当前位置:文档之家› 丙烯氨氧化法合成丙烯腈的反应机理_王化国

丙烯氨氧化法合成丙烯腈的反应机理_王化国

丙烯氨氧化法合成丙烯腈的反应机理_王化国
丙烯氨氧化法合成丙烯腈的反应机理_王化国

丙烯氨氧化法生产丙烯腈

编号:No.27课题:丙烯氨氧化法生产丙烯腈 授课内容: ●丙烯氨氧化法生产丙烯腈反应原理 ●丙烯氨氧化法生产丙烯腈工艺流程 知识目标: ●了解丙烯腈的主要用途 ●了解碳3烃类的主要来源及用途 ●掌握丙烯氨氧化法生产丙烯腈反应原理  ●掌握丙烯氨氧化法生产丙烯腈工艺流程  能力目标: ●分析丙烯腈水混合物分离模式 ●分析和判断主副反应程度对反应产物分布的影响 思考与练习: ●丙烯氨氧化法生产丙烯腈反应催化剂组成和特点 ●影响丙烯氨氧化法生产丙烯腈反应过程的主要因素 ●丙烯氨氧化法生产丙烯腈工艺流程的构成 授课班级: 授课时间:年月日

第七章 丙烯系产品的生产  丙烯的主要来源有两个,一是由炼油厂裂化装置的炼厂气回收;二是在石油烃裂解制乙烯时联产所得。丙烯大部分一直来自炼油厂,近年来,由于裂解装置建设较快,丙烯产量相应提高较快。和世界市场一样,近年来我国丙烯的发展速度也逐渐超过了乙烯。2000年,我国乙烯需求量478.89万吨,而丙烯的需求量却达到498.85万吨,首次超过乙烯,之后丙烯的需求量一种保持在乙烯之上。  与乙烯相似,由于丙烯分子中含有双键和α-活泼氢,所以具有很高的化学反应活性。 在工业生产中,利用丙烯的加成反应、氧化反应,羧基化、烷基化及其聚合反应等,可得一系列有价值的衍生物,其主要产品及用途见图7—1。  由图可看出,丙烯是重要的有机化工原料,用于生产聚丙烯、异丙苯、羰基醇、丙烯腈、环氧丙烷、丙烯酸、异丙醇等。聚丙烯是我国丙烯最大的消费衍生物。2003年,我国聚丙烯的产量为445.5万吨,消耗丙烯约444.0万吨,约占全国丙烯总消费量的72.1%,;2004年我国聚丙烯产量为474.9万吨,消耗丙烯约480.0万吨,比2003年增长约8.1%;丙烯腈是我国丙烯的第二大衍生物,2003年,我国丙烯腈的产量约为56.0万吨,消费丙烯约62.7万吨,约占全国丙烯总消费量的10.2%;2004年产量约为58.0万吨,消费丙烯约为65.0 万吨,比2003年增长约3.7%;环氧丙烷是我国丙烯的第三大消费衍生物,2003年,全国环氧丙烷的产量约为39.8万吨,消耗丙烯约35.8万吨,约占全国丙烯总消费量的5.8%;2004年产量约为42.0万吨,消耗丙烯约37.8万吨,比2003年增长约13.1%;丁醇和辛醇也是丙烯的主要衍生物之一,2003年我国丁辛醇的产量合计约为45.35万吨,共消耗丙烯约40.7万吨,约占全国丙烯总消费量的6.6%;2004年产量合计为44.91万吨,共消耗丙烯约40.3万吨,比2003年减少约1.0%;2003年用于生产其它化工产品如苯酚、丙酮和丙烯酸等方面的丙烯消费量约为10.9万吨,约占全国丙烯总消费量的1.8%;2004年消费量约为11.5万吨。

