当前位置:文档之家› 4-D evolution of rift systems Insights from scaled physical models

4-D evolution of rift systems Insights from scaled physical models

4-D evolution of rift systems Insights from scaled physical models
4-D evolution of rift systems Insights from scaled physical models

4-D evolution of rift systems: Insights from scaled

physical models

K.R.McClay,T.Dooley,P.Whitehouse,and https://www.doczj.com/doc/767425789.html,ls

A B S T R A C T

The four dimensional(4-D)evolution of brittle fault systems in orthogonal,oblique,and offset rift systems has been simulated by scaled sandbox models using dry,cohesionless,?ne-grained quartz sand.Extensional deformation in the models was controlled by the orientation and geometry of a zone of stretching at the base of the model.The results of these analog model studies are compared with natural examples of rift fault systems.

Rift basins produced by orthogonal and oblique rifting are de-?ned by segmented border fault systems parallel to the rift axes and by intrarift fault systems that are subperpendicular to the ex-tension direction.Segmentation of the rift margin increases with increase in obliquity of the rift axis,resulting in a consequent in-crease in displacement on intrarift fault systems.Offset rift models are characterized by highly segmented border faults and offset sub-basins in the rift zone.

Along-strike displacement transfer in the model rifts occurred as a result of formation of two types of accommodation zones. High-relief,extension-parallel accommodation zones typically are found in60?rifts and above left steps in offset rift systems. Changes in fault polarities in these accommodation zones were achieved by interlocking arrays of conjugate extensional faults.The second type of accommodation zone was generally oblique to the extension direction and consisted of conjugate fault arrays having rotated tips that bounded a low-relief oblique-slip zone or grabens. These typically are found in highly oblique rift systems(?45?)and above right steps in offset rift models.

I N T R O D U C T I O N

Many natural rift systems display along-strike changes in exten-sional fault polarities and in offset grabens and depocenters along the rift axis(cf.Bally,1981;Gibbs,1983,1984,1987;Bosworth,

Copyright?2002.The American Association of Petroleum Geologists.All rights reserved. Manuscript received May26,2001;revised manuscript received June4,2001;?nal acceptance January 2,2002.A U T H O R S

K.R.McClay?Fault Dynamics Research Group,Geology Department,Royal Holloway University of London,Egham,Surrey,TW20 0EX,United Kingdom;ken@https://www.doczj.com/doc/767425789.html, Ken McClay graduated with a B.Sc.(honors) degree from Adelaide University,Australia.He subsequently undertook an M.Sc.degree in structural geology and rock mechanics at Imperial College,London University,where in 1978he also obtained a Ph.D.in structural geology.He was awarded a D.Sc.by Adelaide University,Australia,in2000.He is BP Professor of Structural Geology and director of the Fault Dynamics Research Group at Royal Holloway University of London.His research involves the study of extensional thrust,strike-slip,and inversion terranes and their applications to hydrocarbon exploration. He publishes widely,consults,and offers short courses to industry.

T.Dooley?Fault Dynamics Research Group,Geology Department,Royal Holloway University of London,Egham,Surrey,TW20 OEX,United Kingdom;t.dooley@https://www.doczj.com/doc/767425789.html, Tim Dooley,a native of Waterford,Ireland, graduated with a B.A.(honors)degree(Mod.) from Trinity College Dublin,Ireland,in1988. Subsequently,he undertook a Ph.D.in structural geology at Royal Holloway University of London.Since1994Tim has been a postdoctoral research assistant with the Fault Dynamics Research Group in the structural modeling laboratories at Royal Holloway.His current research interests include analog modeling of extensional,strike-slip,salt and shale,and compressional tectonics,as well as developing graphic and interactive techniques for the presentation of these data to students and industry.

P.Whitehouse?Fault Dynamics Research Group,Geology Department,Royal Holloway University of London,Egham,Surrey,TW20 OEX,United Kingdom;

p.whitehouse@https://www.doczj.com/doc/767425789.html,

Paul Whitehouse graduated from the University of Birmingham in1996with a B.Sc. degree in geology.In1998,he completed an M.Sc.degree in basin evolution and dynamics at Royal Holloway University of London

AAPG Bulletin,v.86,no.6(June2002),pp.935–959935

9364-D Evolution of Rift Systems

1985,1994;Lister et al.,1986;Rosendahl et al.,1986;Etheridge et al.,1987;Rosendahl,1987;Ebinger,1989a,b;Morley et al.,1990,1994;Nelson et al.,1992;Faulds and Varga,1998).This segmentation in rift systems characteristically occurs every 50–150km along the rift axis (Rosendahl et al.,1986;Patton et al.,1994;Hayward and Ebinger,1996);increased extension and continental separation may ultimately lead to segmentation along conjugate passive margins (cf.Karner and Driscoll,1999).Two end-member models (Figure 1)have been proposed to account for these changes in fault polarities and offset depocenters:(1)the hard-linked strike-slip or oblique-slip transfer fault model (cf.Bally,1981;Gibbs,1983,1984;Lister et al.,1986)and (2)the soft-linked accommodation zone model of distributed faulting with-out distinct cross faults or transfer faults (cf.Bosworth,1985,Rosendahl et al.,1986;Morley et al.,1990;Morley,1994;Mous-tafa,1997;Faulds and Varga,1998).The detailed structure and kinematic evolution of these changes on rift polarities and on the development of accommodation zones,however,are poorly understood.

Scaled analog sandbox models have proved to be powerful tools for simulating the development of extensional structures in rift systems (e.g.,Cloos,1968;Hors?eld,1977,1980;Faugere and Brun,1984;Withjack and Jamison,1986;Serra and Nelson,1989;McClay,1990a,b;Tron and Brun,1991;McClay and White,1995).This article summarizes the results of a new series of three-dimensional (3-D)sandbox models of orthogonal,oblique,and offset rift systems in which rift segmentation and discrete accom-modation zones are well developed.These model results are com-pared with natural intracontinental rift systems.

A N A L O G M O D E L I N G Experimental Method

The experiments were carried out in a deformation rig 120?60?7.5cm in size (Figure 2).The models consisted of a 7.5cm–thick sandpack formed by mechanically sieving 2–3mm–thick lay-ers of white and colored dry,quartz sand (average grain size 100l m)on top of a basal detachment formed by a 10–15cm–wide rubber sheet ?xed between two aluminum end sheets.The rubber sheet was either parallel sided or offset by discrete basal transfer faults (Figure 2c).The baseplate axes were oriented at angles of from 90?(orthogonal)to 45?(oblique)to the extension direction.Deformation was achieved by moving both of the end walls with a motor-driven worm screw at a constant displacement rate of 4.16?10?3cm/sec (Figure 2).The models were extended in 0.25cm increments to a maximum of 7.5cm,measured orthogonally to the rift axis;the top surfaces were recorded by 35mm photogra-phy.Oblique rift models were extended to a maximum of 10.65cm parallel to the long axis of the deformation apparatus to

A C K N O W L E D G E M E N T S

This research was supported by the Natural Environment Research Council (NERC)ROPA Grant GR3/R9529.Additional support came from the Fault Dynamics Project (sponsored by ARCO British Limited,Petrobra ′s U.K.Ltd.,BP Exploration,Conoco [United Kingdom]Limited,Mobil North Sea Limited,and Sun Oil Britain).McClay also gratefully acknowledges support from BP Exploration.Howard Moore and Mike Creager constructed the deforma-tion apparatus.This article is Fault Dynamics Publication 101.

before joining the Fault Dynamics Research Group as a postgraduate research assistant.His recent research topics include analog modeling of three-dimensional extensional fault systems and analog modeling of doubly vergent thrust wedges.His current work concentrates on fault and fracture systems in extensional tectonic settings,incorporating analog modeling and ?eld studies in the Gulf of Suez,Egypt.

https://www.doczj.com/doc/767425789.html,ls ?Fault Dynamics Research Group,Geology Department,Royal Holloway

University of London,Egham,Surrey,TW20OEX,United Kingdom

Michelle Mills graduated from the University of Edinburgh in 1997with a B.Sc.degree in geology,having spent her third year at the University of California,Santa Cruz.She spent a year as a voluntary worker before

completing her M.Sc.degree in tectonics at Royal Holloway College in 1999.She currently works at Heriot-Watt University evaluating computer-aided learning software for engineering.

McClay et al.

937

Figure 1.Conceptual models of displacement transfer in rift systems.(a)Synoptic model of a low-strain intracontinental rift with along-axis segmentation.Individual half grabens are separated by soft-linked accom-modation zones formed by overlapping fault segments.(b)Synoptic model of hard-linked,strike-slip,rift transfer-fault system.

achieve the required 7.5cm stretching of the rubber basesheet (Figure 2).After each 2cm of deformation,the accommodation space was in?lled with alternating layers of white and red sand to simulate synrift sedi-mentation.The quartz sand has a linear Navier-Coulomb behavior that has an angle of friction of 31?(McClay,1990b).The models described in this article are scaled such that they simulate brittle deformation of a sedimentary sequence between 1and 10km in thickness (Figure 3)(cf.McClay,1990a).The models for each baseplate geometry investigated were re-peated at least twice to ensure reproducibility and to allow for both horizontal and vertical sectioning.

Results

Representative results from orthogonal,oblique,and offset rift models are illustrated in Figures 4–9.Top photographs,line diagram interpretations,and serial vertical sections are presented for each example.Orthogonal Rift Models

In orthogonal rift models,where the underlying zone of basement stretching was oriented 90?to the exten-sion direction,the early stages of deformation were characterized by long,linear,extensional faults that formed as a result of along-strike linkage of initially

938

4-D Evolution of Rift Systems

Figure 2.Analog modeling rig.(a)Plan view showing base-plate orientation with respect to the extension direction.

(b)Cross-section view of defor-mation rig.(c)Baseplate geom-etries used in this study:90?(orthogonal models),60?,45?(oblique)rifts and offset

rifts.

