 (12) 2.3施工对周围环境影响 (12) 2.4开式系统、闭式系统可行性分析 (12) 2.5 开式地表水源形式地表水换热器初投资分析 (13) 五、本工程水源热泵机组使用分析 (13) 1、本工程机组设置建议 (13) 2、采用水空机组、大型螺杆机组设置的计费方式建议 (15) 附:空调计费介绍 (15)

一、地源热泵发展史 地热源热泵”的概念最先于1912 年由瑞士人F7G..H 提出。1946年美国建成第一个地源热泵系统。1998年美国商用建筑的地源热泵空调系统已经占到空调保有量的19%以上,其中在新建筑里面占30%,并以每年;10%的速度递长。在欧洲,德国、法国以及北欧的一些国家应用较多,他们更多的是利用浅层地热资源,来供热或者取暖。而促使近年地源热泵持续升温的原因,则是由于上个世纪70 年代以来,能源和环境危机日趋严重。人们在想方设法从各个方面节能的同时,也开始寻求传统能源之外的清洁、可再生的能源。正是在这种情况下,以清洁、可再生的地热源为能源的地源热泵引起了人们的关注。我国地源热泵技术的研究始于上世纪80年代。1988 年中科院广州能源研究所主办了“热泵在我国应用与发展问题专家研讨会”。1997 年,中国科技部与美国能源部签署了《中美地热开发利用的合作协议书》。2000年山东建筑工程学院成立地源热泵研究所,这是我国首个以地源热泵技术为研究目标的科研机构。2004年,北京工业大学地热供暖示范工程通过验收。2005年,建设部将地源热泵技术列为建筑业十项新技术,有关方面正在制定相关政策,推动地源热泵技术的普及和发展。

别墅地源热泵空调工程投标文件

总目录 一、地源热泵空调设计依据 (4) 二、地源热泵空调系统原理 (11) 三、地源热泵空调设计方案 (15) 四、地源热泵空调设备选型 (20) 五、地源热泵空调工程造价 (21) 六、运行费用测算 (28) 七、XX地埋管专用地源热泵性能特点 (29) 八、地源热泵空调系统施工要点 (31) 九、售后服务保证 (44) 十、XX空调公司简介 (45) 附件:公司资质证明文件 企业法人营业执照 质量管理体系认证 环境体系认证 质量信誉证书 专利认证证书 国家级重点新产品证书 部分用户名录

一、地源热泵空调设计依据 1.1国家有关设计规范 《水源热泵机组》 GB/T19409-2003 《采暖通风与空气调节设计规范》GB50019-2003 《采暖与卫生工程施工及验收规范》 GBJ242-82 《城市热力管网设计规范》 GJJ34-90 《通风与空调工程施工及验收规范》 GBJ243-82 《制冷设备安装工程施工及验收规范》 GBJ66-84 《空气调节系统经济运行》 GB/T17981-2000 《地源热泵系统工程技术规范》 GB/T50366-2005 1.2供热设计参数 夏季空调室外计算干球温度 33.2℃ 夏季空调室外计算湿球温度 20.4℃ 冬季空调室外计算干球温度 -13℃ 冬季空调室外最低日平均温度 -15.8℃ 冬季室外平均风速 0.5m/s 冬季室外主导风向 NW 冬季最大冻土深度 79 cm 1.3工程概况 本工程位于廊坊市,为豪华型、绿色环保生态别墅,其中样板间为36456.39平方米,其中地上7879.79平方米,地下192.60平方米。主要功能是住宅、休闲与一体的综合性高档别墅。廊坊隶属于北温带大陆性季风气

地源热泵冰蓄冷中央空调浅析

地源热泵冰蓄冷中央空调浅析 目前生产和使用的空气源热泵户型中央空调存在有一些急待解决的问题,研究开发地源热泵户型蓄冰中央空调,对节能、降低用户运行费用和电网调峰有着十分重要的意义和发展前景。为了加快地源热泵户型蓄冰中央空调的发展和应用,建议电力部门尽快建立完善鼓励低谷用电的优惠政策,如尽可能拉大峰谷电价比,给予蓄冰空调设备的开发和使用补贴等。同时也建议有关厂家加强地源热泵户型蓄冰中央空调的开发研究,降低造价,提高综合效益,为户型蓄冰中央空调开辟更广阔的市场。 1、户型中央空调的发展 户型中央空调即住宅集中空调,自20世纪90年代进入中国市场以来,正得到很快的发展。就其原因,首先是我国一直把城乡居民住房当作头等大事来抓。 近年来人均住房面积有了很大提高,并且住房也有向大户型、多居室的别墅、多层和小高层发展的趋势;第二,人民生活水平提高,富裕起来的城乡居民住房室内装饰都达“小康”水平,房间空调已满足不了他们的要求,更多的人把消费投向了户型中央空调;第三,生产工艺的成熟和激烈的市场竞争,使得户型中央空调的造价逐渐为工薪阶层接受;第四,城市建筑景观和环境的限制,也使城市的一些小型商业用户转而使用小型集中空调。以上几点可以看出,关注和议论户型中央空调并非超前,户型中央空调将是21世纪的新消费热点。 2、户型中央空调目前存在的问题及解决办法 2.1户型中央空调目前存在的问题 经对目前户型中央空调的调查和了解,我们发现存在着如下问题: 1)国内生产的户型中央空调大多是以空气为热源的热泵机组,虽然在使用和安装上有其方便之处,但在夏季炎热的地区,机组冷凝温度较高,COP值较低,机组耗电量大;在冬季温度较低,湿度较大的地区,机组又需融霜,造成室温波动较大,机组耗电量同样增大。

