当前位置:文档之家› 深基坑工程深层土体水平位移及分层沉降监测初探

深基坑工程深层土体水平位移及分层沉降监测初探

深基坑工程深层土体水平位移及分层沉降监测初探
深基坑工程深层土体水平位移及分层沉降监测初探

深基坑工程深层土体水平位移及分层沉降监测初探

在建设工程施工中,深基坑工程作为最为重要的安全控制点,必须在施工全过程中都予以重点监控。本文结合某深基坑工程实例,从监测频率、监测周期、监测控制指标、监测方法与数据处理方法、监测预警与报警的信息反馈措施、监测质量保障措施等方面,对该深基坑工程的深层土体水平位移及分层沉降等方面的监测实施进行了浅要的分析与探讨,并希望对今后的深基坑工程施工监测工作提供一定的帮助和借鉴。

标签:深基坑工程;深层土体;位移及沉降;监测

1 工程概况

某工程为地下三层,采用明挖顺筑法施工。其基坑南北长118.5m,东西长116.8~102.9m,呈梯形布置,开挖深度约分19m,局部挖深约为23.5m。围护结构采用Φ1000@1200钻孔灌注桩+Φ850@600的三轴搅拌桩止水帷幕,在钻孔桩之间采用二排Φ900高压旋喷桩加强止水。支护结构为土钉+排桩+旋喷桩止水帷幕+锚杆+一道钢筋砼支撑。根据设计要求,结合基坑工程围护设计要求和基坑工程施工现状以及周边环境,确定本深基坑工程的深层土体水平位移及分层沉降等方面的监测项目和监测精度。

2 深基坑工程深层土体水平位移及分层沉降监测频率、周期与控制指标

2.1 深基坑工程深层土体水平位移及分层沉降监测频率

本深基坑工程深层土体水平位移及分层沉降等方面的监测频率。若遇特殊情况或出现报警情况后,可根据其与基坑的相对位置关系在此表的基础上进行适当加密监测。

2.2 深基坑工程深层土体水平位移及分层沉降监测周期

本深基坑工程监测总工期以建设单位要求的监测开工日期为起点,至工程主体结构施工完毕或施工影响区域内的受影响的建(构)筑物沉降变形稳定为止。其沉降变形稳定标准:参照《建筑变形测量规范》JGJ8-2007相关内容确定,即“当最后100d的沉降速率小于0.01~0.04mm/d时可认为已经进入稳定阶段”。

2.3 深基坑工程深层土体水平位移及分层沉降监测控制指标

监测报警指标一般以总变化量和变化速率两个量控制,累计变化量的报警指标一般不宜超过设计限值。本工程基坑开挖的安全等级为一级,因此监控施工过程中的基坑变形、环境变化情况应全面满足一级控制保护要求,使施工单位能随时了解变形情况,以便及时采取有关措施,调控施工步序与节奏,作到信息化施工,确保工程施工顺利进行。根据本深基坑工程围护结构设计要求,其深层土体

建筑基坑沉降、位移监测的内容及方法

《建筑基坑沉降、位移监测的内容及方法》 一、深基坑监测的意义 随着城市建设的发展,基坑施工的开挖深度越来越深,从最初的5~7m发展到目前最深已达20m多。由于地下土体性质、荷载条件、施工环境的复杂性,对在施工过程中引发的土体性状、环境、邻近建筑物、地下设施变化的监测已成了工程建设必不可少的重要环节。 对于复杂的大中型工程或环境要求严格的项目,往往难从以往的经验中得到借鉴,也难以从理论上找到定量分析、预测的方法,这就必定要依赖于施工过程中的现场监测。首先,靠现场监测据来了解基坑的设计强度,为今后降低工程成本指标提供设计依据。第二,可及时了解施工环境——地下土层、地下管线、地下设施、地面建筑在施工过程中所受的影响及影响程度。第三,可及时发现和预报险情的发生及险情的发展程度,为及时采取安全补救措施充当耳目。 二、深基坑监测的内容及方法 深基坑施工,必须要有一定的围护结构用以挡土、挡水。围护设施必须安全有效。浅基坑的围护结构以前常用的是钢板桩或混凝土板桩;深基坑则大多采用现场浇灌的地下连续墙结构或排桩式灌注桩结构,并配以混凝土搅拌桩或树根桩止水。开挖时,坑内必须抽去地下水,7~15m深的基坑,中间必须配二到三道水平支撑,水平支撑采用钢管式结构或钢筋混凝土结构。围护结构必须安全可靠,并能确保施工环境稳定。从经济角度来讲,好的围护设计应把安全指标取在临界点附近,再靠现场监测提供的动态信息反馈来调整施工方案。 1、以下内容是基坑监测目前能够做到的也是应该做到的项目: (1)地下管线、地下设施、地面道路和建筑物的沉降、位移。 (2)围护桩地下桩体的侧向位移(桩体测斜)、围护桩顶的沉降和水平位移。 (3)围护桩、水平支撑的应力变化。 (4)基坑外侧的土体侧向位移(土体测斜)。 (5)坑外地下土层的分层沉降。 (6)基坑内、外的地下水位监测。 (7)地下土体中的土压力和孔隙水压力。 (8)基坑内坑底回弹监测。

建筑物沉降观测和基坑变形监测点布设及报告

2. 监测点地布设 2.0.1基坑顶部竖向位移 监测点布设在基坑边坡顶部地,应沿基坑周边布置,基坑周边中部.阳角处应布置监测点.监测点间距不宜大于20m,每边监测点数目不应少于3个.监测点宜设置在基坑边坡坡顶上. 监测点布设在在围护墙上地,应沿围护墙地周边布置,围护墙周边中部.阳角处应布置监测点.监测点间距不宜大于20m,每边监测点数目不应少于3个.监测点宜设置在冠梁上. 2.0.2基坑顶部水平位移 监测点地布设同2.1 基坑顶部竖向位移,宜为共用点. 2.0.3坑外土体深层水平位移 深层水平位移监测孔宜布置在基坑边坡.围护墙周边地中心处及代表性地部位,数量和间距视具体情况而定,但每边至少应设1个监测孔. 2.0.4 地下水位 水位监测点应沿基坑周边.被保护对象(如建筑物.地下管线等)周边或在两者之间布置,监测点间距宜为20~50m.相邻建(构)筑物.重要地地下管线或管线密集处应布置水位监测点;如有止水帷幕,宜布置在止水帷幕地外侧约2m处. 2.0.5 锚(杆)索拉力 锚(杆)索地拉力监测点应选择在受力较大且有代表性地位置,基坑每边跨中部位和地质条件复杂地区域宜布置监测点.每层锚杆地拉力监测点数量应为该层锚杆总数地1~3%,并不应少于3根.每层监测点在竖向上地位置宜保持一致.每根杆体上地测试点应设置在锚头附近位置. 2.0.6支护桩桩身内力 支护桩桩身内力监测点应布置在受力.变形较大且有代表性地部位,监测点

