当前位置:文档之家› 基于LabVIEW技术的模拟电路实验的设计

基于LabVIEW技术的模拟电路实验的设计

基于LabVIEW技术的模拟电路实验的设计
基于LabVIEW技术的模拟电路实验的设计

摘要

虚拟仪器是当今仪器技术发展的重点,LabVIEW是一种图形化编程语言,作为数据采集和仪器控制软件的标准被广泛性应用于工业界、研究性课题。

论文主要研究基于LabVIEW的模拟电路实验系统的设计,设计过程中的虚拟积分微分器采用图形化编程语言LabVIEW进行设计,通过各种波形信号的输入,对其各种参数进行设置,然后利用信号选择器选择所要输入的信号,然后经过程序的处理之后在前面板上显示积分微分前后的变化,在波形图中显示输入输出信号的波形,观察虚拟积分微分器的结果,得出结果与理论分析的结论是一致的。设计的积分微分器能对正弦波、方波、三角波等波形进行正确显示和积分微分处理。

关键词:积分器;微分器;LabVIEW

基于LabVIEW技术的模拟电路实验系统的设计

The Design of Analog Circuit Experiment System

Based on LabVIEW

ABSTRACT

Virtual instrument is the instrument technology development focus, LabVIEW is a graphical programming language, as data acquisition and instrument control software is widely used in industry, academia, research topic .

The paper mainly studies the design of analog circuit based on LabVIEW, and the design process of virtual differential device uses the graphical programming langua ge LabVIEW, through various waveform signal input, and set various parameters, use a signal selector to select the input signal, through the process of treatment in the front panel display integral and differential change in the waveform display, and display the input and output signal on the waveform graph, analyze the virtual integral differential actuator result, the result is common with the conclusion of the theoretical analysis. In this paper, the design of integral differential device capable of sine wave, square wave, triangle wave, waveform display correctly and differential treatment.

Key words:Integral Device ; Differential Device ; LabVIEW

榆林学院本科毕业设计(论文)

目录

摘要 (1)

ABSTRACT ............................................................II 1 绪论 (1)

1.1课题研究的意义 (1)

1.2 本文研究内容 (1)

2虚拟仪器简介 (3)

2.1虚拟仪器的概念 (3)

2.2虚拟仪器发展史 (4)

2.3图形化编程语言LabVIEW (5)

2.4 LabVIEW的开发环境 (6)

3积分微分器介绍 (7)

3.1积分微分运算的原理 (7)

3.2积分微分器的设计方法 (8)

3.3积分微分器的应用 (9)

4模拟电路实验系统仿真设计 (10)

4.1虚拟仪器VI的设计 (10)

4.2信号发生器的实现 (10)

4.2.1基本信号发生器的实现 (11)

4.2.2模拟信号发生器的实现 (12)

4.3积分微分器的设计 (13)

4.3.1积分微分器流程设计 (13)

4.3.2积分微分器前面板的实现 (15)

4.3.3积分微分器流程图设计 (16)

4.3.4积分微分器的调试过程及其结果 (17)

4.4本章小结 (19)

5结论与展望 (20)

5.1结论 (20)

5.2展望 (20)

参考文献 (21)

致谢 ............................................... 错误!未定义书签。

榆林学院本科毕业设计(论文)

1 绪论

1.1课题研究的意义

目前,电路和电子技术实验是电类专业学生必修并且非常重要的专业基础课,实验中常用的传统仪器包括:数字万用表、函数信号发生器、示波器、直流稳压电源等。很多专业性实验还需要一些特殊仪器,比如波特仪、直流电桥、逻辑分析仪等。熟练使用仪器是学生通过实验必须具备的一个基本技能,但实验中往往由于学生紧张,仪器较多,结果学生经常忙于调节仪器而没有太多时间专注于对实验原理的研究和实验结果的分析,导致实验的效果并不理想,也不利于学生更深层次的学习和提高。虚拟仪器的设计思想是基于计算机的强大功能,采用接口标准化的硬件进行数据采集,而对数据的分析、处理、显示则通过软件编程实现,即采用“软面板”,用户自己定义仪器功能。我们可以在通过电路实验练习掌握传统仪器,在这种基础之上接触并学习虚拟仪器,并将虚拟仪器运用到电子技术实验中,就可以减少对仪器问题的困惑,而使我们分析及解决问题能力得以提升,并且可以早点通过使用虚拟仪器提前与专业接触,更有利于与后续专业课的学习和提高[1]。

积分微分器的实质是对信号进行处理,传统的积分微分器的设计是用窗口函数将理想积分微分器的脉冲响应截断来实现的,不同的窗口函数以及不同的窗口宽度对设计的积分微分器都有较大的影响。对于虚拟仪器来说,则具有丰富的函数功能、数值分析、可编程性以及直观等众多优势。因此,研究虚拟积分微分器具有十分重要的实际意义。

LabVIEW是一种图形化编程语言,作为数据采集和仪器控制软件的标准被广泛应用于工业界、学术界和研究性实验室。LabVIEW是功能强大、灵活的多平台仪器和分析软件系统。通过采用虚拟仪器开发语言LabVIEW开发一个积分微分器,阐述基于LabVIEW的虚拟仪器在模拟电路实验中应用的实践性,并完成系统的仿真调试,让学生能够真正地的理解并完全地掌握LabVIEW技术。

1.2 本文研究内容

本文要求结合虚拟仪器技术和软件编程技术完成设计并实现一个虚拟积分微分器,完成对系统的检测与调试。

整个系统分两个部分,即硬件部分与软件部分,硬件部分主要由计算机和数据采集模块组成。数据采集模块可采用模拟仿真信号或者数据采集卡,本文重点

基于LabVIEW技术的模拟电路实验的设计

放在积分微分器的参数设置和功能设计的实现。

本文首先进行虚拟积分微分器的整体设计,掌握虚拟仪器的软件编程环境LabVIEW的使用。然后,用LabVIEW编程实现虚拟仪器的采集模块、参数测量模块、积分微分处理模块的设计。再进行检测仿真。

本文文章的主要安排:

第一章:绪论部分,综述本文的可以研究意义、内容及其背景。

第二章:虚拟仪器的发展史和概念,以及图形化编程语言LabVIEW软件的基本介绍。

第三章:积分微分器的介绍,比如积分微分运算、原理及其应用等。

第四章:本文的关键部分,即对虚拟仪器VI的设计和积分微分器的设计,主要是前面板和程序框图的设计,将所设计的虚拟积分微分器进行实验,验证所设计的虚拟积分微分器运行可靠。

第五章:论文总结。

榆林学院本科毕业设计(论文)

2虚拟仪器简介

虚拟仪器是上世纪90年代初期出现的一种新型仪器,是现代实验室的基础。虚拟仪器由计算机、软件、模块式硬件组成,这些软硬件组合并它配置后模拟了传统的硬件仪器功能。虚拟仪器也称为LabVIEW 程序。由于其功能是由用户软件定义的,所以虚拟仪器功能非常灵活、强大而又经济。因此,虚拟仪器代表了当前测试仪器发张的方向之一,使人类的测试技术进入了一个新时代。

2.1虚拟仪器的概念

虚拟仪器简称VI ,是美国国家仪器公司于1976年最早提出的[2]。它既具有传统仪器的功能,又区别于其他系统仪器,它能充分发挥利用计算机技术的应用,使仪器的测量和测试以及调试仿真等变得简单。

虚拟仪器是现代实验室的基础,其由计算机、应用软件和模块式硬件组成,也称之为LabVIEW 程序。由于其功能是由用户软件定义的,所以虚拟仪器功能非常灵活、强大而又经济。虚拟仪器是指通过应用程序把计算机的功能模块和仪器硬件部分结合在一起,用户通过虚拟前面板来操作计算机从而完成对信号的采集、分析、仿真、显示等。虚拟仪器的实质就是充分利用计算机技术来实现传统仪器的功能。系统框图如图2-1所示。