地源热泵的工作原理及技术经济性分析2

地源热泵的工作原理及技术经济性分析 一、什么是地源热泵 地源热泵是一种利用地下浅层地热资源(也称地能,包括地下水、土壤或地表水等)的既可供热又可制冷的高效节能空调系统。地源热泵通过输入少量的高品位能源(如电能),实现低温位热能向高温位转移。地能分别在冬季作为热泵供暖的热源和夏季空调的冷源,即在冬季,把地能中的热量“取”出来,提高温度后,供给室内采暖;夏季,把室内的热量取出来,释放到地能中去。热泵机组的能量流动是利用其所消耗的能量(如电能)将吸取的全部热能(即电能+吸收的热能)一起排输至高温热源。而其所耗能量的作用是使制冷剂氟里昂压缩至高温高压状态,从而达到吸收低温热源中热能的作用。请参见能流图所示。

通常地源热泵消耗1kW的能量,用户可以得到5kW以上的热量或4kW以上冷量,所以我们将其称为节能型空调系统。 与锅炉(电、燃料)供热系统相比,锅炉供热只能将90%以上的电能或70~90%的燃料内能为热量,供用户使用,因此地源热泵要比电锅炉加热节省三分之二以上的电能,比燃料锅炉节省二分之一以上的能量;由于地源热泵的热源温度全年较为稳定,一般为10~25℃,其制冷、制热系数可达3.5~4.4,与传统的空气源热泵相比,要高出40%左右,其运行费用为普通中央空调的50~60% 。因此,近十几年来,尤其是近五年来,地源热泵空调系统在北美如美国、加拿大

及法国、瑞士、瑞典等国家取得了较快的发展,中国的地源热泵市场也日趋活跃,可以预计,该项技术将会成为21世纪最有效的供热和供冷空调技术。 二、地源热泵国内外发展近况 地源热泵的历史可以追朔到1912年瑞士的一个专利,欧洲第一台热泵机组是在1938年间制造的。它以河水低温热源,向市政厅供热,输出的热水温度可达60oC。在冬季采用热泵作为采暖需要,在夏季也能用来制冷。1973年能源危机的推动,使热泵的发展形成了一个高潮。目前,欧洲的热泵理论与技术均已高度发达,这种“一举两得”并且环保的设备在法、德、日、美等发达国家业已广泛使用。如美国,截止1985年全国共有14,000台地源热泵,而1997年就安装了45,000台,到目前为止已安装了400,000台,而且每年以10%的速度稳步增长。1998年美国商业建筑中地源热泵系统已占空调总保有量的19%,其中有新建筑中占30%。美国地源热泵工业已经成立了由美国能源部、环保署、爱迪逊电力研究所及众多地源热泵厂家组成的美国地源热泵协会,该协会在近年中将投入一亿美元从事开发、研究和推广工作。美国计划到2001年达到每年安装40万台地源热泵的目标,届时将降低温室气体排放1百万吨,相当于减少50万辆汽车

