当前位置:文档之家› 液氧中乙炔含量的比色法分析

液氧中乙炔含量的比色法分析

液氧中乙炔含量的比色法分析
液氧中乙炔含量的比色法分析

液氧中乙炔含量的比色法分析

1、方法原理

借助于液氧的温度将试样中蒸发出的乙炔冻结(在标准大气压力下,乙炔的沸点为-83℃,液氧的沸点为-183℃)。被冻结的乙炔在常温下用氮气吹入乙炔吸收剂。在乙炔吸收剂的胶体溶液中,乙炔与氯化亚铜作用生成了均匀的紫红色溶液。利用分光光度法进行测定,可确定乙炔的含量。

反应式:

2Cu(NO3)2+4NH4OH+2NH2OH·HCl →

Cu2Cl2+4NH4NO3+N2↑+6H2O ------ (1)Cu2Cl2 +C2H2+2NH4OH→Cu2C2+2NH4Cl+2 H2O --------(2)

2、仪器与设备

乙炔含量测定装置如图1所示。所需主要仪器:

a.分光光度计;

b.蒸发瓶:250mL;

c.吸收瓶:20 mL;

d.蛇形冷凝管:18~22圈;

e.微量注射器:50μL;

f.冰瓶:内径200mm,高250mm。

3、试剂与溶液

试剂与溶液如下:

a.溶解乙炔:要求纯度在90%以上;

b.氨水(1+1):取50 mL氢氧化铵,用水稀释到100 mL,摇匀;

c.硝酸铜溶液:称取10g硝酸铜,溶解于100mL容量瓶中,用水稀释至刻度,摇匀;

d.盐酸羟胺溶液:称取46 g盐酸羟胺,溶解于100mL容量瓶中,定容;

e.白明胶溶液:称取0.5 g优质白明胶,加25mL水,加热使其溶解;

f.无水乙醇;

g.乙炔吸收液:在100mL容量瓶中,加入硝酸铜溶液5mL,氨水(1+1)5mL,盐酸羟胺溶液5mL,于沸腾水浴中加热还原成无色,在加入白明胶溶液4.5 mL及无水乙醇32mL,用水稀释至刻度,摇匀;

h.氮气。

4、标准曲线的绘制

4.1 以乙炔气体制备标准

标准曲线的绘制如下:

a.在6支25mL容量瓶中,分别加入乙炔吸收液至刻度,并盖上胶塞;

b.用50μL的微量注射器分别向容量瓶的乙炔吸收液内注入5、10、15、

20、25、30μL已知纯度的乙炔气,摇匀;

根据公式1计算出每毫升吸收液相当于含有乙炔的体积:

C i=C1×V i -----------------------------------------(1)

V1

式中:C i ----------容量瓶中每毫升吸收液相当于含有乙炔的体积,μL/mL;

C1 ----------乙炔气的纯度,%;

V i----------注入到容量瓶乙炔的体积,μL;

V1----------容量瓶中吸收液的体积,mL。

c.室温下放置30min,在波长540nm处,用3cm的玻璃吸收池,以乙炔吸收液为空白测其吸光度A;

d.以每个容量瓶中所含乙炔的浓度为横坐标,吸光度A为纵坐标,绘制

标准曲线。

4.2乙炔人造标准色阶的配制

见附录2

5、测定步骤

a.用蒸发瓶取0.25L的液氧试样,迅速连接在事先浸在装有液氧冰瓶中的冷凝管上,盖紧橡皮塞,在蒸发瓶内液氧蒸发过程中,不断向冰瓶内添加冷却用液氧;

b.当蒸发瓶内液氧全部蒸发完后,接通氮气,打开螺旋夹调节氮气以每秒2~3个气泡的流量吹洗系统10min;

c.关闭螺旋夹,将蛇形冷凝管出口接在装有10 mL乙炔吸收液的吸收瓶上,然后将冷凝管慢慢地从冰瓶中取出,使乙炔自然蒸发并被吸收,当吸收瓶内不再冒气泡时,打开螺旋夹,仍以每秒2~3个气泡的流量向系统通氮气15min,使乙炔从蛇形冷凝管中全部驱除而被吸收;

d.吸收完毕后,将吸收液倒入3cm的玻璃吸收池中,在波长540nm处,以乙炔吸收液为空白进行比色,测定其吸光度A,根据吸光度A从标准曲线上查出每毫升吸收液相当于含有乙炔的体积。

6、测定结果

液氧中乙炔的含量按公式2计算:

C=C i×V g×10-3 ---------------------------------------(2)

V

式中:C------------液氧中乙炔含量,mL/L;

C i -----------每毫升吸收液相当于含有乙炔的体积,μL/mL;

V g -----------测定样品时吸收液的体积,mL;

V-------------测定样品时所取液氧的体积,L。

所得结果表示至三位小数。

两次测定值之差不大于0.01ml/L。取平行测定值的算术平均值为结果。

7、注意事项

7.1当取液氧或往保温瓶中添加液氧时,必须戴上棉手套,注意液氧的飞

溅,以免触及人身而冻伤。

7.2液氧取样瓶必须保持清洁干燥,以防取液氧时发生破裂。

7.3紫铜的蛇形冷凝管在测定前必须烘干,用时再浸入液氧,不可长期浸

在液氧中以免空气中水分吸入堵塞管路。在接蒸发瓶前必须用干氮

吹洗,蒸发时不宜过于激烈或管中有水被冻结,以免压力增高,引

起蒸发瓶爆炸。

7.4氧能使乙炔吸收剂中低价铜氧化成高价铜显蓝色,以至难以比色,所

以吹洗时必须用高纯氮气。

7.5保温瓶中乙炔的冷冻剂不可用液空而要用液氧,以免使氧气在冷凝管

中冷凝为液体而难以分析。

7.6液氧全部蒸发完以后,乙炔全部留于冷凝管中,因此用氮气吹出时气

体的速度不宜过快,以免乙炔吸收不完全。

7.7试样蒸发和吹洗时,保温瓶中液氧不得低于冷凝管。

7.8乙炔吸收剂的配制必须按规定量。过多的氨水或过少的盐酸羟胺会使

吸收剂变黄,过多的盐酸羟胺过少的氨水会使吸收剂变紫,都难于

比色。

7.9配乙炔吸收剂所用的白明胶应注意保护。不可用阿拉伯胶或劣质胶代

替,以免乙炔铜沉淀,悬浮不均匀,影响比色。

7.10用氮气吹出乙炔时,乳胶管接头要接牢,严防漏气。

7.11乙炔含量高时,必须增加吸收瓶保证最后一个吸收瓶的颜色比1号

标准色阶的颜色浅。

7.12 如乙炔吸收剂发黄,可在乙炔吸收瓶前加粒状石棉碱洗气。

附录1:液氧中乙炔测定装置

1、螺旋夹;

2、液氧蒸发瓶;

3、蛇型管;

4、保温瓶;

5、吸收管

附录2 乙炔标准色阶的配制

4.2 乙炔标准色阶的配制

4.2.1 硝酸钴标准溶液的配制及标定:

(a)硝酸钴标准溶液的配制:

用工业天平称取化学纯硝酸钴[C o(NO3)2·6H2O]20.2~20.5克.