图2-1 虚拟仪器系统框图

应用软件开发 仪器驱动程序 通信管理 仪器驱动程序 通信接口

仪器接口 VXI GPIB 其他串口

基于LabVIEW技术的模拟电路实验的设计

2.2虚拟仪器发展史

虚拟仪器是现代实验的基本组成部分,虚拟仪器的发展主要经历了五个重要的时代,下边将各个时代的主要仪器代表作出简单介绍。

(1)第一模拟时代

以电磁感应基本原理为基础的指针式仪器,如电流电压表,万用表等。

(2)第二代分立元件式仪器

20世纪50年代出现电子管、60年代出现晶体管,从此测试仪器就进入了电子晶体管时代。

(3)第三代数字化仪器

20世纪70年代,随着集成电路的出现,出现了以集成芯片为基础的第三代仪器,代表有数字万用表、数字频率仪等。

(4)第四代智能仪器

微电子技术的微处理器的出现,使虚拟仪器进入了以微处理器为基础的时代。

(5)虚拟仪器

虚拟仪器出现在上世纪90年代,它是一种新型仪器,它具有超越性,它将以前由硬件完成的信号处理工作交由计算机软件进行处理完成,从而使仪器的硬件功能的软件化,给测试带来了巨大的改进,可以说,虚拟仪器的诞生是对传统仪器概念的重大突破,是仪器领域的一次新的改革。因此,虚拟仪器代表了当前测试仪器发展的方向,使人类的测试技术进入了一个新时代。

我国基本还处于传统仪器跟计算机仪器分离的状态,结合我国的基本情况,我们必须一边引进先进仪器设备,一边自行研究开发,才能使我国在虚拟仪器这块领域站住脚。发展基于计算机的插卡式硬件模块为主的测控技术,发展以图形化为基础的软件,充分利用我们现有的计算机及测控技术硬件,缩短与国际先进水平的差距。随着计算机跟测控技术的发展,虚拟仪器的性能、集成、网络等都将有所提升[3]。

虚拟仪器不仅能实现传统仪器的各种功能,而且还具有传统仪器无法比拟的优点。虚拟仪器与传统仪器的区别如表2-1所示。

榆林学院本科毕业设计(论文)

表2-1 虚拟仪器与传统仪器的区别

2.

3

La

b

VI

E

W LabVIEW 是Laboratory Virtual Instrument Engineering

Workbench 的缩写,它是一个使用图形符号来编写程序的编程环境。LabVIEW 是一个功能强大的仿真工具,常用于从外部数据源获取数据,并拥有众多与这些功能实现相关的VI 。LabVIEW 可以通过GPIB 总线实现数据的传输[3]。它它不同于传统的编程语言,如C 语言,C++或Java ,这些语言使用文本方式编程。然而,LabVIEW 不仅仅是一种编程语言,它还是为科学家和工程师等设计的一种编程开发环境和运行系统,编程知识这些人工作的一部分。主要以框图形式编写程序,用于数据采集、仪器控制等领域,作为一个比较完整的软件开发环境,它为我们提供了实现仪器编程和数据采集系统的简化方法,可以大大提高工作效率。

一个完整的LabVIEW 程序包括三个主要的组成部分,即前面板、框图和图标。简单的说,前面板就是一个窗口,用户通过它与程序交互。当运行VI 时,必须打开前面板,以便向执行程序输入数据。前面板主要由控件和指示器组成,控件可以让用户输入数值,向VI 的框图提供数据。指示器显示由程序产生的输出信息。用户可以使用鼠标和键盘进入输入,然后在屏幕上观察程序产生的结果。框图保存LabVIEW VI 的图形源代码,由LabVIEW 的图形化编程语言构成。框图是实际可以执行的程序,前面板上的对象对应于框图上的终端,这样数据可以从用户虚拟仪器 传统仪器 用户自定义仪器功能 只有厂家才能定义仪器功能 关键是软件,系统性能强 关键是硬件,系统性能一般 可与网络连接 与其他设备连接受限制 技术更新时间短 技术更新时间长 数据可以编程、打印 数据无法进行此操作 维护费用较低 维护费用高 价格低廉 价格昂贵 开放、灵活性强 封闭性、配合差

基于LabVIEW技术的模拟电路实验的设计

传送到程序及再传回用户。图标是VI的图形表示,用于把LabVIEW程序变成一个子程序,以便在其他程序中调用。

2.4 LabVIEW的开发环境

所有的 labVIEW 应用程序都是由前面板、流程图以及图框三部分组成[4]。

(1)前面板:是图形用户界面,用户输入控制和输出显示来构成。

控制是用户输入数据到程序的接口,而显示是输出程序产生的数据接口。控制和显示是用各种图形形式显示在前面板,具体表现为:旋钮、开关、图形图标以及其他控件和显示的对象等,这使用户界面更加直接观察和理解。

(2)程序框图:由节点、端点、图框和连接线四种元素构成。

labVIEW 有两种节点类型,函数节点和子VI节点。labVIEW 以编译好的机器代码供用户使用,而子VI节点是以图形语言形式提供给用户,用户可访问和修改任一子VI的节点代码,但无法对函数节点进行修改。

(3)图框是labVIEW实现程序结构控制命令的图形表示。如循环控制和顺序控制等,编程人员可以使用它们控制VI程序的执行方式。代码接口节点是框图程序与用户提供C语言文本程序的接口。

榆林学院本科毕业设计(论文)

3积分微分器介绍

3.1积分微分运算的原理

(1)积分电路

积分电路可以完成对输入电压的积分运算,即其输出电压与输入电压成正比。反向积分电路如图所示,电容C 引入交流并联电压负反馈,运放工作在线性区[5]

。 由于积分运算是对瞬时值而言的,所以各电流电压均采用瞬时值符号。

积分电路如图3-1所示,若输入电压为阶跃电压,并设定u c =0,则t ≥0时,由于u 1=E ,所以, t RC E

Edt RC u o ?-=-=1

( 3-1)

图3-1 积分电路

(2)微分电路

微分是积分的逆运算,输出电压与输入电压呈微分关系。微分电路如图3-2所示。

基于LabVIEW 技术的模拟电路实验的设计

图3-2 微分电路

图中R 引入并联电压负反馈,运放工作在线性区[5]。

因为i -=0,并且“-”端是虚地,所以

?-=-=-=dt du RC Ri Ri u I

C F o (3-2)

可见u 0与输入电压u I 成正比。

3.2积分微分器的设计方法

(1)基于DSP builder 数字积分微分器的设计

首先要利用Matlab 对所设计的系统进行理论数值仿真,在此基础上进行数字保密系统的设计。该设计主要是利用Matlab 中的 DSP Builder 工具箱。在该设计过程中,用到加法器、乘法器、减法器、放大器、延时器、数据选择器、积分器、阶跃脉冲信号发生器、微分器等。该方法设计出的积分微分器主要应用于数字仿真,也可用于线性和非线性微分方程的数字求解[6]。

(2)虚拟积分微分器

主要实现对波形进行积分和微分处理, 在信号积分微分器界面中,通过对前面板上控件的设定或者改变信号的类型、频率、相位、幅度和偏移量等,采用LabVIEW 中设计的典型信号模块来实现对仿真信号的生成。将仿真信号生成和函数处理经过必要的连接就构成了积分微分器流程图,同时也可对延时时间进行设置,然后在波形显示控件中会分别显示信号积分微分前后波形的变化。在信号显示过程中可以通过信号重置按钮来选择更换信号的类型。

榆林学院本科毕业设计(论文)

3.3积分微分器的应用

(1)微分器在跟踪系统的应用

微分器在迅速精确地获取被跟踪目标的速度和加速度对于一些系统是至关重要的,如防御系统中的导弹拦截系统。在大多数情况下,采用差分方法来近似的估计信号的导数。通常情况下,由于噪声存在于几乎所有的信号中,通过这种方法不能正确地估计出信号的导数。卡尔曼滤波器可以被用来抑制扰动,同时求取信号的导数,然而,需要有对象的模型,这限制了信号的通用性,需要对被跟踪目标进行详细的了解,采用不基于对象模型的信号导数求取方法,设计各种适合于工程实际的微分器就可以解决这种问题[7]。

(2)微分器在汽轮机上的应用

在汽轮机的转速反馈通道上设置微分器,来加快调节系统的反应速度、提高系统的性能是设计中常用的方法。微分器在汽轮机调节系统中已有多处应用:目前汽轮发电机组的容量越来越大,转子时间常数相对减小,甩负荷后的最高飞升转速提高,对汽轮发电机组的安全构成严重威胁,为避免甩负荷后的最高飞升转速超过极限值,往往在汽轮机转速反馈通道上设置微分器,来增宽频带,加快调节系统的反应速度在功频电液调节系统中,在转速反馈通道中设置微分器,以获取角加速度信号来克服“反调”现象门;为抑制电力系统的低频振荡,提高电力系统的稳定性,在转速反馈通道上并联二阶超前网络,用来补偿调速器和汽轮机的相角滞后,提供正值阻尼力矩,这一环节亦具有微分器的作用。微分器能够提高系统的高频增益,虽然在应用中常以实际微分来代管理想微分环节,但对高频信号仍有一定的放大作用。