地源热泵知识

地源热泵知识 1、《可再生能源法》何时颁布实施? 答:2006年1月1日《可再生能源法》正式实施,地源热泵系统作为可再生能源应用的主要途径之一,同时也是最利于与太阳能供热系统相结合的系统形式, 2、《地源热泵系统工程技术规范》何时颁布实施?如何正确选用地源热泵系统? 答:《地源热泵系统工程技术规范》(以下简称规范)。该规范现已颁布,并于2006年1月1日起实施。国家现行标准《水源热泵机组》GB/T19409中,对不同地源热泵系统,相应水源热泵机组正常工作的冷(热)源温度范围也是不同的,设计时应正确选用(如下所示)。 水环热泵系统正常工作的冷(热)源温度范围:20~40℃(制冷)15~30℃(制热) 地下水热泵系统正常工作的冷(热)源温度范围:10~25℃(制冷)10~25℃(制热) 地埋管热泵系统正常工作的冷(热)源温度范围:10~40℃(制冷)-5~25℃(制热) 3:什么是地源热泵系统? 答:地源热泵系统利用地下常温土壤或地下水温度相对稳定的特性,通过输入少量的高品位能源(如电能),运用埋藏于建筑物周围的管路系统或地下水与建筑物内部进行热交换,实现低品位热能向高品位的冷暖两用空调系统。它由水循环系统、热交换器、地源热泵机组和控制系统组成。 地源热泵系统冬季代替锅炉从土壤中取出热量,以30-40℃左右的热风向建筑物供暖,夏季代替普通空调向土壤排热,以10-17℃左右的冷风形式给建筑物制冷。 4、地源热泵系统为什么能节约资金? 答:无论是在运行成本还是维修保养费用上,GHP(地源热泵系统简称,下同)都能节省钱。和别的系统相比,初投资能够在三年之内追平。这里有一个正向的资金流入,因为系统节能通常超过了抵押付款。另外,国外及台湾等地区政府还对购买GHP的客户给予一定的折扣和奖励,相信,中国在不久的将来也将实行这一世界通用的政策。一方面,高效的输出功率和输入功率比值。同样的建筑,您将节省下一大笔额外的运行费用;另一方面,“傻瓜操作模式”的运行管理。为您节省下一大笔管理费用和维护费用。两笔费用的节省,使您在很短的时间内就会将您的初投资全部收回。 5、地源热泵系统效率有多高? 答:GHP系统是目前用于供热和制冷系统中最有效的一种,它的供热效率比其它加热系统要高出50%到70%,制冷效率比一般的空调要高出20%到40%。这些节省下来的能量都直接反映在你的电费单上。如果考虑到在夏季制冷时,可以免费提供的卫生热水(或夏季加热热水时,可以提供的免费制冷),则用户支出的费用更少。 6、地源热泵热水系统组成 答:GHP系统由三部分组成,(1)、室外冷热源系统,常见的有地下水系统、地下埋管系统、地表水系统等。(2)、室内空调设备及管道系统,通常采用风机盘管加新风系统。(3)、热水加热系统,通常由储热水箱、水泵及管道组成。 7、地源热泵同空气源相比,有什么优点? 答:地源热泵同空气源热泵相比,有许多优点:(1)全年温度波动小。冬季温度比空气温度高,夏季比空气温度低,因此地源热泵的制热、制冷系数要高于空气源热泵,一般可高于40%。(2)冬季运行不需要除霜,减少了结霜和除霜的损失。(3)地源有较好的蓄能作用。 9、为什么说地源热泵为全天候太阳能系统? 答:地球是一个巨大的储热体,在地下2米及以下的土壤温度或地下水温度全年基本保持不变,如长江流域,地下土壤或水温基本保持在14°C—18°C,这对空调系统而言,是一个很好的热源(冬季)或冷源(夏季)。

地源热泵造价与运行费用对比

目录 一、公司简介。。。。。。。。。。。.。。。。。。。。。。2 二、标志性工程案例。。。。。。。。。。。。。。。。。。。3 三、地源热泵技术原理介绍。。。。。。。。。。。。。。。。6 四、冷暖方式的分析。。。。。。。。。。。。。。。。。。。15 五、设计方案说明。。。。。。。。。。。。。。。。。。。。17 六、系统设计方案。。。。。。。。。。。。。。。。。。。。20 七、投资概算及运行费用对比。。。。。。。。。。。。。。。25 八、补充说明。。。。。。。。。。。。。。。。。。。。。。29 九、附件(图纸、企业资质及相关政策文件)。。。。。。。。30