放入100毫升容量瓶中用蒸馏水溶解并稀释至100毫升,均匀混合。

(b)硝酸钴含量(要求达到20克/100毫升)标定:

用移液管取上述溶液4毫升,放入预先灼烧和恒重的瓷坩埚中,

在沙浴上小心蒸发到干涸。冷却后加入0.5毫升比重 1.84克/厘

米3浓硫酸,并蒸发至不再放出三氧化硫为止。移入高温电炉中,在

400~450℃温度下灼烧2小时,冷却称重,直至恒重,坩埚前后重量差

即为硫酸钴的重量。

400~450℃

C o(NO3)2+H2SO4 ======== C o SO4+2H NO3

C o(NO3)2·6H2O克/100毫升=a×290.94×100

155×4

=46.925a

式中:a——灼烧后残渣C o SO4的重量[克];

290.94——硝酸钴分子量;

155——硫酸钴分子量。

分析结果如发现硝酸钴含量低于或高于20克/100毫升,则应添加硝酸钴或用蒸馏水稀释,直至所得溶液的钴盐含量可以稍多

于规定量,因在一般情况下钴盐不纯,而且加蒸馏水稀释比再加

钴盐方便。

稀释后溶液的总体积按下式计算:

V= a×B

C

式中:a—溶液稀释前的毫升数;

B—由分析测知每毫升溶液中含钴的克数;

C——每毫升溶液中钴的规定含量[克];

V——稀释后的毫升数。

4.2.2 硝酸铬标准溶液的配制及标定:

(a)硝酸铬标准溶液的配制:

用工业天平称取10.2~10.3克化学纯硝酸铬,放入100毫升容量瓶中

用蒸馏水溶解并稀释至100毫升,均匀混合。

(b)硝酸铬的含量(要求含量达到10克/100毫升)的标定:用移液管取上述溶液3毫升于100毫升烧杯中,加入蒸馏水50毫升,

加入碳酸钠0.2克和2%高锰酸钾溶液15毫升,静置10分钟。为

分解剩余的高锰酸钾需添加酒精2毫升,并煮沸至乙醛气味完全

消失为止。过滤,用蒸馏水洗涤滤纸,在滤纸中加稀硫酸(1:4)

12毫升及碘化钾2克。析出碘用0.1N硫代硫酸钠(Na2S2O3滴定,

用淀粉做指示剂。

反应式:

C r(NO3)3+KMnO4+2 Na2 CO3==

Na2 C rO4+K NO3+ 2Na NO3+Mn(CO3)2

4 KMnO4+7H2O+3 C2H5OH ==

4Mn(OH)4↓+4KOH+3 C2H4O2

2Na2Cr O4+6KI+ H2 SO4 ==

C r2(SO4)3+3I2+3 K2 SO4+2 Na2 SO4+8 H2O

2Na2 S2O3+ I2 == Na2 S4O6+2 Na I

Cr (NO3)3·9H2O克/毫升=a×F×0.01333×100

3

式中:a——滴定时所消耗0.1N硫代硫酸钠溶液的毫升数;

F—0.1N硫代硫酸钠溶液浓度的校正系数;

0.01333— 1毫升0.1N硫代硫酸钠溶液浓度相当于

Cr (NO3)3·9H2O的克数。

如分析后发现含量低于或高于10克/100毫升,则用配制钴盐的同样的方法使铬盐的含量达到10克/100毫升。

4.2.3标准色阶的配制:

标准色阶用硝酸钴[C o(NO3)2·6H2O] 及硝酸铬[C r(NO3)3·9H2O]的水溶液配制。

选用13支(内径10~11毫升,长140~150毫米)无色玻璃管,洗净后按下表依次加入硝酸钴、硝酸铬与蒸馏水,封闭比色管,充分混和,制成标准色阶。溶液的颜色相当于0.0012~0.12毫升乙炔/10毫升溶液。

表1测定乙炔含量的人造色阶

管号硝酸钴溶

液[毫升]

硝酸铬溶

液[毫升]

蒸馏水

[毫升]

相当于乙炔含量

[毫升/10毫升溶液]

0 0.0 0.0 10.0 0

1 ——————0.0012

2 ——————0.0024

3 ——————0.0036

4 ——————0.0048

5 0.4 0.25 9.35 0.01

6 0.98 0.4

7 8.55 0.02

7 1.55 0.68 7.77 0.03

8 2.15 0.88 6.97 0.04

9 2.80 1.06 6.14 0.05

10 4.20 1.40 4.40 0.07

11 5.70 1.70 2.60 0.09

12 7.95 2.05 0.0 0.12

表中1~4号标准色阶是用5号标准色阶按比例稀释制成。用此法配制

的色阶颜色很稳定,可以保持一年。

案例氧气乙炔爆炸事故分析

案例一 2003年1月16日下午1时左右,江都市某工业气体充装站在氧气充装过程中发生一起氧气瓶爆炸事故,造成1死1伤。现将有关事故调查分析情况介绍如下。 事故的基本情况 2003年1月16日上午12时许,一位氧气代充客户到江都市某工业气体充装站充装气气,共6只氧气瓶。充装工将氧气瓶卸下后,先将30只氧气瓶分两组各15只进行充装。约在12点50分左右,其中一组充装结束,现场充装工关掉充装总阀,紧接着就开始卸充装夹具,当充装工卸下第3只气瓶夹具时,其中一只气瓶发生了爆炸,一名充装客户当场炸死在充装台上,一名操作人员受伤,该站共有6间充装间,每站站房长4m,宽6。充装间设有30个充气头,气瓶爆炸后,后浪把主充装间的防火墙推倒,把充装间充装管线全部炸坏,窗子的玻璃被震碎,充装间屋面全部掀光。爆炸气瓶被炸成3块,大块重29kg,中块得23.5kg,小块重3.5kg,气瓶爆炸后3.5kg的小块瓶片从屋内飞到充装站围墙外的麦田里,距爆炸点有35m。 事故原因分析 一、直接原因 从现场取证情况和查阅有关资料分析,意见如下: 1.对该站储罐内剩余液氧,邀请了扬子石化西欧气体有限公司有关专家进行现场取样,并带回南京分析,结果确认该储罐内液氧合格,排除了气源不合格的因素; 2.根据爆炸碎片上原有的气瓶制造和检验标记,从无缝气瓶检验站查阅该瓶检验报告,得知该瓶检验合格,并在检验有效期范围内,排除了过期瓶充装的因素; 3.在爆炸现场,发现该瓶主体被炸成3块(后在清理过程中发现颈圈),经称重约为56kg,与检验报告上称重量相符,一块重约3.5kg的碎片飞离充装站围墙外,距爆炸点约为35m。又从爆炸碎片中发现,瓶体内中下部一侧表面有一段400mm×150mm范围的金属烧熔痕迹,并留下了金属氧化物,这些情况都说明此次氧气瓶爆炸具有化学性爆炸的特征; 4.通过查阅相关资料和充装记录,并对现场进行勘察,同有关人员进行了询问、笔录,了解到充装台上的安全阀、压力表均在有效期内,有校验报告,当时充装压力为11.0MPa。又对爆炸现场进行了清理,发现爆炸瓶右侧有3只瓶内尚有气体,现场进行压力测试,发现这3只瓶内均有压力,且在10.0MPa左右,这就进一步排除了物理性爆炸的可能(不超压); 5.对上述3只气瓶采用吸耳球取样,并用着火烟头试验,发现烟并没有有明显的助燃作用,无气体爆鸣,同时对1只气瓶又进行了压力测试显示为9.0MPa。

溶解氧的分析方法

溶解氧的测定 一、两瓶法 1.概要 1)在碱性溶液中,水中溶解氧可以把锰(Ⅱ)氧化成锰(Ⅲ)锰(Ⅳ);在 酸性溶液中,锰(Ⅲ)锰(Ⅳ)能将碘离子氧化成游离碘,以淀粉作指 示剂,用硫代硫酸钠滴定,根据消耗量可计算水中溶解氧的含量。其反 应如下: A)锰盐在碱性溶液中生成氢氧化锰 Mn2++2KOH→Mn(OH)2+2K+ B)溶解氧与氢氧化锰作用(有两种反应) 2Mn(OH)2+O2→2H2MnO3↓ 4Mn(OH)2+O2+2H2O→4Mn(OH)3↓ C)在酸性溶液中与KI的作用 H2MnO3+4HCl+2KI→MnCl2+2KCl+3H2O+I2 2Mn(OH)2+6HCl+2KI→2MnCl2+2KCl+6H2O+I2 D)用硫代硫酸钠滴定释出的碘 2Na2S2O3+ I2→Na2S4O6+2NaI 2)本法适用测定含氧量大于0.02mg/L的水样。 2.仪器 1)取样桶:桶要比取样瓶高150mm以上,里面可放二个取样瓶。 2)取样瓶:250~500mL具有严密磨口塞的无色玻璃瓶。 3)滴定管:25mL下部接一细长玻璃管。 3.试剂 1)01mol/L Na2S2O3标准溶液:配制方法见标准溶液配制规程; 2)1%淀粉指示剂。 3)氯化锰或硫酸锰溶液:称取45g氯化锰(MnCl2·4H2O)或55g硫酸锰 (MnSO4·5H2O),溶于100mL蒸馏水中。过滤于滤液中加1mL浓硫酸, 贮存于磨口塞的试剂瓶中,此液应清澈透明,无沉淀物。