炼油装置丙烯产量低的原因分析及措施

炼油装置丙烯产量低的原因分析及措施 发表时间:2017-10-16T10:44:29.437Z 来源:《基层建设》2017年第18期作者:刘健[导读] 摘要:近年来,全球聚丙烯的生产能力以及市场需求呈现出持续快速增长的态势,日渐成为增长速度最快的聚合物材料之一。 吉林省松原石油化工股份有限公司138000 摘要:近年来,全球聚丙烯的生产能力以及市场需求呈现出持续快速增长的态势,日渐成为增长速度最快的聚合物材料之一。聚丙烯是以丙烯为单体,在催化剂作用下,通过聚合反应而成的高分子聚合物,是通用塑料的一个重要品种。聚丙烯是目前世界上最重要的合成树脂之一,具有相对密度小、来源广泛、质量轻、易回收、机械性能优越的特点,且耐高温、耐腐蚀,有优异的电性能和化学性能,因而被广泛的应用于工业制品、日用品、包装薄膜、纤维、涂料等领域。文章结合某炼油企业实际,就炼油装置丙烯产量低的原因分析及措施展开分析。 关键词:炼油装置;丙烯产量;原因 近年来,聚丙烯市场需求旺盛,产能快速增长。随着市场竞争的加剧,国内聚烯烃行业面临包括来自中东产品低价冲击、产品结构不合理等重大挑战。传统石油化学工业的发展也正面临着前所未有的挑战,其赖以生存的原料石油和天然气属于不可再生资源,随着不断的开发,储量不断减少,原料面临短缺。而原料短缺将会导致其价格上涨,使得石油和天然气加工的综合效益下降。聚丙烯与通用热塑料相比,具有良好的综合性能,其热性能、透明度和机械性能的优异结合,为其他塑料制品所不及。其性能应用方面有很多优势,在热塑性塑料中密度最低,约为 0.9g/cm3,并具有良好的电性能和化学稳定性,易于成型,其熔体流动速率范围为0.3~1000g/10min,适合吹塑、注射、挤出、热成型、流延及双向拉伸等多种成型加工工艺,满足不同产品的生产需要,同时还用于工具、共混、填充增强、发泡和添加特殊性能的助剂以及拉伸、复合等二次加工等改性技术的发展,是应用最广泛的合成树脂之一。 一、聚丙烯生产工艺 (一)溶液法 溶液法是早期采用的方法,是采用常规催化剂,用溶剂做稀释剂,将丙烯和催化剂加入到几个串联的反应器中,丙烯在 160~170℃的温度和 2.8~7.0MPa 的压力下进行聚合,所得到的 PP 全部溶解在溶剂中,聚合物溶液经闪蒸脱除未反应的丙烯单体、再加入溶剂稀释过滤脱除催化剂残渣、冷却后析出等规聚合物、然后经离心机分离出等规聚合物和无规物溶液、脱除无规物等工序。这种方法可以迅速测定其聚合物黏度,易于控制分子量和分子量分布,但所生成的聚合物分子量低,特别是工艺流程长,无规物达 25~30%,生产成本高。 (二)浆液法 溶剂法,也称浆液法或淤浆法。早期的溶剂法是采用的是常规催化剂,将常规催化剂和丙烯单体分别加入到以庚烷或己烷溶剂做为稀释剂的反应器里的溶液中,在 1~2MPa 和 50~80℃下进行聚合反应,几个反应器串联操作,生成的聚合物在溶剂中成粉粒状悬浮着。生成的聚合物随溶剂出反应器进行闪蒸使没有反应的丙烯和溶剂气化脱除、在进行气蒸去除无规物和催化剂残渣,然后再干燥和挤压造粒处理后得到可出售的成品。 (三)本体法 本体法聚合工艺以液态丙烯作为聚合介质,将丙烯单体和催化剂加入到液态丙烯作稀释剂的反应器溶液中,在 60~80℃、2.5~4.0MPa 下进行聚合反应,几个反应器串联操作,生成的聚合物成粉粒状悬浮在液态丙烯中。反应后的浆液,经闪蒸脱除未反应的丙烯单体、脱除催化剂残渣和脱除无规物等工序,然后经干燥、造粒得到成品。液相本体聚合反应速率远高于溶剂聚合反应速率。本体法由于没有使用溶剂而减少了溶剂回收工序,流程短,易操作。 (四)气相法 聚丙烯气相法聚合工艺是将丙烯单体和催化剂加入到气相床反应器中,在 70~90℃、2.5~3.5MPa 下进行聚合反应,生成的聚合物在脱气罐中与单体分离处理,工艺流拌床工艺和气相流化床工艺,前者又分为立式搅拌床和卧式搅拌床。 (五)本体-气相法组合工艺 本体–气相法组合工艺是 20 世纪 80 年代初,随着研制成功的第三、四代载体高活性/ 高等规度(HY–HS)催化剂的发展起来的,Montedison 公司开发出新工艺本体法—Spheripol 工艺,其采用了独特的环管反应器具有重要的意义的,MPC 公司研发了本体法工艺—Hypol 工艺,采用的是釜式反应器。Spheripol 工艺和 Hypol 工艺都采用的是液相本体聚合反应生成无规共聚物和均聚物,抗冲共聚物是用气相流化床反应器。这种气相法和本体法相结合的聚丙烯生产工艺技术,现在是应用最广的聚丙烯生产工艺技术,迄今全球一半以上的聚丙烯生产能力采用这类工艺技术。 二、炼油装置丙烯产量低的原因及应对措施 (一)基本概况 某石化企业催化装置是双提升管反应器催化裂解装置,主提升管加工新鲜原料油和回炼油浆,次提升管加工C4组分。现有工况油浆回炼比较大,油浆:原料油=1:1.2。装置原料油性质已经较重,再大比例回炼塔底油浆,催化装置实际进料非常重。两种进料组分中,可裂化组分饱和烃占比也较低,丙烯产量变化较大。 (二)丙烯产量低的原因 1.提升管进料组成变重,液态烃中丙烯产量下降。 (1)新鲜原料量降低。按照操作调整要求,装置逐渐提高原料油经油浆下返塔入分馏塔流量,相应地,回炼油浆入提升管流量由 35T/h 提高至 45T/h,回炼炼化公司油浆后,降至 41T/h,外来原料油流量由 58T/h 降至 50T/h,入提升管原料油流量由50T/h降至43T/h。(2)原料组分变重。由于回炼油浆量的增大提升管进料组成中回炼比发生变化(油浆:原料油=35:50调整至油浆:原料油=41:43),进料组成变重,链烷烃少是液态烃中丙烯产量下降的原因之一。 2.回炼碳四组成中烷烃含量增加,液态烃中丙烯产量下降 回炼碳四组成中,设计值为丁烷:丁烯=40.09:59.91(V%),回炼碳四实际组成为丁烷:丁烯=54.32:45.5(V%),丁烯易发生二聚反应生成2个丙烯和1个乙烯,所以,组成中丁烯含量降低也是液态烃中丙烯产量下降的原因之一。 3.液态烃中丙烯潜含量受回炼影响有所下降,致使产量下降

丙烯氨氧化制丙烯腈新工艺..

丙烯氨氧化法制丙烯腈 目录 丙烯氨氧化法制丙烯腈 (1) 一、丙烯腈的性质和用途 (1) 二、丙烯氨氧化制丙烯腈生产工艺原理 (2) 三、工艺条件 (2) 四、生产工艺 (6) 五、催化剂研究 (9) 一、丙烯腈的性质和用途 丙烯腈在常温下是无色透明液体,味甜,微臭,沸点77.5℃,凝固点-83.3℃,闪点0℃,自燃点481℃。可溶于有机溶剂如丙酮、苯、四氯化碳、乙醚和乙醇中,与水部分互溶。丙烯腈剧毒,能灼伤皮肤,低浓度时刺激粘膜,长时间吸入其蒸气能引起恶心,呕吐、头晕、疲倦等。在空气中的爆炸极限为3.05%~17.5%(体积)。因此在生产、贮存和运输中,应采取严格的安全防护措施,工作场所内丙烯腈允许浓度为0.002mg/L。 丙烯腈能发生聚合反应,发生在丙烯腈的C=C 双键上,纯丙烯腈在光的作用下就能自行聚合,所以在成品丙烯腈中,通常要加入少量阻聚剂,如对苯二酚甲基醚(阻聚剂MEHQ)、对苯二酚、氯化亚铜和胺类化合物等。除自聚外,丙烯腈还能与苯乙烯、丁二烯、乙酸乙烯、氯乙烯、丙烯酰胺等中的一种或几种发生共聚反应,由此可制得各种合成纤维、合成橡胶、塑料、涂料和粘合剂等。 丙烯腈是三大合成的重要单体,目前主要用它生产聚丙烯腈纤维(商品名叫“腈纶”)。其次用于生产ABS 树脂(丙烯腈—丁二烯—苯乙烯的共聚物),和合成橡胶(丙烯腈—丁二烯共聚物)。丙烯腈水解所得的丙烯酸是合成丙烯酸树脂的单体。丙烯腈电解加氢,偶联制得的己二腈,是生产尼龙—66 的原料。其主要用途如图1所示。

