当前位置:文档之家› 2020年高二数学 专题训练7 数列

2020年高二数学 专题训练7 数列

2020年高二数学 专题训练7 数列
2020年高二数学 专题训练7 数列

专题训练7 数列基础过关

1. 在等比数列{a

n }中,a

1

=8,a

2

=64,则公比q为( )

A. 2

B. 3

C. 4

D. 8

2. 若等差数列{a

n }的前三项和S

3

=9,则a

2

等于( )

A. 3

B. 4

C. 5

D. 6

3. 数列-3,7,-11,15,…的通项公式可能是( )

A. a

n =4n-7 B. a

n

=()

-1

n

()

4n+1

C. a

n =()

-1

n

()

4n-1 D. a

n

=()

-1

n+1

()

4n-1

4. 在等差数列{a

n }中,a

1

=1,a

3

+a

5

=14,其前n项和S

n

=100,则n等于( )

A. 9

B. 10

C. 11

D. 12

5. 已知{a

n }是等差数列,a

10

=10,其前10项和S

10

=70,则其公差d=( )

A. -2

3

B. -

1

3

C.

1

3

D.

2

3

6. 已知数列{a

n }的前n项和S

n

=n2-9n,第k项满足5

k

<8,则k=( )

A. 9

B. 8

C. 7

D. 6

7. 在等比数列{a

n }(n∈N*)中,若a

1

=1,a

4

1

8

,则该数列的前10项和为( )

A. 2-1

28

B. 2-

1

29

C. 2-

1

210

D. 2-

1

211

8. 已知a,b,c,d成等比数列,且曲线y=x2-2x+3的顶点是(b,c),则ad等于( )

A. 3

B. 2

C. 1

D. -2

9. 设等差数列{a

n }的公差d不为0,a

1

=9d.若a

k

是a

1

与a

2k

的等比中项,则k=( )

A. 2

B. 4

C. 6

D. 8

10. 等差数列{a

n }的前n项和为S

n

,若S

2

=2,S

4

=10,则S

6

等于( )

A. 12

B. 18

C. 24

D. 42

11. 数列{a

n }的前n项和为S

n

,若a

n

1

n(n+1)

,则S

5

等于( )

A. 1

B. 5

6

C.

1

6

D.

1

30

12. 在等比数列{a

n }中,a

1

=1,a

10

=3,则a

2

a

3

a

4

a

5

a

6

a

7

a

8

a

9

=( )

A. 81

B. 275

27 C. 3 D. 243

13. 各项均为正数的等比数列{a

n }的前n项和为S

n

,若S

n

=2,S

3n

=14,则S

4n

=( )

A. 80

B. 30

C. 26

D. 16

14. 若数列{a

n }的通项公式为a

n

=2n+2n-1,则数列{a

n

}的前n项和为( )

A. 2n+n2-1

B. 2n+1+n2-1

C. 2n+1+n2-2

D. 2n+n2-2

15. 数列1,1+2,1+2+22,1+2+22+23,…,1+2+22+…+2n-1,…的前n项和S

n

>1020,那么n的最小值是( )

A. 7

B. 8

C. 9

D. 10

16. 已知数列的通项a

n =-5n+2,则其前n项和S

n

=________.

17. 已知等差数列{a

n }的前n项和为S

n

,若S

12

=21,则a

2

+a

5

+a

8

+a

11

=________.

18. 设{a

n }为公比q>1的等比数列,若a

2020

和a

2020

是方程4x2-8x+3=0的两根,则a

2020

+a

2020

=________.

19. 在等比数列{a

n }中,已知a

1

=2,a

4

=16.

(1)求数列{a

n

}的通项公式;

(2)若a

3,a

5

分别为等差数列{b

n

}的第3项和第5项,试求数列{b

n

}的通项公式及前n项的和S

n

.

20. 在数列{a

n }中,a

1

=2,a

n+1

=4a

n

-3n+1,n∈N*.