4) 碱性碘化钾混合液:称取36g 氢氧化钠、20g 碘化钾、0.05g 碘酸钾, 溶于100mL 蒸馏水中混匀。 5) (1+1)磷酸或(1+1)硫酸。 4. 测定方法 1) 在采取水样前,先将取样瓶、取样桶洗净,将取样管充分冲洗。然后将 二个取样瓶放在取样桶内,在取样管上接一个玻璃三通,并把三通上连接的二根胶管插入瓶底,调整水样流速约为700mL/min ,并应溢流一定 时间,使瓶内空气驱尽。当溢流至取样通水位超过取样瓶150mm 时,将取样管轻轻地由瓶中抽出。 2) 立即在水面下往第一瓶水样中加入1mL 氯化锰或硫酸锰溶液。 3) 往第二瓶水样中加入5mL (1+1)磷酸或(1+1)硫酸溶液。 4) 用滴定管往两瓶中各加入3mL 碱性碘化钾混合液,将瓶塞盖紧,然后由 桶中将两瓶取出,摇匀后再放置于水层下。 5) 待沉淀物下沉后,打开瓶塞,在水面下向第一瓶水样内加5mL (1+1) 磷酸或(1+1)硫酸溶液。向第二瓶内加入1mL 氯化锰或硫酸锰溶液,将瓶塞盖好,立即摇匀。 6) 将溶液冷却到15℃以下,各取出200~250mL 溶液,分别放入两个500mL 锥形瓶中。 7) 分别用硫代硫酸钠标准溶液滴定至浅黄色,加入1mL 淀粉指示剂,继续 滴定至蓝色消失为止。 5. 计算公式 水样中溶解氧含量(O 2,mg/L )按下式计算: O 2= 1000005 .0801.0)(21?-??-V a a 式中:a 1—第一瓶水样在滴定时所耗的0.01mol/L 硫代硫酸钠标准溶 液的体积,相 当于水样中所含有的溶解氧、氧化剂、还原剂和加入的碘化钾混合液 所生成的碘量以及所有试剂中带入的含氧总量所生成的

探究空气中氧气的含量测定误差分析

《探究空气中氧气含量的实验》误差分析 在探究空气中氧气的含量测定实验中可以观察到,红磷燃烧,产生大量的白烟,放出大量热;打开弹簧夹后,烧杯中的水沿导气管进入集气瓶中,至约占集气瓶空间的1/5。 红磷燃烧后生成固体五氧化二磷,使集气瓶中空气的压强变小,小于外界大气压。在外界大气压的作用下,烧杯中的水进入集气瓶。通过实验得知,空气中氧气的体积约占1/5。 实验时,燃烧匙里要盛入过量的红磷,红磷过量,足以使集气瓶中的氧气反应完,使测得氧气的体积更接近空气中氧气的实际体积。这个实验还可推论出氮气不能支持燃烧;集气瓶水面上升一定高度后,不能继续上升,可以说明氮气不易溶于水。 在这个实验中,为什么有时气体减少的体积小于1/5呢? 导致结果偏低的原因可能有: (1)红磷的量不足; (2)瓶氧气没有耗尽; (3)装置漏气(如塞子未塞紧、燃烧匙与橡皮塞之间有缝隙等),使外界空气进入瓶; (4)未冷却至室温就打开弹簧夹,使进入瓶的水的体积减少。 该实验中有时气体减少的体积大于1/5,又是为什么呢? 原因可能是: (1)点燃红磷后,插入燃烧匙时,瓶塞子塞得太慢,使得瓶中空气受热膨胀,部分空气溢出。 (2)实验开始时,没有夹或没夹紧止水夹。 针对此实验可以展开如下拓展。 例题1:将足量的下列物质分别放在燃烧匙上点燃(或灼烧),分别放入四只如图所示装置的广口瓶中,立即塞紧橡皮塞,反应结束待冷却后,打开止水夹,导管中水柱上升最少的是放入哪种物质的装置?() A.铁粉 B.磷 C.木炭 D.镁

解析:铁粉、磷、镁在空气被点燃后,生成物通常呈固态,而木炭燃烧后,虽然消耗了氧气,但是生成了二氧化碳气体,并且二氧化碳气体不能全部溶解于水,所以导管中水柱上升最少的是放木炭。 例题2:某班同学用如图所示装置测定空气里氧气的含量。先用弹簧夹夹住乳胶管。点燃红磷,伸入瓶中并塞上瓶塞。待红磷熄灭并冷却后,打开弹簧夹,观察广口瓶水面变化情况。实验完毕,甲同学的广口瓶水面上升明显小于瓶空气体积的1/5,乙同学的广口瓶水面上升明显大于瓶空气体积的1/5。下列对这两种现象解释合理的是( ) ①甲同学可能使用红磷的量不足,瓶氧气没有消耗完 ②甲同学可能未塞紧瓶塞,红磷熄灭冷却时外界空气进入瓶 ③乙同学可能没夹紧弹簧夹,红磷燃烧时瓶部分空气受热从导管逸出 ④乙同学可能插入燃烧匙太慢,塞紧瓶塞之前,瓶部分空气受热逸出 A.只有①③ B.只有②④ C.只有①②③ D.只有①②③④ 解析:根据本文开始所述容可知,对两种现象解释合理的是①②③④。 例题3:某校化学兴趣小组就空气中氧气的含量进行实验探究: [集体讨论]: (1)讨论后同学们认为,选择的药品既要能消耗氧气,又不会跟空气中的其它成分反应,而且生成物为固体。他们应该选择() A.蜡烛B.红磷C.硫粉 为了充分消耗容器中的氧气,药品的用量应保证。 (2)小组同学共同设计了如图所示的两套装置,你认为合理的是(填编号)。

液氧隐患

液氧贮存与充装的安全管理 一、液氧的特性及危险 液氧为低温液化气体,在101.325KPa压力下,液氧沸点为-182.83℃,当与人体皮肤、眼睛接触会引起冻伤(冷烧灼)。. 低温液体汽化为气体时,体积会迅速膨胀,在0℃, 101.325KPa状态下。1L液氧汽化为气氧体积为800L,在密闭容器内,因液化汽体使压力升高,易引起容器超压危险。 3、液氧和气氧是一种强助燃剂。 (1)液氧与可燃物接近时,遇明火极易引起燃烧危险。(2)液氧与可燃物接触时,因撞击易产生爆震危险;液氧与可燃物混合时,潜在爆炸危险。 (3)液氧蒸发成气氧时,能被衣服等织物吸附,遇火源易引起闪烁燃烧危险。 二、液氧贮存的安全管理 1 .在液氧贮存现场配置足够的消防设施:灭火器、消防栓等。当液氧贮槽泄漏,现场氧浓度超标,靠自然通风不能很快降下来时,启开中压氮气贮罐阀门用氮气进行稀释。万一发生火灾,打开液氮排放阀进行有效灭火,避免重大事故发生。2.液氧贮槽现场照明及电气开关必须是防爆型的,周围5m 内严禁明火,杜绝一切火源,应有明显的禁火标志,并且不得有易燃易爆物,保持场地清洁干净。