图1丙烯腈的主要用途 二、丙烯氨氧化制丙烯腈生产工艺原理 化学反应 主反应生成丙烯腈,是一个非均相反应;与此同时,在催化剂表面还发生一系列副反应。主反应:C3H6 + NH3 +1.5 O2 → CH2 =CHCN + 3 H2O △H = -512.5KJ/mol 副反应:①生成乙腈:C3H6 + 1.5NH3 + 1.5O2 → 1.5CH3CN + 3H2O △H = -522KJ/mol ②生成氢氰酸:C3H6 + 3NH3 + 3O2 → 3HCN + 6H2O △H = -941KJ/mol ③生成二氧化碳:C3H6 + 4.5O2 → 3CO2 +3 H2O △H = -1925KJ/mol ④生成一氧化碳:C3H6 + 3O2 → 3CO + 3H2O △H = -1925KJ/mol 上述副反应中,生成乙腈和氢氰酸是主要的,CO2、CO和H2O可以由丙烯直接氧化得到,也可以由丙烯腈、乙腈等再次氧化得到。反应过程也副产少量的丙烯醛、丙烯酸、乙醛、丙腈以及高聚物等,因此,工业生产条件下的丙烯氨氧过程十分复杂。为提高丙烯的转化率和丙烯腈的选择性,研究高性能催化剂是非常重要的。 三、工艺条件 1、催化剂 工业上用于丙烯氨氧化反应的催化剂主要有两大类,一类是复合酸的盐类(Mo系),如磷钼酸铋、磷钨酸铋等;另一类是重金属的氧化物或是几种金属氧化物的混合物(Sb系),例如

丙烯氨氧化制丙烯腈新工艺

S(ff 时 丙烯氨氧化法制丙烯膳 目录 一.丙烯睛的性质和用途 自燃点481^0可溶于有机溶剂如丙酗、苯、四氯化碳、乙醸和乙醇中,与水部分互溶0丙 烯睛剧壽,能灼伤皮肤,低浓度时刺激粘膜,长时间吸入如蒸气能引起恶心,呕叶、头皐、 疲倦等。在空气中的爆炸极限为3?05%"7?5% (体积)°因此在生产、贮存和运输中,应采 取严格的安全防护措施,工作场所内丙烯睛允许浓度为0.002mg/Lo 丙烯赭能发生聚合反应,发生在丙烯腊的UC 双键上,纯丙烯腊在光的作用下就能自行聚 合,所以在成品丙烯睛中,通常要加入少量阻聚剂,如对苯二酚甲基瞇(阻聚剂MEHQ )、对 苯二酚、氯化亚铜和胺类化合物等.除自聚外.丙烯睹还能与苯乙烯、丁二烯、乙酸乙烯、 氯乙烯、丙烯酰胺等中的一种或几种发生共聚反应,由此可制得各种合成纤维、合成橡胶、 塑料、涂料和粘合剂等。 丙烯臍是三大合成的重要单体,目前主要用它生产聚丙烯睛纤维(商品坍叫“睹纶"h 其 次用于生产ABS 树脂(丙烯睹一丁二烯一苯乙烯的共聚物),和合成橡胶(丙烯睛一丁二烯共聚 物h 丙烯睛水解所得的丙烯酸是合成丙烯酸树脂的单体。丙烯睹电解加氢,偶联制得的己一、丙 1 烯 的 性 质 和 用 途 二、丙 烯氨 氧化 制丙 烯 腊生产工 艺原 理 2 三、工 艺 条 件 2 四、生 产 工 艺 6 五、催 化 剂 研 究 丙烯氨氧化法制丙烯睹 1 9 丙烯睹在常温下是无色透明液体,味甜, 微臭,沸点77.50凝固点-833X?,闪点0匸,

二睹,是生产尼龙一66的原料0其主要用途如图1所示。 图1丙烯睛的主耍用途 .丙烯氨氧化制丙烯睛生产工艺原理 化学反应 主反应生成丙烯睹,是一个非均柑反应;与此同时,在催化剂表而还发生一系列副反应。 主反应J C3H6 + NH3+1,5O2 — CH2 =CHCN + 3 H20 AH =-512.5KJ/mol 副反应:①生成乙腊:C3H6 + 1.5NH3 +1.502 — 1.5CH3CN + 3H2O AH =-522KJ/mol ②生成氢氣酸:C3H6 + 3NH3 + 3O2 3HCN + 6H2O AH =-941KJ/mol ③生成二氧化碳:C3H6 +4.502 f 3CO2 +3 H20 AH =-1925KJ/mol 上述副反应中,生成乙睛和氢氣酸是主要的,C02. CO 和H20UJ 以由丙烯直接氧化得到, 也可以由丙烯睹、乙脂等再次氧化得到。反应过程也副产少量的丙烯醛、丙烯酸、乙醛、丙 腊以及高聚物等,因此,工业生产条件下的丙烯氨氧过程十分复杂。为提奇丙烯的转化率和 丙烯脂的选择性,研究髙性能催化剂是非常重要的。 三、工艺条件 1、催化剂 工业上用于丙烯氨氧化反应的催化剂主要有两大类,一类是复合酸的盐类(Mo 系),如磷铝 ④生成一氧化碳:C3H6 + 3O2 3CO + 3H2O AH = -1925KJ/mol ABSffl 料 ABS W 脂 丁《乳胶 丙烯K 丙烯載树脂 皮革?纺织品 ftBK ■处理 剂 a 二 聚网纤维 5水剂] 尼龙66 ―氯化丙烯》 合成纤维

丙烯氨氧化制丙烯腈生产工艺防火通用版

安全管理编号:YTO-FS-PD828 丙烯氨氧化制丙烯腈生产工艺防火通 用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

丙烯氨氧化制丙烯腈生产工艺防火 通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 要丙烯腈生产工艺普遍采用丙燃氨氧化的方法。从原料气火灾爆炸性质、反应放热特点、副反应后果和潜在的着火源方面,对此生产工艺进行了火灾危险性分析,并提出了针对性的防火防爆措施和技术。 关键词丙烯腈氧化防火防爆 丙烯腈作为重要的化工原料被用于生产腈纶纤维、工程塑料和合成橡胶,是丙烯系列产品中第二大品种。目前,我国的丙烯腈生产工艺普遍采用丙烯氨氧化的方法。该方法具有原料来源广且价廉、易一步合成、生产成本低等优点,但生产过程潜在的火灾危险性较大,防火防爆工作十分重要。 1 工艺原理 1.1反应原理 ?H?+NH?+3/2O?=CH?=CH-CN+3H?O△H=- 515kj/mol 同时副产氢氰酸、乙腈、丙烯醛和二氧化碳。