Figure 3.Scaling parameters for the simulation of brittle de-formation of sedimentary rocks in the upper crust.(a)Detach-ment;(b)brittle-plastic transition.

smaller linear-fault segments (Figure 4a).Two long rift-border faults were well developed by 4cm of ex-tension,together with an intrarift fault system that de-?ned a central horst block and two linear graben sys-tems on each side of it (Figure 4a).Using increased extension to 50%stretching at the base of the model,individual extensional faults increased their displace-ment,and extension tended to focus inward to the cen-ters of each graben system (Figure 4b).The line dia-gram of Figure 4c shows the dominant fault systems that have a characteristic switch in fault dip (polarity)across the model.All faults developed at high angles (near 90?)to the extension direction.Serial cross sec-tions through the completed model show the sym-metrical nature of the rift system,its cylindricity along strike,and grabens that developed adjacent to each border fault and the central horst block (Figure 4d).Individual faults show kinks along their traces (Figure 4a,b,c)where initially separate segments have linked.Overlap zones between like-dipping faults form relay ramps (Figure 4c),but no accommodation zones or strike-slip transfer faults were developed in these or-thogonal rift models.Oblique Rift Models

In contrast to the orthogonal rift models,oblique rift experiments were characterized by strongly seg-mented fault systems and offset-basin depocenters in the rift (Figures 5,6).The 60?oblique model (Fig-ure 5)initially developed arrays of intrarift fault systems oriented at high angles to the extension vec-tor,and rift margins were formed by individual,en

Figure 4.Analog model E 350:Orthogonal Rift.(a)Overhead view of analog model after 4cm extension.Illumination is from the left.(b)Overhead view of analog model after 7.5cm extension.Illumination is from the left.(c)Line diagram interpretation of the surface fault pattern at the end of extension.Dark bands are faults dipping to the right,and light bands are faults dipping to the left.The blue shading marks the stretched rubber sheet at the base of the model.(d)Serial sections through the orthogonal rift model.Synkinematic strata are the red and white layers at the top of the grabens on each side of the central intrarift horst block.Location of sections is indicated in (c).

Figure 5.Analog model E 351:60?Oblique Rift.(a)Overhead view of analog model after 4cm extension.Illumination is from the left.(b)Overhead view of analog model after 8.65cm extension (50%stretching at the base of the model).Illumination is from the left.(c)Line diagram interpretation of the surface fault pattern at the end of extension.Dark bands are faults dipping to the right,and light bands are faults dipping to the left.The blue shading marks the stretched rubber sheet at the base of the model.(d)Serial sections through the oblique rift model.Synkinematic strata are the red and white layers at the top of the grabens on each side of the central intrarift horst block.Location of sections is indicated in (c).

echelon fault segments.In part these were formed by the tips of major intrarift fault segments that curved into parallelism with the basement structural grain(Figure5a).The intrarift fault arrays formed distinct,offset subbasins that developed on each side of the central rift https://www.doczj.com/doc/767425789.html,ing increased extension to 50%stretching at the base of the model,individual segments of the rift-border faults propagated along strike,breached the relay ramps,and linked,forming a semicontinuous rift-border fault system(Figure 5b).The intrarift faults increased their displacement and propagated along strike,forming accommoda-tion zones where groups of like-dipping faults met groups of oppositely dipping faults(Figure5b). Here,the tips of the opposing fault sets interlocked, producing a localized zone of conjugate faults com-monly displaying divergent tips(Figure5b).No strike-slip or oblique-slip transfer faults developed(Figure 5c).The along-strike changes in the subbasins and in the senses of fault dip are shown clearly on the vertical serial sections of the model(Figure5d).Sections through the zones of offset between subbasins(sec-tion8in Figure5d)show conjugate fault arrays and symmetrical graben structures.

In the45?oblique model,the rift margin con-sisted initially of en echelon segments(Figure6a). At low to moderate strains,the intrarift faults formed at high angles to the extension direction, producing a series of accommodation zones consist-ing of interlocking conjugate faults oblique to the extension direction(Figure5a).Using increased ex-tension,the tips of some of these intrarift faults propagated such that they curved parallel to the rift axis,forming much of the rift margin fault system (Figure6b).Initial interlocking arrays of intrarift conjugate-fault systems developed into oblique ac-commodation zones characterized by tip divergence so extreme that the tips rotated into subparallelism with the rift axis(Figure6b,c).Many of the in-trarift faults display greater displacement than the major rift-margin structures(Figure6b,c,d).Com-plex fault arrays developed,(Figure6c)and the cross sections show both symmetrical and asymmet-rical fault arrays(Figure6d).

Offset Rift Models

Offset rift models(Figures7,8,9)were produced by making a preextension offset in the rubber sheet at the base of the models(Figure2c).These exper-iments produced strongly segmented rift models in which offset depocenters were separated by complex accommodation zones of interlinked faults without development of hard-linked strike-slip transfer faults (Figures7,8,9).

In the offset-orthogonal rift model,distinct off-set graben systems developed at low to moderate strains(Figure7a).Both rift-border faults and in-trarift faults were kinked with soft-linked relay ramps,and they breached relays above the offsets in the basal zone of stretching.Fault tips across these offset zones were strongly curved and overlapped, producing synthetic,interlocking arrays(Figure7b). After50%extension,the border faults were strongly curved and linked across the offsets,whereas the in-trarift faults were more segmented(Figure7b,c).In serial sections,the rift was typically symmetrical, having two grabens that developed adjacent to each border fault system;the graben axes stepped across the offset zones in the basement(Figure7d).

The60?and45?offset rift models produced very similar rift structures(Figures8,9);both de-veloped two different styles of accommodation zones above the offsets in the zone of basement stretching.At low values of extension above the left-stepping offset(lowermost offset in Figures8,9),a relatively high-relief accommodation zone formed parallel to the extension direction as a result of in-terlocking,oppositely dipping fault tips(Figures8a, 9a).These interlocking faults display divergent fault-tip behavior(Figure8b).In contrast,structurally low,oblique accommodation zones formed above the right-stepping basement offsets(uppermost off-sets in Figures8a,9a).These were slightly oblique to the extension direction and consisted of highly curved,interlocking extensional fault tips.At50% extension at the base of the model,the curved fault tips propagated along the accommodation zone and formed interlocking oblique-slip fault arrays(Figures 8b,9b).The45?offset model,in particular,devel-oped small,elongate,rhomboidal subbasins in these low-relief,oblique accommodation zones(Figure 9b).

These offset rift models generated excellent ex-amples of segmented dip domains,in which the dominant fault dip changed across the accommo-dation zones(Figures8c,9c).This is re?ected in the serial sections that show a dominant half-graben asymmetry that?ips polarity along strike across the offsets in the basal stretching zone(Figures8d,9d). As in the other analog models(e.g.,Figures4,5, 6),no discrete strike-slip transfer faults were developed.

McClay et al.941

942

4-D Evolution of Rift Systems

D I S C U S S I O N Analog Models

Analog models of orthogonal and offset-orthogonal rift systems produce characteristically simple rift systems that are approximately cylindrical along strike (Figures 4,7).The rifts are de?ned by long rift-border faults that formed by along-strike propagation of originally shorter,like-dipping segments that are linked by breaching of classic,synthetic relay ramps (Larsen,1988;Peacock and Sanderson,1991,1994;Walsh and

Figure 6.Analog model E 352:45?Oblique Rift.(a)Overhead view of analog model after 4cm extension.Illumination is from the left.(b)Overhead view of analog model after 10.6cm extension (50%stretching at the base of the model).Illumination is from the left.

Continued.

Figure 6.Continued.(c)Line diagram interpretation of the surface fault pattern at the end of extension.Dark bands are faults dipping to the right,and light bands are faults dipping to the left.The blue shading marks the stretched rubber sheet at the base of the model.(d)Serial sections through the oblique rift model.Synkine-matic strata are the lighter lay-ers at the top of the grabens on each side of the central intrarift horst block.Location of sections is indicated in (c).

McClay et al.

943

Watterson,1991;Childs et al.,1995)(Figures 4,7).The long,linked rift-border faults commonly display constant displacement pro?les along strike in the or-thogonal rift model (Figure 4b).The intrarift zone of both these end members consists of two subbasins ori-ented at right angles to the extension direction and

separated by a linear (Figure 4)or offset (Figure 7)intrarift horst.The geometry of these orthogonal rift systems is set up very early in the experiment;it ex-tends from between the central part of the rift and the rift margin and displays very little reorganization with increased extension.In the offset-orthogonal rift

Figure 7.Analog model E 354:Offset-Orthogonal Rift.(a)Overhead view of analog model after 4cm extension.(b)Overhead view of analog model after 7.5cm extension (50%stretching at the base of the model).Illumination is from the right.(c)Line diagram interpretation of the surface fault pattern at the end of extension.Dark bands are faults dipping to the left,and light bands are faults dipping to the right.The blue shading marks the stretched rubber sheet at the base of the model.(d)Serial sections through the offset-orthogonal rift model.Synkinematic strata are the red and white layers at the top of the grabens on each side of the central intrarift horst block.Location of sections is indicated in (c).

system(Figure7),the presence of a basal offset in the rift zone did not produce a discrete transfer fault in the cover.Cover deformation around the offset zones con-sisted of arcuate and linked rift-border faults and syn-thetic,interlocking fault arrays that de?ne the intrarift subbasins(Figure7).

In contrast to orthogonal rift systems,models run using oblique basement fabrics produce rift basins hav-ing segmented rift-border faults that closely parallel the rift axis,and intrarift fault domains that are ori-ented at a high angle to the extension vector(Figures 5,6).Oblique rift systems display signi?cant structural variations along the length of the rift zone,such as fault polarity switching that results in generation of intrarift subbasins.In the model rifts,domains of different fault polarities are separated by accommodation zones that are both parallel and oblique to the regional extension direction(Figures7,8).Transfer of displacement be-tween subbasins and regional highs in these oblique models is effected by soft-linkage accommodation zones.In the60?oblique rift model(Figure5),these accommodation zones consisted of interlocking fault arrays of opposite dip polarities and divergent tips, which de?ned zones of relatively high relief in the rift interior(Figures5,10a).Such interlocking extensional fault arrays also have been observed in seismic data (Nichol et al.,1995)in which the conjugate fault zones were regions of signi?cant fault damage that were nec-essary to accommodate the displacements on the op-positely dipping faults.These interlocking patterns were established very early in the experiments and had a profound effect on the evolution of the rift interior; they inhibited along-strike propagation of these fault arrays and thereby strongly in?uenced observed fault length:displacement ratios(Figure5).In contrast, models run using45?rift obliquity initially generated a similar pattern of interlocking opposite-polarity fault systems at low strains,but with increasing displace-ment,these accommodation zones evolved to oblique, low-relief accommodation zones(Figures6,10b). These accommodation structures were characterized by rotation of the tips of opposite-polarity faults into subparallelism with the rift axis,forming narrow, rhomboidal grabens subparallel to the axis of the rift (Figures6,10b).