数量和横向间距视具体情况而定,但每边至少应设1处监测点.竖直方向监测点应布置在弯矩较大处,监测点间距宜为3~5m. 2.0.7支撑内力 支撑内力监测点地布置应符合下列要求: 1.监测点宜设置在支撑内力较大或在整个支撑系统中起关键作用地杆件上; 2.每道支撑地内力监测点不应少于3个,各道支撑地监测点位置宜在竖向保持一致; 3.钢支撑地监测截面根据测试仪器宜布置在支撑长度地1/3部位或支撑地端头.钢筋混凝土支撑地监测截面宜布置在支撑长度地1/3部位; 4.每个监测点截面内传感器地设置数量及布置应满足不同传感器测试要求. 2.0.8 围护墙侧向土压力 围护墙侧向土压力监测点地布置应符合下列要求: 1.监测点应布置在受力.土质条件变化较大或有代表性地部位; 2.平面布置上基坑每边不宜少于2个测点.在竖向布置上,测点间距宜为2~5m,测点下部宜密; 3.当按土层分布情况布设时,每层应至少布设1个测点,且布置在各层土地中部; 4.土压力盒应紧贴围护墙布置,宜预设在围护墙地迎土面一侧. 2.0.9土体分层竖向位移 土体分层竖向位移监测孔应布置在有代表性地部位,数量视具体情况确定,并形成监测剖面.同一监测孔地测点宜沿竖向布置在各层土内,数量与深度应根据具体情况确定,在厚度较大地土层中应适当加密. 2.0.10立柱竖向位移 立柱地竖向位移监测点宜布置在基坑中部.多根支撑交汇处.施工栈桥下.地质条件复杂处地立柱上,监测点不宜少于立柱总根数地10%,逆作法施工地基坑不宜少于20%,且不应少于5根.

基坑边坡水平位移及周边道路竖向位移监测周期及次数

基坑边坡水平位移及周边道路竖向位移监测周期及次数 表5.1 基坑边坡水平位移及基坑周围建筑物、道路竖向位移监测周期、次数监测阶段监测周期监测次数合计 基坑开挖~基坑回填 基坑开挖前 2 42次开挖0~-6m(每层土一次) 2 开挖-6m~-9.5m(每层土二次) 4 开挖-9.5m~-19.5m(每层土三次)12 开挖后2个月内每7天监测1次8 开挖后3~5个月内每15天监测1次 6 6个月~10个月每20天观测1次8 注:在监测过程中如遇大雨或水平位移变化异常等情况,及时增加监测次数。 预计本工程变形监测总次数为84次,其中基坑水平位移监测42次,竖向位移监测42次。

主楼沉降观测周期和次数 观测周期及次数 沉降观测的周期和观测时间应按下列要求并结合实际情况确定: (1)建筑物施工阶段的观测,浇筑基础时设置沉降观测点开始第一次观测,以后的观测次数与间隔时间应视地基与加荷情况而定,主体结构每加高1层观测一次; (2)施工过程中若暂停工,在停工时及重新开工时应各观测一次,停工期间可每隔2~3个月观测一次; (3)建筑主体封顶后100天内,每15天观测一次,直至稳定为止; (4)后续的观测周期应根据主体结构封顶后的百日平均沉降值确定,详见下表(当最后100天的沉降值小于0.01mm/d时,可停止观测。) 编号百日观测平均值后续观测周期备注 1>=0.3mm/d15天 20.1~0.3mm/d30天 30.05~0.1mm/d90天 40.02~0.05mm/d180天 50.01~0.02mm/d365天 (5)在观测过程中,若有基础附近地面荷载突然增减、基础口周大量积水、长时间连续降雨等情况,均应及时增加观测次数。当建筑突然发生大量沉降、不均匀沉降或严重裂缝时,应立即进行逐日或2~3d一次的连续观测;并在观测记录中注明这些情况,及时向甲方和设计方汇报,具体的观测时间,以双方的书面约定为准; (6)建筑沉降是否进入稳定阶段,应由沉降量与时间关系曲线判定。当最后100d的沉降速率小于0.01~0.04mm/d时可认为已进入稳定阶段。 预计本工程沉降观测总次数为36次,总历时36个月。

基坑监测技术

6、地下水位监测 通过基坑、外地下水位的变化,了解基坑围护结构止水效果以及基坑降水效果,可以间接了解地表土体沉降。 地下水位监测宜采用通过孔设置水位管,采用水位计等方法进行测量。 检验降水效果的水位观测井宜布置在降水区,采用轻型井点管降水时可布置在总管的两侧,采用深井降水时应布置在两孔深井之,水位孔深度宜在最低设计水位下 2~3m。潜水水位管应在基坑施工前埋设,滤管长度应满足测量要求:承压水位监测时被测含水层与其他含水层之间应采取有效的隔水措施。水位管埋设后,应逐日连续观测水位并取得稳定初始值。注意避免雨天,雨天后1~2天测试水位值也可以作为初始值。 地下水位监测精度不宜低于10mm。 管口至水面之深度即为本次地下水位观测值。若水位以本地区高程进行计算时,应测量水位管口高程进行。计算公式为: H=h??h 测 式中:H——水位高程 h——管口高程 ——地下水位至管口深度 ?h 测 注意事项包括以下几点: (1) 水位管的管口要高出地表并做好防护墩台,加盖保护,以防雨水、地表 水和杂物进入管。水位管处应有醒目标志,避免施工损坏。 (2) 水位管埋设后每隔1天测试一次水位面,观测水位面是否稳定。当连续几天测试数据稳定后,可进行初始水位高程的测量。 (3) 在监测了一段时间后。应对水位孔逐个进行抽水或灌水试验,看其恢复至原来水位所需的时间,以判断其工作的可靠性。 (4) 坑水位管要注意做好保护措施,防止施工破坏。 (5) 承压水位管直径可为50~70 mm,滤管段不宜小于1m,与钻孔孔壁间应灌砂填实,被测含水层与其它含水层间应采取有效隔水措施,含水层以上部位应用膨润土球或注浆封孔,水位管管口应加盖保护。 (6) 重点是管口水准测量,要与绝对高程统一。 7、锚杆拉力监测 锚杆拉力量测宜采用专用的锚杆测力计,钢筋锚杆可采用钢筋应力计或应变计,当使用钢筋束时应分别监测没跟钢筋的应力。锚杆轴力计、钢筋应力计和应变计的量程宜为设计最大拉力值的1.2倍,量测精度不宜低于0.5%F·S,分辨率不宜低于0.2% F·S。应力计或应变计应在锚杆锁定前获得稳定初始值。