第七章 配位聚合

第七章配位聚合 思考题7.1如何判断乙烯、丙烯在热力学上能否聚合?采用哪一类引发剂和条件,才能聚合成功? 答可根据聚合自由能差?G=?H—T?S<0,作出判断。大部分烯类单体的?S近于定值,约-100~120J·mol-1,在一般聚合温度下(50~100℃),-T/?S=30~42kJ·mol-1,因此当-?H≥30kJ·mol-1时,聚合就有可能。乙烯和丙烯的-?H分别为950kJ·mol-1、858kJ·mo1-1,所以在热力学上很有聚合倾向。 在100~350MPa的高压和160-270℃高温下,采用氧气或有机过氧化物作引发剂,乙烯按自由基机理进行聚合,得到低密度的聚乙烯(LDPE);若采用TiCl4—Al(C2H5)3,为催化剂,在汽油溶剂中,进行配位聚合,则得高密度的聚乙烯(HDPE)。采用。A-TiCl3-Al(C2H5)3为催化剂,于60~70℃下和常压或稍高于常压的条件下,丙烯进行配位聚合可制得等规聚丙烯。 思考题7.2 解释和区别下列诸名词:配位聚合、络合聚合、插入聚合、定向聚合、有规立构聚合。 答配位聚合:是指单体分子首先在活性种的空位处配位,形成某些形式的配位络合物。随后单体分子插入过渡金属(Mt)-碳(C)键中增长形成大分子的过程,所以也可称作插入聚合。 络合聚合:与配位聚合的含义相同,可以互用。络合聚合着眼于引发剂有络合配位能力,一般认为配位聚合比络合聚合意义更明确。 插入聚合:烯类单体与络合引发剂配位后,插入Mt-R链增长聚合,故称为插入聚合。 定向聚合:也称有规立构聚合,指形成有规立构聚合物的聚合反应,配位络合引发剂是重要的条件。 有规立构聚合:是指形成有规立构聚合物为主的聚合反应。任何聚合过程或聚合方法,只要是形成有规立构聚合物为主,都是有规立构聚合。 思考题7.3区别聚合物构型和构象。简述光学异构和几何异构。聚丙烯和聚丁二烯有几种立体异构体? 答构型:指分子中原子由化学键固定在空间排布的结构,固定不变。要改变构型,必须经化学键的断裂和重组。 构象:由于。单键的内旋转而产生的分子在空间的不同形态,处于不稳定状态,随分子的热运动而随机改变。 光学异构:即分子中含有手性原子(如手性C‘),使物体与其镜像不能叠合,从而具有不同旋光性,这种空间排布不同的对映体称为光学异构体。 几何异构:又称顺、反异构,是指分子中存在双键或环,使某些原子在空间的位置不同而产生的立体结构。 聚丙烯可聚合成等规聚丙烯、间规聚丙烯和无规聚丙烯三种立体异构体。 聚丁二烯有顺式-1,4-结构、反式-1,4-结构和全同-1,2-结构、间同-1,2-结构四种立体异构。 思考题7.4什么是聚丙烯的等规度? 答聚丙烯的等规度是指全同聚丙烯占聚合物总量的百分数。聚丙烯的等规度或全同指数IIP(isotactic index)可用红外光谱的特征吸收谱带来测定。波数为975cm-1是全同螺旋链段的特征吸收峰,而1460cm-1是与CH3基团振动有关、对结构不敏感的参比吸收峰,取两者吸收强度(或峰面积)之比乘以仪器常数K即为等规度。

丙烯腈生产工艺

丙烯氨氧化(氧化偶联)制丙烯腈生产工艺把烯烃、芳烃、烷烃及其衍生物与空气(或氧气)、氨气混合通过催化剂制成腈类化合物的方法称为氨氧化法,按氧化反应的分类,这类反应亦称氧化偶联。有代表性的,已工业化的反应主要有下列几种: 研究表明,氨氧化制腈类用催化剂与烃类氧化制醛类用催化剂(如丙烯氧化制丙烯醛、间(对)二甲苯氧化制苯二甲醛等氧化催化剂)十分类似,氨氧化催化剂往往亦可用作醛类氧化催化剂,其原因是由于这两类反应通过类似的历程,形成相同的氧化中间物之故。上列反应中以丙烯氨氧化合成丙烯腈最为重要,下面即以此反应为例进行讨论。 丙烯腈是丙烯系列的重要产品。就世界范围而言,在丙烯系列产品中,它的产量仅次于聚丙烯,居第二位。 丙烯腈是生产有机高分子聚合物的重要单体,85%以上的丙烯腈 用来生产聚丙烯腈,由丙烯腈、丁二烯和苯乙烯合成的ABS树脂,以及由丙烯腈和苯乙烯合成的SAN树脂,是重要的工程塑料。此外,丙烯腈也是重要的有机合成原料,由丙烯腈经催化水合可制得丙烯酰胺,由后者聚合制得的聚丙烯酰胺是三次采油的重要助剂。由丙烯腈经电解

加氢偶联(又称电解加氢二聚)可制得己二腈,再加氢可制得己二胺, 后者是生产尼龙-66的主要单体。由丙烯腈还可制得一系列精细化工产品,如谷氨酸钠、医药、农药薰蒸剂、高分子絮凝剂、化学灌浆剂、纤维改性剂、纸张增强剂、固化剂、密封胶、涂料和橡胶硫化促进剂等。 丙烯腈在常温下是无色透明液体,剧毒,味甜,微臭。沸点78.5℃,熔点-82.0℃,相对密度0.8006。丙烯腈在室内允许的浓度为0.002 mg/l,在空气中的爆炸极限为3.05%~17.5%(m)。因此,在生产、贮存和运输中,应采取严格的安全防护措施。丙烯腈分子中含有腈基和 C=C 不饱和双键,化学性质极为活泼,能发生聚合、加成、腈基和腈乙基化等反应,纯丙烯腈在光的作用下就能自行聚合,所以在成品丙烯腈中,通常要加入少量阻聚剂,如对苯二酚甲基醚(MEHQ)、对苯二酚、氯化亚铜和胺类化合物等。 1. 生产简史和生产方法评述 在生产丙烯腈的历史上,曾采用以下生产方法。 (1)以环氧乙烷为原料的氰乙醇法 环氧乙烷和氢氰酸在水和三甲胺的存在下反应得到氰乙醇,然后以碳酸镁为催化剂,于200~280℃脱水制得丙烯腈,收率约75%。