(1)求证:数列{}a n -n 是等比数列; (2)求数列{a n }的前n 项和S n . 冲刺A 级

21. 等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a m 2=0,S 2m -1=38,则m =( ) A. 38

B. 20

C. 10

D. 9

22. 已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n (n≥3),则当n≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1=( )

A. n(2n -1)

B. (n +1)2

C. n 2

D. (n -1)2

23. 已知数列{a n }对于任意p ,q ∈N *,有a p +a q =a p +q .若a 1=1

9,则a 36=________.

24. 将全体正整数排成一个三角形数阵: 1 2 3 4 5 6 7 8 9 10 ……

按照以上排列的规律,第n 行(n ≥3)从左向右的第3 个数为________. 25. 设数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n

3,n ∈N *.

(1)求数列{a n }的通项;

(2)设b n =n

a n ,求数列{}

b n 的前n 项和S n .

专题训练7 数列

基础过关

1. D

2. A

3. C

4. B

5. D

6. B

7. B

8. B

9. B 10. C 11. B 12. A

13. B [提示:由等比数列的性质可得()S 2n -22

=2()14-S 2n ,解得S 2n =6,∴S 4n -S 3n =16.] 14. C [提示:分组求和.]

15. D [提示:通项1+2+22+…+2n -1=1-2n 1-2=2n

-1,∴S n =2()1-2n

1-2

-n =2n +1-n -2.]

16. n ()

-1-5n 2

.

17. 7 [提示:a 2+a 11=a 5+a 8=a 1+a 12=7

2

.]

18. 18 [解析:方程4x 2-8x +3=0的两根为x 1=12,x 2=32.由q>1可得a 2020=12,a 2020=3

2,∴q =3,∴a 2020+a 2020

=()a 2011+a 2012·q 2=2×9=18.]

19. (1)设{a n }的公比为q ,由已知得16=2q 3,解得q =2. (2)由(1)得a 2=8,a 5=32,则b 3=8,b 5=32,设{b n }的公差为d ,则有???b 1+2d =8,b 1+4d =32,解得???b 1=-16,d =12,从而b n =-16+12(n -1)=12n -28,∴S n =

n (-16+12n -28)

2=6n 2-22n.

20. (1)由a n +1=4a n -3n +1可得a n +1-()n +1=4a n -3n +1-()n +1=4a n -4n =4()a n -n ,∴{}a n -n 是公比为4的等比数列. (2)由(1)可得a n -n =()a 1-1·4n -1

=4

n -1

,∴a n =4

n -1

+n ,∴S n =1-4n 1-4+n ()n +12=4n -1

3

n ()

n +12

. 冲刺A 级

21. C [解析:∵a m -1+a m +1=2a m ,∴a m =2(a m =0舍去),∴由S 2m -1=()2m -1a m =38可得2m -1=19,∴m =10.] 22. C [解析:∵a 5·a 2n -5=a n 2

,∴a n =2n

,∴原式=log 2()a n 2

n

=n 2.]

23. 4 [解析:由已知可得a n +a 1=a n +1,∴{}a n 是公差d =a 1=1

9

的等差数列,∴a 36=4.]

24. n 2-n +6

2 [解析: 由已知可得第n -1的最后一个数为()n -1()1+n -12=n ()n -12

,∴第n 行的从左向

右的第三个数为n ()n -12+3=n 2-n +6

2

.]

25. (1)a 1+3a 2+32

a 3+…+3n -1

a n =n 3,a 1+3a 2+32a 3+…+3n -2a n -1=n -13(n≥2),3n -1

a n =n 3-n -13=13

(n≥2). a n

=13n (n≥2).验证n =1时也满足上式,a n =1

3

n (n∈N *). (2) b n =n·3n ,S n =1·3+2·32+3·33+…+n·3n ,3S n

n =3+32+33+3n-n·3n+1-2S

n

3-3n+1

1-3

-n·3n+1,S

n

n

2

·3n+1-

1

4

·3n+1+

3

4

.