沉降观测规范

沉降观测 1 一般规定 建筑沉降观测可根据需要,分别或组合测定建筑场地沉降、基坑回弹、地基土分层沉降以及基础和上部结构沉降。对于深基础建筑或高层、超高层建筑,沉降观测应从基础施工时开始。 各类沉降观测的级别和精度要求,应视工程的规模、性质及沉降量的大小速度确定。 布置沉降观测点时,应结合建筑结构、形状和场地工程地质条件,并应顾及施工和建成后的使用方便。同时,点位应易于保存,标志应稳固美观。 各类沉降观测应根据剧本规范第节的规定及时提交相应的阶段性成果和综合成果。 2 建筑场地沉降观测 建筑场地沉降观测应分别测定建筑相邻影响范围之内的相邻地基沉降与建筑相邻影响范围之外的场地地面沉降。 建筑场地沉降点位的选择应符合下列规定: 1 相邻地基沉降观测点可选在建筑纵横轴线或边线的延长线上,亦可选在通过建筑重心的轴线延长线上。其点位间距应视基础类型、荷载大小及地质条件,与设计人员共同确定或征求设计人员意见后确定。点位可在建筑基础深度~倍的距离范围内,由墙外向外由密到疏布设,但距基础最远的观测点应设置在沉降量为零的沉降临界点以外; 2 场地地面沉降观测点应在相邻地基沉降观测点布设线路之外的地面

上均匀布设。根据地质地形条件,可选择使用平行轴线方格网法、沿建筑物四角辐射网法或散点法布设。 建筑场地沉降点标志的类型及埋设应符合下列规定: 1 相邻地基沉降观测点标志可分为用于监测安全的浅埋标和用于结合科研的深埋标两种。浅埋标可采用普通水准标石或用于直径25cm的水泥管现场浇灌,埋深宜为1~2m,并使标石底部埋在冰冻线以下。深埋标可采用内管外加保护管的标石形式,埋深应与建筑基础深度相适应,标石顶部须埋入地面下20~30cm,并砌筑带盖的窨井加以保护; 2 场地地面沉降观测点的标志与埋设,应根据观测要求确定,可采用浅埋标志。 建筑场地沉降观测的路线布设、观测精度及其他技术要求可按照本规范第节的有关规定执行。 建筑场地沉降观测的周期,应根据不同任务要求、产生沉降的不同情况以及沉降速度等因素具体分析确定,并符合下列规定: 1 基础施工的相邻地基沉降观测,在基坑降水时和基坑土开挖过程中应每天观测一次。混凝土地板浇完10d以后,可每2~3d观测一次,直至地下室顶板完工和水位恢复。此后可每周观测一次至回填土完工; 2 主体施工的相邻地基沉降观测和场地地面沉降观测的周期可按照本规范第节的有关规定确定。 建筑场地沉降观测应提交下列图表: 1 场地沉降观测点平面布置图; 2 场地沉降观测成果表;

路基沉降监测方案

江津(渝黔界)经习水至古蔺(黔川界)高速公路 TJ9分部 路基沉降监测方案 编制: 复核: 审批: 四川公路桥梁建设集团有限公司江习古高速TJ9项目 2015年11月

目录 【1】工程概况 (1) 【2】观测依据 (1) 【3】观测流程 (2) 【4】观测目的、内容、仪器及方法 (2) 〖1〗观测项目、仪具、目的 (2) 〖2〗观测方法 (3) 【4】观测仪器及观测方法 (3) 【5】现场施工观测作业计划流程 (4) 【6】测点埋设方法与要求 (5) 〖1〗位移观测边桩 (5) 〖2〗沉降板 (5) 【7】观测项目的观测频率和报警值 (5) 【8】测点布置 (6) 【9】观测资料整理与成果分析 (6) 【10】质量保证和控制 (8) 〖1〗最大限度减小测量误差 (8) 〖2〗观测点的保护 (8) 〖3〗质量保证 (8) 【11】文明生产与安全生产 (9)

路基高填深挖变形与沉降观测施工方案 【1】工程概况 本标段位于习水县境内,沿线途径习水东皇镇图书村、伏龙村和关坪,路线全长7.011511km,起点里程桩号K69+200,止点K76+200。主要工作内容为:路基挖土方23万方、挖石方245万方、三背回填5.15万方,换填片(碎)石9.2万方、利用石填方165万方、碎石桩1.25万米、防护和排水工程共3万方;主线大桥1126.5米/3座、主线互通桥106m/2座、水泥厂赔桥161m/1座,通道493米/11座,涵洞330米/9座;隧道单洞长1775m。 施工区域区内无大的地表水体分布。区内旱、雨季节分明,气候的水平和垂直分带明显。这种降雨集中、气候分带和本区固有的深谷地形、对地下水的交替循环有着明显影响。工程区内地下水按其赋存形式有松散堆积层孔隙水和基岩裂隙水两大类型,主要受大气降水所补给。 【2】观测依据 本工程观测内容主要参考规范如下: 1、江习古高速TJ9分部施工图设计文件; 2、《工程测量规范》GB50026-2007,中华人民共和国国家标准; 3、《孔隙水压力测试规程》(CECS55:93);