Analog models of offset-oblique rifts generated subbasins that displayed major dip polarity changes above the hard-linked transfer zone in the basement (Figures8,9).In both of these offset rift systems(60?and45?oblique),two types of soft-linked accommo-dation zones were observed,dependent upon the sense of basement offset with respect to the obliquity of the rift axis(Figures8,9,10).High-relief accommodation zones are subparallel to the extension vector and are composed of interlocking opposite-polarity fault arrays characteristic of deformation above left-stepping rift segmentation(Figures8,9,10a).Low-relief accom-modation zones were generated above right-stepping rift segmentation.These zones consisted of opposite-polarity fault arrays that show strong rotation into the accommodation zone and generated composite accom-modation zones oblique to the extension vector(Fig-ures8,9,10b).These accommodation zones are char-acterized by curvilinear grabens that crosscut the basement offset and are bounded by the rotated tips of the conjugate-fault sets(Figures8,9,10b).The high degree of obliquity between the rotated tips of the conjugate-fault sets and the extension vector necessi-tates a degree of oblique slip along these zones.

Fault growth in the orthogonal and offset-orthog-onal rift models shows similar features to those that would be expected if faults grew by a stress feedback mechanism(Cowie,1998;Gupta et al.,1998;Cowie et al.,2000).In Cowie’s models,initially isolated,op-timally positioned faults rapidly link to form long,con-tinuous,high-displacement fault zones,or soft-linked, high-displacement,segmented rift-border faults(cf. Cartwright et al.,1995).Orthogonal rift and offset-orthogonal rift models display this characteristic growth model,having rift-border and intrarift fault sys-tems composed of long segments that are kinked where relay ramps have been breached.In our models of oblique rifts,rift-border fault zones are not continuous but consist of like-dipping fault segments linked by synthetic relay ramps parallel to the rift axis.This seg-mentation increases as the obliquity of the rift axis with respect to the stretching direction increases(e.g.,45?rift in Figure6),such that high-angle,intrarift faults in these models take up greater displacement than the border faults.These high-angle faults commonly dis-play tip-line rotation at the rift margin into parallelism with the basement grain(e.g.,Figure5).Because of the position of these intrarift fault segments above a uniformly stretching basement,instead of a linear ve-locity discontinuity at the rift margin,they commonly form colinear arrays of opposite-polarity faults whose along-strike propagation is hindered by their interlock-ing tip lines,thus forming relatively high-relief accom-modation zones(Figures5,6,10).These interlocking accommodation features were formed early in the evo-lution of the experiments and are long lived,prevent-ing the linkage of subbasins along the length of the rift.

McClay et al.945

9464-D Evolution of Rift

Systems

Figure 8.Analog model E 355:Offset 60?Oblique Rift.(a)Overhead view of analog model after 4cm extension.Illumination is from the left.(b)Overhead view of analog model after 8.65cm extension (50%stretching at the base of the model).Illumination is from the left.Continued.

McClay et al.

947

Figure 8.Continued.(c)Line diagram interpretation of the surface fault pattern at the end of extension.Dark bands are faults dipping to the right and light bands are faults dipping to the left.The blue shading marks the stretched rubber sheet at the base of the model.(d)Serial sections through the offset oblique rift model.Synkinematic strata are the red and white layers at the top of the grabens on each side of the central intrarift horst block.Location of sections is indicated in (c).

948

4-D Evolution of Rift Systems

Figure 9.Analog model E 356:Offset 45?Oblique Rift.(a)Overhead view of analog model after 4cm extension.Illumination is from the left.(b)Overhead view of analog model after 10.6cm extension (50%stretching at the base of the model).Illumination is from the left.

Continued.

Comparisons with Natural Examples of Rift Systems The scaled analog models of rift fault systems de-scribed in this article show many similarities to both outcrop and subsurface fault patterns of natural rifts.Whereas geometrical similarities do not in them-selves imply similar deformation mechanisms and evolution pathways for the model geometries and the natural examples,strong resemblances exist in their fault styles,patterns,and modes of propagation and linkage to make reasonable comparisons be-tween them.

McClay et al.

949

Orthogonal Rifts

The Gregory rift in East Africa shows excellent ex-amples of segmented rift-border fault systems,as well as long,relatively straight,intrarift faults in synrift Mio-cene volcanic units (Figure 11).Both the rift-border and intrarift faults are dominantly north-south striking and have long overlap regions between adjacent faults.Along-strike displacement transfer is by soft-linked relay-ramp structures,and no strike-slip or oblique-slip transfer faults are found (cf.Bosworth et al.,

1986).

Figure 9.Continued.(c)Line diagram interpretation of the surface fault pattern at the end of extension.Dark bands are faults dipping to the right,and light bands are faults dipping to the left.The blue shading marks the stretched rubber sheet at the base of the model.(d)Serial sections through the offset oblique rift model.

Synkinematic strata are the red and white layers at the top of the grabens on each side of the central intrarift horst block.Location of sections is indicated in (c).

950

4-D Evolution of Rift

Systems

Figure 10.Accommodation zones formed in the model rifts.(a)Detail of an analog model of a low-strain,relatively high-relief accommodation zone parallel/subparallel to the extension direction.(b)Detail of an analog model of a high-strain,relatively low-relief accommodation zone oblique to the extension direction.Illumination is from the left.

Extensional fault patterns having a similar lack of dis-crete,hard-linked strike-slip transfer faults also have been observed in other parts of the East African–Ethiopian rift system (cf.Ebinger,1989a,b;Kronberg,1991;Hayward and Ebinger,1996).Where originally segmented extensional faults have linked by breaching of the relay ramps,distinct kinked-fault traces are de-veloped (Figure 11a,b).This pattern is directly anal-ogous to the model rift-fault patterns developed in the orthogonal rift model (Figure 4)and indicate that the extension direction was dominantly east-west (cf.Bos-worth et al.,1986),orthogonal to the dominant intra-rift and rift marginal-fault systems.Patterns of initial-fault segmentation and subsequent linkage similar to those in the analog models also have been found in three-dimensional (3-D)seismic studies of Jurassic faults in the Viking Graben,North Sea (McLeod et al.,2000).Oblique and Offset Rifts

Oblique rifts are characterized by en echelon rift marginal-fault systems oblique to the extension direc-tion and intrarift faults orthogonal to the extension di-rection (Figures 5,6).Radar imagery from the ex-tended volcanic tablelands in Owens Valley,north of Bishop,California,shows the 700ka Bishop tuff down-thrown in a north-northwest–trending extensional structure (Figure 12).The margins of this zone of ex-tension are oblique to the east-west–oriented extension (e.g.,Dawers et al.,1993;Dawers and Anders,1995)(Figure 12a).The marginal-fault systems are charac-terized by distinct relay-ramp structures,whereas the internal faults,although sparsely developed,are at high angles to the extension direction and are linked by breached relay ramps (Figure 12b).In a similar fash-ion to structures seen in the 60?oblique-rift model,parts of the marginal-fault system are composed of

north-south,intrarift segments that rotate along strike and link,to form the north-northwest–trending margin (see Figures5,12).

Two examples of offset grabens and rift systems are shown in Figures13and14.In the Canyonlands example,the extension direction is orthogonal to the series of discrete and linked grabens that form the rift system(Trudgill and Cartwright,1994)(Figure13). An extension-parallel accommodation zone allows transfer of displacement along strike between grabens 1and3and is accommodated by synthetic interlock-ing fault arrays de?ning graben2and separated by major relay structures(Figure13).In the southern Rio Grande rift,the Redford Lajitas transfer zone accom-modates displacement transfer between the northern subbasin(Redford Bolson)and the southern subbasin (Big Bend National Park area)(Henry,1998).Fault-plane solutions and slickenside data indicate a domi-nant east-northeast extension direction in this region, which is oblique to most of the mapped surface faults (Henry,1998)(Figure14).Dextral oblique slip is re-corded from faults in the Redford Lajitas structure. The narrow Santana Bolson in this zone displays the lowest structural relief in the region(Henry,1998);it is similar to oblique accommodation structures found above right steps in the60?and45?offset rift models (Figures8,9,10b,14).The Redford Lajitas transfer/ accommodation zone is situated above a deeply bur-ied east-west basement structure that is similar in ori-entation to the basement offsets in the models.Fur-ther,to the north of the area illustrated in Figure15 is the Tascotal Mesa fault,a prominent east-west–trending transfer fault that has demonstrable dextral slip along its length transferring displacement east-ward from the Redford Bolson to the Presidio Bolson (Henry,1998).The difference in style between these two transfer or accommodation structures is attrib-uted to the shallow depth to basement below the Tas-cotal Mesa structure(Henry,1998).Basement control on the development of accomodation zones in the Gulf of Suez rift is also described in Younes and McClay(2002).

The comparative examples of natural rift-fault pat-terns,together with the analog models described in this article,have enabled the construction of several con-ceptual models for the progressive evolution of rift-fault patterns in plan view(Figure15).These diagrams illustrate the predicted initial fault patterns at low val-ues of extension(b?1.1?1.3)and at higher exten-sions(b?1.5),where originally segmented faults have linked along strike(Figure15).Changes in subbasin (fault)polarities in these diagrams are indicated by the development of accommodation zones formed by overlapping and interlocking fault arrays.The3-D syn-optic models of the two dominant types of accom-modation zone,the high-relief extension-parallel ac-commodation zone(characteristic of some orthogonal rift systems)and the low-relief oblique accommoda-tion zone(as observed in many of the models described in this article),are shown in Figure16.