(3)智能积分器在稳态误差中的应用

在传统控制中,为了消除稳态误差,常常根据参考输入的形式,采用串接适量的积分器的方法。这种方法由于积分器的相位滞后特性,在暂态过程中积累了大量没用的误差信号,使系统的暂态响应变坏,甚至影响系统的稳定性。根据要求设计一个智能积分器,既能实现稳态无差,又能将系统中的误差信息丢掉,系统仅仅记忆保留有效的误差信息,从本质上消除了积分作用对暂态响应的不利影响,同时还发挥了积分的积极作用。当系统处于稳态无干扰时,系统等效于开环系统。

基于LabVIEW技术的模拟电路实验的设计

4模拟电路实验系统仿真设计

模拟电路是指处理模拟信号的电子电路,其中模拟信号是指时间跟幅度都连续的信号(连续的含义是在某一取值范围内可以取无穷多个数值)。模拟信号中当图像信息和声音信息发生改变时,信号的波形也会改变,即模拟信号待传播的信息包含在波形之中(信息变化规律直接反映在模拟信号的幅度、频率、相位的变化上)。本设计中将通过对信号发生器及积分微分器的设计来实现对模拟电路实验的仿真。

4.1虚拟仪器VI的设计

(1)在虚拟仪器前面板设置窗口控件,并创建“流程图”中的端口。首先在前面板开发窗口使用工具模块中的相应工具,从控制面板中取出和放置好所需要的软件,进行控件属性参数设置,标贴文字说明标签。前面板是模仿实际仪器的面板,通过鼠标和键盘为控制对象输入数据,然后在计算机屏幕上显示结果。

(2)编写试验系统的流程图,虚拟仪器从流程图中接受命令。在流程图编辑窗口,放置节点、图框,并创建前面板控件,在流程图编辑窗口使用工具模板中相应工具,从Functions模板中取用并放置好所需要的图标,它们是流程图中的“节点”、“图框”。

(3)数据流编辑,是使用连接工具按数据流的方向将端口、节点、图框相连,实现数据从源头按规定的运行方式达到目的终点。

(4)运行检验,有两种检验方法,即仿真检验和实测检验。

(5)数据观察。当检验观察中发现错误时,用鼠标点击“Highlight Execution"按钮,观察数据流中各个节点的数值。

(6)命令存盘,保存设计好的虚拟仪器VI。

4.2信号发生器的实现

信号发生器是指产生所需参数的电测信号的仪器。按信号波形可分为正弦信号、函数信号、脉冲信号和随机信号等四大类。信号发生器又称为信号源或者振荡器,在生产实践和科技领域中有着广泛的应用。各种波形曲线均可以用三角函数方程式来表示。能够产生多种波形,如三角波、锯齿波、矩形波、正弦波的电

榆林学院本科毕业设计(论文)

路被称为函数信号发生器。

4.2.1基本信号发生器的实现

基本信号发生器是用来产生各种常用的信号波形,包括正弦信号、余弦信号、方波信号、三角波信号、锯齿波信号等。用到的函数是Basic Function Generator 函数,其中用输入控件来控制信号的类型、频率、幅值和相位等参数,用图表显示信号波形。基本信号发生器的前面板及流程图如图4-1,4-2所示。

图4-1 基本信号发生器前面板图

基于LabVIEW技术的模拟电路实验的设计

图4-2 基本信号发生器流程图

4.2.2模拟信号发生器的实现

模拟信号发生器用函数Simulate Signal来实现,将信号的幅值、频率、相位等参数放在一个簇来完成,模拟信号波形用Waveform Graph来显示,通过改变信号的参数可以得到不同的波形。模拟信号发生器的前面板和流程图如图4-3,4-4所示。

图4-3 模拟信号发生器前面板图

榆林学院本科毕业设计(论文)

图4-4 模拟信号发生器流程图

4.3积分微分器的设计

(1)仪器面板图采用Waveform Graph来显示信号积分微分前后的波形,信号类型可以选择波形的类型(如正弦波、方波、三角波或锯齿波),可以通过前面板上的按钮(幅值、频率、相位和偏移量)来设定仿真信号的一些参数[9]。

(2)仿真信号的生成采用LabVIEW中设计的典型信号生成模块。将仿真信号生成和函数处理经过必要的连接放入一个Whlie循环结构中就构成了积分微分器流程图。

4.3.1积分微分器流程设计

积分微分器的流程图如图4-5所示。

基于LabVIEW 技术的模拟电路实验的设计

图4-5 积分微分器流程图

程序运行过程如图4-6所示:

图4-6 程序运行过程图 参数设置

开始

波形参数设定

信号在波形图中的显示 是否重置

波形继续扫描 返回

Y

N 波形的选择(正弦波、方波、三角波等) 程序运行 设置参数(延时、幅值、频率、相位、偏移量)

信号重置 观察经过积分微分前后波形

积分微分处理环节 选择信号的类型 进入信号积分微分

榆林学院本科毕业设计(论文)

主要对输入波形的类型还有参数进行设置,如正弦波、方波、三角波、锯齿波等设置,还有进行参数的设置,如频率、振幅、偏移量、延时、相位进行设置。参数设置如图4-7和表4-1所示。

图4-7 参数设置图

表4-1 信号参数

参数说明

信号类型模拟信号的类型,如正弦波、方波等相位(Phase)指定信号的初始相位,单位为度

偏移量(Offset)信号的直流偏移量

频率(Frequency)波在单位时间完成周期性变化的次数

幅值(Amplitude)单位周期出现的最大值,或者叫峰值重置信号重新对输入信号进行设置

4.3.2积分微分器前面板的实现

前面板就是用户用来跟程序交互的一个工具。当运行VI时,打开前面板,然后向执行程序输入数据。前面板用于设置输入数值和观察输出值,可以通过运用前面板上的按钮等来实现各种所需的操作,利用LabVIEW中的控制模块可以完成对信号的选择和各种参数的设定。如频率、幅值、相位、偏移量等。如果经过处理后的信号不与理论效果相符,还可以通过重置按钮重新设定参数等,虚拟积分微分器的前面板如图4-8所示。

基于LabVIEW技术的模拟电路实验的设计

图4-8 前面板图

由上图可知,前面板由三个波形图构成,上边的是积分微分前的波形图,下边的是经过积分微分的波形图。左边的是对波形参数设置的按钮。如果经过积分微分处理后的波形图与理论不符合,可以通过信号重置按钮重新都参数进行设定。

4.3.3积分微分器流程图设计

最后,生成仿真信号、选择和函数处理,再连线后加入一个While循环结构设置一个延时器,就完成了积分微分器的基本流程了。积分微分器程序框图如图4-9,4-10所示。

图4-9 正弦波/方波程序图

模拟电子电路仿真和实测实验方案的设计实验报告111-副本

课程专题实验报告 (1) 课程名称:模拟电子技术基础 小组成员:涛,敏 学号:0,0 学院:信息工程学院 班级:电子12-1班 指导教师:房建东 成绩: 2014年5月25日

工业大学信息工程学院课程专题设计任务书(1)课程名称:模拟电子技术专业班级:电子12-1 指导教师(签名): 学生/学号:涛 0敏0

实验观察R B 、R C 等参数变化对晶体管共射放大电路放大倍数的影响 一、实验目的 1. 学会放大器静态工作点的调式方法和测量方法。 2.掌握放大器电压放大倍数的测试方法及R B 、R C 等参数对放大倍数的影响。 3. 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。 三、实验设备 1、 信号发生器 2、 双踪示波器 SS —7802 3、 交流毫伏表 V76 4、 模拟电路实验箱 TPE —A4 5、 万用表 VC9205 四、实验容 1.测量静态工作点 实验电路如图1所示,它的静态工作点估算方法为: U B ≈ 2 11B B CC B R R U R +? I E =E BE B R U U -≈Ic U CE = U CC -I C (R C +R E )