3.液氧的贮槽的周围至少在5m内不准有通向低处场所(如地下室、坑穴、地井、沟渠)的开口;地沟入口处必须有挡液堰。 4.液氧贮槽必须设置单独的导除静电设施和防雷击装置。导除静电的接地电阻不得大于10Ω,防雷击装置最大冲击电阻不得大于30Ω,并且至少每年测定一次。 5.液氧贮存场所四周必须设置牢固可靠的防护围栏,安全通道和安全口,并有醒目的警示标志。 6.严格控制贮槽液氧中的乙炔含量和总烃量,每天分析化验一次。其乙炔含量不得超过0.1×10-6,总烃含量不得超100x10-6,超过时必须及时排放液氧进行置换处理。7.为防止液氧贮槽上管道、阀门处碳氢化合物局部浓缩积聚,对不常使用的阀门每周至少开关一次,时间在15分钟以上,使管道、阀门中的死气强行流动,以稀释其中的碳化合物,避免局部燃爆事故发生。 8.氧气是不燃气体,由于碳氢化合物和激发能源的存在,具备燃爆的可能。因此要最大限度地消除引发液氧燃爆的激发能源,液氧贮存期间,尽量避免与其有关的检修作业,严禁对液氧设施进行撞击、加热、焊接。超标,也要定期进行置换。静态贮存至少3个月置换一次,动态贮存至少半年置换一次。 三、液氧充装的安全管理

基于独立分量分析的多源冲击定位方法

振 动 与 冲 击 第28卷第8期 JOURNAL OF V I B RATI O N AND SHOCK Vol .28No .82009  基于独立分量分析的多源冲击定位方法 基金项目:国家高技术研究发展计划(863计划)(2007AA03Z117);国家 自然科学基金项目(60772072) 收稿日期:2008-07-28 修改稿收到日期:2008-08-06第一作者苏永振男,博士生,1980年生通讯作者袁慎芳女,博士,博士,1968年生 苏永振,袁慎芳 (南京航空航天大学智能材料与结构航空科技重点实验室,南京 210016) 摘 要:结构健康监测中常用声发射信号进行声发射源的定位及特征描述。多个冲击事件发生时,声发射信号是 多个信号的混叠,而且混合方式未知,这使利用声发射信号对冲击源进行定位变得非常困难。而近年来兴起的基于独立 分量分析的盲源分离技术为解决这一难题提供了可能。采用基于信息极大化原理的反馈网络结构对同时作用在铝梁上的两个冲击事件产生的声发射混合信号进行分离,估计出各个源信号到达传感器的时延后,运用两点直线定位公式对两个冲击源进行定位。混合仿真实验验证了基于信息极大化原理的独立分量分析方法估计时延的有效性,铝梁上的两源冲击实验,进一步表明运用独立分量分析方法能较好的解决多冲击源定位问题。 关键词:盲源分离;独立分量分析;时延;冲击定位中图分类号:T B52;TG115.28 文献标识码:A 航空材料结构在服役过程中不可避免的要承受具 有不同能量的各种物体的冲击,由冲击所诱导的损伤,使结构承载能力大大降低、结构强度及稳定性严重退化[1]。因此,很有必要利用结构健康监测技术[2] 对冲击事件进行实时监测。目前对冲击定位的研究多是以单个冲击源为研究对象,常通过求解由冲击产生的声发射信号到达不同传感器的时延进行定位。在对多个 冲击源进行定位时,一些常规的求解时延方法[3] 如互相关函数法,能量法、阈值法等不再有效。因为在多个冲击源的情况下,声发射信号是多个源信号的混叠,上述方法只能求解出一个时延,因此无法实现多个冲击源的定位。近年来兴起的基于独立分量分析(I CA )的盲源分离(BSS )技术为这一问题的解决提供了有效途径。盲源信号分离是指在不知道源信号和混合参数的情况下,仅根据源信号的一些统计特性和有限的观测数据恢复出源信号。盲源信号分离技术在通信、生物医学信号处理、语音信号处理、阵列信号处理等获得了广泛的应用。 BSS 根据混合方式可分为瞬时混合和卷积混合,瞬时混合模型常假定信号源是同时混合的,不能容忍时延,而实际上混合源中有到达时间的区别。传感器测得的由冲击产生的声发射信号是结构的脉冲响应函数与源信号的卷积,而且由于传播介质的影响(时延和反射等),信号是多路径到达的,因此本文采用卷积混合模型模拟两个冲击源信号的混合过程。BSS 的卷积混合模型为:x =A 3s,其中“3”代表卷积,x 为t 时刻 M 维的观测信号向量,s 为t 时刻的N 维源信号向量,A 为M ×N 维的F I R 混合滤波器矩阵。解混目标是寻找 一逆F I R 滤波器矩阵W 使得解卷积后的输出y =W 3s 是源信号s 的估计。 本文以同时作用在铝梁上的两个冲击源的定位问题为例,研究基于BSS 技术的多源冲击定位问题。根据BSS 的卷积混合模型,采用基于信息最大化原理的反馈分离网络结构,对两个冲击源的混叠信号进行分离,求出各个冲击源到达传感器的时延,再根据波速,利用两点直线法实现两个冲击源的定位。 1 I nfomax 方法 1988年L inskers [‘4] 提出了可用非线性单元来处理任意分布的输入信号的信息最大化(I nfomax )原理,它可描述为:网络的输入端和输出端的互信息达到最大时,等价于输出端各分量间的相关性最小。1995年, A.J.Bell 和T .J.Sejnowski [5] 提出了基于信息最大化(I nf omax )原理的盲源分离算法。I nfomax 算法的独立性判据为信息极大传输准则,即通过对分离矩阵的调整,使非线性输出y 和网络输入x 之间的互信息I (y,x )极大。由信息论可知: I (y,x )=H (y )-H (y |x ) (1)由于H (y |x )不依赖于分离矩阵W ,可以看出,通过最大化输出信号的联合熵,就可实现输入输出之间的互信息最大。输出信号的联合熵为: H (y )=-E [log (f y (y ))] (2)f y (y )为非线性输出y 的概率密度函数,设输入经过非线性函数g (x )得到y,当g (x )为单调上升或下降时,输出输入概率密度函数之间的关系则可以写为: f y (y )=f x (x )/det (J ) (3)det (J )为网络的雅克比行列式,f x (x )为输入信号的概

2.1探究空气中氧气的含量测定误差分析

2.1探究空气中氧气的含量测定误差分析

《探究空气中氧气含量的实验》误差分析 在探究空气中氧气的含量测定实验中可以观察到,红磷燃烧,产生大量的______,放出大量热;打开弹簧夹后,烧杯中的水沿导气管进入集气瓶中,至约占集气瓶内空间的____。 红磷燃烧后生成固体________,使集气瓶中空气的压强变小,小于外界大气压。在外界大气压的作用下,烧杯中的水进入集气瓶。通过实验得知,空气中氧气的体积约占1/5。 实验时,燃烧匙里要盛入_____的红磷,红磷过量,足以使集气瓶中的氧气反应完,使测得氧气的体积更接近空气中氧气的实际体积。这个实验还可推论出_____不能支持燃烧;集气瓶内水面上升一定高度后,不能继续上升,可以说明氮气_______溶于水。 1 在这个实验中,为什么有时气体减少的体积小于1/5呢?导致结果偏低的原因可能有: (1)红磷的量不足;(2)瓶内氧气没有耗尽;(3)装置漏气(如塞子未塞紧、燃烧匙与橡皮塞之间有缝隙等),使外界空气进入瓶内; (4)未冷却至室温就打开弹簧夹,使进入瓶内的水的体积减少。 2 该实验中有时气体减少的体积大于1/5,又是为什么呢?原因可能是: (1)点燃红磷后,插入燃烧匙时,瓶塞子塞得太慢,使得瓶中空气受热膨胀,部分空气溢出。 (2)实验开始时,没有夹或没夹紧止水夹。 针对此实验可以展开如下拓展。 例题1:将足量的下列物质分别放在燃烧匙上点燃(或灼烧),分别放入四只如图所示装置的广口瓶中,立即塞紧橡皮塞,反应结束待冷却后,打开止水夹,导管中水柱上升最少的是放入哪种物质的装置?() A.铁粉 B.磷 C.木炭 D.镁 解析:铁粉、磷、镁在空气被点燃后,生成物通常呈固态,而木炭燃烧后,虽然消耗了氧气,但是生成了二氧化碳气体,并且二氧化碳气体不能全部溶解于水,所以导管中水柱上升最少的是放木炭。 例题2:某班同学用如图所示装置测定空气里氧气的含量。先用弹簧夹夹住乳胶管。点燃红磷,伸入瓶中并塞上瓶塞。待红磷熄灭并冷却后,打开弹簧夹,观察广口瓶内水面变化情况。实验完毕,甲同学的广口