2.2 丙烯腈生产4合成反应器

4.合成反应器 氨氧化法合成丙烯腈是一个气固相催化放热反应,反应热效应较大,丙烯转化率和丙烯腈收率对温度的变化比较敏感,因此,反应器温度的控制就显得十分重要。要求反应器能及时移走反应生成的热量,使反应器的径向和轴向的温度尽可能保持一致,并保证气态物料和固态催化剂在反应器中充分接触。生产中常用的反应器是固定床反应器和流化床反应器。 (1)固定床反应器 合成丙烯腈所用的固定床反应器属于内循环列管式固定床反应器,结构示意图如图2—3l所示。反应器内的热载体是硝酸钾、亚硝酸钾和少量硝酸钠组成的熔盐,、采用螺旋桨式搅拌器强制熔盐在器内循环,使反应器的上下部温度均匀,其温差仅为4℃,熔盐充分吸收反应热并及时传递给器内的盘管式换热器,移出热量。盘管内通入饱和蒸气,吸收反应热后产生的副产高夺蒸气,可作为其它工艺设备的热源反应器内的列管长2.5~5m,内径25mm,一台反应器装有多达l万根列管。装填在列管内的圆柱体催化剂:直径为3~4mm.长3~6mm。原料气体由列管上部引入,为缓和进口段的 反应速率,防止催化剂与高浓度气体反应过快,造成 反应器上部区域温度过高,一般在列管上部填充一段 活性差的催化剂或住催化剂中掺入一些惰性物质以稀 释催化剂。物料的流向自上而下,可避免催化剂床层 因气速变化而受到冲击,发生催化剂破碎或被气流带 走。 在列管式固定床反应器中,催化剂被固定在列管 内,物料返混小,反应的转化率较高,且催化剂不易 磨损。但由于不能充分发挥各部分催化剂的作用,反 应器的生产能力较低,单台反应器生产能力一般只有 5 000吨/年,扩大生产能力使设备显得过于庞大,反 应温度难以控制;以熔盐作为热载体.不仅增加了辅 助设备,而且熔盐还对设备有一定的腐蚀作用;另外, 向列管中装填或更换催化剂都比较困难,这些问题限制了列管式固定床反应器的应用,因此, 工业上采用固定床反应器的并不多。 (2)流化床反应器 流化床反应器是丙烯腈生产中使用最广泛的反应器,如图 2—32所示。它由空气分布板、丙烯和氨混合气体分配管、U 形冷却管和旋风分离器等部分组成。空气分布板、丙烯和氮混 合气体分配管均为管式分布器,空气分布板上均匀开孔,起支 承催化剂、使气体在床层上分布均匀、改善流化条件的作用。 空气分布板与丙烯和氨混合气体分配管之间有一定的距离,在 此间氧气充足,形成催化剂再生区,使催化剂处于高活性的氧 化状态。流化床内装填的催化剂呈微球形,粒径平均55μm。 丙烯和氨与空气分别进料,可使原料混合气的配比不受爆炸极 限的限制,比较安全,对保持催化剂活性和延长寿命,以及对 后处理过程减少含氰污水的排放郁有好处。u形冷却管同多组 冷却管组成的,它不仅移走了反应热,维持适宜的反应温度而 且还起到破碎床内气泡、改善流化质量的作用.在反应器上部 设置的旋风分离器有分离气体夹带的小颗粒催化剂的作用。反应后气体中氧含量很少,催化剂从反应器的扩大段进入旋风分离器后,在流回反应器的过程中,与分布板通入的空气使催

丙烯制备丙烯腈

一.建设意义 1.1丙烯腈的性质和用途 丙烯腈在常温下是无色透明液体,味甜,微臭,沸点77.5℃,凝固点-83.3℃,闪点0℃,自燃点481℃。可溶于有机溶剂如丙酮、苯、四氯化碳、乙醚和乙醇中,与水部分互溶,20℃时在水中的溶解度为7.3%(w),水在丙烯腈中的溶解度为3.1%(w)。其蒸气与空气形成爆炸混合物,爆炸极限为3.05~17.5%(v)。丙烯腈和水、苯、四氯化碳、甲醇、异丙醇等会形成二元共沸混合物,和水的共沸点为71℃,共沸物中丙烯腈的含量为88%(w),在有苯乙烯存在下,还能形成丙烯腈-苯乙烯-水三元共沸混合物。 丙烯腈剧毒,其毒性大约为氢氰酸毒性的十分之一,能灼伤皮肤,低浓度时刺激粘膜,长时间吸入其蒸气能引起恶心,呕吐、头晕、疲倦等,因此在生产、贮存和运输中,应采取严格的安全防护措施,工作场所内丙烯腈允许浓度为0.002mg/L。 丙烯腈分子中有双键(c=c)和氰基(CN)两种不饱和键,化学性质很活泼,能发生聚合、加成、水解、醇解等反应。 聚合反应发生在丙烯腈的C=C双键上,纯丙烯腈在光的作用下就能自行聚合,所以在成品丙烯腈中,通常要加入少量阻聚剂,如对苯二酚甲基醚(阻聚剂MEHQ)、对苯二酚、氯化亚铜和胺类化合物等。除自聚外,丙烯腈还能与苯乙烯、丁二烯、乙酸乙烯、氯乙烯、丙烯酰胺等中的一种或几种发生共聚反应,由此可制得各种合成纤维、合成橡胶、塑料、涂料和粘合剂等。

丙烯腈是三大合成的重要单体,目前主要用它生产聚丙烯腈纤维(商品名叫“腈纶”)。其次用于生产ABS树脂(丙烯腈—丁二烯—苯乙烯的共聚物),和合成橡胶(丙烯腈—丁二烯共聚物)。丙烯腈水解所得的丙烯酸是合成丙烯酸树脂的单体。丙烯腈电解加氢,偶联制得的己二腈,是生产尼龙—66的原料。 1.2合成丙烯腈的意义 近年来随着丙烯腈下游产品腈纶纤维、ABS/AS、丙烯酰胺、丁腈橡胶、己二腈和乙二胺等方面的发展,特别是下游精细化工产品的不断开发与应用,世界的丙烯腈需求量也不断增加。世界丙烯腈主要消费地区是亚洲、欧洲和北美。亚洲是世界最大的丙烯腈消费地区,占全球总消费量的59%左右。欧洲地区丙烯腈消费量占20%左右,美洲地区丙烯腈消费量约占11%。 在近几年的世界丙烯腈消费结构调整中,腈纶所占比例由2002年的54.5%下降到2007年的43%,ABS及其它产品所占的比例有所增加,其中ABS由2002年的25%增加到2007年的34%。腈纶所占的比例近几年有所下降,但依然是丙烯腈的最大用户。亚洲是全球丙烯腈消费量最大地区,而中国则是亚洲地区最大的丙烯腈消费国。受经济复苏的影响,预计2008年~2012年全球丙烯腈需求年增长率约1.5%。 1.3 我国国内市场需求分析及预测 近年来我国丙烯腈表观消费量不断上升,,2001年为68万t,2008年上升至122.1万t,年均增长率为8.7%。我国丙烯腈的产量迅猛增加,产量由2001年的42万t增加到2008年的94.2万t,年均增长率达12.2%,但是国内丙烯腈产量一直不能满