基坑监测方法

基坑监测方法 多数情况下,工程变形监测由建设单位委托第三方有资质的单位进行,但在工程施工过程中总承包也需要对工程实施必要的监测,以便于对工程的安全性做出提前预判,防止事故发生。在施工准备阶段及过程中,即需要提前设置好监测点位,为监测工作做好统筹准备。开挖深度大于等于5m 或开挖深度小于5m 但现场地质情况和周围环境较复杂的基坑工程以及其他需要监测的基坑工程应实施基坑工程监测。一、基坑监测原则 变形监测是一项系统工程,是施工管理的重要组成部分,须按照计划进行。一般情况下,监测工作应遵循以下4 条原则: 1、可靠性原则: 可靠性原则是监测系统设计中所考虑的最重要的原则。为了确保其可靠性,必须做到: (1)由具有丰富经验的作业人员,使用满足精度要求的监测仪器,采用先进的监测方法来保证外业采集数据的真实可靠性; (2)基准点、监测点设置应合理,并在监测期间保护好点位标志,使监测工作具有连续性。 2、操作方便性原则:

为使监测工作正常进行并满足监测精度的要求,变形监测点在布设时应考虑到水准线路的联测方便,能够节省外业时间、提高点位精度的原则。 3、数据及时性原则: 监测数据必须是及时的。监测数据需在现场及时计算处理,计算有问题应及时复测。因为施工是一个动态的过程,只有保证及时监测,才能有利于及时发现隐患,及时采取措施。监测应整理完整的监测记录表、数据报表、形象的图表和曲线,监测结束后及时整理出监测报告。 4、经济合理性原则: 监测方案编制时应考虑选用适合于本工程监测作业,并满足监测精度要求的仪器设备。 二、监测方案 一般情况下,监测方案应包括下列内容: 1、工程概况 2、建设场地岩土工程条件及基坑周边环境状况 3、监测目的和依据 4、监测内容和项目 5、基准点、监测点的布设和保护

分层沉降仪

XBHV-10型钢尺沉降仪 1概述 钢尺沉降仪机构简单,操作方便.本仪器与XB型PVC沉降管(另购), 沉降磁环(另购)及底盖(另购)配套使用在软土地基加固、土石坝、基坑开挖、回填、路堤等工程中,测量土体的分层沉降或隆起,也可测量一般堤坝等建筑物的水平(侧向)位移量.本仪器既可在施工期间使用,也可作为大坝等建筑物的长期安全监测.符合土石坝安全监测技术规范. 2主要技术指标 3结构原理 沉降量的测量由两大部分组成:一是地下埋入部分,由沉降导管和底盖、沉降磁环组成;二是地面接收仪器一钢尺沉降仪,由测头、测量电缆、接收系统和绕线盘等部分组成. 测头部分:不锈钢制成,内部安装了磁场感应器,当遇到外磁场作用时,便会接通接收系统,当外磁场不作用时,就会自动关闭接收系统. 测量电缆部分;由钢尺和导线采用塑胶工艺合二为一,既防止了钢尺锈蚀,又简化了操作过程,测读更加方便、准确.钢尺电缆一端接入测头,另一端接入接收系统. 接收系统:由音响器和峰值指示组成,音响器发出连续不断的蜂鸣声响,蜂值指示为电压表指针指示,两者可通过拨动开关来选用,不管用何种接收系统,测读精度是一致的. 绕线盘部分:由绕线圆盘和支架组成,接收系统和电池全置于绕线盘的芯腔内,腔外绕钢尺电缆. 沉降管(另购):由PVC工程塑料制成(我厂生产),包括主管和联接管,联接管套于

两节主管接头处,起着联接固定的作用. 底盖(另购):由注塑制成(我厂生产),安装在沉降管的底端和顶端,能有效地防止泥沙进入或异物掉入管内,从而影响测量. 4使用方法 测量时,拧松绕线盘后面的止紧螺丝,让绕线盘转动自由后,按下电源按钮(电源指示灯亮),把测头放入导管内,手拿钢尺电缆,让测头缓慢地向下移动,当测头接触到土层中的磁环时,接收系统的音响器会发出连续不断的蜂鸣叫声,此时读写出钢尺电缆在管口处的深度尺寸,这样一点一点地测量到孔底,称为进程测读,用字母J i表示,当在该导管内收回测量电缆时,也能通过土层中的磁环,接受到系统的音响仪器发出的音响,此时也须读写出测量电缆在管口处的深度尺寸,如此测量到孔口,称为回程测读,用字母H i表示.该孔各磁环在土层中的实际深度用字母S i表示. 其计算公式为: S i =( J i+ H i )/2 式中: i —为一孔中测读的点数,即土层中磁环的个数; S i —i测点距管口的实际深度(㎜); J i —i测点在进程测读时距管口的深度(㎜); H i —i测点在回程测读时距管口的深度(㎜); 若是在噪声比较大的环境中测量时,蜂鸣声听不见,可改用峰值指示,只要把仪器面板上的选择开关拨至电压档即可,测量方法同上,此时的测量精度与音响测得的精度相同. 用户在使用时必须注意事项: a) 当测头进入到土层中磁环时,音响器会立即发出声音或电压表有指示,此时应缓慢地收、放测量电缆,以便仔细地寻找到发音或指示瞬间的确切位置后读出该点距管口的深度. b) 读数的准确性,决定与如何判定发音或指示的起使位置,测量的精度与操作者的熟练程度有关,故应反复练习与操作. c)沉降测头进入每一只磁环时都有两次响声,但必须以第一次响声为标准,即进程

软土路基沉降监测方案

监表A4专项施工方案报审表 项目名称:佛山市禅西大道(325国道改线)工程承包单位:汕头公路桥梁工程总公司

2、本表至少一式三份:经监理工程师审定后,监理机构留一份、报业主一份,退承包人一份。 目录 一、工程概括-------------------------------------------------------2 二、观测依据-------------------------------------------------------2 三、观测流程-------------------------------------------------------2 四、观测目的、内容、仪器及方法-------------------------------------3 : 五、现场施工观测作业计划流程---------------------------------------5 六、测点埋设方法与要求---------------------------------------------5 七、观测项目的观测频率和报警值------------------------------------8 八、测点布置------------------------------------------------------9 九、观测资料整理与成果分析----------------------------------------9 十、质量保证和控制------------------------------------------------11 十一、文明生产与安全生产------------------------------------------11 :