液氧中乙炔含量标准操作规程

液氧中乙炔含量标准操作规程 (比色法) 1、方法原理 借助于液氧的温度将试样中蒸发出的乙炔冻结(在标准大气压力下,乙炔的沸点为-83℃,液氧的沸点为-183℃)。被冻结的乙炔在常温下用氮气吹入乙炔吸收剂。在乙炔吸收剂的胶体溶液中,乙炔与氯化亚铜作用生成了均匀的紫红色溶液。利用分光光度法进行测定,可确定乙炔的含量。 反应式: 2Cu(NO3)2+4NH4OH+2NH2OH·HCl →Cu2Cl2+4NH4NO3+N2↑+6H2O ------ (1) Cu2Cl2 +C2H2+2NH4OH→Cu2C2+2NH4Cl+2 H2O ------------------------------------- (2) 2、仪器与设备 乙炔含量测定装置如图1所示。所需主要仪器: a.分光光度计; b.蒸发瓶:250mL; c.吸收瓶:20 mL; d.蛇形冷凝管:18~22圈; e.微量注射器:50μL; f.冰瓶:内径200mm,高250mm。 3、试剂与溶液 试剂与溶液如下: a.溶解乙炔:要求纯度在90%以上; b.氨水(1+1):取50 mL氢氧化铵,用水稀释到100 mL,摇匀; c.硝酸铜溶液:称取10g硝酸铜,溶解于100mL容量瓶中,用水稀释至刻度,摇匀; d.盐酸羟胺溶液:称取46 g盐酸羟胺,溶解于100mL容量瓶中,定容; e.白明胶溶液:称取0.5 g优质白明胶,加25mL水,加热使其溶解; f.无水乙醇; g.乙炔吸收液:在100mL容量瓶中,加入硝酸铜溶液5mL,氨水(1+1)5mL,盐酸羟胺溶液5mL,于沸腾水浴中加热还原成无色,在加入白明胶溶液4.5 mL及无水乙醇32mL,用水稀释至刻度,摇匀;

乙炔事故典型案例

乙炔事故典型案例 (1)1994年11月24日,河北省某电化厂乙炔工段乙炔发生器溢流,管堵塞,6时停车处理完毕,开车后下料管又堵,继续停车处理,工人们用木锤、铜锤敲打下料斗的法兰盘,13时50分发生爆炸,当场死亡1人、重伤1人、轻伤1人。事故原因是下料口堵塞时间过长,使发生器电石吸入水分分解放热(干式发生器),又因加料斗密封橡胶圈破裂,进空气,当下料口砸通,突然下料,形成负压,而发生爆炸。 (2)1994年12月5日,河北省沧州市一家化工厂乙炔站3号乙炔发生器加料斗发生爆炸,致使厂房坍塌,半径100米以内窗玻璃破裂,1人死亡,2人轻伤,估计损失38万元以上。事故原因是临时停电检修后,恢复生产未按操作规程进行所致。 (3)1995年5月的第一个星期,美国新泽西州享时敦一家乙炔生产厂发生爆炸,厂主当场死亡,2位工人受伤。经分析,是由于碳化钙进给管路堵塞之故。当时,厂主带领工人用水冲洗想疏通进给管路上的碳化钙,但水喷射到碳化钙上就产生乙炔气。当时为了工作方便用电灯照明,由于不慎电灯掉下灯泡破碎,瞬间点燃乙炔气引发爆炸。

(4)1995年5月8日,河北省某化工总厂乙炔分厂乙炔发生器爆炸,造成1人死亡、1人重伤、3人轻伤,200平方米的厂房倒塌。原因是因乙炔高压干燥器压力过高,排污过猛,产生火花所致。 (5)1995年6月30日,广西某化工厂违章使用浮筒式乙炔发生器,1名工人更换乙炔发生器内电石,并接上乙炔气胶管,浮筒即发生爆炸,该工人当场炸死。事故原因是浮筒内空气未排净,乙炔气内磷化氢含量超标,自然引爆。 (6)1996年2月29日,四川省某化工总厂氯碱车间l号乙炔发生器检修,2名工人对其进行冲洗置换,拆开人孔盖检查,未进行气体分析,检查过程中突然发生爆炸,冲击波将1名工人冲出栏杆,从5米高处坠地而亡,另1名工人受伤,直接经济损失2.2万元。 (7)1997年3月20日,内蒙古某工厂电解车间生产急需集钠罐,车间主任擅自决定用焊枪烘干(按规定在烘干室用电烘干)。因集钠罐内漏有乙炔气体,当点燃焊枪移向集钠罐时发生爆炸,1人死亡,2人重伤。 (8)1998年10月27日,新疆某氯碱厂检修供水总阀,3名管工在井里用气焊切割螺丝。当准备用焊枪再次点着照亮时,打火机刚

实验四 FTIR测定硅材料中的碳氧含量(定量分析)实验指导书

实验四 FTIR 测定硅材料中的碳氧含量(定量分析) 一. 实验目的 1、 理解傅里叶红外光谱测试定量方法的原理; 2、 掌握FTIR-650红外光谱仪的基本结构和使用方法; 3、 学会FTIR-650红外光谱仪测试硅材料中碳氧含量的方法; 二. 实验仪器 FTIR-650型傅立叶变换红外光谱仪,标准硅样品,多个测试硅样品等 三. 实验原理 单晶硅材料可以用于制造太阳能电池、半导体器件等,由于其应用领域的特殊性要求其纯度达到99.9999%甚至更高。在单晶硅生产过程中由原料及方法等因素难以避免的引入了碳、氧等杂质,直接影响了单晶硅的性能,因而需对单晶硅材料中的氧碳含量进行控制。 红外光谱可用于定性分析,获取分子结构、振动能级等相关信息。实际上,红外光谱还可用于定量分析,可以对混合物中各组分进行相对含量的测定,其基本原理就是对比吸收谱带的强度。对处于一定状态的物质和其中的各种组分,所吸收的红外光的频率是固定的,并且存在一个规律,就是吸收率与组分的浓度和光程(红外光在样品内经过的路程)成正比,这就是红外光谱进行定量分析的基本原理。对于不同频率的红外光,硅片的透过率是不同的,这是因为硅晶格和其中所含杂质种类和浓度不同(如氧和碳等),所以红外光的吸收率是不同的。因此对单晶硅材料中的氧碳含量的测试可以采用红外光谱的定量分析来完成。 红外光谱法进行定量分析的理论基础是比尔-兰勃特定律,即当红外光源通过样品时,由于样品的共振吸收,使用入射光的强度减弱,这种入射光强度的减弱与可见光的吸收本质是一样的,也可以用光吸收定律表示: Kb e I I -=0 0/I I T = cb K Kb I I T A 00)/lg()/1lg(==== 其中T 为样品对红外光的透过率,A 为样品的吸收率, b 为样品厚度,c 为组分的浓度,K 为待测样品的吸收系数,与待测物质的浓度成正比,K 0为物质的吸光系数,有如下关系K=K 0c 。对于不同碳、氧含量的硅片(c 不同),不同区域的红外光的吸收率是不同的。 硅晶体中处于填隙位置的氧原子与临近的两个硅原子形成硅氧键,硅氧键的振动引起红