一、公司简介 浙江亿能建筑节能科技有限公司其前身是台州亿能建筑节能科技有限公司,于2010年4月由浙江省工商行政管理局批准正式更名,是台州首家集科技、设计、培训、咨询、新能源投资、建筑节能、环境保护于一体的科技型企业,公司成立至今一直从事于节能、环保工作。随着人们生活水平的不断改善与提高,环境保护意识的日益增强,国家政府大力提倡减排,公司于2010年5月在山东滨州先后成立了“浙江亿能建筑节能科技有限公司滨城分公司”、“滨州市艾斯达节能材料有限公司”,致力于建筑节能新技术与新产品的开发与利用、节能环保型中央空调系统配件与设备的研发与推广,形成产品系列化。 目前,公司已经建立了包括生产、营销、采购、供应、质量控制、设计、决策等在内的科学、高效的管理体系,为公司的迅速发展提供了组织机构和管理制度保障,使公司呈现良好的发展态势。现与中国建筑科学研究院建筑环境与节能研究院等多家科研机构建立了战略合作同盟体,可以为客户提供各种建筑节能方案和先进的节能设备。 公司08年度被浙江省科学技术协会、浙江省科技报社评为“浙江省优秀创新型企业”,被中国质量诚信企业协会、中国品牌价值评估中心评为“浙江省重质量守承诺创品牌”单位,暨“首批三满意单位”。2008年12月份公司参与了国家4个标准的制定:①地源热泵系统经济运行标准;②溴化锂吸收式冷水机组能效限定值节能标准;③地源热泵机组能效限定值及能源效率等级标准;④商业或工业用及类似用途低温空气源热泵机组标准,其中地源热泵系统经济运行标准由我司参与主编。2009年6月,我司与台州职业技术学院于市政府签订了“台州市校企校地合作协议书”。 公司始终坚守“高效、节能、环保”为重的经营理念及“诚信、团结、创新”的企业精神,以推广建筑节能事业为目标,以缓解能源紧张,降低能源消耗为己任,大力促进可再生能源应用和节能环保项目的推广,为加快建设“十一五”规划提出的能源节约型社会做出自己的贡献。亿能人以精湛的合作团队,凭借先进的技术真诚希望与国内外的客商携手共创节能型社会!

热泵技术在中国市场的发展前景分析

热泵技术在中国市场的发展前景分析中国泵业网热泵在我国起步较早。50年代,天津大学的一些学者已开始从事热泵的研究工作。60年代开始在我国暖通空调中应用热泵。 例如,从1963年起原华东建筑设计院与上海冷气机厂就开始研制热泵式空调器;1965年上海冰箱厂研制成我国第一台制热量为3720kw的CKT-3A热泵型窗式空调器。1965年天津大学与天津冷气机厂研制成国内第一台水冷式热泵空调机。1966年又与铁道部四方车辆研究所共同合作进行干线客车的空气-空气式热泵试验。1966年原哈尔滨建筑工程学院与哈尔滨空调机厂研制成功LHR-20恒温恒湿热泵式空调机,首次提出冷凝废热用作恒温恒湿空调机的二次加热的新流程。但是,由于我国能源价格的特殊性,以及一些其他因素的影响,热泵空调在我国的应用与发展始终很缓慢。 直至70年代末期,才又为热泵空调的发展与应用提供了机遇。 80年代初至90年代末在我国暖通空调领域掀起一股热泵热。热泵空调在我国的应用日益广泛,发展速度很快、主要表现在以下几点。

1、热泵空调的学术交流活动十分活跃 1978年至2001年,中国制冷学会第二专业委员会主办过9届“全国余热制冷与热泵技术学术会议”,今年十月将在杭州举办底10届“全国余热制冷与热泵技术学术会议”。1988年中国科学院广州能源研究所主办了“热泵在我国应用与发展问题专家研讨会”。自90年代起,中国建筑学会暖通空调委员会、中国制冷学会第五专业委员会主办的各届“全国暖通空调制冷学术年会”上专门增设“热泵专题”交流。每届热泵学术会上都广泛地交流了大量的学术论文,这充分反映了我国热泵技术的发展和进步。 2、积极开展热泵空调技术的研究工作 (1)热泵空调技术在我国运用的可行性研究 1986年北京公用事业科学研究所开展了“燃气吸收式热泵供热制

热泵基本知识

热泵(Heat Pump),又称冷机(Refrigerator),将能量由低温处(低温热库)传送到高温处(高温热库)的装置。且它提供给温度高的地方的能量和要大于它运行所需要的能量。利用低沸点液体经过节流阀减压后蒸发时,从低温物体吸收热量,然后将蒸汽压缩,使温度升高,经过冷凝器时放出吸收的热量而液化,如此循环工作能不断把热量从温度较低的物体转移给温度较高的物体,可将此热量用于加热、干燥等设备中。 目录 1基本定义 2主要分类 3工作原理 4发展历史 5水源热泵 6 1基本定义编辑本段 热泵将低温热源的热量转移到温度高于环境温度的物体,从而获得热量的机器和设备。在空气调节设备中热泵的工作过程与制冷机相仿,但它是向高于环境温度的物体供给热量,例如向建筑物供暖、供应生活或某些生产过程用的热水等。热泵的低温热源最常用的是环境介质(空气或地面水)的热量,也可用地热或生产过程中排出的废汽、废水和废油等的热量。 热泵(Heat Pump)是一种将低温热源的热能转移到高温热源的装置,也是是全世界倍受关注的新能源技术。它不同于人们所熟悉的可以提高位能的机械设备——“泵”;热泵通常是先从自然界的空气、水或土壤中获取低品位热能,经过电力做功,然后再向人们提供可被利用的高品位热能。