C O N C L U S I O N S

Analog models of oblique,stepped,and offset rifts characteristically produced rift-border fault systems that linked by means of classic,synthetic relay ramps. In the model rifts,however,domains of different fault polarities are separated by accommodation zones that are both parallel(subparallel)and oblique to the re-gional extension direction.In the extension-parallel ac-commodation zones,the tips of oppositely dipping faults curve away from each other,forming an anticlinal-like zone of high relief.Oblique accommo-dation zones evolve from simple,interlocking arrays to form structural lows de?ned by oblique-slip faults that parallel the rotated tips of the opposite-polarity fault sets.In cross section,the accommodation zones consist of conjugate fault arrays formed by the interlocking tips of oppositely dipping domino fault systems.In the models,the accommodation zones form early in the evolution of the rift and persist throughout the exper-iment history,thus in?uencing the ability of faults to propagate along strike,prolong basin segmentation, and in some cases,notably in?uence the fault length/ displacement pro?les.

The analog models and the natural examples show that the architectures of rifts and,in particular,along-strike switches in basin polarities and dominant fault dips across accommodation zones are more compli-cated than previously published models of simple over-lapping or interlocking rift-border fault systems.The models developed two styles of accommodation zones, both formed by interlocking,overlapping,intrarift fault tips.High-relief accommodation zones are par-allel or mildly oblique to the extension direction, whereas low-relief accommodation zones are highly oblique to the extension and are bounded by oblique-slip fault systems.No hard-linked,extension-parallel, strike-slip or oblique-slip transfer faults were devel-oped in the models,in direct contrast to the extension-parallel,strike-slip or oblique-slip transfer fault model

McClay et al.951

952

4-D Evolution of Rift

Systems

Figure 11.East African rift system,Kenya.(a)Landsat thematic mapper (TM)image of the Gregory rift west of Nairobi,Kenya.Continued.

McClay et al.

953

Figure 11.Continued.(b)Line diagram interpretation of (a)showing the segmented and slightly offset rift-border fault system on the east and a high density of north-south–oriented intrarift faults in the main part of the rift.This pattern is characteristic of orthogonal rifting with the dominant extension direction oriented east-west.

Figure12.(a)Radar image of the volcanic tablelands, Bishop,California.The image shows a series of en echelon marginal faults in the Bishop tuff running obliquely across the image with north-south–oriented interior faults in the center left of the image.(Image courtesy of Conoco Explora-tion.)

Continued.

commonly used to account for depocenter changes and fault-polarity switches in rift systems.

R E F E R E N C E S C I T E D

Bally,A.W.,1981,Atlantic type margins,in Geology of passive continental margins:history,structure and sedimentologic rec-ord:AAPG Education Course Notes Series19,p.1–48. Bosworth,W.,1985,Geometry of propagating continental rifts:Na-ture,v.316,p.625–627.Bosworth,W.,1994,A high-strain rift model for the southern Gulf of Suez(Egypt),in https://www.doczj.com/doc/767425789.html,mbiase,ed.,Hydrocarbon habitat in rift basins:Geological Society Special Publication80,p.75–102.

Bosworth,W.,P.Crevello,R.D.Winn Jr.,and J.Steinmetz,1986,

A new look at Gregory’s rift:the structural style of continental

rifting:EOS,v.67,p.577,582–583.

Cartwright,J.A.,B.D.Trugdill,and C.S.Mans?eld,1995,Fault growth by segment linkage:an explanation for scatter in max-imum displacement and trace length data from the Canyon-lands grabens of SEUtah:Journal of Structural Geology,v.17, p.1319–1326.

Childs,C.,J.Watterson,and J.J.Walsh,1995,Fault overlap zones

9544-D Evolution of Rift Systems

泡沫灭火系统组件及设置要求

泡沫灭火系统一般由泡沫液、泡沫消防水泵、泡沫混合液泵、泡沫液泵、泡沫比例混合器装置、压力容器、泡沫产生装置、火灾探测与启动控制装置、控制阀门及管道及其它附件组成。系统组件必须经国家级产品质量监督检验机构检验合格,并且必须符合设计用途。 一、泡沫消防泵 (一)泡沫消防水泵、泡沫混合液泵的选择与设置要求 泡沫消防水泵、泡沫混合液泵应选择特性曲线平缓的离心泵,且其工作压力和流量应满足系统设计要求;当采用水力驱动平衡式比例混合装置时,应将其消耗的水流量计入泡沫消防水泵的额定流量内;当采用环泵式比例混合器时,泡沫混合液泵的额定流量应为系统设计流量的倍;泵进口管道上,应设置真空压力表或真空表;泵出口管道上,应设置压力表、单向阀和带控制阀的回流管。 (二)泡沫液泵的选择与设置要求泡沫液泵的工作压力和流量应满足系统最大设计要求,并应与所选比例混合装置的工作压力范围和流量范围相匹配,同时应保证在设计流量下泡沫液供给压力大于最大水压力;泡沫液泵的结构形式、密封或填充类型应适宜输送所选的泡沫液,其材料应耐泡沫液腐蚀且不影响泡沫液的性能;除水力驱动型泵外,泡沫液泵应按《泡沫灭火系统设计规范》(GB50151-2010)对泡沫消防泵的相关规定设置动力源和备用泵,备用泵的规格型号应与工作泵相同,工作泵故障时应能自动与手动切换到备用泵;泡沫液泵应耐受时长不低于10min 的空载运行。 二、泡沫比例混合器 泡沫比例混合器是一种使水与泡沫原液按规定比例混合成的混合液,以供泡沫产生设备发泡的装置。我国目前生产的泡沫比例混合器有环泵式泡沫比例混合器、压力式泡沫比例混合器、平衡压力泡沫比例混合器、管线式泡沫比例混合器。 (一)环泵式泡沫比例混合器环泵式泡沫比例混合器固定安装在泡沫消防泵的旁路上,其混合流程如图3-7-7 所示。环泵式泡沫比例混合器的限制条件较多,设计难度较大,达到混合比时间较长。但其结构简单、工程造价低且配套的泡沫液储罐为常压储罐,便于操作、维护、 检修、试验。 1 .适用范围 环泵式泡沫比例混合器适用于建有独立泡沫消防泵站的场所,尤其适用于储罐规格较单一的甲、乙、丙类液体储罐区。 2 .设置要求 采用环泵式泡沫比例混合器时,其设计应符合下列要求: 1 )水池相对水位不宜过高,以保证泡沫比例混合器出口压力(背压)为零或负压。但

p区元素总结

第1节氮族元素分页: 1 234 周期系第V A族元素称氮族元素(Nitrogen family elements)。它包括氮(Nitrogen)、磷(Phosphorus)、砷(Arsenic)、锑(Antimony)与铋(Bismuth)。氮就是生命得基础,磷就是动植物得必需元素。砷、锑、铋三者性质较为相似,就是重要得合金元素。而磷却与砷、锑有一定得相似性,它们得化合物丰富多彩,大多就是重要得工业原料、肥料、新技术材料。 14、1 氮族元素 14、1、1 氮族元素概述 周期系第V A族:氮N、磷P、砷As、锑Sb、铋Bi 五种元素,又称为氮族元素; ? 氮与磷就是非金属元素,砷与锑就是准金属,铋就是金属元素; 氮族元素价电子构型: ns2 np3; 氮族元素所形成得化合物主要就是共价型得,原子越小形成共价键得趋势越大。 图14-1 氮族元素在周期表中得位置 表14-1 氮族元素得一般性质

14、1、2 氮族元素得单质 ??? ?? 图14-2 氮族元素得单质 1、存在 氮族元素中除磷在地壳中含量较多外,其它各元素含量均较少。 氮主要以单质存在于大气中,天然存在得氮得无机化合物较少。 磷较容易氧化,在自然界中不存在单质。它主要以磷酸盐得形式分布在地壳中。 ? 砷、锑与铋主要以硫化物矿得形式存在,如雄黄:As4 S4。 雌黄(As2S3 )辉锑矿(Sb2S3 ) 雄黄(As4S4) 图14-3 氮族元素得存在 2、性质 除氮气外,其它氮族元素得单质都比较活泼。化学性质列于上表中。 表14-2 氮族元素得化学性质

3、N2 N2分子得分子轨道表达式为: N2[(σ1s)2(σ1s*)2(σ2s)2(σ2s*)2(π2py,π2pz)4(σ2px)2] 氮气就是无色、无臭、无味得气体。沸点为-195、8°C。微溶于水。 强得N≡N键(944kJ/mol),常温下化学性质极不活泼,故N2常常作为惰性气体使用。 4、磷得同素异形体 图14-4 白磷与红磷 (1)白磷得结构 白磷得结构 由P4分子通过分子间力堆积起来,每个磷原子通过其px,py与pz轨道分别与另外3个磷原子形成3个σ键,键角∠PPP为60°,分子内部具有张力,其结构不稳定。 图14-5 白磷得结构 白磷得性质 白磷P4就是透明得、柔软得蜡状固体,化学性质活泼,空气中自燃,溶于非极性溶剂。

泡沫灭火系统

泡沫灭火系统 (一)系统的分类及使用范围 泡沫灭火系统有多种类型。 1按泡沫发泡倍数可分为: 火灾、如石油、油脂物火灾,也可用于扑救木材等一般可燃固体的火灾。 氟蛋白泡沫液中含有一定量的氟碳表面活性剂,因此其灭火效率较蛋白泡沫液高,它的应用范围与蛋白泡沫液相同,显著特点是可以用液下喷射方式扑救大型储油罐等场所的火灾。 水成膜泡沫灭火剂是由氟碳表面活性剂、碳氢表面活性剂和添加剂及水组

成。灭火时,泡沫和水膜有双重灭火作用,因此优于普遍蛋白泡沫和氟蛋白泡沫液,能迅速地控制火灾的蔓延。 由于水溶性可燃液体如乙醇、甲醇、丙酮、醋酸乙脂等的分子极性较强,对一般灭火泡沫有破坏作用,一般泡沫灭火剂无法对其起作用,应采用抗溶性泡沫灭火剂。抗溶性泡沫灭火剂对水溶性可燃、易燃液体有较好的稳定性,可以抵抗水 用量和水的用量仅为低倍数泡沫灭火用量的1/20,水渍损失小,灭火效率高,灭火后泡沫易于清除。 高倍泡沫灭火系统一般可设置在固体物资仓库、易燃液体仓库、有贵重仪器设备和物品的建筑、地下建筑工程、有火灾危险的工业厂房等。但不能用于扑救立式油罐内的火灾、未封闭的带电设备及在无空气的环境中仍能迅速氧化的强氧化