图1 晶体管放大电路实验电路图 实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。 根据实验结果可用:I C ≈I E = E E R U 或I C = C C CC R U U U BE =U B -U E U CE =U C -U E 计算出放大器的静态工作点。 五.晶体管共射放大电路Multisim仿真 在Multisim中构建单管共射放大电路如图1(a)所示,电路中晶体管采用FMMT5179 (1)测量静态工作点 可在仿真电路中接入虚拟数字万用表,分别设置为直流电流表或直流电压 表,以便测量I BQ 、I CQ 和U CEQ ,如图所示。

模拟电路课程设计心得体会

模拟电路课程设计心得 体会 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

精选范文:《模拟电路》课程设计心得体会(共2篇)本学期我们开设了《模拟电路》与《数字电路》课,这两门学科都属于电子电路范畴,与我们的专业也都有联系,且都是理论方面的指示。正所谓“纸上谈兵终觉浅,觉知此事要躬行。”学习任何知识,仅从理论上去求知,而不去实践、探索是不够的,所以在本学期暨模电、数电刚学完之际,紧接着来一次电子电路课程设计是很及时、很必要的。这样不仅能加深我们对电子电路的任职,而且还及时、真正的做到了学以致用。这两周的课程设计,先不说其他,就天气而言,确实很艰苦。受副热带高气压影响,江南大部这两周都被高温笼罩着。人在高温下的反应是很迟钝的,简言之,就是很难静坐下来动脑子做事。天气本身炎热,加之机房里又没有电扇、空调,故在上机仿真时,真是艰熬,坐下来才一会会,就全身湿透,但是炎炎烈日挡不住我们求知、探索的欲望。通过我们不懈的努力与切实追求,终于做完了课程设计。在这次课程设计过程中,我也遇到了很多问题。比如在三角波、方波转换成正弦波时,我就弄了很长时间,先是远离不清晰,这直接导致了我无法很顺利地连接电路,然后翻阅了大量书籍,查资料,终于在书中查到了有关章节,并参考,并设计出了三角波、方波转换成正弦波的电路图。但在设计数字频率计时就不是那么一帆风顺了。我同样是查阅资料,虽找到了原理框图,但电路图却始终设计不出来,最后实在没办法,只能用数字是中来代替。在此,我深表遗憾!这次课程设计让我学到了很多,不仅是巩固了先前学的模电、数电的理论知识,而且也培养了我的动手能力,更令我的创造性思维得到拓展。希望今后类似这样课程设计、类似这样的锻炼机会能更多些!

labview课程设计模拟计算器(选择结构)

河北工程大学 《虚拟仪器设计》课程设计报告 课题:计算器模拟 姓名:张振兴 学号: 090030301 班级:测控三班 完成日期:2012 年 6月19日

目录 一、设计思路 (2) 二、实现过程 (2) 1、面板键入感应 (2) 2、运算变量的初始化 (2) 3、无操作时的默认输出 (3) 4、数字的键入1-9的输入 (3) 5、数字0的输入 (4) 6、小数点的键入 (5) 7、结果去零操作 (5) 8、“+/-”键的设计 (7) 9、“+、-、*、/”四则运算 (7) 10、等号键 (8) 11、开方运算 (9) 12、取倒数倒数运算 (9) 13、退格键CE的设计 (10) 14、清零键C (11) 15、停止键OFF (12) 三、整体程序 (12) 四、前面板的设计排版 (12) 五、while循环中寄存器能 (13) 六、此计算器可以实现的功能 (13)

一、设计思路 完成标准型计算器的一般功能。 输入第一个数,进行存储并显示输入运算的类型并存储输入第二个数,存储并显示按“=”或则按其它运算符号“+、-、*、/”进行连续的运算,最后显示运算结果。 二、具体的实现过程 1、面板键入感应 首先建立一个簇,然后在簇中建立22个布尔量,其中包括0--9十个数字键,1个小数 点键,4个“+、-、*、/”运算键,1个等号键,1个开方键,1个符号转换键,1个倒数键,1个清零键,1个退格键,1个退出键。如下图所示: 然后通过将簇中元素按产生的顺序组成一个一维数组,这样就实现了每个键与数字(1--22) 之间的对应。每次按下一个键时,通过查找出对应的键并把其后对应的数字连接到一个case 结构,然后执行对应case结构中的程序,至此就完成了对一个键的感应过程。如下图所示: 2、运算变量的初始化 在运行程序之前,首先对需要用到的变量进行初始化,如图所示

虚拟仪器LabVIEW实验报告

现代仪器设计LabVIEW实验报告 实验内容: 1.熟悉LabView软件操作方法 2.了解LabView的一般编程方法 3.虚拟信号发生器制作

1.熟悉LabView软件操作方法 虚拟仪器(virtual instrumention)是基于计算机的仪器。虚拟仪器主要是将仪器装入计算机。以通用的计算机硬件及操作系统为依托,实现各种仪器功能。虚拟仪器的研究中涉及的基理论主要有计算机数据采集和数字信号处理。目前在这一领域内,使用较为广泛的计算机语言是美国NI公司的LabVIEW。 LabVIEW(Laboratory Virtual instrument Engineering)是一种图形化的编程语言,它广泛地被工业界、学术界和研究实验室所接受,视为一个标准的数据采集和仪器控制软件。利用它可以方便地建立自己的虚拟仪器,其图形化的界面使得编程及使用过程基本上不写程序代码,取而代之的是流程图。 前面板的设计需用控制模板。控制模板(Control Palette)用来给前面板设置各种所需的输出显示对象和输入控制对象。每个图标代表一类子模板。可以在前面板的空白处,点击鼠标右键,以弹出控制模板。 程序框图的设计需用功能模板。功能模板(Functions Palette)是创建流程图程序的工具,只有打开了流程图程序窗口,才能出现功能模板。功能模板该模板上的每一个顶层图标都表示一个子模板。可以点击“窗口”—“显示程序框图”打开,也可以在流程图程序窗口的空白处点击鼠标右键以弹出功能模板。

流程图上的每一个对象都带有自己的连线端子,连线将构成对象之间的数据通道。不是几何意义上的连线,因此并非任意两个端子间都可连线,连线类似于普通程序中的赋值。数据单向流动,从源端口向一个或多个目的端口流动。不同 的线型代表不同的数据类型。下面是一些常用数据类型所对应的线型和颜色:

模拟电路自主设计实验

姓名_____________________班级_____________________学号_____________________ 日期_____________节次______________成绩__________教师签字__________________ 哈尔滨工业大学模拟电路自主设计实验 实验名称:运算放大器在限幅电路中的应用 一、实验目的 1、深入了解运算放大器的放大作用和深度负反馈; 2、灵活运用运算放大器的多种应用; 二、总体技术路线 2.1 当输入信号电压进入某一范围内,其输出信号的电压不再跟随输入信号电压的变化。 串联限幅电路:当输入电压U i <0或U i为数值较小的正电压时,D1截止,运算放大器的输出电压U0=0;仅当输入电压U i>0且U i为数值大于或等于某一个的正电压U th时,D1才正偏导通,电路有输出,且U0跟随输入信号U i变化。 并联限幅电路:当输入信号U i较小时,输出电压U0也较小,D1和D2没有击穿,U0跟随输入信号U i变化而变化,传输系数为:A uf=-R1 /R2;当U i幅值增大,使U0的幅值增大,并使D1和D2击穿,输出U0的幅度保持+(U z+U D)值不变,电路进入限幅工作状态。 2.2绝对值电路 当输入电压U i>0,则运算放大器的输出电压U1,D1导通,D2截止,输出电压U0 =0;当输入电压U i <0,则运算放大器的输出电压U1 >0,D2导通,D1截止,输出电压U0 =-R1 U i/R2。并通过反向放大器将整流信号放大两倍,再增加一个同相加法器,让输入信号的另一极性电

压不经整流,而直接送到加法器,与来自整流电路的输出电压相加,便构成了绝对值电路。 三、实验电路图 1、串联限幅电路: 2、并联限幅电路:

模拟电路_Multisim软件仿真教程

第13章Multisim模拟电路仿真本章Multisim10电路仿真软件, 本章节讲解使用Multisim进行模拟电路仿真的基本方法。 目录 1. Multisim软件入门 2. 二极管电路 3. 基本放大电路 4. 差分放大电路 5. 负反馈放大电路 6. 集成运放信号运算和处理电路 7. 互补对称(OCL)功率放大电路 8. 信号产生和转换电路 9. 可调式三端集成直流稳压电源电路 13.1 Multisim用户界面及基本操作 13.1.1 Multisim用户界面 在众多的EDA仿真软件中,Multisim软件界面友好、功能强大、易学易用,受到电类设计开发人员的青睐。Multisim用软件方法虚拟电子元器件及仪器仪表,将元器件和仪器集合为一体,是原理图设计、电路测试的虚拟仿真软件。 Multisim来源于加拿大图像交互技术公司(Interactive Image Technologies,简称IIT公司)推出的以Windows为基础的仿真工具,原名EWB。 IIT公司于1988年推出一个用于电子电路仿真和设计的EDA工具软件Electronics Work Bench(电子工作台,简称EWB),以界面形象直观、操作方便、分析功能强大、易学易用而得到迅速推广使用。 1996年IIT推出了EWB5.0版本,在EWB5.x版本之后,从EWB6.0版本开始,IIT对EWB进行了较大变动,名称改为Multisim(多功能仿真软件)。 IIT后被美国国家仪器(NI,National Instruments)公司收购,软件更名为NI Multisim,Multisim经历了多个版本的升级,已经有Multisim2001、Multisim7、Multisim8、Multisim9 、Multisim10等版本,9版本之后增加了单片机和LabVIEW虚拟仪器的仿真和应用。 下面以Multisim10为例介绍其基本操作。图13.1-1是Multisim10的用户界面,包括菜单栏、标准工具栏、主工具栏、虚拟仪器工具栏、元器件工具栏、仿真按钮、状态栏、电路图编辑区等组成部分。

模拟电路课程设计题目

电子技术(模拟电路部分)课程设计题目 一、课程设计要求 1、一个题目允许两个人选择,共同完成电子作品,但课程设计报告必须各自独立完成。 2、课程设计报告按给定的要求完成,要上交电子文档和打印文稿(A4)。 3、设计好的电子作品必须仿真,仿真通过后,经指导老师检查通过后再进行制作。 4、电子作品检查时间:2010年3月4日,检查通过作品需上交。 4、课程设计报告上交时间:2010年5月20日前。 二、课程设计题目 方向一、波形发生器设计 题目1:设计制作一个产生方波-三角波-正弦波函数转换器。 设计任务和要求 ①输出波形频率范围为0.02Hz~20kHz且连续可调; ②正弦波幅值为±2V,; ③方波幅值为2V; ④三角波峰-峰值为2V,占空比可调; ⑤设计电路所需的直流电源可用实验室电源。 题目2:设计制作一个产生正弦波-方波-三角波函数转换器。 设计任务和要求 ①输出波形频率范围为0.02Hz~20kHz且连续可调; ②正弦波幅值为±2V,; ③方波幅值为2V; ④三角波峰-峰值为2V,占空比可调; ⑤设计电路所需的直流电源可用实验室电源。 题目3:设计制作一个产生正弦波-方波-锯齿波函数转换器。 设计任务和要求 ①输出波形频率范围为0.02Hz~20kHz且连续可调; ②正弦波幅值为±2V,; ③方波幅值为2V; ④锯齿波峰-峰值为2V,占空比可调;

⑤设计电路所需的直流电源可用实验室电源。 题目4:设计制作一个方波/三角波/正弦波/锯齿波函数发生器。 设计任务和要求 ①输出波形频率范围为0.02Hz~20kHz且连续可调; ②正弦波幅值为±2V; ③方波幅值为2V,占空比可调; ④三角波峰-峰值为2V; ⑤锯齿波峰-峰值为2V; ⑥设计电路所需的直流电源可用实验室电源。 方向二、集成直流稳压电源设计 题目1:设计制作一串联型连续可调直流稳压正电源电路。 设计任务和要求 ①输出直流电压1.5∽10V可调; ②输出电流I O m=300mA;(有电流扩展功能) ③稳压系数Sr≤0.05; ④具有过流保护功能。 题目2:设计制作一串联型连续可调直流稳压负电源电路。 设计任务和要求 ①输出直流电压1.5∽10V可调; ②输出电流I O m=300mA;(有电流扩展功能) ③稳压系数Sr≤0.05; ④具有过流保护功能。 题目3:设计制作一串联型二路输出直流稳压正电源电路。 设计任务和要求 ①一路输出直流电压12V;另一路输出5-12V连续可调直流稳压电源; ②输出电流I O m=200mA; ③稳压系数Sr≤0.05;

LabViEW课程设计

目录 一、课程设计目的 (2) 二、课程设计的原始数据和主要任务 (2) 三、课程设计的技术要求 (2) 四、实验原理图 (3) 五、实验步骤: (3) 六、软件流程 (4) 七、 Labview面板图: (5) 八、 Labview流程图: (5) 九、课程设计总结 (6) 十、参考文献 (6)

一、课程设计目的 课程设计是培养学生综合运用所学知识,发现,提出,分析和解决实际问题,锻炼实践能力的重要环节,是对学生实际工作能力的具体训练和考察过程。虚拟仪器技术就是利用高性能的模块化硬件,结合高效灵活的软件来完成各种测试,测量和自动化应用。灵活高效的软件能帮助您创建完全自己定义的用户界面,模块化的硬件能方便地提供全方位的系统集成,标注的软硬件平台能满足对同步和定时应用的需求。这些正是NI近30年来始终引领测试测量行业发展的原因所在。只有同时拥有高效的软件、模块化I/O硬件和用于集成的软硬件平台这三大组成部分,才能充分发挥虚拟仪器技术性能高、扩展性强、开发时间少,以及出色的集成这四大优势。 二、课程设计的原始数据和主要任务 1、掌握光敏电阻的工作原理; 2、掌握光强的测量和控制电路; 3、确定上位机监控系统的控制方案; 4、利用LabViEW软件编制上位机监控系统界面,实现光强的基本测量功能,实时显示光强的测量值; 5、对本次课程设计进行总结,撰写课程设计报告。 三、课程设计的技术要求 1、实现显示光强的测量值; 2、实现光强的测量值的多种方式显示; 3、要求系统操作简单,显示直观,使用方便,满足用户要求; 4、课程设计报告书写规范、文字通顺、图表清晰、数据完整、结论明确。

模拟电路实验报告.doc

模拟电路实验报告 实验题目:成绩:__________ 学生姓名:李发崇学号指导教师:陈志坚 学院名称:专业:年级: 实验时间:实验室: 一.实验目的: 1.熟悉电子器件和模拟电路试验箱; 2.掌握放大电路静态工作点的调试方法及其对放大电路性能的影 响; 3.学习测量放大电路Q点、A V、r i、r o的方法,了解公发射极电路特 性; 4.学习放大电路的动态性能。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 三、预习要求 1.三极管及单管放大电路工作原理: 2.放大电路的静态和动态测量方法:

四.实验内容和步骤 1.按图连接好电路: (1)用万用表判断试验箱上三极管的好坏,并注意检查电解电容 C1,C2的极性和好坏。 (2)按图连接好电路,将Rp的阻值调到最大位置。(注:接线前先 测量电源+12V,关掉电源后再连接) 2.静态测量与调试 按图接好线,调整Rp,使得Ve=1.8V,计算并填表 心得体会:

3.动态研究 (一)、按图连接好电路 (二)将信号发生器的输入信号调到f=1kHz,幅值为500mVp,接至放大电路A点。观察Vi和V o端的波形,并比较相位。 (三)信号源频率不变,逐渐加大信号源输出幅度,观察V o不失真时的最大值,并填表: 基本结论及心得: Q点至关重要,找到Q点是实验的关键, (四)、保持Vi=5mVp不变,放大器接入负载R L,在改变Rc,R L数值的情况下测量,并将计算结果填入表中:

实验总结和体会: 输出电阻和输出电阻影响放大效果,输入电阻越大,输出电阻越小,放大效果越好。 (1)、输出电阻的阻值会影响放大电路的放大效果,阻值越大,放大的倍数也越大。 (2)、连在三极管集电极的电阻越大,电压的放大倍数越大。 (五)、Vi=5mVp,增大和减小Rp,观察V o波形变化,将结果填入表中: 实验总结和心得体会: 信号失真的时候找到合适Rp是产生输出较好信号关键。 (1)Rp只有在适合的位置,才能很好的放大输入信号,如果Rp阻值太大,会使信号失真,如果Rp阻值太小,则会使输入信号不能被