=1·32+2·33+3·34+…+n·3n+1-2S

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

高中数学数列练习题

数列经典解题思路 求通项公式 一、观察法 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,… (2) K ,1716 4,1093,542,211 (3) K ,52,2 1,32 ,1 解:(1)110-=n n a (2);122++=n n n a n (3);12 +=n a n 二、公式法 例1. 等差数列{}n a 是递减数列,且432a a a ??=48,432a a a ++=12,则数列的通项公式是 ( D ) (A) 122-=n a n (B) 42+=n a n (C) 122+-=n a n (D) 102+-=n a n 例2. 已知等比数列{}n a 的首项11=a , 公比10<

高中数学等差数列性质总结大全

等差数列的性质总结 1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式: *11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而m n a a d m n --= ; 3.等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2b a A += 或b a A +=2 . (2)等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4.等差数列的前n 项和公式: 1()2n n n a a S +=1(1)2n n na d -=+211()22 d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项 ()()()12121121212n n n n a a S n a +++++==+(项数为奇数的等差数列的各项和等于项数乘以中间项) 5.等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. ` (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . ⑶数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4)数列{}n a 是等差数列?2n S An Bn =+,(其中A 、B 是常数)。 6.等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. 7.提醒: (1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。 (2)设项技巧: : ①一般可设通项1(1)n a a n d =+- ②奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d ); ③偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(注意;公差为2d ) 8..等差数列的性质: (1)当公差0d ≠时, 等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ; 前n 和211(1)()222 n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0. (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。 ? (3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.

高考数学《数列》大题训练50题含答案解析

一.解答题(共30小题) 1.(2012?上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值; (2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k; (3)设,.当b1=1时,求数列{b n}的通项公式. 2.(2011?重庆)设{a n}是公比为正数的等比数列a1=2,a3=a2+4. (Ⅰ)求{a n}的通项公式; ( (Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n. 3.(2011?重庆)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*). (Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3. (Ⅱ)求证:对k≥3有0≤a k≤. 4.(2011?浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n 项和为S n,且,,成等比数列. (Ⅰ)求数列{a n}的通项公式及S n; ` (Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小. 5.(2011?上海)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,

(1)写出c1,c2,c3,c4; (2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…; (3)求数列{c n}的通项公式. 6.(2011?辽宁)已知等差数列{a n}满足a2=0,a6+a8=﹣10 * (I)求数列{a n}的通项公式; (II)求数列{}的前n项和. 7.(2011?江西)(1)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3,若数列{a n}唯一,求a的值; (2)是否存在两个等比数列{a n},{b n},使得b1﹣a1,b2﹣a2,b3﹣a3.b4﹣a4成公差不为0的等差数列若存在,求{a n},{b n}的通项公式;若不存在,说明理由. 8.(2011?湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5. (I)求数列{b n}的通项公式; ] (II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列. 9.(2011?广东)设b>0,数列{a n}满足a1=b,a n=(n≥2) (1)求数列{a n}的通项公式; (4)证明:对于一切正整数n,2a n≤b n+1+1.

高考文科数学数列经典大题训练(附答案)

1.(本题满分14分)设数列{}n a 的前n 项和为n S ,且34-=n n a S (1,2,)n =, (1)证明:数列{}n a 是等比数列; (2)若数列{}n b 满足1(1,2,)n n n b a b n +=+=,12b =,求数列{}n b 的通项公式. ; 2.(本小题满分12分) 等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== 1.求数列{}n a 的通项公式. 2.设 31323log log ......log ,n n b a a a =+++求数列1n b ?? ???? 的前项和. … 3.设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S 。

~ 4.已知等差数列{a n}的前3项和为6,前8项和为﹣4. (Ⅰ)求数列{a n}的通项公式; (Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n. % 5.已知数列{a n}满足,,n∈N×. (1)令b n=a n+1﹣a n,证明:{b n}是等比数列; (2)求{a n}的通项公式. {

、 ~

、 1.解:(1)证:因为34-=n n a S (1,2,)n =,则3411-=--n n a S (2,3,)n =, 所以当2n ≥时,1144n n n n n a S S a a --=-=-, 整理得14 3 n n a a -=. 5分 由34-=n n a S ,令1n =,得3411-=a a ,解得11=a . 所以{}n a 是首项为1,公比为4 3 的等比数列. 7分 (2)解:因为14 ()3 n n a -=, ' 由1(1,2,)n n n b a b n +=+=,得114 ()3 n n n b b -+-=. 9 分 由累加得)()()(1231`21--++-+-+=n n n b b b b b b b b

高二数学 等差数列的定义及性质 (3)