位移监测方案

铁路局职工集资建房二工黄土山高层住宅小区深基坑支护 工程位移监测方案 1 工程概况及周围环境 1.1工程概况 拟建的铁路局职工集资建房二工黄土山高层住宅小区深基坑支护工程为乌鲁木齐铁路住房建设管理办公室投资建设,其场地基坑支护由新疆建华地质工程有限公司负责设计,勘察单位为新疆建华地质工程有限公司。 铁路局职工集资建房二工黄土山高层住宅小区深基坑支护工程位于乌鲁木齐市长春南路东侧,华春苏杭明珠花园小区旁。 拟建场地A地块拟建建筑物为3栋地上18层住宅楼,1栋地上16层住宅楼,1栋地上9层住宅楼,部分住宅楼带一层地下车库,建筑面积约76886㎡,建设用地面积约26406 m2。拟采用框架剪力墙结构。 拟建场地B地块拟建建筑物为1栋地上18层住宅楼,1栋地上4层住宅楼,部分住宅楼带一层地下车库,建设用地面积约6418.75 ㎡。拟采用框架剪力墙结构。 拟建场地A地块设计±0.000标高相当于黄海高程751.80m,地下二层各部分的楼板标高均有错位,基础筏板底板板面标高分别为-8.3m、-8.7m、-9.4m、-9.7m、-10.1m。地下车库近似长方形状,预计基坑支护周长574m左右。场地周边开阔,四周建筑物情况简单。 拟建场地B地块设计±0.000标高相当于黄海高程754.35m,地下一层各部分的楼板标高均有错位,基础筏板底板板面标高分别为-8.05m。地下车库近似长方形状,预计基坑支护周长313m左右。场地周边管线密布,四周建筑物情况复杂。 根据现场踏勘,本次基坑侧壁临时支护结构拟采用挡土桩与土钉墙锚喷支护相结合的支护结构。

A地块 基坑周边侧壁支护采用逆作法土层土钉施工,边开挖边支护,开挖深度到2.0米时,进行挡土桩施工。剩余部分每开挖3米,进行一次支护,具体施工位置及支护处理方法详见施工图。 B地块 沿基坑南侧和西侧预先用旋挖机打一排桩径800的钢筋混凝土挡土桩,桩间距1.2m,排间距1.0m,上端用混凝土冠梁连接,下端嵌固在圆砾层中,嵌固深度不小于4.0m,局部不下于6.5m。基坑南侧局部地段增加一排桩径1000的钢筋混凝土挡土加强桩,并做止水帷幕加固处理,及对周边挡墙做加固处理。基坑北侧同A地块,东侧同已开挖基坑相连。 2 工程地质条件 2.1、地层概况 根据《岩土工程勘察报告》(新疆建华地质工程有限公司) A地块:地层主要由①杂填土、②粉土、③灰绿色粉土及④圆砾层组成。 ①杂填土:杂色,松散,稍湿,场区均有分布。主要由生活垃圾、建筑垃圾、植物腐殖质、素填土等组成,该层分布于地表,厚度2.3m~7.6m。 ②粉土:土黄色,可塑,稍湿-饱水,湿润时用刀切,无光滑面,切面较粗糙,手捻摸感觉有细颗粒存在,有轻微粘滞感,粘性差,湿土能搓成2-3mm的土条,干土用手很易捏碎,孔隙发育一般。局部含有粉细砂、砾石薄夹层及透镜体。该层埋深在2.3m~7.6m,厚度3.5m~7.9m。 ③灰绿色粉土:以灰绿色为主,硬塑,稍湿-饱水。有臭味,局部含有少量植物腐殖质,并有少量植物根系腐烂后的空管道。该层埋深在4.7m~16.5m,厚度1.2m~7.5m。 ④圆砾:以青灰色为主,中密,饱水,该层多呈圆形状、次圆形状,骨架颗粒质量大于总质量的50%,粒径多在10mm左右,充填物主要为粉土、中粗砂,级配一般,该层层顶埋深在11.0m~18.9m,最大勘探深度(-25.5m)内未揭穿该层 B地块:地层主要由①杂填土、②粉土及③圆砾层组成。

深基坑工程深层土体水平位移及分层沉降监测初探

深基坑工程深层土体水平位移及分层沉降监测初探 在建设工程施工中,深基坑工程作为最为重要的安全控制点,必须在施工全过程中都予以重点监控。本文结合某深基坑工程实例,从监测频率、监测周期、监测控制指标、监测方法与数据处理方法、监测预警与报警的信息反馈措施、监测质量保障措施等方面,对该深基坑工程的深层土体水平位移及分层沉降等方面的监测实施进行了浅要的分析与探讨,并希望对今后的深基坑工程施工监测工作提供一定的帮助和借鉴。 标签:深基坑工程;深层土体;位移及沉降;监测 1 工程概况 某工程为地下三层,采用明挖顺筑法施工。其基坑南北长118.5m,东西长116.8~102.9m,呈梯形布置,开挖深度约分19m,局部挖深约为23.5m。围护结构采用Φ1000@1200钻孔灌注桩+Φ850@600的三轴搅拌桩止水帷幕,在钻孔桩之间采用二排Φ900高压旋喷桩加强止水。支护结构为土钉+排桩+旋喷桩止水帷幕+锚杆+一道钢筋砼支撑。根据设计要求,结合基坑工程围护设计要求和基坑工程施工现状以及周边环境,确定本深基坑工程的深层土体水平位移及分层沉降等方面的监测项目和监测精度。 2 深基坑工程深层土体水平位移及分层沉降监测频率、周期与控制指标 2.1 深基坑工程深层土体水平位移及分层沉降监测频率 本深基坑工程深层土体水平位移及分层沉降等方面的监测频率。若遇特殊情况或出现报警情况后,可根据其与基坑的相对位置关系在此表的基础上进行适当加密监测。 2.2 深基坑工程深层土体水平位移及分层沉降监测周期 本深基坑工程监测总工期以建设单位要求的监测开工日期为起点,至工程主体结构施工完毕或施工影响区域内的受影响的建(构)筑物沉降变形稳定为止。其沉降变形稳定标准:参照《建筑变形测量规范》JGJ8-2007相关内容确定,即“当最后100d的沉降速率小于0.01~0.04mm/d时可认为已经进入稳定阶段”。 2.3 深基坑工程深层土体水平位移及分层沉降监测控制指标 监测报警指标一般以总变化量和变化速率两个量控制,累计变化量的报警指标一般不宜超过设计限值。本工程基坑开挖的安全等级为一级,因此监控施工过程中的基坑变形、环境变化情况应全面满足一级控制保护要求,使施工单位能随时了解变形情况,以便及时采取有关措施,调控施工步序与节奏,作到信息化施工,确保工程施工顺利进行。根据本深基坑工程围护结构设计要求,其深层土体