剂和化学物质的火灾(如硝化纤维、炸药等)。 2按设备安装使用方式可分为: (1)固定式泡沫灭火系统 固定式泡沫灭火系统由固定的泡沫液消防泵、泡沫液贮罐、比例混合器、泡沫混合液的输送管道及泡沫产生装置等组成,并与给水系统连成一体。当发生火 火系统不适用于水溶性甲、乙、丙液体固定顶储罐的灭火。 (2)半固定式泡沫灭火系统 该系统有一部分设备为固定式,可及时启动,另一部分是不固定的,发生火灾时,进入现场与固定设备组成灭火系统灭火。根据固定安装的设备不同,有两种形式:一种为设有固定的泡沫产生装置,泡沫混合液管道、阀门、固定泵站。当

p区元素(二)习题总结

第14章P区元素(二)习题目录 一判断题 1 氧族元素中,只有氧在自然界可以单质状态存在。() 2 在所有含氧的化合物中,氧的氧化值都是负的。() 3 氧族元素氢化物还原性强弱的次序为H2OH2S>H2Se>H3Te。() 8 O3是反磁性的极性分子。() 9 硫的含氧酸及其盐都是不稳定的,极易分解。() 10 浓硫酸不能用于干燥氨气。() 11 可用浓硫酸干燥CO2气体。() 12 H2S在空气中燃烧的产物只能是SO2和H2O。() 13 可用FeS与HNO3反应制取H2S。() 14 SO2是大气的主要污染源之一,酸雨主要是由SO2形成的。() 15 浓硫酸虽有强氧化性,但仍可用铁罐运输。() 16 浓硫酸属于高沸点酸。() 17 将H2S通入MnSO4溶液中,可得到MnS沉淀。() 18 H2S溶液放置一段时间变混浊,是因为H2S被空气氧化生成S沉淀。() 19 用Na2S溶液与含Cr3+的溶液反应,得不到Cr2S3,若想制得Cr2S3必须采用干法。106 用Na2S溶液与含Al3+的溶液反应,可得到Al2S3。() 20 硫代硫酸钠的俗名是大苏打。() 21 海波的化学式为Na2S2O3·5H2O。() 22 在照像行业中Na2S2O3作为定影剂使用是基于它具有还原性。() 23 在酸性溶液中,KMnO4只能将H2S氧化为单质硫。() 24 氢氟酸能腐蚀玻璃,故需要用塑料瓶保存。() 25 在氢卤酸中,由于氟的非金属性强,所以氢氟酸的酸性最强。() 26 所有卤素元素都有正的氧化值。() 27 在卤素与氧的化合物中,每种卤素都有多种正氧化值。() 28 卤化氢沸点高低的次序为HFHCl>HBr.>HI。() 30 卤化氢还原性强弱的次序为HFHBr.>HI>HF。() 32卤素单质在水中都可以发生歧化反应。() 33 卤素单质在酸性介质中更容易发生歧化反应。() 34 除HF外,可用卤化物与浓硫酸反应制取卤化氢。() 35 卤素单质水解反应进行的程度由Cl2到I2依次减弱。() 36 HClO4是最强的无机酸。() 37 氯的含氧酸酸性强弱次序为HClO

操作手册产品使用说明

JBKL型燃烧器PVC全自动 操作手册 大庆国科盛鑫节能环保设备制造有限公司 前言 我国是全世界自然资源浪费最严重的国家之一,在59个接受调查的国家中排名第56位。另据统计,中国的能源使用效率仅为美国的26.9%,日本的11.5%。为此,近年来我国推行了多项节能减排政策措施。目前,为了实现“十一五”规划中确定的单位GDP能耗降低20%的目标、主要污染物排放总量减少10%的约束性指标,国务院发布了继续加强节能工作的决定,节能减排工作迫在眉睫。 在举国重视节能减排工作的大形势下,我公司自主创新,目前已经自主研发9项国家专利技术,全部是节能减排燃油燃气燃烧器技术。我公司发展势头强劲,不断创新探索,为全国节能减排事业做出自己应有的责任。 我公司研发节能减排燃烧器过程中发现,目前小型取暖锅炉普遍使用的国内外燃烧器采用的程序控制工艺是:锅炉出口水温度到达给定值上限后,电磁阀关闭,炉灭火。锅炉出口水温度降到下限时锅炉重新启动,送风机进行3-5分钟炉膛扫线,这时大量冷风进入炉膛里,把炉膛温度大幅降下来,扫完炉膛后,重新喷燃气点火升温,这样消耗燃气量增加。因此我公司燃烧器程序控制是采用自动调节阀来控制燃气喷大小量,锅炉出口水

温平稳,安全运行,提高节能减排数据。 JBKL型燃气燃烧器的设计说明 JBKL型燃烧器主要是针对目前燃气燃烧器喷咀存在的问题而设计的。存在的问题是: 1、目前国内外使用的燃气喷咀是直线喷燃气方式,国际上燃烧器技术较发达的意大利、法国、德国等国家的相关技术也是直线喷燃气方式。燃气是靠自身压力通过燃气喷咀直线喷入炉膛里的,燃气压力而产生的冲力使燃气与空气在推进的一段距离内不容易混合好,因此燃气在逐步扩散中与空气边混合边燃烧,这样炉膛内的火型长,高温度热量停留在炉膛内的受热时间短,使排烟温度升高,导致热效率降低。当加负荷增加燃气压力时冲力增大,烟气在炉膛内的流速加快,排烟温度迅速升高,热效率更低。 2、目前油田加热炉、炼油厂加热炉使用的配风器都是配直流风方式,直流风和燃气混合时出现各走各的现象,完全燃烧所需要的时间长,需要大量的配风才能满足燃烧,在运行时高温度烟气向前的推动力很大,当加负荷加大配风量时,推动力更大,这是加热炉热效率低的重要因素。 针对这样的问题,我们紧紧抓住安全运行、稳定燃烧、快速完全燃烧、配备最佳空气、控制最佳烟气流速和提高炉热效率的关键因素,对锅炉燃烧器相关的结构和部位进行研究和开发,并采取了以下几点措施: 1、燃气压力设计在燃气喷枪管内,运行时燃气冲力产生真空度,利用这个动力把空气吸进来,燃气和空气提前有效地混合,缩短了燃烧的过程和时间,喷出的混合气体立即迅速燃烧,高温度的能量停留在炉膛内的时间长,排烟温度低,提高热效率。

油库固定泡沫灭火系统的常见问题及维护措施(2020年)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 油库固定泡沫灭火系统的常见 问题及维护措施(2020年) Safety management is an important part of production management. Safety and production are in the implementation process

油库固定泡沫灭火系统的常见问题及维护 措施(2020年) 油库固定泡沫灭火系统是油库的重要设施,也是油库在发生火灾事故时的最后一道防线,作为“养兵千日,用兵一时”的设备,确保油库灭火系统的可靠是油库管理的重要任务之一。据了解,在油库固定泡沫灭火系统的检查维护中还存在一些不可忽视的问题,应引起注意。 一、存在的问题 1.消防泡沫泵站是油库固定消防的重要设备,是固定消防系统的心脏,在检查维护中存在不到位的问题。重使用轻维护保养,没能按规定时间保养发动机和泵浦,没有按规定运行时间更换机油和过滤器;操作人员专业技术素质低,发生故障不知如何处理,更谈不上检查维护。据对5个油库的了解,其中就有4个油库的固定消防

泵站操作人员没有经过专业培训,采用临时顶班。 2.泡沫比例混合器存在的问题:转动不灵活;调节球阀孔堵塞;比例混合器指示标牌松动,不是出厂时的位置;在保养涂漆时将指示读数盘涂漆看不清指示的读数;在使用后没有用清水将混合器吸管道冲洗干净,存在混合器腐蚀和堵塞现象。 3.泡沫液储罐存在的问题:一是内壁锈蚀严重,产生锈蚀堵塞吸液管;二是购回的泡沫液往储罐中倒时(或泵打时),没有在罐口上加过滤网,将杂质一同倒入泡沫液储罐;三是个别单位的泡沫液储罐上没有设置液位计和取样口,影响正常使用;四是储罐没有标出泡沫液的类型、混合比、生产厂名及购进泡沫液的日期,难以判别泡沫液的有效日期;五是在打扫卫生或冲洗时,将其他杂质和水混入泡沫液储罐内,影响泡沫液的质量。 4.泡沫产生器(液上喷射泡沫产生器)存在的问题:一是没有定期检查密封玻璃片;二是玻璃片破碎没有及时更换,以致储罐(浮顶油罐例外)内油蒸气向外泄漏,存在隐患;三是泡沫产生器滤网没有定期清除杂物,难以保证空气通道畅通,一旦使用,泡沫发泡倍数

泡沫灭火系统组件及设置要求

第一章泡沫灭火系统组件及设置要求泡沫灭火系统一般由泡沫液、泡沫消防水泵、泡沫混合液泵、泡沫液泵、泡沫比例混合器装置、压力容器、泡沫产生装置、火灾探测与启动控制装置、控制阀门及管道及其它附件组成。系统组件必须经国家级产品质量监督检验机构检验合格,并且必须符合设计用途。 一、泡沫消防泵 (一)泡沫消防水泵、泡沫混合液泵的选择与设置要求 泡沫消防水泵、泡沫混合液泵应选择特性曲线平缓的离心泵,且其工作压力和流量应满足系统设计要求;当采用水力驱动平衡式比例混合装置时,应将其消耗的水流量计入泡沫消防水泵的额定流量;当采用环泵式比例混合器时,泡沫混合液泵的额定流量应为系统设计流量的1.1倍;泵进口管道上,应设置真空压力表或真空表;泵出口管道上,应设置压力表、单向阀和带控制阀的回流管。 (二)泡沫液泵的选择与设置要求 泡沫液泵的工作压力和流量应满足系统最大设计要求,并应与所选比例混合装置的工作压力围和流量围相匹配,同时应保证在设计流量下泡沫液供给压力大于最大水压力;泡沫液泵的结构形式、密封或填充类型应适宜输送所选的泡沫液,其材料应耐泡沫液腐蚀且不影响泡沫液的性能;除水力驱动型泵外,泡沫液泵应按《泡沫灭火系统设计规》(GB50151-2010)对泡沫消防泵的相关规定设置动力源和备用泵,备用泵的规格型号应与工作泵相同,工作泵故障时应能自动与手动切换到备用泵;泡沫液泵应耐受时长不低于10min 的空载运行。 二、泡沫比例混合器 泡沫比例混合器是一种使水与泡沫原液按规定比例混合成的混合液,以供泡沫产生设备发泡的装置。我国目前生产的泡沫比例混合器有环泵式泡沫比例混合器、压力式泡沫比例混合器、平衡压力泡沫比例混合器、管线式泡沫比例混合器。 (一)环泵式泡沫比例混合器 环泵式泡沫比例混合器固定安装在泡沫消防泵的旁路上,其混合流程如图3-7-7所示。环泵式泡沫比例混合器的限制条件较多,设计难度较大,达到混合比时间较长。但其结构简单、工程造价低且配套的泡沫液储罐为常压储罐,便于操作、维护、检修、试验。