等差数列的定义及性质 ?等差数列的定义: 一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做公差,用符号语言表示为a n+1-a n=d。 ?等差数列的性质: (1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列; (2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和; (3)m,n∈N*,则a m=a n+(m-n)d; (4)若s,t,p,q∈N*,且s+t=p+q,则a s+a t=a p+a q,其中a s,a t,a p,a q 是数列中的项,特别地,当s+t=2p时,有a s+a t=2a p; (5)若数列{a n},{b n}均是等差数列,则数列{ma n+kb n}仍为等差数列,其中m,k均为常数。 (6) (7)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即 (8)仍为等差数列,公差为

?对等差数列定义的理解: ①如果一个数列不是从第2项起,而是从第3项或某一项起,每一项与它前一项 的差是同一个常数,那么此数列不是等差数列,但可以说从第2项或某项开始是等差数列. ②求公差d时,因为d是这个数列的后一项与前一项的差,故有 还有 ③公差d∈R,当d=0时,数列为常数列(也是等差数列);当d>0时,数列为 递增数列;当d<0时,数列为递减数列; ④是证明或判断一个数列是否为等差数列的依 据; ⑤证明一个数列是等差数列,只需证明a n+1-a n是一个与n无关的常数即可。 等差数列求解与证明的基本方法: (1)学会运用函数与方程思想解题; (2)抓住首项与公差是解决等差数列问题的关键; (3)等差数列的通项公式、前n项和公式涉及五个量:a1,d,n,a n,S n,知道其 中任意三个就可以列方程组求出另外两个(俗称“知三求二’).

高中数学数列放缩专题:用放缩法处理数列和不等问题

用放缩法处理数列和不等问题(教师版) 一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1

高中数列经典习题(含答案)讲解学习

高中数列经典习题(含 答案)

1、在等差数列{a n }中,a 1=-250,公差d=2,求同时满足下列条件的所有a n 的和, (1)70≤n ≤200;(2)n 能被7整除. 2、设等差数列{a n }的前n 项和为S n .已知a 3=12, S 12>0,S 13<0.(Ⅰ)求公差d 的取值范围; (Ⅱ)指出S 1,S 2,…,S 12,中哪一个值最大,并说明理由. 3、数列{n a }是首项为23,公差为整数的等差数列,且前6项为正,从第7项开始变为负的,回答下列各问:(1)求此等差数列的公差d;(2)设前n 项和为n S ,求n S 的最大值;(3)当n S 是正数时,求n 的最大值. 4、设数列{n a }的前n 项和n S .已知首项a 1=3,且1+n S +n S =21+n a ,试求此数列的通项公式n a 及前n 项和n S . 5、已知数列{n a }的前n 项和3 1=n S n(n +1)(n +2),试求数列{n a 1}的前n 项和. 6、已知数列{n a }是等差数列,其中每一项及公差d 均不为零,设 2122++++i i i a x a x a =0(i=1,2,3,…)是关于x 的一组方程.回答:(1)求所有这些方程的公共根; (2)设这些方程的另一个根为i m ,求证111+m ,112+m ,113+m ,…, 1 1+n m ,…也成等差数列. 7、如果数列{n a }中,相邻两项n a 和1+n a 是二次方程n n n c nx x ++32=0(n=1,2,3…)的两个根, 当a 1=2时,试求c 100的值. 8、有两个无穷的等比数列{n a }和{n a },它们的公比的绝对值都小于1,它们的各项和分别是1和2,并且对于一切自然数n,都有1+n a ,试求这两个数列的首项和公比.