建筑物沉降观测和基坑变形监测点布设及报告

2、监测点的布设 2.0.1基坑顶部竖向位移 监测点布设在基坑边坡顶部的,应沿基坑周边布置,基坑周边中部、阳角处应布置监测点。监测点间距不宜大于20m,每边监测点数目不应少于3个。监测点宜设置在基坑边坡坡顶上。 监测点布设在在围护墙上的,应沿围护墙的周边布置,围护墙周边中部、阳角处应布置监测点。监测点间距不宜大于20m,每边监测点数目不应少于3个。监测点宜设置在冠梁上。 2.0.2基坑顶部水平位移 监测点的布设同2.1 基坑顶部竖向位移,宜为共用点。 2.0.3坑外土体深层水平位移 深层水平位移监测孔宜布置在基坑边坡、围护墙周边的中心处及代表性的部位,数量和间距视具体情况而定,但每边至少应设1个监测孔。 2.0.4 地下水位 水位监测点应沿基坑周边、被保护对象(如建筑物、地下管线等)周边或在两者之间布置,监测点间距宜为20~50m。相邻建(构)筑物、重要的地下管线或管线密集处应布置水位监测点;如有止水帷幕,宜布置在止水帷幕的外侧约2m处。 2.0.5 锚(杆)索拉力 锚(杆)索的拉力监测点应选择在受力较大且有代表性的位置,基坑每边跨中部位和地质条件复杂的区域宜布置监测点。每层锚杆的拉力监测点数量应为该层锚杆总数的1~3%,并不应少于3根。每层监测点在竖向上的位置宜保持一致。每根杆体上的测试点应设置在锚头附近位置。 2.0.6支护桩桩身力

. . 支护桩桩身力监测点应布置在受力、变形较大且有代表性的部位,监测点数量和横向间距视具体情况而定,但每边至少应设1处监测点。竖直方向监测点应布置在弯矩较大处,监测点间距宜为3~5m。 2.0.7支撑力 支撑力监测点的布置应符合下列要求: 1、监测点宜设置在支撑力较大或在整个支撑系统中起关键作用的杆件上; 2、每道支撑的力监测点不应少于3个,各道支撑的监测点位置宜在竖向保持一致; 3、钢支撑的监测截面根据测试仪器宜布置在支撑长度的1/3部位或支撑的端头。钢筋混凝土支撑的监测截面宜布置在支撑长度的1/3部位; 4、每个监测点截面传感器的设置数量及布置应满足不同传感器测试要求。 2.0.8 围护墙侧向土压力 围护墙侧向土压力监测点的布置应符合下列要求: 1、监测点应布置在受力、土质条件变化较大或有代表性的部位; 2、平面布置上基坑每边不宜少于2个测点。在竖向布置上,测点间距宜为2~5m,测点下部宜密; 3、当按土层分布情况布设时,每层应至少布设1个测点,且布置在各层土的中部; 4、土压力盒应紧贴围护墙布置,宜预设在围护墙的迎土面一侧。 2.0.9土体分层竖向位移 土体分层竖向位移监测孔应布置在有代表性的部位,数量视具体情况确定,并形成监测剖面。同一监测孔的测点宜沿竖向布置在各层土,数量与深度应根据具体情况确定,在厚度较大的土层中应适当加密。 2.0.10立柱竖向位移 立柱的竖向位移监测点宜布置在基坑中部、多根支撑交汇处、施工栈桥下、word教育资料

土体分层竖向位移监测作业指导书实施细则

***公司 测量专业作业指导书 土体分层竖向位移监测实施细则文件编号: 版本号: 分发号: 编制: 批准: 生效日期:

土体分层竖向位移监测实施细则 1. 检测目的 测量土体的分层沉降或隆起,垂直(竖向)位移量,以便及时发现问题更改施工中的不足。 2. 检测依据 《建筑基坑工程监测技术规范》(GB50497-2009); 3.主要仪器设备 3.1 CJG-7086型PVC沉降管; 3.2 分层沉降仪CJY-7080; 3.3 沉降磁环。 4.仪器设备精度 分层沉降仪CJY-7080:最小读数:1mm,重复性误差:±2mm,工作电压:DC9V。 5. 检测条件 5.1 气温应在5℃ - +45℃; 5.2 相对湿度30%-85%。 6.沉降管埋设 6.1 用Φ108钻头钻孔,为了使管子顺利地放到底,一般都需比安装深度深一些,它的原则是10米+0.5米,20米+1米,以次类推。 6.2 清孔,钻头钻到预定位置后,不要立即提钻,需把泵接到清水里向下灌清水,直至泥浆水变成清混水为止,再提钻后安装。 安装管子的联接采用外接头,一边下管子一边向管子内注入清水(管子浮力太大时)。 6.3 磁环的安装,按设计要求在每节管子上套上磁环和定位环,并用螺丝固定定位环,然后再把管子插入外接头内,拧紧螺钉,这样边接边向下放到设计深度止。 6.4 若磁环的间隔距离不是正2米时,可采取调节管子长短来实现,也可采用管子上套定位环的方法来解决,但要掌握一个原则:磁环向下要有足够的沉降距离,必须满足其设计要求。 6.5 沉降管放到设计要求后,盖上盖子就可以进行回填。回填原料为现场干细土或中粗沙,回填速度千万不能太快,以免堵塞后回填料不去,从而形成空隙,最好时隔一两天后再去检查一下,回填料下沉后再回填满之后即可,管子周围加上保护措施,方可放心待后测量。 7.检测操作步骤 7.1 测量时,拧松绕线盘后面的止紧螺丝,让绕线盘转动自由后,按下电源按钮(电源指示灯亮),把测头放入导管内,手拿钢尺电缆,让测头缓慢地向下移动,当测头接触到土层中的磁环时,接收系统的音响器会发出连续不断的蜂鸣叫声,此时读写出钢尺电缆在管口处的深度尺寸,这样一点一点地测量到孔底,称为进程测读,用字母Ji 表示,当在该导管内收回测量电缆时, 也能通过土层中的磁环,接受到系统的音响仪器发出的音响,此时也须读写出测量电缆在管口处的深度尺寸,如此测量到孔口,称为回程测读,用字母Hi 表示.该孔各磁环在土层中的实际深度用Si表示。 8. 计算方法 Si =( Ji+ Hi )/2 式中: i —为一孔中测读的点数,即土层中磁环的个数; Si — i测点距管口的实际深度(㎜); Ji — i测点在进程测读时距管口的深度(㎜); Hi — i测点在回程测读时距管口的深度(㎜); 若是在噪声比较大的环境中测量时,蜂鸣声听不见,可改用峰值指示,只要把仪器面板上的选择开关拨至电压档即可,测量方法同上,此时的测量精度与音响测得的精度相同。 9.现场检测工作的安全措施及注意事项 9.1 当测头进入到土层中磁环时,音响器会立即发出声音或电压表有指示,此时应缓慢地收、