蒸汽喷射热泵(又称汽汽引射器、蒸汽喷射器,蒸汽喷射式热泵),它广泛应用于纺织、造纸、石油、化工、热电、橡塑、包装、电力等以蒸汽作为动力的工业中,主要用来促进蒸汽循环,提高低压蒸汽压力。这些行业的企业由于在生产过程中产生低压蒸汽,在一个生产厂或车间中可存在多种等级压力的蒸汽,蒸汽喷射热泵可利用高压蒸汽节流的可用能,提高低压蒸汽的压力,用高压蒸汽能量回收放失的低压蒸汽,回收高温凝结水汽,回收高温凝结水的闪蒸汽等,从而将不同等级压力的蒸汽综合利用,达到显著的节能效果。 2主要分类编辑本段 2.1按热源获取来源的种类分 水源热泵,地源热泵,空气源热泵,双源热泵(水源热泵和空气源热泵结合) 2.2按加热方式分 直热式热泵 直热式设备是直接补热水到热水水箱,即使遇到峰值最大用水量,客户用水温度不受任何影响。保温水箱体积减少30%。由于直接补热水,即使用户把保温水箱的水全部用完,水箱里面的水温都维持在60℃左右,因此可以100%利用。循环式加热由于补冷水,当遇到大量用水时,水箱温度大幅度下降,水箱温度已经低于40℃。为了保证用户要求,往往解决方法是增大水箱容积。 循环式热泵 热泵机组中装配一个小型保温水箱和一个大型水箱,通过循环水泵把水箱的水打进热泵主机加热,热泵机组先把小水箱灌满水,把小水箱的水加热至55℃后再通过循环水泵把热水传递至大型水箱。

(整理)地源热泵与传统空调运行费用比较.

江西某电子厂空调运行比较分析1.冷、热源及空调方式选择比较

2.运行费用分析比较: 制冷机选用二大一小三台机组,300冷吨两台,150冷吨一台,(共2637KW计算),以适应不同负荷时制冷机能处于高效状态下运行。采暖总热量约1.2MW(1200KW)。 选用地源热泵机组LTLHM-370,制冷量1300KW,功率245.4KW;制热量1400KW,功率324.6KW。 循环泵功率(估算):37KW(一用一备) 补水泵功率(估算):4KW(一用一备) 地埋管循环泵功率(估算):30KW(一用一备) 冬季使用一台机组。 A、地源热泵系统,冬夏两用 ·夏季各设备的配电功率 · a.地源热泵机组:夏季245.4kW/台*2台。 · b.空调侧循环泵:37kW/台。 · c.地埋管侧循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。 · e.埋管侧电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·地埋管热泵工程运行费用如下: · 1、电价按0.80元/KWH。 · 2、夏季制冷90天,每天间歇运行8小时。 · 3、空调同时使用率取0.8。 · 4、机组运行率取65%。 夏季运行费用: 90×8×0.8×(0.2×2+4+30+245.4×2+37)×65%×0.8=16.8万元。 ·冬季各设备的配电功率

· a.地源热泵机组:夏季324.6kW/台*2台。 · b.空调侧循环泵:37kW/台。 · c.地埋管侧循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。 · e.井水电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·地埋管热泵工程运行费用如下: · 1、电价按0.80元/KWH。 · 2、冬季制热120天,每天间歇运行8小时。 · 3、空调同时使用率取0.8。 · 4、机组运行率取65%。 冬季运行费用: 120×8×0.8×(0.2×2+4+30+324.6+37)×65%×0.8=15.8万元。 B、水冷冷水机组和燃油锅炉 选用水冷冷水机组LTLS-280两台,制冷量1021KW,功率243KW。另选用水冷冷水机组LTLS-160一台,制冷量550KW,功率130KW。 循环泵功率(估算):37KW(一用一备) 补水泵功率(估算):4KW(一用一备) 冷却塔循环泵功率(估算):30KW(一用一备) ·夏季各设备的配电功率 · a.水冷冷水机组:夏季243kW/台*2台,130kW/台*1台 · b.空调侧循环泵:37kW/台。 · c.冷却塔循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。 · e.冷却水电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·冷水水冷工程运行费用如下:

地源热泵市场现状分析

地源热泵市场现状分析 马军王玮 1.地源热泵的原理及发展历史 地源热泵是一种先进的技术,它高效、节能、环保,有利于可持续发展。这项技术最先开始于1912年,瑞士Zoelly提出了“地热源热泵” 的概念。1946年美国开始对地源热泵进行系统研究,在俄勒冈州建成第一个地源热泵系统,运行很成功,由此掀起了地源热泵系统在美国的商用高潮。1985 年美国安装地源热泵14000台,1997年则安装了45000台,目前已安装了400000台以上的地源热泵,并且以每年10%的速度递长。1998年美国商用建筑的地源热泵空调系统已经占到空调保有量的19%以上,其中在新建筑里面占30%。在欧洲国家里更多的是利用浅层地热资源,来供热或者取暖。美国地源热泵工业已经成立了由美国能源部、环保署、爱迪逊电力研究所及众多地源热泵厂家组成的美国地源热泵协会,该协会在近年中将投入一亿美元从事开发、研究和推广工作。美国计划到2001年达到每年安装40万台地源热泵的目标,届时将降低温室气体排放1百万吨,相当于减少50万辆汽车的污染物排放或种植树1百万英亩,年节约能源费用达4.2亿美元,此后,每年节约能源费用再增加1.7亿美元。地源热泵的发展过程中,与美国有所不同的是,中、北欧如瑞典、瑞士、奥地利、德国等国家主要利用浅层地热资源,地下土壤埋盘管(埋深<400米深)的地源热泵,用于室内地板辐射供暖及提供生活热水。据1999年的统计,为家用的供热装置中,地源热泵所占比例,瑞士为96%,奥地利为38%,丹麦为27%。 地源热泵的发展市场,美国特别看好中国,美国能源部和中国科技部于1997年11月签署了中美能源效率及可再生能源合作议定书,其中主要内容之一是“地源热泵”,该项目拟在中国的北京、杭州和广州3个城市各建一座采用地源热泵供暖空调的商业建筑,以推广运用这种“绿色技术”,缓解中国对煤炭和石油的依赖程度,从而达到能源资源多元化的目的。目前,这3个地源热泵示范工程正在落实,有的已进入实施阶段。与此同时,科技部委托的中国企业公司正酝酿将美国的地源热泵技术及设备引进中国市场,这将促进我国地源热泵的市场化、产业化的发展,并使我国地源热泵的研究开发尽快跟上国际潮流。 地源热泵技术是当前世界上最先进的供暖制冷新技术。它利用浅层常温地热能解决供暖制冷问题,属于可再生能源利用技术。近十年来全世界每年以递增20%以上的速度在增长,到2005年年底,已有33个国家在推广这项技术。它有三大优点,一是节能比其他常规供暖技术可节能50-60%;二是环保不排放任何废弃物;三是运行费用低,可降低30-70%。是供暖制冷领域解决污染节能问题的重要技术选择。中国地源热泵从技术引进到大规模推广,发展了十余年的时间。

地源热泵系统的设计及计算

一说到设计,人们往往想到的是工程技术人员的计算和绘图,当然这些都属于设计领域里的工作,而寻找解决问题的途径,也是设计任务之一。设计本身包括寻找解决问题的途径,所以它不限于事先构思,更不排斥实践,而应是思维活动与实践活动的统一。空调设计的任务及目的,就是把现有能效高的设备组织好、使用好、充分发挥它们的作用。 现代空调系统的不断发展使建筑物内的设施日益增多和复杂,这对改善人们的生活和工作环境有着积极作用,但同时也带来了由于系统设计、工程施工和运行管理不当而造成对自然环境和人体健康有害的因素。所以反过来力求解决这些问题就成为一种主要的推动力,促使空调技术更进一步向前发展。目前,建筑节能的重要性越来越引起人们的关注。从建筑设计方面来看,提高隔热保温性能,采用合理的朝向,增设必要的遮阳等可以减少空调负荷,降低能耗。对于确定的空调负荷,提高设备的效率和优化运行过程提供相应的硬件软件,都成为降低能耗的关健。 空调系统的设计一般采用工况设计法,是以夏季和冬季室外空气设计参数为依据的典型工况进行计算,并且是按最不利情况考虑,按照设备的额定工况选择指标。所以,设备选型较大。空调设备经常处于部分负荷状态下运行,必须要求设备在部分负荷运行时也能高效率运行。避免负荷变化了,而设备不能作相应调节,出现大马拉小车的现象;或设备也能调节负荷,但调节性能差,耗能指标落后。 因此,设计的任务就是要用先进的自控技术将空调全工况下的

性能调整到最佳程度,这就是所谓的过程设计方法。 一、中央空调设计主要参考以下的规范及标准 1、通用设计规范 1).《采暧通风及空气调节设计规范》(GB50019-2003(2003 年版)); 2).《采暖通风及至气调节制图标准》(GBJ114-88) 3).《建筑设计防火规范》(GBJ116-87) 4).《高层民用建筑设计防火规范》( GBJ0045-95) 5).《民用建筑节能设计标准(采暖居住建筑部分)》(JGJ26-95)2.专用设计规范: 1).《宿舍建筑设计规范》(JGJ36-87) 2).《住宅设计规范》(GB50096-99) 3).《办公建筑设计规范》(JG67-89) 4).〈旅馆建筑设计规范〉(JGJ67-89) 5).《旅游旅馆建筑热土与空气调节节能设计标准》(GB50189-93) 6).《地源热泵系统工程技术规范》(JGJ142-2004) 7).《地面辐射供暖技术规范》(GB50366-2005) 8).其它专用设计规范 3.专用设计标准图集: 1).《暖通空调标准图集》 2).《暖通空调设计选用手册》(上、下册) 3)、其它有关标准

第三章 地源热泵系统的设计及计算.