独立分量分析(ICA)简单认识

ICA (Independent Components Analysis),即独立分量分析。它是传统的盲源分离方法,旨在恢复独立成分观测的混合物。FastICA是一个典型的独立分量分析(ICA)方法。 它是信号盲处理的基础,对信号独立分量分析的检测是信号盲处理的起点。现有的信号盲处理的算法,大都是基于独立分量分析的,通过对独立分量分析的研究就可以把这些算法统一起来。 一、信号分类: 1.无噪声时: 假设混叠系统由m个传感器和n个源信号组成,并且源信号与观测信号遵从如下所示的混叠模型: x(t)=As(t),其中,x(t)=[x1(t),x2(t),...,x m(t)]T表示m维观测信号矢量; A为m*n维混叠权系数为未知的混叠矩阵; n个源信号的组合为:s(t)=[s 1(t),s 2 (t),...,s n (t)]T 2.有噪声时: 若考虑噪声的影响,则有: x(t)=As(t)+n(t), 其中,从m个传感器采集来的噪声集合为:n(t)=[n1(t),n2(t),...,n m(t)]T 针对式子:x(t)=As(t)+n(t) 独立分量分析(ICA)就是要求解分离矩阵W,使得通过它可以从观测信号x(t)中恢复出未知的源信号s(t),分离系统输出可通过下式表示:y(t)=Wx(t)其中,y(t)=[y1(t),y2(t),…,y n(t)]T为源信号的估计矢量,即:y(t)=S(t) 二、用ICA方法的信号分析——基于小波变换和ICA的分离方案(分离步骤) 首先介绍下语音分离的大体思路。先采用小波变换对各个带噪混叠语音进行预消噪处理,然后进行预处理,最后用ICA的方法对消噪后的混叠语音进行分离;最后根据分离信号的特点进一步提出对其进行矢量归一和再消噪处理,最终得到各个语音源信号的估计。 1.预消噪处理——小波变换 这里采用的是小波阈值法去噪,它类似于图像的阈值分割。(阈值就是临界值或叫判断设定的最小值) 设带噪语音信号为: f(t)=As(t)+n(t),式中: s(t)是纯语音信号, n(t)为噪声。 对式子作离散小波变换。首先对被噪声污染的语音信号进行离散序列小波变换, 得到带有噪声的小波系数;然后用设定的阈值作为门限对小波系数进行处理,对低于阈值的小波系数作为由噪声引起的,仅让超过阈值的那些显著的小波系数用来重构语音信号。 2.约束条件

乙炔生产爆炸案例

乙炔生产过程中危害因素分析及安全控制 江苏某医药原料有限公司是一家以生产医药中间体为主的企业,主产品1 ,4 - 丁炔二醇生 产能力达3000 t/ a。目前该公司有两台乙炔发生器,乙炔生产系统具有易燃、易爆等诸多危险、有害特性,如何实现乙炔系统的安全稳定运行,一直是该企业安全管理工作的重中之重。 1 乙炔生产事故案例分析 案例1:发生器加料口燃烧 某厂发生器在加料时,由于第1 贮斗排氮不彻底,电石块太大,在加料吊斗内“搭桥”。操作人员采用吊斗撞击加料口,致使吊钩脱落。于是现场挂吊钩,同时启动电动葫芦开关,结果引起燃烧,操作人员脸部和手部烧伤。 原因分析:乙炔气遇到电动葫芦开关火花引起燃烧。 案例2:乙炔发生器爆炸 安徽某厂乙炔工段1# 发生器活门被电石桶盖卡住,操作人员进入贮斗内处理时突然发生爆炸,死亡3 人。 " 原因分析:人进入发生器内处理被卡住的活门时,致使大量空气进入贮斗内,用工具敲击电石时产生火花,乙炔气与之接触后发生爆炸。 案例3:乙炔发生器发生爆喷燃烧 广西某厂乙炔工段当班操作人员发现乙炔气柜高度降至180 m3 以下,按正常生产要求,此时发生器需要添加电石,于是操作人员到三楼添加电石,1 # 发生器贮斗的电石放完后,又去放2 # 发生器贮斗的电石,当放出约一半电石物料时,在下料斗的下料口与电磁振动加料器上部下料口连接橡胶圈的密封部位,突然发生爆喷燃烧。站在电磁振动器旁的操作人员全身被喷射出来的热电石渣浆烧伤,送医院抢救无效死亡。 原因分析:操作人员在放发生器贮斗的电石时,没注意到乙炔气柜液位的变化,致使加入粉料过多,产气量瞬间过大,压力超高,气压把中间连接的胶圈冲破,大量电石渣和乙炔气喷出,并着火。 案例4 :乙炔发生器加料口爆炸 湖南某厂乙炔站1 # 发生器加料口爆炸起火,随后2 # 发生器加料口和贮斗胶圈的密封处 也发生爆炸起火,电石飞溅到一楼排渣池,产生乙炔气导致起火,为此发生器一、三、四楼都起火。

实验四 测定硅材料中的碳氧含量(定量分析)

实验四 测定硅材料中的碳氧含量(定量分析) ―,实验目的 1、理解傅里叶红外光谱测试定量方法的原理; 2、掌握TENSOR27红外光谱仪的基本结构和使用方法; 3、学会TENSOR27红外光谱仪测试硅材料中碳氧含量的方法; 二. 实验仪器 TENSOR27型傅立叶变换红外光谱仪,标准硅样品,多个测试硅样品等 三. 实验原理 单晶硅材料可以用于制造太阳能电池、半导体器件等,由于其应用领域的特殊性要求其纯度达到99.99997。甚至更高。在单晶硅生产过程中由原料及方法等因素难以避免的引入了碳、氧等杂质,直接影响了单晶硅的性能,因而需对单晶硅材料中的氧碳含量进行控制。 红外光谱可用于定性分析,获取分子结构、振动能级等相关信息。实际上,红外光谱还可用于定量分析,可以对混合物中各组分进行相对含量的测定,其基本原理就是对比吸收谱带的强度。对处于一定状态的物质和其中的各种组分,所吸收的红外光的频率是固定的,并且存在一个规律,就是吸收率与组分的浓度和光程(红外光在样品内经过的路程)成正比, 这就是红外光谱进行定量分析的基本原理。对于不同频率的红外光,硅片的透过率是不同的,这是因为硅晶格和其中所含杂质种类和浓度不同(如氧和碳等》所以红外光的吸收率是不同的。因此对单晶硅材料中的氧碳含量的测试可以采用红外光谱的定量分析来完成。 红外光谱法进行定量分析的理论基础是比尔-兰勃特定律,即当红外光源通过样品时,由于样品的共振吸收,使用入射光的强度减弱,这种入射光强度的减弱与可见光的吸收本质是一样的,也可以用光吸收定律表示: Kb I I -=e 0 0/I I T = cb K Kb I I T A 00)/lg()/1lg(==== 其中T 为样品对红外光的透过率,A 为样品的吸收率,b 为样品厚度,c 为组分的浓度,K 为待测样品的吸收系数,与待测物质的浓度成正比,K 0为物质的吸光系数,有如下关系K=K 0c 对于不同碳、氧含量的硅片(c 不同),不同区域的红外光的吸收率是不同的。 硅晶体中处于填隙位置的氧原子与临近的两个硅原子形成硅氧键,硅氧键的振动引起红外光三个频率的吸收,分别在1106、513和1718cm -1处,其中最强的1106 cm -1吸收峰被用