高二数学等差数列练习试题 百度文库

一、等差数列选择题 1.设等差数列{}n a 的前n 项和为n S ,若2938a a a +=+,则15S =( ) A .60 B .120 C .160 D .240 2.中国古代数学著作《九章算术》中有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问次一尺各重几何?” 意思是:“现有一根金锤,长五尺,一头粗一头细.在粗的一端截下一尺,重四斤;在细的一端截下一尺,重二斤.问依次每一尺各重几斤?”根据已知条件,若金箠由粗到细是均匀变化的,中间三尺的重量为( ) A .3斤 B .6斤 C .9斤 D .12斤 3.已知数列{}n a 的前n 项和为n S ,15a =,且满足 122527 n n a a n n +-=--,若p ,*q ∈N ,p q >,则p q S S -的最小值为( ) A .6- B .2- C .1- D .0 4.已知数列{}n a 是等差数列,其前n 项和为n S ,若454a a +=,则8S =( ) A .16 B .-16 C .4 D .-4 5.设等差数列{}n a 的前n 项和为n S ,且3944a a a +=+,则15S =( ) A .45 B .50 C .60 D .80 6.等差数列{}n a 中,12318192024,78a a a a a a ++=-++=,则此数列的前20项和等于( ) A .160 B .180 C .200 D .220 7.已知等差数列{}n a ,其前n 项的和为n S ,3456720a a a a a ++++=,则9S =( ) A .24 B .36 C .48 D .64 8.已知等差数列{}n a 中,前n 项和2 15n S n n =-,则使n S 有最小值的n 是( ) A .7 B .8 C .7或8 D .9 9.已知等差数列{}n a 的前n 项和为S n ,若S 2=8,38522a a a +=+,则a 1等于( ) A .1 B .2 C .3 D .4 10.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( ) A .121 B .161 C .141 D .151 11.已知数列{x n }满足x 1=1,x 2=23 ,且 11112n n n x x x -++=(n ≥2),则x n 等于( ) A .( 23 )n -1 B .( 23)n C . 21 n + D . 1 2 n + 12.《周碑算经》有一题这样叙述:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影

高考数学数列题型专题汇总

高考数学数列题型专题 汇总 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

高考数学数列题型专题汇总 一、选择题 1、已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞ →lim .下列 条件中,使得()*∈q a (B )6.07.0,01-<<-q a (D )7.08.0,01-<<-

A .{}n S 是等差数列 B .2{}n S 是等差数列 C .{}n d 是等差数列 D .2{}n d 是等差数列 【答案】A 二、填空题 1、已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则 6=S _______.. 【答案】6 2、无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意 *∈N n ,{}3,2∈n S ,则k 的最大值为________. 【答案】4 3、设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2a n 的最大值 为 . 【答案】64 4、设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则 a 1= ,S 5= . 【答案】1 121

数列大题专题训练)

数列大题专题训练 1.已知数列{a n}、{b n}满足:a^- ,a n b n = 1,b n d. 4 1 -a. (1) 求b-,b2,b3,b4; (2) 求数列{b n}的通项公式; (3) 设S n = a£2 ■玄2玄3 ■玄3玄4 ' ... ' a.a n 1 ,求实数a为何值时4aS n

(t 0,n -2,3, ) (1) 求证:数列{a n }是等比数列; 1 (2) 设数列{a n }得公比为 f(t),作数列{b n },使 b i =1,b n 二 f( ),n =(2,3-),求 b b n_1 (3) 求 b i b 2 - b 2b 3 ' b 3b 4 - b 4 b 5 b 2nJ b 2n b 2n b 2n 1 的值。 5 ?设数列{a n }的前n 项和为S n ,且S n =(1 ) - a,其中,=-1,0 ; (1 )证明:数列{a n }是等比数列; 1 水 (2)设数列{a n }的公比 q = f ('),数列{b n }满足b 1 二?,b n 二 f (b nj )(n ? N *,n _ 2) 求数列{b n }的通项公式; 6. 已知定义在 R 上的单调函数 y=f(x),当x<0时,f(x)>1,且对任意的实数 x 、y € R ,有 f(x+y)= f(x)f(y), (I)求f(0),并写出适合条件的函数 f(x )的一个解析式; 1 (n)数列{a n }满足 a 1=f(0)且f(a n 1) (n ? N *), f(-2-a .) ①求通项公式a n 的表达式; 试比较S 与4Tn 的大小,并加以证明 1 a ②令 b n=(?)n ,S n ^b 1 b 2 b n , T n a 〔 a 2 a 2 a 3 1 a n a n 1

高二数学数列专题练习题(含答案)