建筑基坑工程监测技术规范

4.1 一般规定 4.1.1 基坑工程的现场监测应采用仪器监测与巡视检查相结合的方法。 4.1.2 基坑工程现场监测的对象应包括: 1 支护结构。 2 地下水状况。 3 基坑底部及周边土体。 4 周边建筑。 5 周边管线及设备。 6 周边重要的道路。 7 其他应监测的对象。 4.1.3 基坑工程的监测项目应与基坑工程设计、施工方案相匹配。应针对监测对象的关键部位,做到重点观测、项目配套并形成有效的、完整的监测系统。 4.2 仪器监测 4.2.1 基坑工程仪器监测项目应根据表4.2.1进行选择。 表4.2.1 建筑基坑工程仪器监测项目表 续表4.2.1

注:基坑类别的划分按照现行国家标准《建筑地基基础工程施工质量验收规范》GB 50202-2002执行。 4.2.2 当基坑周边有地铁、隧道或其他对位移有特殊要求的建筑及设施时,监测项目应与有关管理部门或单位协商确定。 4.3 巡视检查 4.3.1 基坑工程施工和使用期内,每天均应由专人进行巡

视检查。 4.3.2 基坑工程巡视检查宜包括以下内容: 1 支护结构: 1)支护结构成型质量; 2)冠梁、围檩、支撑有无裂缝出现; 3)支撑、立柱有无较大变形; 4)止水帷幕有无开裂、渗漏; 5)墙后土体有无裂缝、沉陷及滑移; 6)基坑有无涌土、流沙、管涌。 2 施工工况: 1)开挖后暴露的土质情况与岩土勘察报告有无差异; 2)基坑开挖分段长度、分层厚度及支锚设置是否与设计要求一致; 3)场地地表水、地下水放状况是否正常,基坑降水、回灌设施是否运转正常; 4)基坑周边地面有无超载。 3 周边环境: 1)周边管道有无破损、泄漏情况; 2)周边建筑有无新增裂缝出现; 3)周边道路(地面)有无裂缝、沉陷; 4)邻近基坑及建筑的施工变化情况。 4 监测设施:

基坑监测水平和竖向位移

建筑基坑水平和竖向位移 检测细则文件编号HX-ZY-BX-04 版号2014版第0次修订实施日期2014.10.18 页数第1页共7页 1. 总则 本细则适用于一般土及软土建筑基坑工程水平位移及竖直位移监测。目的是为了掌握基坑施工对临近建筑物造成的影响,及时起到预警预报的作用,为了深基坑施工提供科学的决策依据,确保施工安全,减少对周边环境的不利影响。 2. 仪具与材料 全站仪,水准仪。 其它:脚架,棱镜,三脚架,因瓦尺等。 3. 监测原理和方法 为保证所有监测工作的统一,提高监测数据的精度,使监测工作有效的指导整个工程施工,监测工作采用整体布设,分级布网的原则。即首先布置统一的监测控制网,再在此基础上布设监测点。 3.1监测点垂直位移测量:根据国家二等水准测量规范要求,历次垂直位移监测是通过工作基点间联测一条二等水准闭合或附合路线,由线路的工作点来测量各监测点的高程,各监测点高程初始值在监测工程前期两次测定(两次取平均),某监测点本次高程减前次高程的差值为本次垂直位移,本次高程减初始高程的差值为累计垂直位移。 3.2监测点水平位移测量:采用轴线投影法。在某条测线的两端远处各选定一个稳固基准点A、B,经纬仪或全站仪架设于A点,定向B点,则A、B连成一条基准线。观测时,在仪器上读取各监测点至AB基准线垂距E值,某监测点本次E值和初始E值即为该点累计水平位移,各变形监测点初始E值均为取两次平均的值。 4、监测点的布置原则及测点的设置 4.1、布置原则 4.1.1、符合有关规范及设计技术要求 4.1.2、《建筑变形测量规范》JGJ 8-2007 4.1.3、《工程测量规范》GB50026-2007

基坑监测技术定稿版

基坑监测技术 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

6、地下水位监测 通过基坑内、外地下水位的变化,了解基坑围护结构止水效果以及基坑内降水效果,可以间接了解地表土体沉降。 地下水位监测宜采用通过孔内设置水位管,采用水位计等方法进行测量。 检验降水效果的水位观测井宜布置在降水区内,采用轻型井点管降水时可布置在总管的两侧,采用深井降水时应布置在两孔深井之内,水位孔深度宜在最低设计水位下 2~3m。潜水水位管应在基坑施工前埋设,滤管长度应满足测量要求:承压水位监测时被测含水层与其他含水层之间应采取有效的隔水措施。水位管埋设后,应逐日连续观测水位并取得稳定初始值。注意避免雨天,雨天后1~2天测试水位值也可以作为初始值。 地下水位监测精度不宜低于10mm。 管口至内水面之深度即为本次地下水位观测值。若水位以本地区高程进行计算时,应测量水位管口高程进行。计算公式为: H=h??h 测 式中:H——水位高程 h——管口高程 ?h测——地下水位至管口深度 注意事项包括以下几点: (1) 水位管的管口要高出地表并做好防护墩台,加盖保护,以防雨水、地表水和杂物进入管内。水位管处应有醒目标志,避免施工损坏。 (2) 水位管埋设后每隔1天测试一次水位面,观测水位面是否稳定。当连续几天测试数据稳定后,可进行初始水位高程的测量。