氧气乙炔事故处理方法

氧气乙炔事故处理方法 Ting Bao was revised on January 6, 20021

第二部分现场处置方案 氧气、乙炔火灾事故现场处置方案 一.事故风险分析 1.1事故类型 在焊接切割作业时,由于使用压缩空气或氧气流的喷射,使火星、融珠和铁渣四处飞溅,将作业环境10m范围所有易燃易爆物品清理干净,应注意作业周边环境内有无可燃液体和可燃气体,以免由于焊渣、金属火星引起灾害事故。 1.2事故发生的区域、地点 所有使用氧气、乙炔切割的场所。 1.3事故发生的时间、事故的危害程度及影响范围 1.事故易发时间: 在使用氧气、乙炔焊接切割作业时 2.事故的危害程度及影响范围 一旦发生氧气、乙炔瓶火灾爆炸事故,轻者造成生产中断,重者会造成人员伤亡。事故影响不会波及厂区以外。 3.事故可能引发的次生、衍生事故 氧气、乙炔气瓶火灾爆炸可能会引发火灾。 二.应急工作职责 临场指挥:车间负责人 职责:启动预先约定的事故警报,向公司应急总指挥(总经理)报告事故现场情况;必要时,直接向宁城县安监局、消防部队等有关部门报告事故,请求支援;指挥现场人员进行力所能及的应急处置;疏散周围人员。 现场其它人员根据各自岗位应急职责,在车间负责人的指挥下,展开救援。 三.应急处置

3.1应急处置程序 氧气、乙炔气瓶发生火灾后,现场第一发现人应大声呼救,向周围人员发出警报; 车间负责人履行现场临时指挥职责,启动报警设备,告知周围车间人员,向公司应急指挥(总经理)报告现场情况,启动《氧气、乙炔火灾爆炸事故现场处置方案》,指挥现场人员进行力所能及的现场处置,划定警戒线,疏散周围人员。 如仅依靠车间的应急力量无法控制事故,现场临时指挥请求公司应急总指挥(总经理)启动《公司生产安全事故应急预案》。 3.2现场应急处置措施 1.当气体导管漏气着火时,首先应将焊割炬的火焰熄灭,并立即关闭阀门,切断可燃气体源,用灭火器、湿布、石棉布等扑灭燃烧气体。 2.氧气、乙炔气瓶口着火时,设法立即关闭瓶阀,停止气体流出,火即熄灭。 3.氧气、乙炔气着火可用二氧化碳、干粉灭火器扑灭;乙炔瓶内丙酮流出燃烧,可用泡沫、干粉、二氧化碳灭火器扑灭。 4.如气瓶库发生火灾或邻近发生火灾威胁气瓶库时,应采取安全措施,将气瓶移到安全场所。 5.如果事态严重,直接扩大应急,请求社会救援,拨打119。 四.注意事项 1.禁止敲击,碰撞瓶体,要轻拿轻放 2.不得靠近热源和电气设备,夏季要防止爆晒 3.吊装、搬运时应使用专用夹具和防震的运输车 4.使用时要注意固定乙炔瓶,防止倾倒,严禁卧放 5.使用必须装设专用的减压器、回火防止器 6.瓶内气体严禁用尽,必须留有不低于下表规定的剩余压力

有限空间氧含量分析培训

有限空间氧含量分析培训 1、什么是有限空间? 有限空间是指封闭或部分封闭,进出口较为狭窄有限,未被设计为固定工作场所,自然通风不良,易造成有毒有害、易燃易爆物质积聚或氧含量不足的空间。 2、几种常见危害气体是什么? 硫化氢、一氧化碳、苯、件、二甲苯、二氧化碳、惰性气体、易燃易爆气体。 3、一氧化碳物理性质,危害特性。哪些地方容易积聚一氧化碳? 一氧化碳是无色、无味、无刺激性的气体,有爆炸性,是最常见的有害气体。接触一氧化碳的工业有:冶金炼钢、炼铁、炼焦以及锻造和铸造;化学工业中合成氨、甲醛、甲醇、丙酮及草酸等。这些岗位如违反操作规程,发生事故或管道漏气,均可使作业环境中一氧化碳浓度过高而发生急性中毒。急性一氧化碳中毒主要表现为急性脑缺氧引起的损害症状;少数患者可有迟发性神经精神症状。一般轻度中毒会出现剧烈头痛、眩晕、恶心、呕吐、全身乏力、精神不振等,重度一氧化碳中毒可导致浅、中和深度昏迷,严重的可导致死亡。 一氧化碳 如在市政建设、道路施工时,损坏煤气管道,煤气渗透到有限空间内或附近民居内,造成一氧化碳积聚,以及在设备检修时,设备内残留的一氧化碳泄漏等。 4、硫化氢和苯类物质(甲苯、苯、二甲苯)容易在哪些地方积聚? 苯、甲苯、二甲苯 如在有限空间内进行防腐涂层作业时,由于涂料中含有的苯、甲苯、二甲苯等有机溶剂的挥发,造成有毒物质的浓度逐步增高等。 硫化氢 如清理、疏通下水道、粪便池、窑井、污水池、地窖等作业容易产生硫化氢。 5、惰性气体有那些,有那些危害特性。 如氮气、氩气、氦气、水蒸气等。工业上常用惰性气体对反应釜、贮罐、钢瓶等容器进行冲洗,容器内残留的惰性气体过多,当工人进入时,容易发生单纯性缺氧或窒息。甲烷、丙烷也可导致缺氧或窒息。 6、哪些是易燃易爆气体,在空气中聚集是否会发生爆炸或燃烧 易燃易爆性气体,如氢气、甲烷、丙烯、丙烷以及液化石油气等。空气中存在易燃、易爆物质,可形成爆炸性混合物遇火会引起爆炸或燃烧。

岛津GC-2010Plus 液氧液空中总烃、乙炔、微量CO、CO2、CH4分…

岛津GC-2010Plus 液氧液空中总烃、乙炔、微量CO、CO2、CH4 使用规格说明书 岛津制作所

SSM-ZM-129 岛津GC-2010Plus液氧液空中总烃、乙炔、微量CO、CO2、CH4 分析系统 一、概要 测定成分及测定范围 测定成分测定范围 总烃0.1ppm以上 CH4 0.1ppm以上 C2H6 0.1ppm以上 C2H4 0.1ppm以上 C2H2 0.1ppm以上 CO 0.1ppm以上 CO2 0.1ppm以上 分析过程: 本系统由两个单独流路构成,流路中有两个十通阀,一个六通阀,六个色谱分析柱,两个FID组成。 流路一:十通阀起始处于实线位置,利用事件Relay1(1)使两个定量环中的气体进入分析柱,经分离后一一由FID1检测出来,最后利用Relay1(0)使阀V1复位。 流路二:十通阀V2和六通阀V3起始处于实线位置,利用Relay2(1)和Relay3(1)切阀,使定量环中的气体进入预柱,待CH4和CO通过预柱而CO2未通过时,将阀V1复位,CO2经P-N后由FID2检测出来。CH4和CO进入MS-13X,放空CH4之前的组分后,V3复位,CH4和CO也由FID2检测出来。 二、规格 1、分析周期约11分钟 2、校正方法外标法 3、记录方式积分仪或工作站 4、分析结果数据处理机记录色谱图、保留时间、计算含量,打印结果 5、使用仪器气相色谱仪(GC-2010Plus)色谱工作站(GC-SOLUTION) 6、载气氮气(纯度99.999%以上) 7、阀驱动用空气压力350~450kpa的无油除湿空气 8、电源交流220V 15A 9、安装尺寸长:700mm、宽:700mm、高:450m