高中数学《数列》专题练习 1.n S 与n a 的关系:1 1(1)(1)n n n S n a S S n -=??=? ->?? ,已知n S 求n a ,应分1=n 时1a =1S ; 2≥n 时,n a =1--n n S S 两步,最后考虑1a 是否满足后面的n a . 2.等差等比数列

3.数列通项公式求法:(1)定义法(利用等差、等比数列的定义);(2)累加法;(3)累乘法( n n n c a a =+1 型);(4)利用公式1 1(1)(1) n n n S n a S S n -=??=?->??;(5)构造法(b ka a n n +=+1型);(6)倒数法等 4.数列求和 (1)公式法;(2)分组求和法;(3)错位相减法;(4)裂项求和法;(5)倒序相加法。 5. n S 的最值问题:在等差数列{}n a 中,有关n S 的最值问题——常用邻项变号法求解: (1)当0,01<>d a 时,满足?? ?≤≥+001 m m a a 的项数m 使得m S 取最大值. (2)当 0,01>

高二数学等差数列基础练习题

高二数学等差数列基础练习题 一、填空题 1. 等差数列{}n a 中,若638a a a =+,则9s = . 2. 等差数列{}n a 中,若232n S n n =+,则公差d = . 3. 在等差数列中已知13 d =-,a 7=8,则a 1=_______________ 4. 已知等差数列{}n a 的公差是正整数,且a 4,126473-=+-=?a a a ,则前10项的和S 10= 5. 等差数列-10,-6,-2,2,…前___项的和是54 6. 正整数前n 个数的和是___________ 7. 数列{}n a 的前n 项和23n S n n -=,则n a =___________ 二、选择题 8、等差数列{}n a 中,10120S =,那么110a a +=( ) A. 12 B. 24 C. 36 D. 48 9、已知等差数列{}n a ,219n a n =-,那么这个数列的前n 项和n s ( ) A.有最小值且是整数 B. 有最小值且是分数 C. 有最大值且是整数 D. 有最大值且是分数 10、已知等差数列{}n a 的公差12d = ,8010042=+++a a a ,那么=100S A .80 B .120 C .135 D .160. 11、已知等差数列{}n a 中,6012952=+++a a a a ,那么=13S A .390 B .195 C .180 D .120 12、从前180个正偶数的和中减去前180个正奇数的和,其差为( ) A. 0 B. 90 C. 180 D. 360 13、等差数列{}n a 的前m 项的和为30,前2m 项的和为100,则它的前3m 项的和为( ) A. 130 B. 170 C. 210 D. 260 14、在等差数列{}n a 中,62-=a ,68=a ,若数列{}n a 的前n 项和为n S ,则( ) A.54S S < B.54S S = C. 56S S < D. 56S S = 三、计算题 15.求集合{}|21,*60M m m n n N m ==-∈<,且中元素的个数,并求这些元素的和

2020年高考数学 大题专项练习 数列 三(15题含答案解析)

2020年高考数学 大题专项练习 数列 三 1.已知数列{a n }满足a n+1=λa n +2n (n ∈N *,λ∈R),且a 1=2. (1)若λ=1,求数列{a n }的通项公式; (2)若λ=2,证明数列{n n a 2 }是等差数列,并求数列{a n }的前n 项和S n . 2.设数列{}的前项和为 .已知=4,=2+1,.(1)求通项公式 ;(2)求数列{}的前项和. 3.已知数列{a n }是等差数列,a 2=6,前n 项和为S n ,数列{b n }是等比数列,b 2=2,a 1b 3=12,S 3+b 1=19. (1)求{a n },{b n }的通项公式; (2)求数列{b n cos(a n π)}的前n 项和T n .

4.设等差数列{a n }的前n 项和为S n ,且a 5+a 13=34,S 3=9. (1)求数列{a n }的通项公式及前n 项和公式; (2)设数列{b n }的通项公式为b n =,问:是否存在正整数t ,使得b 1,b 2,b m (m≥3,m an an +t ∈N)成等差数列?若存在,求出t 和m 的值;若不存在,请说明理由. 5.已知数列满足:,。数列的前n 项和为,且 .⑴求数列、的通项公式;⑵令数列满足,求其前n 项和为 6.已知{a n }是递增数列,其前n 项和为S n ,a 1>1,且10S n =(2a n +1)(a n +2),n ∈N *. (1)求数列{a n }的通项a n ; (2)是否存在m ,n ,k ∈N *,使得2(a m +a n )=a k 成立?若存在,写出一组符合条件的m ,n ,k 的值;若不存在,请说明理由.