怎样利用电路仿真软件进行模拟电路课程的学习

怎样利用电路仿真软件进行模拟电路课程的学习电路分析实验报告 实验二 学习用multisim软件对电路进行仿真 一.实验要求与目的 1.进一步熟悉multisim软件的各种功能。 2.巩固学习用multisim软件画电路图。 3.学会使用multisim里面的各种仪器分析模拟电路。 4.用multisim软件对电路进行仿真。 二、实验仪器 电脑一台及其仿真软件。 三.实验内容及步骤

(1)在电子仿真软件Multisim 基本界面的电子平台上组建如图所示的仿真电路。双击电位器图标,将弹出的对话框的“Valve”选项卡的“Increment”栏改成“1”,将“Label”选项卡的“RefDes”栏改成“RP。 ” 2)调节RP大约在35%左右时,利用直流工作点分析方法分析直 流工作点的值。直流工作点分析(DC Operating Point Analysis)是用来分析和计算电路静态工作点的,进行分析时,Multisim 自动将电路分析条件设为电感、交流电压源短路,电容断开。 单击Multisim 菜单“Simulate/Analyses/DC operating Point…”,在弹出的对话框中选择待分析的电路节点,如2图所示。单击Simulate 按钮进行直流工作点分析。分析结果如图3所示。列出了

单级阻容耦合放大电路各节点对地电压数据,根据各节点对地电压数据,可容易计算出直流工作点的值,依据分析结果,将测试结果填入表1中,比较理论估算与仿真分析结果。 表1 静态工作点数据 电压放大倍数测试 (1)关闭仿真开关,从电子仿真软件Multisim 10基本界面虚拟仪器工具条中,调出虚拟函数信号发生器和虚拟双踪示波器,将虚拟函数信号发生器接到电路输入端,将虚拟示波器两个通道分别接到电路的输入端和输出端,如图4所示。 (2)开启仿真开关,双击虚拟函数信号发生器图标“XFG1”,将打开虚拟函数信号发生器放大面板,首确认“Waveforms”栏下选取的是正弦信号,然后再确认频率为1kHZ”;再确认幅度为 10mVp,如图5所示。 四.仿真分析 动态测量仿真电路

实验一-LabVIEW中的信号分析与处理

实验一 LabVIEW中的信号分析与处理 一、实验目的: 1、熟悉各类频谱分析VI的操作方法; 2、熟悉数字滤波器的使用方法; 3、熟悉谐波失真分析VI的使用方法。 二、实验原理: 1、信号的频谱分析是指用独立的频率分量来表示信号;将时域信号变换到频域,以显示在时域无法观察到的信号特征,主要是信号的频率成分以及各频率成分幅值和相位的大小,LabVIEW中的信号都是数字信号,对其进行频谱分析主要使用快速傅立叶变换(FFT)算法:·“FFT Spectrum(Mag-Phase).vi”主要用于分析波形信号的幅频特性和相频特性,其输出为单边幅频图和相频图。 ·“FFT.vi”以一维数组的形式返回时间信号的快速傅里叶运算结果,其输出为双边频谱图,在使用时注意设置FFT Size为2的幂。 ·“Amplitude and Phase Spectrum .vi”也输出单边频谱,主要用于对一维数组进行频谱分析,需要注意的是,需要设置其dt(输入信号的采样周期)端口的数据。 2、数字滤波器的作用是对信号进行滤波,只允许特定频率成份的信号通过。滤波器的主要类型分为低通、高通、带通、带阻等,在使用LabVIEW中的数字滤波器时,需要正确设置滤波器的截止频率(注意区分模拟频率和数字频率)和阶数。 3、“Harmonic Distortion Analyzer .vi”用于分析输入的波形数据的谐波失真度(THD),该vi还可分析出被测波形的基波频率和各阶次谐波的电平值。 三、实验容: (1) 时域信号的频谱分析 设计一个VI,使用4个Sine Waveform.vi(正弦波形)生成频率分别为10Hz、30Hz、50Hz、100Hz,幅值分别为1V、2V、3V、4V的4个正弦信号(采样频率都设置为1kHz,采样点数都设置为1000点),将这4个正弦信号相加并观察其时域波形,然后使用FFT Spectrum(Mag-Phase).vi对这4个正弦信号相加得出的信号进行FFT频谱分析,观察其幅频和相频图,并截图保存。

北航电子电路设计训练模拟分实验报告

北航电子电路设计训练模拟部分实验报告

————————————————————————————————作者:————————————————————————————————日期:

电子电路设计训练模拟部分实验 实验报告

实验一:共射放大器分析与设计 1.目的: (1)进一步了解Multisim的各项功能,熟练掌握其使用方法,为后续课程打好基础。 (2)通过使用Multisim来仿真电路,测试如图1所示的单管共射放大电路的静态工作点、电压放大倍数、输入电阻和输出电阻,并观察 静态工作点的变化对输出波形的影响。 (3)加深对放大电路工作原理的理解和参数变化对输出波形的影响。 (4)观察失真现象,了解其产生的原因。 图 1 实验一电路图 2.步骤: (1)请对该电路进行直流工作点分析,进而判断管子的工作状态。 (2)请利用软件提供的各种测量仪表测出该电路的输入电阻。 (3)请利用软件提供的各种测量仪表测出该电路的输出电阻。 (4)请利用软件提供的各种测量仪表测出该电路的幅频、相频特性曲线。 (5)请利用交流分析功能给出该电路的幅频、相频特性曲线。 (6)请分别在30Hz、1KHz、100KHz、4MHz和100MHz这5个频点利用示波器测出输入和输出的关系,并仔细观察放大倍数和相位差。 (提示:在上述实验步骤中,建议使用普通的2N2222A三极管,并请注 意信号源幅度和频率的选取,否则将得不到正确的结果。) 3.实验结果及分析: (1)根据直流工作点分析的结果,说明该电路的工作状态。 由simulate->analyses->DC operating point,可测得该电路的静态工作点为:

Matlab第五章 Simulink模拟电路仿真

第五章Simulink模拟电路仿真 武汉大学物理科学与技术学院微电子系常胜

§5.1 电路仿真概要 5.1.1 MATLAB仿真V.S. Simulink仿真 利用MATLAB编写M文件和利用Simulink搭建仿真模型均可实现对电路的仿真,在实现电路仿真的过程中和仿真结果输出中,它们分别具有各自的优缺点。 武汉大学物理科学与技术学院微电子系常胜

ex5_1.m clear; V=40;R=5;Ra=25;Rb=100;Rc=125;Rd=40;Re=37.5; R1=(Rb*Rc)/(Ra+Rb+Rc); R2=(Rc*Ra)/(Ra+Rb+Rc); R3=(Ra*Rb)/(Ra+Rb+Rc); Req=R+R1+1/(1/(R2+Re)+1/(R3+Rd)); I=V/Req 武汉大学物理科学与技术学院微电子系常胜

ex5_1 武汉大学物理科学与技术学院微电子系常胜

武汉大学物理科学与技术学院微电子系常胜

注意Simulink仿真中imeasurement模块 /vmeasurement模块和Display模块/Scope模块的联合使用 Series RLC Branch模块中R、C、L的确定方式 R:Resistance设置为真实值Capacitance设置为inf(无穷大)Inductance设置为0 C:Resistance设置为0 Capacitance设置为真实值Inductance设置为0 L:Resistance设置为0Capacitance设置为inf Inductance设置为真实值 武汉大学物理科学与技术学院微电子系常胜

模拟电子课程设计仿真

1、集成运放的应用电路 (1)参考电路图如下: (2)应用仿真库元件,3D元件分别进行仿真,熟悉示波器的使用2、电流/电压(I/V)转换器的制作与调试 (1)参考电路图如下:

(2)要求将0~10毫安电流信号转换成0~10伏电压信号。(3)分析电路的工作过程,完成制作与调试。 (4)填写下表,分析结果。 3、电压/电流(V/I)转换器的制作与调试(1)参考电路图如下: (2)要求将0~10伏电压信号转换成0~10毫安电流信号。(3)分析电路的工作过程,完成制作与调试。 (4)填写下表,分析结果。