丙烯腈生产现状及前景分析

丙烯腈生产现状及前景分析 摘要:丙烯腈是一种重要的有机化工原料,主要应用于合成树脂、合成纤维及合成橡胶的 生产。目前,国内十多家丙烯腈生产商基本采用丙烯氨氧化法来生产丙烯腈。近年,国内丙烯腈的产能和产量稳步增加。丙烯腈以其在ABS 合成树脂方面等的应用及我国未来一段时间ABS 的迅猛需求将有较好的市场前景。 关键词:三大合成材料原料 丙烯氨氧化法 产能 产量 ABS 前言:丙烯腈是丙烯的第二大下游产品。丙烯是源自石油、煤、天然气的重要基础有机化 工原料,全球丙烯的产能已超1亿吨/年,其中约60%用于生产聚丙烯,其余部分用于生产丙烯腈、环氧丙烷、丙烯酸、异丙苯/苯酚/丙酮、羰基合成醇等基本有机原料。而我国2012年的丙烯产能1800万吨/年,产量1500万吨,其中约75%用于生产聚丙烯,基于丙烯原料的有机化工产业明显低于全球平均水平。随着我国今后几年中丙烯产能的快速增长,加快除聚丙烯以外的丙烯化工的综合发展已成为我国烯烃化工可持续发展的一项重要课题。而丙烯腈是丙烯的第二大下游产品。认清丙烯腈的生产现状及发展前景对于开发丙烯下游产品具有重要的意义。 1.丙烯腈的介绍及应用 丙烯腈是丙烯的第二大下游产品。虽然世界各国消费构成不同,但是从总体上来说,世界上大约有61 %的丙烯腈用于生产腈纶纤维,年需求量以2 %~3 %的速率增长;ABS 是丙烯腈的第二大用户,因该产品具有高强度、耐热、耐光和耐溶剂性能好等特点,今后10 年其需求量将以4. 5 %的速度增长;丁腈橡胶应用比例大约占4 % ,年增长率在1 %以上,主要用在汽车行业上;近年来己二腈用量增多,年增长率为4 % ,主要用于生产乌洛托品;丙烯酰胺的需求量亦以年均2 %的速率增长,主要用于纸张、废水处理、矿石处理、油品回收、三次采油化学品等方面。丙烯腈在其它方面应用也较多,如生产碳纤维、水处理树脂、防腐剂、涂料等,需求量将以年均3 %的速率增长。见下图。国内丙烯腈主要应用于合成纤维、合成橡胶、合成树脂等领域,其中,腈纶约占丙烯腈总需求的40%,ABS 树脂占35%,其它占25%。 丁腈橡胶 皮革、纺织品 纸张、处理剂 丙烯酸树脂 ABS 塑料 ABS 树脂 丁腈乳胶 丙烯酸 AS 树脂 丙烯腈 丙烯酰胺 抗水剂 己二醇 聚丙烯腈纤维 a-氯化丙烯腈 尼龙66 合成羊毛 (腈纶) 合成纤维

配位聚合

第七章配位聚合 1. 简要解释以下概念和名词: (1)配位聚合和插入聚合 (2)有规立构聚合和立构选择聚合 (3)定向聚合和Ziegler-Natta聚合 (4)光学异构、几何异构和构象异构 (5)全同聚合指数 答:(1)配位聚合是指单体分子首先在活性种的空位处配位,形成某些形式(σ-π)的配位络合物。随后单体分子插入过渡金属(M t)—碳(C)键中增长形成大分子的过程。这种聚合本质上是单体对增长链M t—R键的插入反应,所以又常称插入聚合。 (2)有规立构聚合。按照IUPAC(国际纯粹与应用化学联合会)的规定,有规立构聚合是指形成有规立构聚合物为主的聚合过程。因此任何聚合过程(包括自由基、阴离子、阳离子或配位聚合等)或任何聚合方法(如本体、悬浮、乳液和溶液聚合等),只要它是以形成有规立构聚合物为主,都是有规立构聚合。而引发剂能优先选择一种对映体进入聚合物链的聚合反应,则称为立构选择聚合。(3)定向聚合和有规立构聚合是同义语,二者都是指形成有规立构聚合物为主的聚合过程。Ziegler-Natta聚合通常是指采用Ziegler-Natta型引发剂的任何单体的聚合或共聚合,所得聚合物可以是有规立构聚合物,也可以是无规聚合物。它经常是配位聚合,但不一定都是定向聚合。 (4)分子式相同,但是原子相互联结的方式和顺序不同,或原子在空间的排布方式不用的化合物叫做异构体。异构体有两类:一是因结构不同而造成的异构现象叫结构异构(或称同分异构);二是由于原子或原子团的立体排布不同而导致的异构现象称为立体异构。根据导致立体异构的因素不同,立体异构又分为:光学异构,即分子中含有手性原子(如手性C*),使物体与其镜像不能叠合,从而使之有不同的旋光性,这种空间排布不同的对映体称为光学异构体;几何异构(或称顺、反异构)是指分子中存在双键或环,使某些原子在空间的位置不同,从而导致立体结构不同(例如聚丁二烯中丁二烯单元的顺式和反式构型);光学异构和几何异构均为构型异构。除非化学键断裂,这两种构型是不能相互转化的。构象异构:围绕单键旋转而产生的分子在空间不同的排列形式叫做构象。由单键内旋转造成的立体异构现象叫构象异构。和构型一样,构象也是表示分子中原子在空间的排布形式,不同的是构象可以通过单键的内旋转而相互转变。各种异构体一般不能分离开来,但当围绕单键的旋转受阻时也可以分离。 (5)根据IUPAC建议的命名法,光学异构体的对映体构型用R(右)或S(左)表示。即将手性中