高二数学数列专题练习题

高二数学《数列》专题练习 1.n S 与n a 得关系:1 1(1)(1) n n n S n a S S n -=??=?->?? ,已知n S 求n a ,应分1=n 时 1a = ;2≥n 时,n a = 两步,最后考虑1a 就是否满足后面得n a 、 2、等差等比数列 (3)累乘法( n n n c a a =+1型);(4)利用公式11(1)(1) n n n S n a S S n -=?? =?->??;(5)构造法(0、 b ka a n n +=+1 型)(6) 倒数法 等 4、数列求与 (1)公式法;(2)分组求与法;(3)错位相减法;(4)裂项求与法;(5)倒序相加法。

5、 n S 得最值问题:在等差数列{}n a 中,有关n S 得最值问题——常用邻项变号法求解: (1)当0,01<>d a 时,满足???≤≥+00 1 m m a a 得项数m 使得m S 取最大值、 (2)当 0,01>0,a 2a 4+2a 3a 5+a 4a 6=25,那么a 3+a 5得值等于( ) A.5 B.10 C.15 D.20 10.首项为1,公差不为0得等差数列{a n }中,a 3,a 4,a 6就是一个等比数列得前三项,则这个等比数列得第四项就是 ( )

数列j经典大题讲解与训练(详细答案)

数列——大题训练 1.已知公差大于零的等差数列{a n }的前n 项和S n ,且满足:a 2a 4=64,a 1+a 5=18. (1)若10,所以a 2

人教版高中数学高二必修5练习 等差数列的性质

第二章数列 2.2 等差数列 第2课时等差数列的性质 A级基础巩固 一、选择题 1.设数列{a n},{b n}都是等差数列,且a1=25,b1=75,a2+b2=100,那么由a n+b n所组成的数列的第37项值为() A.0 B.37 C.100 D.-37 解析:设c n=a n+b n,则c1=a1+b1=25+75=100,c2=a2+b2=100,故d=c2-c1=0,故c n=100(n∈N*),从而c37=100. 答案:C 2.如果数列{a n}是等差数列,则下列式子一定成立的有() A.a1+a8<a4+a5B.a1+a8=a4+a5 C.a1+a8>a4+a5D.a1a8=a4a5 解析:由等差数列的性质有a1+a8=a4+a5. 答案:B 3.在等差数列{a n}中,已知a1+a4+a7=39,a2+a5+a8=33,则a3+a6+a9的值为() A.30 B.27 C.24 D.21 解析:设b1=39,b2=33,b3=a3+a6+a9,则b1,b2,b3成等差数列.

所以39+b 3=2b 2=66,b 3=66-39=27. 答案:B 4.下面是关于公差d >0的等差数列(a n )的四个命题: p 1:数列{a n }是递增数列; p 2:数列{na n }是递增数列; p 3:数列???? ??a n n 是递增数列; p 4:数列{a n +3nd }是递增数列. 其中的真命题为( ) A. p 1,p 2 B .p 3,p 4 C .p 2,p 3 D .p 1,p 4 解析:因为a n =a 1+(n -1)d ,d >0,所以数列{a n }是递增数列,故p 1正确.同理知p 4正确. 命题p 2中,因为na n =na 1+n (n -1)d 是n 的二次函数 所以其增减与a 1,d 的大小有关,故错误. 命题p 3中,因为a n n =a 1n +(n -1)n d 其增减性与a 1与d 的大小有关,所以p 3错. 答案:D 5.下列说法中正确的是( ) A .若a ,b ,c 成等差数列,则a 2,b 2,c 2成等差数列 B .若a ,b ,c 成等差数列,则log 2a ,log 2b ,log 2c 成等差数列 C .若a ,b ,c 成等差数列,则a +2,b +2,c +2成等差数列 D .若a ,b ,c 成等差数列,则2a ,2b ,2c 成等差数列

相关主题
文本预览
相关文档 最新文档