4、电子抢答器制作 (1)参考电路图如下: (2)电路的工作原理: 本电路使用一块时基电路NE555,其高电平触发端6脚和低电平触发端2脚相连,构成施密特触发器,当加在2脚和6脚上的电压超2/3V CC时,3脚输出低电平,当加在2脚和6脚上的电压低于1/3V CC时,3脚输出高电平。按下开关SW,施密特触发器得电,因单向可控硅SCR1~SCR4的控制端无触发脉冲,SCR1~SCR4关断,2脚和6脚通过R1接地而变为低电平,所以3脚输出高电平,绿色发光二极管LED5发光,此时抢答器处于等待状态。 K1~K4为抢答键,假如K1最先被按下,则3脚的高电平通过K1作用于可控硅SCR1的控制端,SCR1导通。红色发光二极管LED1发光,+9V电源通过LED1和SCR1作用于NE555的2脚和6脚,施密特触发器翻转,3脚输出低电平,LED5熄灭。因3脚输出为低电平,所以此后按下K2~K4时,SCR2~SCR4不能获得触发脉冲,SCR2~SCR4维持关断状态,LED2~LED4不亮,LED1独亮说明按K1键者抢先成功,此后主持人将开关SW起落一次。复位可控硅,LED1熄灭,LED5亮,抢答器又处于等待状态。 220V市电经变压器降压,VD1~VD4整流,C滤波,为抢答器提供+9V直流电压。VD1~VD4选IN4001,C选用220μF/15V。R1和R2选1KΩ,LED1~LED4选红色发光二极管,LED5选绿色发光二极管。SW为拨动开关,K1~K4为轻触发开关,单向可控硅选2P4M,IC 为NE555。 (3)完成电路的制作与调试。 5、交替闪光器的制作与调试 (1)参考电路图如下:

labview课程设计论文

《虚拟仪器技术》课程设计 课题:十字路口交通灯 学院:电气工程学院 专业: 学号: 姓名: 指导老师

目录 1 课程设计目的及任务 (1) 1.1 课程设计的目的 (1) 1.2 课程设计的任务 (1) 1.3 课程设计的要求及技术指标 (1) 2 总方案的确定并画出原理图 (2) 3 各基本单元原理及设计 (2) 3.1倒计时子VI (2) 3.2.属性节点 (3) 3.3.逻辑控制单元 (3) 3.4 计时单元 (3) 4 外面版设计及整体电路图 (4) 4.1 外面板 (4) 4.2 程序图 (5) 5电路安装调试 (6) 6 体会 (7) 7 参考文献 (8)

1 课程设计的目的及任务 1.1课程设计的目的 (1)掌握labview软件的编程方法; (2)初步了解软硬件结合的仪器设计方法; (3)培养综合应用所学知识来指导实践的能力; 1.2 课程设计的任务 交通和我们的生活息息相关。平时我们过马路时看到十字路或着其他更复杂的路口有各种各样的交通灯,这对合理安排车辆行驶和行人提供了很大方便。设计十字路口交通灯,基本实现车辆有秩序行驶的功能。 1.3 课程设计的要求和技术指标 (1)设计准确的时间来控制红、绿、黄三个灯的两灭;(2)增加带指导信号的路标实现人性化交通; (3)温度时间提示功能; 2总方案的确定并画出原理框图 本实验主要是对十字路口交通进行合理安排和指挥。我的设想是这样的:首先1号路亮绿灯,其他2、3、4路都亮红灯。一号路此时可实现直行,左转和右转。当2、4亮绿灯时,1、3路亮红灯,可实现直行和右转。因为中间有个转盘所以这样都可实现去不同的方向行驶。最后3号路绿灯亮其作用同1号路线。原理框图如下:

LabView实验报告

机电系统创新性综合实验 实验报告 学院:机械工程学院 专业:机械设计制造及其自动化班级:机自 124 班 学号: 1208030436 学生姓名:王彤 指导教师:蔡家斌、曹阳 2015年12月12

目录 实验题目: LabView创新实验 (1) 实验一1.1实验内容 (1) 1.2实验过程 (1) 1.3实验小结 (3) 1.4实验总结与感想 (5) 实验二2.1实验内容. (5) 2.2 实验过程 (5) 2.3实验小结 (7) 2.4实验总结与感想 (8) 实验三3.1实验内容 (8) 3.2实验过程 (8) 3.3实验小结 (10) 3.4实验总结与感想 (11)

实验题目 本次LabView实验共有6个实验题目,有两个选择方案,我选择了第一种方案:在六个实验中选择了三个,分别是实验一、二、三。通过自学和同学间的互相帮助,我学会了LabView软件的使用,完成了本次实验。 实验一虚拟信号发生器的设计 1.1实验内容 设计一个虚拟信号发生器,能够产生正弦波、三角波、锯齿波、直流、随机白噪声等信号〔波型选择用按键或旋钮〕,且可以调整波形参数。通过示波器可以观察虚拟信号发生器的输出信号。可以通过前面板选择信号波形,调节信号的频率、幅值和相位〔频率、幅值、相位用数字窗口显示〕,并通过虚拟示波器观察生成的波形。 1.2实验过程 1.新建一个VI,在后面板上创建一个选择结构; 2.在选择器标签中选择一个设置为默认,并在后面添加4个分支,以便写入多种不同的程序; 3.在选择结构中建立一个仿真信号,属性设置-信号类型-正弦波-确定;

4.在仿真信号中的对应位置创建输入控件,输出处创建波形图,分别连接在仿真信号的相应位置。 5. 6.其他几种波形信号按照相同方式创建在不同的选择标签中,并在选择结构外部建立一个While循环,可以让程序连续执行。

完整版模拟电子电路实验报告

. 实验一晶体管共射极单管放大器 一、实验目的 1、学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2、掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 3、熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R 和R组成的分压电路,并在发射极中接有电阻R,以稳定放大器的静态工EB1B2作点。当在放大器的输入端加入输入信号u后,在放大器的输出端便可得到一i个与u相位相反,幅值被放大了的输出信号u,从而实现了电压放大。0i 图2-1 共射极单管放大器实验电路 在图2-1电路中,当流过偏置电阻R和R 的电流远大于晶体管T 的 B2B1基极电流I时(一般5~10倍),则它的静态工作点可用下式估算B教育资料.. R B1U?U CCB R?R B2B1 U?U BEB I??I EC R E

)R+R=UU-I(ECCCCEC电压放大倍数 RR // LCβA??V r be输入电阻 r R/// R=R/beiB1 B2 输出电阻 R R≈CO由于电子器件性能的分散性比较大,因此在设计和制作晶 体管放大电路时, 为电路设计提供必离不开测量和调试技术。在设计前应测量所用元器件的参数,还必须测量和调试放大器的静态工作点和各要的依据,在完成设计和装配以后,因此,一个优质放大器,必定是理论设计与实验调整相结合的产物。项性能指标。除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。消除干扰放大器静态工作点的测量与调试,放大器的测量和调试一般包括:与自激振荡及放大器各项动态参数的测量与调试等。、放大器静态工作点的测量 与调试 1 静态工作点的测量1) 即将放大的情况下进行,=u 测量放大器的静态工作点,应在输入信号0 i教育资料. . 器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I以及各电极对地的电位U、U和U。一般实验中,为了避 ECCB免断开集电极,所以采用测量电压U或U,然后算出I的方法,例如,只要 测CEC出U,即可用E UU?U CECC??II?I,由U确定I(也可根据I),算出CCC CEC RR CE同时也能算出U=U-U,U=U-U。EBEECBCE为了减小误差,提高测量精度,应选用内阻较高的直流电压表。 2) 静态工作点的调试 放大器静态工作点的调试是指对管子集电极电流I(或U)的调整与测试。 CEC静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时u的负半周将被削底,O 如图2-2(a)所示;如工作点偏低则易产生截止失真,即u的正半周被缩顶(一 O般截止失真不如饱和失真明显),如图2-2(b)所示。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态调试,即在放大器的输入端 加入一定的输入电压u,检查输出电压u的大小和波形是否满足要求。如不满Oi

模拟电路课程设计..