泡沫灭火系统

泡沫灭火系统 泡沫灭火系统是指普通空气机械泡沫灭火系统。是当今扑救甲(液化烃除外)、乙、丙类液体火灾和一般固体物质火灾,普遍使用的灭火系统。主要适用于提炼、加工生产甲、乙、丙类液体的炼油厂、化工厂、油田、油库,为铁路油槽车装卸油品的鹤管栈桥、码头、飞机库、机场及燃油锅炉房、大型汽车库等。在火灾危险性大的甲、乙、丙类液体储罐区和其它危险场所,灭火优越性非常明显,实践证明,该系统具有安全性高、经济实用、灭火效率高等优点。 泡沫液的灭火作用主要体现在以下几个方面: 1、在燃烧物表面形成泡沫覆盖层,使燃烧物的表面与空气隔绝,同时泡沫受热蒸发产生的水蒸气可以降低燃烧物附近氧气的浓度,起到窒息灭火作用。 2、泡沫层能阻止燃烧区的热量作用于燃烧物质的表面,因此可防止可燃物本身和附近可燃物质的蒸发。 3、泡沫析出的水对燃烧物表面进行冷却。 液体火灾必须选用抗溶性泡沫液。扑救水溶性液体火灾只能采用液上喷射泡沫,不能采用液下喷射泡沫。对于非溶性液体火灾,当采用液上喷射泡沫灭火时,选用普通蛋白泡沫液,氟蛋白泡沫液或水成膜泡沫液均可。对于非水溶性液体火灾,当采用液下喷射泡沫灭火时,必须选用氟蛋白泡沫液或水成膜泡沫液。泡沫液的储存温度应为0℃~40℃.图3-32是泡沫灭火系统灭火过程图。

灭 一、系统的主要组件 泡沫灭火系统由水源、泡沫消防泵、泡沫液储罐、泡沫比例混合器、泡沫产生器、阀门、管道及其它附件组成。 (一)泡沫消防泵 泡沫消防泵即能把泡沫以一定的压力输出的消防火泵,泡沫消防泵宜选用特性曲线平缓的离心泵,以保证流量的可变性和扬程的不变性。泡沫消防泵宜为自灌式引水。但采用自灌式引水时,蓄水池的水面不得高于水泵轴线5m,否则环泵式负压比例混合器不能正常工作。 1、水源要求 泡沫灭火系统必须采用自来水或干净的天然水源。

外卖产品操作流程及标准 (1)

百度外卖产品操作操作流程 接单: 1:平台会提前一小时下单,(前期是电话下单,后期会接入点餐系统)门店在接单后制作产品,对产品按计量包装好后放入制定位置,平台骑手会在规定的时间进行取餐 2:后厨在接单后15分钟内必须出完所有产品,打包好后装入食品袋放入门店指定的位置。 产品范围: 6种锅底:菌王糊辣鸳鸯锅、菌王柠檬鸳鸯锅、菌王酸汤鸳鸯锅、菌王鲜辣鸳鸯锅、菌王养颜木瓜鸳鸯锅、菌王滋补鸳鸯锅、菜单上除果汁与果酒所有产品。产品标准: 菌王糊辣鸳鸯锅 1:配制好的成品菌汤,包装规格900克/袋,(含香菇片,鸡油,配制标准同现有的菌汤标准) 2:糊辣底料一袋,包装规格900克/袋(含配糊辣锅的辅料,如子弹头,灯笼椒,醪糟,冰糖等,搅拌均匀装袋,标准和现有的标准一样)

菌王柠檬鸳鸯锅 1:配制好的成品菌汤,包装规格900克/袋,(含香菇片,鸡油,配制标准同现有的菌汤标准) 2:柠檬底料一袋,包装规格900克/袋,(含香茅草、柠檬叶、鲜红小米辣、搅拌均匀装袋、配制标准同现有的柠檬锅底标准) 菌王酸汤鸳鸯锅 1:配制好的成品菌汤,包装规格900克/袋,(含香菇片,鸡油,配制标准同现有的菌汤标准) 2:配制成品酸汤900克(含香茅草、木姜子油、番茄片、香菜段,搅拌均匀装袋、配制标准同现有的酸汤锅底标准) 菌王鲜辣鸳鸯锅 1:配制好的成品菌汤,包装规格900克/袋,(含香菇片,鸡油,配制标准同

现有的菌汤标准) 2:鲜辣底料一袋,包装规格900克/袋(含鲜辣底料,高汤,泡小米辣,姜片,大葱,搅拌均匀装袋、标准和现有的鲜辣锅底标准一样) 菌王金汤鸳鸯锅 1:配制好的成品菌汤包装规格900克/袋,(含香菇片,鸡油,配制标准同现有的菌汤标准) 2:金汤锅底一袋,包装规格900克/袋(含,金汤底料,木瓜,枸杞,党参,当归,大枣,搅拌均匀装袋,标准和现有的金汤锅底标准一样) 菌王滋补鸳鸯锅 1:配制好的成品菌汤,包装规格900克/袋,(含香菇片,鸡油,配制标准同现有的菌汤标准) 2:配制好的成品滋补汤,包装规格900克/袋,(姜片,大枣,枸杞,鸡油,配制标准同现有的滋补锅标准一样) 打包器皿:

灌区泡沫灭火系统设计

第4章罐区泡沫灭火系统设计 泡沫灭火系统主要由消防水泵、泡沫灭火剂储存装置、泡沫比例混合装置、泡沫产生装置及管道等组成。泡沫灭火系统的实质也是一种水消防设施,它是将水与泡沫液按要求的比例混合,然后吸入空气产生泡沫,利用泡沫覆盖燃烧物或将保护对象淹没实现灭火。 4.1 泡沫系统形式及组成 4.1.1 低倍数泡沫灭火系统 泡沫体积与其混合液体积之比称为泡沫的倍数,按照系统产生泡沫的倍数不同,泡沫系统分为低倍数泡沫灭火系统、中倍数泡沫灭火系统、高倍数泡沫灭火系统。低倍泡沫系统被广泛用于生产、加工、储存、运输和使用甲、乙、丙类液体的场所,并早已成为甲、乙、丙类液体储罐区及石油化工装置区等场所的消防主力军。 低倍数泡沫是指泡沫混合液吸入空气后,体积膨胀小于20倍的泡沫。低倍数泡沫灭火系统主要用于扑救原油、汽油、煤油、柴油、甲醇、丙酮等B类的火灾,适用于炼油厂、化工厂、油田、油库、为铁路油槽车装卸油的鹤管栈桥、码头、飞机库、机场等。一般民用建筑泡沫消防系统等常采用低倍数泡沫消防系统。低倍数泡沫液有普通蛋白泡沫液,氟蛋白泡沫液,水成膜泡沫液(轻水泡沫液),成膜氟蛋白泡沫液及抗溶性泡沫液等几种类型。本设计选用普通蛋白泡沫液,原料易得,生产工艺简单、成本低,泡沫稳定性及抗烧性好。 4.1.2 固定式泡沫灭火系统 GB50151-92《低倍数泡沫灭火系统设计规范》第2.2.2中规定甲、乙、丙类液体的外浮顶储罐和内浮顶储罐应选用液上喷射泡沫灭火系统。液上喷射泡沫系统是指将泡沫从燃烧液体上方施加到燃烧液体表面上实现灭火的泡沫系统。它有固定式、半固定式、移动式三种,它适用于固定顶储罐、外浮顶储罐、内浮顶储罐。 曾国保的《石油库固定泡沫灭火系统设计要点》中曾提到:总容量在500m3以上的石油库油罐区均应设置固定泡沫灭火系统。固定式泡沫灭火系统由固定的泡沫液消防泵、泡沫液贮罐、比例混合器、泡沫混合液的输送管道及泡沫产生装

泡沫灭火系统必须掌握知识点(一)

泡沫灭火系统必须掌握知识点(一) 前几篇文章,小编带大家一起学习梳理了火灾自动报警系统方面的必背知识点,希望之前学习的考友多温故知新。从今天开始,我们开始学习泡沫灭火系统方面的知识点。 1.泡沫灭火系统的灭火机理:隔氧窒息、辐射热阻隔、吸热冷却。 2.泡沫系统按喷射方式分为:液上喷射系统、液下喷射系统、半液下喷射系统。(经常考查三者的概念题,一定要区分) 3.系统按结构分为:固定式系统、半固定式系统、移动式系统。 4.按发泡倍数分为:低倍数泡沫灭火系统(发泡倍数小于20)、中倍数泡沫灭火系统(发泡倍数为20-200)、高倍数泡沫灭火系统(发泡倍数大于200)。 5.泡沫液的选择应遵循下列要求: (1)水溶性甲乙丙类液体和其他对普通泡沫有破坏作用的甲乙丙类液体,以及用一套系统同时保护水溶性和非水溶性甲乙丙类液体的,必须选用抗溶泡沫液(每年必考查内容)。 (2)非水溶性甲乙丙类液体储罐低倍数泡沫液的选择,应符合下列规定:

1)当采用液上喷射系统时,应选用蛋白、氟蛋白、成膜氟蛋白或水成膜泡沫液; 2)当采用液下喷射系统时,应选用氟蛋白、成膜氟蛋白或水成膜泡沫液(注意:不能用蛋白泡沫液!)。(3)保护非水溶性液体的泡沫-水喷淋系统、泡沫枪系统、泡沫炮系统泡沫液的选择,应遵循下列要求:1)当采用吸气型泡沫产生装置时,应选用蛋白、氟蛋白、成膜氟蛋白或水成膜泡沫液; 2)当采用非吸气型泡沫产生装置时,应选用水成膜或成膜氟蛋白泡沫液。 备注:一定要区分以上泡沫液的适用范围,学到此应在心中记住蛋白、氟蛋白、水成膜、成膜氟蛋白这些名词。 6.低倍数泡沫灭火系统选择基本要求: (1)低倍数泡沫灭火系统适用于甲乙丙类液体储罐区(广泛应用于石化炼油企业的油品储罐)。 (2)低倍数泡沫灭火系统的设置要求: 1)非水溶性甲乙丙类液体固定顶储罐,应选用液上喷射、液下喷射或半液下喷射泡沫系统; 2)水溶性甲乙丙类液体和其他对普通泡沫有破坏作用的甲乙丙类液体的固定顶储罐,应选用液上喷射或半液下喷射泡沫系统。 3)外浮顶和内浮顶储罐应选用液上喷射泡沫系统(简言之:浮顶罐必须采用液上喷射泡沫系统)。

产品部产品上线操作流程及规范

产品部产品上线操作流程及规范 一、编写本流程和规范目的 为提升平台的整体形象以及消费者的用户体验,提升平台竞争力,便于产品部对产品上架操作的规范化、正规化,明晰与供应商的合作流程及规范,特制定此流程及规范。 二、本标准的适用范围 本流程及规范适用于产品部在主动选择或筛选供应商提供的产品是否符合平台要求,以及产品部在与意向供应商接洽时的具体操作内容方面。在产品的初选、评估到最后上线均适用与本流程及规范。 三、术语与定义(无) 四、招商工作中的内容与规定 1.招商工作流程

2.在平台上线产品必须为平台可经营的产品 平台可经营种类为:农副产品、水果、预包装食品、进口酒类、国产酒类、非酒精饮料及茶叶、电子产品、日用百货的销售、礼品鲜花、小饰物、小礼品。平台销售的产品主要为农副产品、水果、预包装食品及中高端生活类用品。尤其以绿色生态农产品及其加工制品为主要发展方向。 3.供应商资质必须符合平台的标准 主体:与四翁合作主体必须为国家法律承认的企业法人或其自然人代表。生产企业名优企业优先。 资质:与四翁合作主体需向四翁提交营业执照、税务登记证(地税、国税)、商标注册证、组织机构代码证及其它必须的相关许可。 产品:产品有较强的市场卖点及售价优势,适合于互联网销售及物流运输。并提供产品的宣传图样若干,及产品详细信息(类似于淘宝及京东商城样式)。 五、职责与权限 1.商品上线前供应商需提供的资料及其他相关事宜 1.1 供应商需提供给平台需上线的产品图片,具体要求如下:600*600Px 主图1-3张(高清无码,无不相关水印、logo),产品详情图3-6张(无不相关水印、logo,宽与高500px*1500px,像素达到72的宝贝描述详情图),必须与所销售产品实物相吻合且附带产品介绍的文字资料。所有图片必须为高清图片,创意艺术拍摄并精修,图片明亮美观,能激起顾客的购买欲望,手机拍摄像、未处理照片不予采纳。 1.2 产品详情图中需包含产品的产地、主要成分、产品规格、产品保质期、使用说明及禁忌。图片清晰美观,布局合理。 1.3 为保证平台的美观及整体档次,平台有权利对产品形象不合格的产品予以下架或不上架处理。供应商无法提供合格图片的,可委托平台协助拍摄处理产品图片,费用由供应商承担。 1.4 产品包装符合物流运输要求,安全性强,稳定性高,避免运输过程中发生损坏。 1.5 产品上架前,供货商需向平台提供不少于2个购买单位的商品体验装,以便于平台了解体验此产品。体验装必须与供货商所提供给平台销售的

泡沫灭火系统产品使用说明书

泡沫灭火系统产品 使 用 说 明 书

压力式泡沫比例混合装置 压力式泡沫比例混合装置由泡沫液压力储罐和泡沫比例混合器两部分组成,是贮存泡沫液并将泡沫液和水按一定比例混合的设备。 一、特点 1.系统不需要单独配置泡沫液泵,可直接借用消防压力水驱动泡沫液,节约了设备成本。 2.混合比准确、稳定,能确保泡沫灭火最佳的混合比例,使灭火迅速可靠。 3.压力损失小,能确保系统末端泡沫产生设备所需压力。 4.泡沫液与水通过胶囊隔离,泡沫液不会因为一次使用而失效。便于使用、调试和日常试验。 5.操作维护方便,占地面积小,可用于自动控制。 6.有多种容量泡沫液储罐和不同流量比例混合器配用,可满足多种泡沫产生设备需求。 7.可广泛用于低、中、高倍数泡沫灭火系统。 二、技术参数 1.产品型号 主参数:分母表示储罐立方容积的10倍值 分子表示泡沫混合液流量L/s 征: L表示立式泡沫罐 无字母表示卧式泡沫罐

2.性能参数 当消防压力水流经该设备时,比例混合器将其按比例分流,其中一小部分水进入带胶囊的泡沫液储罐夹层,挤压胶囊,置换出等体积的泡沫液与其余主管道的消防水混合为一定比例的泡沫混合液,并输送给泡沫产生设备。 四、产品选型 ●根据相关泡沫灭火系统设计规范确定所需的泡沫产生及喷射设备的数量,混合液流量及泡沫喷射时间等参数; ●根据混合液流量选择比例混合器型号; ●根据泡沫液喷射时间及混合比计算储液罐容积。 ●PHYML系列压力式泡沫比例混合装置与PHYM系列压力式泡沫比例混合装置的区别主要在于采用了立式泡沫液储罐。对于相同泡沫液储量的泡沫比例混合装置,PHYML系列节省地面空间,以方便用户选用。

10.-浅析油库泡沫灭火系统存在的问题及改进措施

浅析油库消防灭火系统存在的 问题及改进措施 摘要:油库消防灭火系统主要由消防报警系统、消防水冷却系统和泡沫灭火系统等组成。油库消防灭火系统是控制和扑灭油库火灾的必要前提,如何使消防灭火系统正常运行对于油库的安全生产保障至关重要。本文主要结合仓储一分公司33万方油库的消防灭火系统的日常运行情况,对系统存在的问题予以简单分析讨论。 关键字:油库消防灭火系统消防水冷却系统泡沫灭火系统 1 油库消防灭火系统简介 公司现有消防水冷却系统、泡沫灭火系统和干粉灭火系统等固定消防灭后系统,其中油库设有水冷却灭火系统和泡沫灭火系统,这里的水冷却系统包括消火栓、消防炮、水幕和储罐喷淋系统。泡沫灭火系统主要由泡沫消防泵、泡沫液储罐、泡沫比例混合装置、泡沫产生装置、控制阀门及管道等组成。 消防泵房和消防水源集中设置,主要为码头、油库、装车区等区域提供冷却水和泡沫水。两个独立水池和水罐作为专用消防水源,储水量达26000方。消防泵房共有消防水泵组8台、泡沫水泵2台、稳压泵4台,单泵流量180-200L/s。 除仓一库区、装车区的冷却水主管线和泡沫水主管线分开设置外,其他区域均合用给水主管线。各区域一般有两条主管线作为给水主管线,给水管网入库后成环状布置。消火栓系统、消防炮系统和储罐喷淋系统等水冷却系统均共用给水管道。泡沫灭火系统包括消火栓和储罐泡沫系统,所有储罐泡沫系统均为液上固定式。 图1 消防给水系统平面示意图 2 消防灭火系统存在问题

随着公司发展规划,新建库区陆续投产,消防管网敷设范围不断增大,管路也会更加复杂。由于实际工况和环境的变化,以及日常超压使用和维护保养不到位等原因,油库消防灭火系统运行至今必然存在一些问题。现总结实际运行中暴露出来的不足,主要集中在以下几点: 2.1日常管线压力维持困难 根据安全生产需要和相关规范要求,消防给水管网应处于注满水且带压的状态。因此,就要对消防给水管网注水保压。由于各生产区域的消防给水管网相互串并联,整个消防给水管网上阀门、法兰等附件和消火栓、消防炮等设施较多。而且除码头外,其他所有区域的消防给水主管道均埋地敷设。 当发现管网压力异常时,同时又不能确定某个区域内出现问题,那么为了及时查找原因,就有可能需要做大量排查工作,常常需要跨部门、跨区域寻找可能存在的漏点。如果地下管网出现漏点,是很难发现和确定位置的。 另外,对消防设施或阀门进行维修前,一般需要将管线消防水放空。这样就会影响其他管网的正常保压,若关闭入库总阀又不利于消防系统的应急使用。(总阀为手动闸板阀,手动开启耗时较长,带压后更难开启。) 2.2各区域给水管线工作压力难以控制 消防泵房内所有消防泵均由柴油机组驱动,出厂设置只有低速和高速两种运转模式。一般情况下,一台消防水泵低速运转时管线压力在0.3-0.4MPa左右,高速运转时管线压力可高达1.9-2.0MPa。 若启用最不利点处消防灭火系统,为了使最不利点处压力和流量达到要求,就会启动多台消防水泵,必然提高整个管网的给水压力。这样虽然满足了最不利点处的使用要求,但离消防泵房较近区域的给水管线会超压,从而出现消火栓、消防炮和罐体喷淋漏水现象,甚至直接导致消防设施的损毁。这样不但会增加了日常检查、保压、维修等人工和经济成本,而且影响整个消防灭火系统的可靠性。 2.3冬季管线放水防冻质量不易保证 如未采取任何保温防冻措施,为防止地上管线、阀门、消火栓和消防炮等消防设施在寒冬冻坏,必须将给水管网内地上消防水进行放空。但各区域要求不同,比如码头要求必须全天候对消防管线维持压力,而码头与库区消防给水管网相连。如果存在某些阀门关闭不严、正常或非正常开阀等因素,可能会导致高压管线向低压