(3) 在监测了一段时间后。应对水位孔逐个进行抽水或灌水试验,看其恢复至原来水位所需的时间,以判断其工作的可靠性。 (4) 坑内水位管要注意做好保护措施,防止施工破坏。 (5) 承压水位管直径可为50~70 mm,滤管段不宜小于1m,与钻孔孔壁间应灌砂填实,被测含水层与其它含水层间应采取有效隔水措施,含水层以上部位应用膨润土球或注浆封孔,水位管管口应加盖保护。 (6) 重点是管口水准测量,要与绝对高程统一。 7、锚杆拉力监测 锚杆拉力量测宜采用专用的锚杆测力计,钢筋锚杆可采用钢筋应力计或应变计,当使用钢筋束时应分别监测没跟钢筋的应力。锚杆轴力计、钢筋应力计和应变计的量程宜为设计最大拉力值的1.2倍,量测精度不宜低于0.5%F·S,分辨率不宜低于0.2% F·S。应力计或应变计应在锚杆锁定前获得稳定初始值。 8、坑外土体分层竖向位移监测 坑外土体分层竖向位移可通过埋设分层沉降磁环或深层沉降标,采用分层沉降仪结合水准测量方法进行两侧。 土体分层竖向位移的初始值应在分层竖向位移埋设稳定后进行,稳定时间不应少于1周并获得稳定的初始值;监测精度不宜低于1mm。每次测量应重复进行2次,2次误差值不大于1mm。采用分层沉降仪监测时,每次监测应测定管口高程,根据管口高程换算出测管内个监测点的高程。 1.地基土分层沉降观测标志的埋设 (1)测试式标志 1)测标长度应与点位深度相适合,顶端应加工成半球形并露出地面,下端为 焊接的标脚,埋设与预定的观测点位置。

深基坑监测

深基坑监测 基坑工程监测点的布置应能反映监测对象的实际状态及其变化趋势,监测点应布置在内力及变形关键特征点上,并满足监控要求。 围护墙或基坑边坡顶部的水平和竖向位移监测点应沿基坑周边布置,周边中部、阳角处应布置监测点。监测点水平间距不宜大于20m,每边监测点数目不宜少于3 个。水平和竖向位移监测点为共用点,监测点宜设置在围护墙顶或基坑坡顶上。 围护墙或土体深层水平位移监测点宜布置在基坑周边的中部、阳角处及有代表性的部位。监测点水平间距宜为20m~50m,每边监测点数目不应少于1 个。 围护墙内力监测点应布置在受力、变形较大且有代表性的部位。监测点数量和水平间距视具体情况而定。竖直方向监测点应布置在弯矩极值处,竖向间距宜为2m~4m。 支撑内力监测点的布置应符合下列要求 1、监测点宜设置在支撑内力较大或在整个支撑系统中起控制作用的杆件上。 2、每层支撑的内力监测点不应少于3 个,各层支撑的监测点位置在竖向上宜保 持一致。 3、钢支撑的监测截面宜选择在两支点间1/3 部位或支撑的端头;混凝土支撑的 监测截面宜选择在两支点间1/3 部位,并避开节点位置。 4、每个监测点截面内传感器的设置数量及布置应满足不同传感器测试要求。 立柱的竖向位移监测点宜布置在基坑中部、多跟支撑交汇处、地质条件复杂处的立柱上。监测点不应少于立柱总根数的5%,逆作法施工的基坑不应少于10%,且均不应少于3 跟。立柱的内力监测点宜布置在受力较大的立柱上,位置宜设在坑底以上各层立柱下部的1/3 部位。 锚杆的内力监测点应选择在受力较大且有代表性的位置,基坑每边中部、阳角处和地质条件复杂的区段宜布置监测点。每层锚杆的内力监测点数量应为该层锚杆总数的1%~3%,并不应少于3 跟。各层监测点位置在竖向上宜保持一致。每根杆体上的测试点宜设置在锚头附近和受力有代表性的位置。 土钉的内力监测点应选择在受力较大且有代表性的位置,基坑每边中部、阳角处和地质条件复杂的区段宜布置监测点。监测点数量和间距应视具体情况而定,各层监测点位置在竖向上宜保持一致。每根土钉杆体上的测试点应设置在有代表性的受力位置。 坑底隆起(回弹)监测点的布置应符合下列要求: 1、监测点宜按纵向或横向剖面布置,剖面宜选择在基坑的中央以及其他能反应变形特征的位置,剖面数量不应少于2 个。 2、同一剖面上监测点横向间距宜为10m~30m,数量不应少于3 个 围护墙侧向土压力监测点的布置应符合下列要求: 1、监测点应布置在受力、土质条件变化较大或其他有代表性的部位。 2、平面布置上基坑每边不宜少于2 个监测点。竖向布置上监测点间距宜为 2m~5m,下部宜加密。 3、当按土层分布情况布设时,每层应至少布设1 个监测点,且宜布置在各层土的中部。

沉降监测技术标

1.工程项目概况 1.1工程名称 杜邦公司中国案沉降监测工作。(Settlement monitoring program for Dupont Titanium Technologies China Project) 1.2项目地点 1.3沉降监测 杜邦**项目的待建场区现貌是原海水养殖场的旧址。工程拟在此场地上吹沙填筑,平整后开展项目的建设工程。 本项目系配合吹沙填筑及建设、初期使用中对场地沉降的观测而设。

2.沉降监测方案的制定原则 2.1制定原则 对招标文件中要求开展的永久水准点(PB)、沉降观测点(SP)、沉降观测板(SP)、沉降仪(E)、(电子式)孔隙水压力计(TP)、地下水观测井(G)和测斜孔(I)七项要求,根据场地的特点和我公司的经验,向业主提出最佳的监测方法、测点埋设方法、使用的仪器和现场的组织实施方案。 2.2方案制定的依据 2.2.1招标文件及其附件的要求 2.2.2已收集的项目场区情况、地质资料及已有经验。 2.3技术标准和规定 2.3.1 国家标准 A. 中华人民共和国《工程建设标准强制性条文》 B. 国家标准《岩土工程勘察规范》(GB50021-2001) C. 国家标准《工程测量规范》(GB50026-93) D. 国家发展计划委员会、建设部《工程勘察设计收费标准2002(修订 本)》 2.3.2 行业标准 A. 行业标准《软土地区工程地质勘察规范》(JGJ72-2004) B. 行业标准《建筑工程地质钻探技术标准》(JGJ87-92) C. 行业标准《原状土取样技术标准》(JGJ89-92) D. 行业标准《建筑地基处理技术规范》(JGJ79-2002)

相关主题
文本预览
相关文档 最新文档