模拟电子技术课程设计任务书 一、课程设计的任务 通过理论设计和实物制作解决相应的实际问题,巩固和运用在《模拟电子技术》中所学的理论知识和实验技能,掌握常用模拟电路的一般设计方法,提高设计能力和实践动手能力,为以后从事电子电路设计、研发电子产品打下良好的基础。 二、课程设计的基本要求 1、掌握电子电路分析和设计的基本方法。包括:根据设计任务和指标初选电路;调查研究和设计计算确定电路方案;选择元件、安装电路、调试改进;分析实验结果、写出设计总结报告。 2、培养一定的自学能力、独立分析问题的能力和解决问题的能力。包括:学会自己分析解决问题的方;对设计中遇到的问题,能通过独立思考、查询工具书和参考文献来寻找解决方案,掌握电路测试的一般规律;能通过观察、判断、实验、再判断的基本方法解决实验中出现的一般故障;能对实验结果独立地进行分析,进而做出恰当的评价。 3、掌握普通电子电路的生产流程及安装、布线、焊接等基本技能。 4、巩固常用电子仪器的正确使用方法,掌握常用电子器件的测试技能。 5、通过严格的科学训练和设计实践,逐步树立严肃认真、一丝不苟、实事求是的科学作风,并逐步建立正确的生产观、经济观和全局观。

三、课程设计任务 课题4 逻辑信号电平测试器的设计 (一)设计目的 1、学习逻辑信号电平测试器的设计方法; 2、掌握其各单元电路的设计与测试方法; 3、进一步熟悉电子线路系统的装调技术。 (二)设计要求和技术指标 在检修数字集成电路组成的设备时,经常需要使用万用表和示波器对电路中的故障部位的高低电平进行测量,以便分析故障原因。使用这些仪器能较准确地测出被测点信号电平的高低和被测信号的周期,但使用者必须一面用眼睛看着万用表的表盘或者示波器的屏幕,一面寻找测试点,因此使用起来很不方便。 本课题所设计的仪器采用声音来表示被测信号的逻辑状态,高电平和低电平分别用不同声调的声音来表示,使用者无须分神去看万用表的表盘或示波器的荧光屏。 1、技术指标: (1)测量范围:低电平<1V,高电平>3V; (2)用1.5KH Z的音响表示被测信号为高电平; (3)用500H Z的音响表示被测信号为低电平;

基于labVIEW的交通灯的课程设计

第1章程序的设计 1.1 前面板的设计 前面板是VI的用户界面。创建VI时,通常应先设计前面板,然后在前面板 上创建输入/输出任务。 本课程设计中前面板比较简单,只需要用六盏灯、两个时间显示器、一个停止按键即可。其中的六盏灯,红、黄、绿各两盏,在控件选板中选择指示灯,将它放在前面板合适的位置,单击鼠标右键,更改指示灯的属性,改变指示灯的大小,做出一个合适的指示灯,依同样的步骤可以做好另外五个,将六个灯均分为两组,每组都包含红黄绿三种颜色的灯,再用框将每组灯框起来,做成一个交通灯。在每组交通灯合适的位置放置一个数值显示控件作为交通灯的计时器。在前面板合适的位置放置一个开关按钮,控制循环的停止。这样交通灯系统的前面板 就做好了。面板设计如图1-1所示。 图1-1 交通灯前面板示意图 1.2 定时信号的产生

毫秒计时器在LabVIEW中的一个计时单元,它的图标与用途如图3-2所示。在函数选板的【编程】→【定时】子选板中选择时间计数器选定该单元。毫秒计数器对时间信号计数,要产生一个一秒为单位的时间信号,所以还得用毫秒计数值除以1000,取商得到以秒为单位的时间信号。接线如图1-3所示: 图1-2 时间计数器图1-3 时间计数器接线图 1.2时间信号的分段 将得到的时间信号除以每个循环所用的时间70s,取余数。得到的余数x的范围为0<=x<70,当0<=x<5时,条件满足,执行第一个条件结构里面的程序,北黄和东红灯点亮。当5<=x<35时,条件满足,执行第二个条件结构里的程序,北红和东绿灯点亮。当35<=x<40时,条件满足,东黄和北红灯点亮。当40<=x<70时,x<40的条件不满足,执行条件结构里面为假的程序,北绿和东红灯点亮。时间分段的程序结构如图1-4所示。 图1-4 时间分段程序 这里用到了判定范围并强制转换控件,应用这个控件可以判定输入的数是否在上限和下限之间。它的图标和作用如图1-5所示。如果输出信号在范围之内,“?”接口将产生一个信号,此信号恰可以输入到条件结构作为分支选择器信号。

电子科技大学 集成电路原理实验模拟集成电路版图设计与验证 王向展

实验报告 课程名称:集成电路原理 实验名称:模拟集成电路版图设计与验证小组成员: 实验地点:科技实验大楼606 实验时间:2017年6月19日 2017年6月19日 微电子与固体电子学院

一、实验名称:模拟集成电路版图设计与验证 二、实验学时:4 三、实验原理 1、电路设计与仿真 实验2内容,根据电路的指标和工作条件,然后通过模拟计算,决定电路中各器件的参数(包括电参数、几何参数等),EDA软件进行模拟仿真。 2、工艺设计 根据电路特点结合所给的工艺,再按电路中各器件的参数要求,确定满足这些参数的工艺参数、工艺流程和工艺条件。 3、版图设计 按电路设计和确定的工艺流程,把电路中有源器件、阻容元件及互连以一定的规则布置在Candence下的版图编辑器内。并优化版图结构。 四、实验目的 本实验是基于微电子技术应用背景和《集成电路原理》课程设置及其特点而设置,为IC设计性实验。其目的在于: 1、根据实验任务要求,综合运用课程所学知识自主完成相应的模拟集成电路版图设计,掌握基本的IC版图布局布线技巧。 2、学习并掌握国际流行的EDA仿真软件Cadence的使用方法,并进行版图的的设计与验证。 通过该实验,使学生掌握CMOS模拟IC版图设计的流程,加深对课程知识的感性认识,增强学生的设计与综合分析能力。 五、实验内容 1、UNIX操作系统常用命令的使用,Cadence EDA仿真环境的调用。

2、根据实验2所得参数,自主完成版图设计,并掌握布局布线的基本技巧。 3、整理版图生成文件,总结、撰写并提交实验报告。 六、实验仪器设备 (1)工作站或微机终端一台 (2)EDA仿真软件1套 七、实验步骤 1、根据实验指导书掌握Cadence EDA仿真环境的调用。熟悉版图编辑器Layout Editor的使用。了解基本的布局布线方法及元器件的画法。 2、根据实验2所计算验证的两级共源CMOS运放的元器件参数如表1所示,在版图设计器里画出相应的元器件,对V+、V-、V out、V DD、GND的压焊点位置合理化放置,通过金属画线将各个元器件按实验2的电路图合理连接,避免跳线。 表 1运放各器件版图参数

模拟电子课程设计课设传感器测量系统

模拟电子技术课程设计任务书 姓名:院(系):信息系 专业:班级: 课程设计题目:传感器测量系统的设计 课程设计要求:设计一个放大器系统,当电阻值变化±1%时,放大电路能够产生±6V的输出电压。要求偏差为0时输出为0,偏差为1%时输出为6V,偏差为-1%时输出为-1V,误差不超过±2%。 设计任务总述:对设计题目进行分析,根据设计的要求先确定基准电压源:为测量电桥提供一定精度要求的7.0V基准电压,然后修改电路,进行参数计算.,测量当电阻值变化±1%时,放大电路能够产生±6V的输出电压;要求偏差为0时输出为0,偏差为1%时输出为6V,偏差为-1%时输出为-6V,误差不超过±2%;最后电路仿真实验。 工作计划及安排: 熟悉课题要求,查找相关资料;甄选资料的相关内容,初步确定设计方案;寻找参考电路,修改电路,进行参数计算.调试(仿真),如不成功,返回第2步整理数据; 撰写课程设计报告。 成绩 指导教师签字___________________ 年月日

摘要: 设计一个放大器系统,当电阻值变化±2%时,放大电路能 够产生±8V 的输出电压。要求偏差为0时输出为0,偏差为2%时输出为8V ,偏差为-2%时输出为-8V ,误差不超过±5%。 一、电路结构及原理说明: 该电路由四部分组成:基准电压源电路、测量电桥电路、放大电路、电平转移电路。 电路框图如下所示: 1.基准电压源:为测量电桥提供一定精度要求的7.5V 基准电压,采用5.6V 稳压管与同相比例运算电路结合实现。 2.测量电桥电路:当电桥的所有阻值都相同时,输出电压为零。当有一电阻发生变化时将会有电压输出。此电路可以等效为传感器测量电路,测取的温度变化量并将其转化成电压变化。 3.放大电路: 放大电路用于将测温桥输出的微小电压变化(ΔV )放大,使其满足性能要求。放大电路采用两个同相电压跟随器(作为输入缓冲器)与两级放大器组成,其中第一级放大器为差动放大器,第二级放大器为可以方便调节的反相比例运算电路。 4.电平转移电路: 二、测量电路和参数计算 基准电压源 测量电桥 放大电路 电平转移电路

相关主题
文本预览
相关文档 最新文档