配位聚合反应

从聚合热力学上分析,乙烯、丙烯是很有聚合倾向的单体,但是在很长一段时间内,未能将该单体聚合成聚乙烯和聚丙烯,这主要是动力学上的原因。 1938~1939年,英国I.C.I.公司在高温(180~200℃)、高压(180~200MPa)下,以氧作引发剂,使乙烯经自由基聚合制得聚乙烯。在高温下聚合易发生链转移反应,所得聚乙烯带有在空间作无规排布的许多支链,致使其结晶度低、熔点低、密度也低,俗称低密度聚乙烯。根据过程特征,也叫做高压聚乙烯。 1953年德国K. Ziegler等从一次以AlEt3为引发剂从乙烯合成高级烯烃的失败实验出发,意外地发现以乙酰丙酮的锆盐和AlEt3引发时得到的是高分子量的乙烯聚合物,并在此基础上开发了的乙烯聚合的引发剂四氯化钛-三乙基铝(TiCl4-AlEt3),在较低的温度(50~70℃)和较低的压力下,聚合得无支链、高结晶度、高熔点的高密度聚乙烯。1954年,意大利G. Natta以四氯化钛-三乙基铝(TiCl4- AlEt3)作引发剂,使丙烯聚合得等规聚丙烯(熔点175℃),其中甲基侧基在空间等规定向排布。Ziegler-Natta所用的引发剂是金属有机化合物/过渡金属化合物的络合体系,单体配位而后聚合,聚合产物呈定向立构,从这三角度考虑,因而分别有络合聚合、配位聚合、定向聚合之称,但三者有所区别。根据聚合机理的特征,本节采用配位聚合一词。 随后,Goodrich-Gulf公司采用四氯化钛/三乙基铝体系使异戊二烯聚合成高顺式1,4(95%~97%)聚异戊二烯,成功地合成得天然橡胶。几乎同时,Firestone轮胎和橡胶公司用锂或烷基锂作引发剂,也聚合得高顺式1,4(90%~94%)聚异戊二烯。此外,先后来用钛、钴、镍或钨、钼络合引发体系,合成得高顺式1,4(94%~97%)聚丁二烯橡胶(简称顺丁橡胶)。 虽然早在1947年,C. E. Schildknecht以BF3(OC2H5)2作引发剂,于丙酮中-78℃下,已使丁基乙烯醚聚合成立构规整聚合物,但Ziegler-Natta在络合引发体系、配位聚合机理、有规立构聚合物的合成、微结构、性能等方而研究的成就,在高分子科学领域内起着里程碑的作用。因而获得了诺贝尔奖金。 过渡金属化合物/金属有机化合物的一系列络合体系可以统称为Ziegler-Natta引发剂,目前已用来生产多种塑料和橡胶,例如高密度聚乙烯、等规聚丙烯、全同聚1-丁烯、全同聚4-甲基-1-戊烯、反式l,4-聚异戊二烯等可用作塑料,顺式1,4-聚丁二烯、顺式1,4聚异戊二烯、乙丙共聚物、反式聚环戊烯等可用作橡胶。其总年产量高达几千万吨。因此,研究配位聚合具有重要的理论和实际意义。

丙烯氨氧化制丙烯腈生产工艺防火

编订:__________________ 审核:__________________ 单位:__________________ 丙烯氨氧化制丙烯腈生产 工艺防火 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-3106-76 丙烯氨氧化制丙烯腈生产工艺防火 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行 具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或 活动达到预期的水平。下载后就可自由编辑。 要丙烯腈生产工艺普遍采用丙燃氨氧化的方法。从原料气火灾爆炸性质、反应放热特点、副反应后果和潜在的着火源方面,对此生产工艺进行了火灾危险性分析,并提出了针对性的防火防爆措施和技术。 关键词丙烯腈氧化防火防爆 丙烯腈作为重要的化工原料被用于生产腈纶纤维、工程塑料和合成橡胶,是丙烯系列产品中第二大品种。目前,我国的丙烯腈生产工艺普遍采用丙烯氨氧化的方法。该方法具有原料来源广且价廉、易一步合成、生产成本低等优点,但生产过程潜在的火灾危险性较大,防火防爆工作十分重要。 1 工艺原理 1.1反应原理 ?H?+NH?+3/2O?=CH?=CH-CN+3H?O△H=-

515kj/mol 同时副产氢氰酸、乙腈、丙烯醛和二氧化碳。 1.2 工艺流程及设备 丙烯氨氧化生产丙烯腈的工艺过程可简单表示如下(参见附图): 整个生产过程分为合成工序和精制工序。在合成工序,反应原料由底部进入反应器前,液体丙烯和氨经蒸发、空气经压缩,预先加热后进入混合器;然后,进入反应温度与压力分别为440℃和0.065MPa的反应器,在催化剂作用下进行反应;生成的气体经废热锅炉回收热量后,进入氨中和塔除氨。除氨后的气体经冷却进入吸收塔用水吸收得到丙烯腈、氢氰酸、乙腈等混合物。精制工序则将合成工序送来的水吸收液经脱除乙腈和氢氰酸后,送入精馏塔精制得丙烯腈产品。 主要生产工艺设备是原料混合器、氧化反应器和轻组分塔。氧化反应器一般为流化床式的反应塔,有锥体、浓相段和稀相段三部分。浓相段是丙烯氨氧化合成的部位;稀相段主要用于回收催化剂。轻组分塔

Unipol聚丙烯工艺聚合反应活性扰因排查及处理

Unipol聚丙烯工艺聚合反应活性扰因排查及处理 本文主要阐述了Unipol气相流化床聚丙烯聚合反应过程中,反应活性由催化剂自身以及外部介质等条件影响下,造成催化剂活性受阻。使得聚合反应发生一系列变化的过程。文中作者结合自身实际生产经验与理论分析,重点讨论总结了聚合反应活性受到干扰波动时,及时从三剂(T2、SCA、CAT)、床层流化、反应温度与压力等方面查找原因,总结并给出解决方法。以期指导聚丙烯装置实际生产工作,保障生产安稳长满优运行。 标签:聚合反应活性床层流化催化剂毒物冷凝量处理 Unipol气相流化床聚丙烯工艺,该工艺的主催化剂为高效载体催化剂,经三乙基铝活化后,形成三价钛活性中心,引发丙烯聚合反应。但毒物能占据活性中心,使催化剂失活[1],从而引起聚合活性波动。另外反应器床层流化不好、反应器入口气相丙烯冷凝量波动、反應器床层温度波动频繁、T2/SCA(铝硅比)、T2/Ti(铝钛比)加入量不稳、C3分压或反应器总压达不到条件或波动等工况也能引起催化剂活性分布不均以至丙烯聚合活性波动。本文浅析了聚合活性波动的各种原因,及聚合活性波动时的处理方法。 一、聚合活性受影响的原因 1.原料携带的毒物 反应原料中可能携带催化剂毒物:微量的水分、氧气、一氧化碳、二氧化碳等。毒物进入反应器会使催化剂活性失去或减弱[2]。从而造成装置产能下降,聚丙烯细粉含量升高,反应器内静电指示报警,进而使聚合活性波动。严重时,会使反应器内产生片料,挂壁料等,造成分布板压差过高、聚丙烯粉料出料系统(PDS)堵塞,甚至使装置停车。 2.床层流化不均匀 床层流化均匀主要是由于(1)循环气速与床重匹配效果不佳,即循环气速过大或过小,导致床层流化不均匀。(2)反应器内产生块料或片料。片料及块料大多数存在于催化剂注入管附近,造成催化剂分布不均匀,使催化剂附着或包裹在片料里,当片料足够大时,片料因重力作用从反应器器壁脱落,在撞击下会破碎,包裹在其里面的催化剂在短时间释放出来,造成催化剂活性突然升高,引起剧烈反应,表现为床温及壁温突升突降,反应温度波动频繁,甚至报警超限。 3.反应器入口气相丙烯冷凝量 Unipol气相流化床聚丙烯工艺丙烯聚合反应热主要靠反应器入口液相丙烯的汽化潜热直接撤出,因此,反应器入口气相丙烯冷凝量波动将直接影响丙烯聚合反应热的撤出,导致反应器撤热不稳,从而引起床层温度波动,进而影响到整