第三章地源热泵系统的设计及计算 一说到设计,人们往往想到的是工程技术人员的计算和绘图,当然这些都属于设计领域里的工作,而寻找解决问题的途径,也是设计任务之一。设计本身包括寻找解决问题的途径,所以它不限于事先构思,更不排斥实践,而应是思维活动与实践活动的统一。空调设计的任务及目的,就是把现有能效高的设备组织好、使用好、充分发挥它们的作用。 现代空调系统的不断发展使建筑物内的设施日益增多和复杂,这对改善人们的生活和工作环境有着积极作用,但同时也带来了由于系统设计、工程施工和运行管理不当而造成对自然环境和人体健康有害的因素。所以反过来力求解决这些问题就成为一种主要的推动力,促使空调技术更进一步向前发展。目前,建筑节能的重要性越来越引起人们的关注。从建筑设计方面来看,提高隔热保温性能,采用合理的朝向,增设必要的遮阳等可以减少空调负荷,降低能耗。对于确定的空调负荷,提高设备的效率和优化运行过程提供相应的硬件软件,都成为降低能耗的关健。 空调系统的设计一般采用工况设计法,是以夏季和冬季室外空气设计参数为依据的典型工况进行计算,并且是按最不利情况考虑,按照设备的额定工况选择指标。所以,设备选型较大。空调设备经常处于部分负荷状态下运行,必须要求设备在部分负荷运行时也能高效率运行。避免负荷变化了,而设备不能作相应调节,出现大马拉小车的现象;或设备也能调节负荷,但调节性能差,耗能指标落后。

因此,设计的任务就是要用先进的自控技术将空调全工况下的性能调整到最佳程度,这就是所谓的过程设计方法。 一、中央空调设计主要参考以下的规范及标准 1、通用设计规范 1).《采暧通风及空气调节设计规范》(GB50019-2003(2003 年版)); 2).《采暖通风及至气调节制图标准》(GBJ114-88) 3).《建筑设计防火规范》(GBJ116-87) 4).《高层民用建筑设计防火规范》( GBJ0045-95) 5).《民用建筑节能设计标准(采暖居住建筑部分)》(JGJ26-95)2.专用设计规范: 1).《宿舍建筑设计规范》(JGJ36-87) 2).《住宅设计规范》(GB50096-99) 3).《办公建筑设计规范》(JG67-89) 4).〈旅馆建筑设计规范〉(JGJ67-89) 5).《旅游旅馆建筑热土与空气调节节能设计标准》(GB50189-93) 6).《地源热泵系统工程技术规范》(JGJ142-2004) 7).《地面辐射供暖技术规范》(GB50366-2005) 8).其它专用设计规范 3.专用设计标准图集: 1).《暖通空调标准图集》 2).《暖通空调设计选用手册》(上、下册)