焊接安全事故案例及原因分析

焊接安全事故案例及原因分析(二) 实例14:焊补柴油柜爆炸 1.事故经过 某拖拉机厂一辆汽车装载的柴油柜、出油管,接近油阀的部位损坏,需要补焊。操作人员将柜内柴油放完之后,未加清洗,只打开入孔盖就进行补焊,立刻爆炸,现场炸死三人。 2.主要原因分析 油柜中的柴油放完之后,柜壁内表面仍有油膜存留并向柜内挥发油气。油气与进入的空气形成爆炸性混合气体被焊接高温引爆。 实例15:非气焊工违章操作,酿成事故 1.事故经过 某厂气焊工甲与水暖工乙进行上、下水管大修工作。乙开启减压器上的氧气阀门,氧气突然冲出,将接在减压器出气嘴上的氧气胶管冲落,正好打在乙的左眼上,氧气胶管将眼球击裂失明。 2.主要原因分析 (1)瓶内氧气压力较高,开启阀门过大,使氧气猛烈冲出。 (2)氧气胶管与减压器的连接部位扎得不牢。 (3)水暖工乙不懂气焊安全操作知识,开启阀门过猛,且又站在氧气出口方向,属违章作业,酿成事故。 实例16:在喷漆房内施焊引起火灾 1.事故经过 某厂电焊工在总装车间喷漆房内焊接工件。电焊火花飞溅到附近较厚油漆膜的木板上起火。在场的工人见状惊慌失措,有的拿扫帚扑打,有的用压缩空气吹火,造成火势扩大,后经消防队半小时扑救才熄灭。

2.主要原因分析 (1)房内油漆膜未清除,又未采取任何安全防火措施。 (2)灭火方法不当,错误地用压缩空气吹火,助长了火势,扩大了事故恶果。 实例17:用风铲清渣未戴防护镜造成左眼失明 1.事故经过 某厂工人用风铲清理工件焊缝时,毛刺飞起,打入左眼,重伤失明。 2.主要原因分析 (1)操作方法不当,致使焊缝毛刺打入眼睛,造成事故。 (2)工人未戴安全防护镜。 实例18:登高焊接作业发生高空坠落 1.事故经过 某厂电焊工在12m高的金属结构上焊接,为安全起见,登高时带着尼龙安全带上去。在施焊过程中,安全带被角钢缠住。当他转身去解开时,尼龙安全带被高温的焊缝烧断,人从高处坠落,造成终身残废。 2.主要原因分析 安全带不符合安全要求。 实例19:无证操作 1.事故经过 某单位8层职工宿舍基建工地因电焊工请假,影响了施工,基建科副科长朱某着急,就自己顶替焊工焊接,他攀上屋架顶,在未挂安全带,又无助手帮助的情况下,也不戴面罩,左手扶着钢筋,右手抓焊钳,闭着眼睛施焊。但他毕竟不是焊工,终因焊接质量差,焊缝支持不住他的体重,而从12.4m高处坠落,当即死亡。 2.主要原因分析 (1)朱某不是焊工,焊接技术差,又未经安全技术培训。 (2)登高焊接未系安全带。 (3)地面上无人监护。 实例20:焊工在更换乙炔气瓶时引起着火 1.事故经过 某焊工因乙炔气瓶用空,换瓶时将气瓶卧放滚动到工作地点,即投入使用。因乙炔气瓶内丙酮流出而着火,焊工惊惶失措。 2.主要原因分析 (1)焊工严重违反《溶解乙炔气瓶安全监察规程》规定。 (2)使用前未竖立置放20min。 实例21:焊工在容器内焊接、错用氧气置换引起火灾

液氧中乙炔含量比色检验分析法

液氧中乙炔含量比色法分析检验标准操作规程 1 方法原理 借助于液氧的温度将试样中蒸发出的乙炔冻结(在标准状态下,乙炔的沸点为-83℃,液氧的沸点为-183℃),被冻结的乙炔在常温下用氮气吹入乙炔吸收剂在乙炔吸收剂的胶体溶液中,乙炔与氯化亚铜作用生成了均匀的紫红色溶液。 2 试剂:硝酸铜、25%氨水、硫酸、氢氧化钠、盐酸氢铵、甲基橙指示剂、白 明胶、95%无水乙醇、硝酸钴、硝酸铬 3 材料及装置:500-1000ml液氧蒸发瓶,蛇形冷凝管,吸收瓶,保温瓶、高 纯氮 4 乙炔吸收剂的配制 4.1 硝酸铜溶液的配制:称取33g(实际3.3)硝酸铜,用蒸馏水溶解至1L(实 际100), 4.2 10%氨水的配制及0.53g氨水的滴定 10%氨水的配制:取400ml25%氨水,用蒸馏水稀释至1L(每次配1/10即可) 0.53g氨水的滴定:取50ml1N硫酸与三角烧瓶中,加入2滴甲基橙指示剂,用 移液管加入5ml10%氨水再用1N氢氧化钠反滴定。 4.3 盐酸羟氨溶液的配制:称取57.5g盐酸羟氨,用蒸馏水稀释至1L 4.4 2%白明胶溶液的配制:称取2g明胶在加热情况下溶解于100ml蒸馏水中, 待溶解均匀后盖上软木塞,冷却保存,有效期1个星期。 4.5 100ml乙炔吸收剂的配制:在100ml容量瓶中加入加入硝酸铜溶液15ml, 10%氨水,使含量正好为0.53g(5.5ml),在加入40ml盐酸羟氨溶液,(不要马 上振荡)待溶液还原成无色后再加入2%白明胶溶液4.5ml,95%无水乙醇28ml, 然后用蒸馏水稀释至刻度,振荡均匀,反应生成的氮气要及时放出,以免容量瓶 爆破。配制好的溶液放暗处保存。 5 测定步骤: a用液氧蒸发瓶准确取液氧500-1000ml; b将洗净干燥的蛇形冷凝管慢慢侵入装有液氧的保温瓶中,并迅速与液氧蒸 发瓶相接,使试样在常温自然下蒸发。 C待所有液氧试样蒸发完后,用缓慢的氮气流吹洗15分钟赶走残余气体。 d关闭氮气阀门及蒸发瓶进口的螺旋夹,将冷凝管接于装有10ml乙炔吸收剂 的吸收瓶上。吸收瓶的个数有乙炔含量多少来确定,一般用1-2各,从保温瓶中 缓慢取出蛇形冷凝管,使气体通过吸收瓶的速度必须一个气泡接一个气泡,不宜

氧分压和氧含量的定义解析

很多人对氧分压和氧含量(氧浓度)的理解有很大的困惑,这篇文章将会给读者一个清晰的梳理。 1氧气浓度背景物理学 1.1 氧分压的定义 分压的定义为混合气体中单种气体的压力组分。它与单种气体占据整个体积空间而对总压力施加的压力相对应。 1.1.2 道尔顿定律 理想混合气体的总压力(ptotal) 等于该混合气体中各类气体的分压(pi)之和: (1) 从等式 (1)可得出,单种气体组分粒子数(n i)与混合气体总粒子数的比例(n total) 等于单种气体分压(p i)与混合气体总压力(p total)的比例。 (2) n i气体i的粒子数 n total混合气体粒子总数 p i气体i的分压 P total总压力 Figure 2-1 P total = P1 + P2 + P3 (体积容量 & 温度恒定) Example 1: 海平面的大气压力 (标准大气压下) 为1013.25mbar。此处干燥空气的主要组分为氮气(78.08% Vol.)、氧气(20.95% Vol.)、氩气(0.93% Vol.) 和二氧化碳(0.040% Vol.)。由于上述气体近似理想气体,故可将其体积容量百分比(%)等同于粒子总数 (n) 。

等式 (2)可用于计算单种气体的气体分压 (i): (3) 故氧气分压等于: Figure 2-2 湿度为0时的分压 当然,只有当大气是干燥气体(湿度0%)时,上述计算值才具备相关性。如果气体中存在水分,则水蒸气压力会占据总压力的部分比例。因此,如果测量大气总压力的同时也测量了相对湿度和环境温度,则可更加精确地测量氧气分压 (ppO2) : Figure 2-3 水蒸气压力 首先计算水蒸气压力: (4) WVP水蒸气压力(mbar ) H Rel相对湿度(%) WVP max最大水蒸气压力(mbar) 对于已知环境温度的情况,可直接从附录A查阅表中确定氧气分压 (WVP max) 。最大水蒸气压力也被称为露点。暖空气可以容纳更多水蒸气,因此WVP max相对更高。

相关主题
文本预览
相关文档 最新文档