丙烯氨氧化制丙烯腈新工艺复习过程

丙烯氨氧化制丙烯腈 新工艺

丙烯氨氧化法制丙烯腈 目录 丙烯氨氧化法制丙烯腈 (2) 一、丙烯腈的性质和用途 2 二、丙烯氨氧化制丙烯腈生产工艺原理 3 三、工艺条件 4 四、生产工艺 9 五、催化剂研究 13 一、丙烯腈的性质和用途 丙烯腈在常温下是无色透明液体,味甜,微臭,沸点77.5℃,凝固点-83.3℃,闪点0℃,自燃点481℃。可溶于有机溶剂如丙酮、苯、四氯化碳、乙醚和乙醇中,与水部分互溶。丙烯腈剧毒,能灼伤皮肤,低浓度时刺激粘膜,长时间吸入其蒸气能引起恶心,呕吐、头晕、疲倦等。在空气中的爆炸极限为3.05%~17.5%(体积)。因此在生产、贮存和运输中,应采取严格的安全防护措施,工作场所内丙烯腈允许浓度为0.002mg/L。 丙烯腈能发生聚合反应,发生在丙烯腈的C=C 双键上,纯丙烯腈在光的作用下就能自行聚合,所以在成品丙烯腈中,通常要加入少量阻聚剂,如对苯二酚甲基醚(阻聚剂MEHQ)、对苯二酚、氯化亚铜和胺类化合物等。除自聚外,丙烯腈还能与苯乙烯、丁二烯、乙酸乙烯、氯乙烯、丙烯酰胺等中的一种或几种

发生共聚反应,由此可制得各种合成纤维、合成橡胶、塑料、涂料和粘合剂等。 丙烯腈是三大合成的重要单体,目前主要用它生产聚丙烯腈纤维(商品名叫“腈纶”)。其次用于生产ABS 树脂(丙烯腈—丁二烯—苯乙烯的共聚物),和合成橡胶(丙烯腈—丁二烯共聚物)。丙烯腈水解所得的丙烯酸是合成丙烯酸树脂的单体。丙烯腈电解加氢,偶联制得的己二腈,是生产尼龙—66 的原料。其主要用途如图 1所示。 图 1丙烯腈的主要用途 二、丙烯氨氧化制丙烯腈生产工艺原理 化学反应 主反应生成丙烯腈,是一个非均相反应;与此同时,在催化剂表面还发生一系列副反应。 主反应:C3H6 + NH3 +1.5 O2 → CH2 =CHCN + 3 H2O △H = -512.5KJ/mol 副反应:①生成乙腈:C3H6 + 1.5NH3 + 1.5O2 → 1.5CH3CN + 3H2O △H = -522KJ/mol ②生成氢氰酸:C3H6 + 3NH3 + 3O2 → 3HCN + 6H2O △H = -941KJ/mol

丙烯氨氧化法制取丙烯腈新工艺

丙烯氨法制丙烯腈新工艺 【摘要】综述了目前应用最广泛的丙烯氨氧化法制取丙烯腈的反应原理与工艺流程,以及国内大厂对引进装置的改造与升级。在总结前人研究结果的基础上,提出自己对于该工艺未来发展方向的看法。

目录 一.丙烯腈生产工艺简介 (3) 二.反应机理 (3) 2.1丙烯氧化成醛 (3) 2.2醛生成腈化物 (3) 三.催化剂的发展 (4) 3.1 Mo-Bi系催化剂 (4) 3.2 Sb-Fe系催化剂 (4) 四、工艺流程 (4) 4.1合成 (4) 4.2 急冷分离 (6) 4.3 丙烯腈的精制 (7) 4.4 乙腈精制 (8) 4.5 硫铵回收 (9) 五、废物处理 (10) 六、最新技术进展与展望 (10) 七、参考文献 (10)

一.丙烯腈生产工艺简介 丙烯腈是重要的化工原料,主要用于合成聚丙烯腈纤维,即腈纶。也用于合成ABS 工程塑料,在化工方面有重要的作用。丙烯腈的需求量非常大,2008年,中国国内的丙烯腈总生产能力达到了1205kt/a [1],不过还需要进口。 丙烯氨氧化制取丙烯腈的方法是1960年美国标准石油公司(Standard Oil )开发的。这种方法与在此之前的乙炔加成法相比,生产成本大幅降低,因此迅速在全世界推广。此后,世界主要的丙烯腈生产企业都是采用Sohio 的生产工艺,并受到美国BP 公司的专利控制。我国的大型丙烯腈厂都是进口美国BP 公司的技术。 二.反应机理 在工业条件下,丙烯与氨在催化剂作用下,与氧气发生脱氢发生反应,生成丙烯腈,同时有副产物乙腈、氢氰酸、二氧化碳,以及噁唑等深度氧化产物。 主反应如下: CH 2==CH —CH 3 + NH 3 + 2 3O 2→CH 2==CH —CN + 3H 2O (1) 同时发生下列化学反应: CH 2==CH —CH 3 + 3NH 3 + 3O 2 → 3HCN + 6H 2O (2) CH 2==CH —CH 3 + 23NH 3 + 23O 2 →23 CH 3—CN+ 3H 2O (3) CH 2==CH —CH 3 + 2 9 O 2→ 3CO 2 + 3H 2O (4) CH 2==CH —CH 3 + 3O 2→ 3CO+ 3H 2O (5) CH 2==CH —CH 3 + O 2→ CH 2 ==CH —CHO+ H 2O (6) CH 2==CH —CH 3 + 2 3O 2 →CH 2 ==CH —COOH+ H 2O (7) CH 2==CH —CH 3 + 2 1O 2 →CH 3—CO —CH 3 (8) CH 2==CH —CH 3 + NH 3 + O 2→ CH 3CH 2CN + 2H 2O (9) 上述反应以生成乙腈与氢氰酸为主,还有少量的二氧化碳、丙烯酸、丙烯醛、丙酮、丙腈等。在反应器中,发生如下反应: 2.1丙烯氧化成醛 丙烯被催化剂吸附,并在催化剂表面氧的作用下脱氢成为烯丙基自由基或者离子,同时催化剂被还原。随后在氧作用下,生成醛: CH 2==CH —CH 3→CH 2==CH —CH 2·或CH 2==CH —CH :(烯丙基) (10) CH 2==CH —CH 2· + O 2 →CH 2==CH —CHO (11) 2.2醛生成腈化物 第一部反应生成的醛与氨反应,生成腈: CH 2==CH —CHO+NH 3→CH 2==CH —CONH 2→CH 2==CH —CN+H 2O (12) 在反应时,催化剂表面的氧承担了丙烯氨的氧化剂,而空气中的氧气只是作为催化剂中 氧的补充,即使催化剂氧化再生。[2]

相关主题
文本预览
相关文档 最新文档