国际地源热泵发展历程及我国发展趋势

国际地源热泵发展历程及我国发展趋势 ——中国建筑科学研究院徐伟 美国地源热泵发展历史及概况 美国的地源热泵起源于地下水源热泵。由于土壤源热泵的初投资高、计算复杂以及金属管的腐蚀等问题,早期美国的地源热泵中土壤源热泵所占比例较小,主要以地下水源热泵为主。早在20世纪50年代,美国市场上就开始出现以地下水或者河湖水作为热源的地源热泵系统,并利用它来实现采暖,但由于采用的是直接式系统,很多系统在投入使用10年左右的时间由于土壤中化学物质腐蚀等问题就失效了,地下水源热泵系统的可靠性受到了人们的质疑。 上世纪70年代末至80年代初,在能源危机的促使下,人们又开始关注地下水源热泵。通过改进,水源热泵机组扩大了进水温度范围,加之欧洲板式换热器的引进,闭式地下水源热泵逐渐得到广泛应用。 与此同时,人们也开始关注土壤源热泵系统。在美国能源部(DOE)的支 持下,美国橡树山(Oak Ridge National Laborato-ry,ORNL)和布鲁克海文(Brookhaven National Laboratory,BNL)等国家实验室和俄克拉荷马州立大学(Oklahoma StateUniversity,OSU)等研究机构进行了大量的研究。主要研究工作集中在地下换热器的传热特性、土壤的热物性、不同形式埋管换热器性能的比较研究等。为了解决土壤中化学物质腐蚀问题,地埋管也由金属管变成了聚乙烯等塑料管。至此,美国进行了多种形式的地下埋管换热器的研究、安装和测试工作。现在美国安装的土壤源热泵主要是闭式环路系统,根据塑料管安装形式的不同可分水平埋管和垂直埋管,此系统可以被高效地应用于任何地方,也正是土壤源热泵系统的广泛应用推动了近几十年美国地源热泵产业的快速增长。1998年美国能源部要求在具有使用条件的联邦政府机构建筑中推广应用土壤源 热泵系统。为了表示支持这种节能环保的新技术,美国总统布什在他得克萨斯州宅邸中也安装了这种地源热泵系统。进入21世纪,美国地源热泵的使用量随着建筑规模的扩大也逐渐增加。美国地源热泵年平均增长率保持在15%以上。 从2005年到2007年美国地源热泵呈现快速增长趋势,目前地源热泵在美国50 个州都有应用,2007年全年地源热泵系统应用超过了45000套。 美国地源热泵发展中遇到的障碍主要有:1.地源热泵系统相对传统系统以及空气源热泵的一次投资较大;由于初期投资涉及到大量的地下施工,北美地区高昂的劳动力成本使得地源热泵系统的初期投资可超过常规系统100%乃至150%,目前每米环路的费用大约是11.5~55.8美元,平均每米为36美元。初期投资过高从而极大地限制了地源热泵的应用。在目前的应用中,主要还是以公立学校,尤其是中小学为主,其次是联邦的公用设施,包括军用设施。在真正的私人投资的商用建筑中使用比例要低于前两者;2.各种地方法规对地源热泵使用的限制;3.承包商施工不规范;4.水平埋管土壤源热泵系统需要大量土地面积。

地源热泵埋管数、配电量以及投资计算

1 钻井埋管埋管数量的确定 热负荷埋管数量 Qr * 0.78 = L * K * n 冷负荷埋管数量 Ql * 1.2 = L * K * n 其中:Qr---------------------冬季热负荷 Ql---------------------夏季冷负荷 0.78,1.2-------------系数 L----------------------单孔埋管深度 K----------------------单位管长换热系数 N----------------------埋管数量 计算后应乘以1.05的余量 2 机房及配电量 一般可取建筑冷负荷的三分之一(不建议采用,此句话的由来为:冷负荷/cop 。一般地源热泵cop为6左右,通常制冷机取5.因此建议:机房设备总的功率乘上需用系数0.9-0.95,或者当设备较少时取需用系数为1 .) 机房的配电量一般根据工艺的要求把同一时间可能开启的的所有设备电功率加起来乘0.9-0.95就行。注意冬夏季负荷功率及设备运行台数会有变化,分冬夏两个工况,分开计算,最后两者取其较大

值就行。 3 机房面积 机房占地面积宜为空调区域建筑面积的千分之五 4 冷冻水量和冷却水量 冷冻水量CMH=制冷量(KW)X 0.172 冷却水量CMH=制冷量(KW)X 0.224 5参考资料 做建筑给排水不用算商场的人数的,按面积算,最高日生活用水定额取X,其中X取5~8,单位为每平方米营业厅面积每日(L/m2 ·d),使用时数为12h,小时变化系数为1.5~1.2,具体参见《建筑给水排水设计规范》. (1)确定主机类型; 根据户式中央空调系统的选择原则和用户所在之区域,确定空调系统方式和主机类型(单冷或热泵)。 (2)计算住宅夏季冷负荷 Ql 和冬季热负荷 QR ; 根据用户住宅的建筑面积和用户所处区域内建筑冷、热负荷指标按下式计算住宅冷负荷Ql 和热负荷 QR 。 QL = 建筑面积×冷指标(w) , QR = 建筑面积×热指标(w) 。 (3)确定主机型号; 根据住宅的冷负荷 Ql ,主机的名义制冷量和主机工作特性系数按下式确定主机型号: 某型号主机名义制冷量×夏季主机工作特性系数≥住宅冷负荷。 (4)如果是热泵型主机,则需校核计算该型号热泵冬季工况的实际制热量 Q机.R 。主机实际制热量: Q机.R = 该型号热泵主机名义制冷量×主机冬季工作特性系数。 (5)确定电加热器加热量 Q D.R ; QD.R = 住宅冬季热负荷 QR - 主机, 冬季实际制热量 Q机.R 。 注:如果计算出来的 QD.R ≤1kw,则不需增设电加热器。

相关主题
文本预览
相关文档 最新文档