泡沫灭火系统的组成和分类

泡沫灭火系统的组成和分类

————————————————————————————————作者:————————————————————————————————日期:

第一章泡沫灭火系统的组成和分类泡沫灭火系统由于其保护对象(储存或生产使用的甲、乙、丙类液体)的特性或储罐形式的特殊要求,其分类有多种形式,但其系统组成大致是相同的。??一、系统的组成 泡沫灭火系统一般由泡沫液储罐、泡沫消防泵、泡沫比例混合器(装置)、泡沫产生装置、火灾探测与启动控制装置、控制阀门及管道等系统组件组成。??二、系统的分类? (一)按喷射方式分为液上喷射、液下喷射、半液下喷射 1.液上喷射系统 液上喷射系统是指泡沫从液面上喷入被保护储罐内的灭火系统(图3-7-2、图3-7-3)。与液下喷射灭火系统相比较,这种系统泡沫不易受油的污染、可以使用廉价的普通蛋白泡沫等优点。它有固定式、半固定式、移动式三种应用形式。

2.液下喷射系统 液下喷射系统是指泡沫从液面下喷入被保护储罐内的灭火系统。泡沫在注入液体燃烧层下部之后,上升至液体表面并扩散开,形成一个泡沫层的灭火系统,如图3-7-4、图3-7-5所示。该系统通常设计为固定式和半固定式。

3.半液下喷射系统?半液下喷射系统是指泡沫从储罐底部注入,并通过软管浮升到液体燃料表面进行灭火的泡沫灭火系统,如图3-7-6所示。 ? (二)按系统结构分为固定式、半固定式和移动式? 1.固定式系统 固定式系统是指由固定的泡沫消防水泵或泡沫混合液泵、泡沫比例混合器(装置)、泡沫产生器(或喷头)和管道等组成的灭火系统。

2.半固定式系统 半固定式系统是指由固定的泡沫产生器与部分连接管道,泡沫消防车或机动泵,用水带连接组成的灭火系统。 3.移动式系统 移动式系统是指由消防车、机动消防泵或有水压源、泡沫比例混合器、泡沫枪、或移动式泡沫产生器,用水带等连接组成的灭火系统。 (三)按发泡倍数分为低倍数泡沫灭火系统、中倍数泡沫灭火系统、高倍数泡沫灭火系统?1.低倍数泡沫灭火系统?低倍数泡沫灭火系统是指发泡倍数小于20的泡沫灭火系统。该系统是甲、乙、丙类液体储罐及石油化工装置区等场所的首选灭火系统。? 2.中倍数泡沫灭火系统?中倍数泡沫灭火系统是指发泡倍数为20~200的泡沫灭火系统。中倍数泡沫灭火系统在实际工程中应用较少,且多用作辅助灭火设施。 3.高倍数泡沫灭火系统?高倍数泡沫灭火系统是指发泡倍数为大于200的泡沫灭火系统。?(四)按系统形式分为全淹没系统、局部应用系统、移动系统、泡沫-水喷淋系统和泡沫喷雾系统 1.全淹没系统 由固定式泡沫产生器将泡沫喷放到封闭或被围挡的保护区内,并在规定时间内达到一定泡沫淹没深度的灭火系统。?2.局部应用系统 由固定式泡沫产生器直接或通过导泡筒将泡沫喷放到火灾部位的灭火系统。? 3.移动系统?移动系统是指车载式或便携式系统,移动式高倍数灭火系统可作为固定系统的辅助设施,也可作为独立系统用于某些场所。移动式中倍数泡沫灭火系统适用于发生火灾部位难以接近的较小火灾场所、流淌面积不超过100㎡的液体流淌火灾场所。 4.泡沫-水喷淋系统?由喷头、报警阀组、水流报警装置(水流指示器或压力

灌封胶产品操作指南

灌封胶产品操作指南 一.灌封前的准备: 工具:搅拌棒(筷子),塑料杯,电子称 分别打开A,B两个容器, 1.首先,检查A胶底部有无沉淀,如有沉淀,必须先将沉淀搅拌起来,直到搅拌均匀为止。 2.同样方法,检查B胶 3.塑料杯放置于电子称上,电子称去皮清零。 4.将搅拌好了的A胶,直接倒入塑料杯中(根据用量要求取用,单次混合不低于50克) 5.根据A胶用量,取出一定比例的B胶(按照说明书中的比例),倒入塑料杯中。 6.用搅拌棒(筷子)顺着一个方向,充分搅拌塑料杯中的胶水(这一步很重要!必须充分搅拌均匀,杯壁要刮到)。如果一次混合100克以内的话,时间一般在3分钟左右,混合量大的话,时间适当延长。 7.将混合好的胶水,静置5分钟左右(目的是排泡),再灌封到产品中。 二.灌封产品 工具:混合好胶的杯子,需要灌封的产品。 操作步骤: 1.检查需要灌封的产品是否有灰尘,助焊剂,松香,油污等残留物,如发现残留物,必须用洗板水或酒精清洗干净,晾干。 2.灌封的产品,底部或者边缘不能有缝隙,否则可能发生胶液渗漏。如有缝隙,可以预先用硅橡胶填缝堵漏。 3.将装有胶水的杯子慢慢倾倒(不要一股脑倒下),顺着一个点,流满产品周围。 4.根据产品要求,选择灌封厚度。 三.固化产品 根据产品要求,可以选择常温固化或者热固化。 1.常温固化:室温干燥环境中静置即可,无需做任何处理。 2.热固化,直接将产品置于恒温箱中,加热处理。 四.注意事项: 1.环氧树脂灌封胶在固化的过程中会放热,混合量越大,放热越大,固化时间相应也会缩短。

2.加成型灌封硅胶,对于含有磷,硫,胺等化学物质的材料,接触到的地方,会产生“中毒”(不凝固)的情况,请一定要注意。 3.单组分硅胶或者缩合型硅胶都不会深层凝固,单组分硅胶,凝固深度不超过3mm,缩合型灌封硅胶,凝固深度不超过8mm。

高中倍数泡沫灭火系统产品说明书(doc4)()

高中倍数泡沫灭火系统产品说明书 一、前言 高倍数、中倍数泡沫灭火系统是继低倍数泡沫灭火系统之后发展起来的新型泡沫灭火装置,具有灭火范围大、渗透性强、水渍损失小、灭火效率高等特点。 本公司是一家集消防产品科研、生产、销售、工程施工为一体的高科技企业。本公司生产的高倍数泡沫、中倍数泡沫发生器全部采用水力驱动式,可在防护区内安装使用。现已广泛地应用于全淹没式高倍数灭火系统,局部应用式高倍数、中倍数灭火系统和移动式高倍数、中倍数灭火系统,其中水力驱动式中倍数泡沫发生器为国际首例。 高倍数、中倍数灭火系统根据国家标准《高倍数、中倍数泡沫灭火系统设计规范》,结合已应用的实例,可适用于以下场所: 1)、固体物资仓库。如电器设备材料库、高架物资仓库、汽车库、纺织品库、橡胶仓库、烟草及纸张仓库、棉花仓库、飞机库、冷藏库等。 2)、易燃液体仓库。如各种油库、苯储存库等。 3)、有火灾危险的工业厂房(或车间)。如石油化工生产车间、飞机发动机试验车间、锅炉房、电缆夹层、油泵房和油码头等。 4)、地下建筑工程。如地下汽车库、地下仓库、地下铁道、人防隧道、地下商场、煤矿矿井、电缆沟和地下液压油泵站等。 5)、各种船舶的机舱、泵舱等处所。 6)、贵重仪器设备和物品。如计算机房、图书档案库、大型通讯机房、贵重仪器设备仓库等。 7)、可燃、易燃液体和液化石油气、液化天然气的流淌火灾。 8)、中倍数泡沫还可用于立式钢制储油罐内火灾。 二、高中倍数灭火系统简介 1、高倍数灭火系统简介 高倍数灭火系统根据防护区的大小和火灾发生的形式可分为全淹没式灭火系

统、局部应用式灭火系统和移动式灭火系统三种类型。 1)、全淹没式灭火系统是一种用管道输送高倍数泡沫液和水,按一定的比例混合后,通过泡沫发生器,连续地将高倍数泡沫按规定的高度充满被保护的区域,并将泡沫保持所需要的时间,进行控火和灭火的固定式灭火系统。该灭火系统特别适用于保护在不同高度上都存在火灾危险的大范围封闭空间和有固定墙或其它围挡施的场所。 全淹没式灭火系统方块,见图1。 图1 全淹没式灭火系统方块图 全淹没式系统由全部或部分下列组件组成:水泵、泡沫液泵、储水设备、泡沫液储罐、比例混合器、压力开关、管道过滤器、控制箱、泡沫发生器、阀门、导泡筒、管道及其附件等。 2)、局部应用式高倍数泡沫灭火系统 局部应用式灭火系统是一种用管道输送高倍数泡沫液和水,按一定比例混合后,将泡沫混合液输送到泡沫发生器,并向局部空间喷放高倍数泡沫的固定式或半固定式灭火系统,该系统特别适用于大范围内的局部封闭空间和大范围内的有局部阻止泡沫流失的围挡设施的场所。 固定设置的局部应用式灭火系统的组件和全淹没式灭火系统相同。 半固定设置的局部应用式灭火系统由全部或部分以下组件组成:泡沫发生器、压力开关、导泡筒、控制箱、管道过滤器、阀门、比例混合器、水罐消防车或泡沫消防车、管道、水带及附件等。 3)、移动式灭火系统 移动式灭火系统的全部组件是可以移动的,可以是车载式也可以是便携式。该灭火系统使用灵活、方便、机动应变性强,适用于发生火灾的部位难以确定的场所。 移动式灭火系统一般由手提式泡沫发生器或车载式泡沫发生器、比例混合器、泡沫液桶、水带、导泡筒、分水器、水罐消防车或手摇机动消防泵等组成。 2、中倍数灭火系统简介 中倍数灭火系统可以分为局部应用式和移动式两种形式。 1)、局部应用式中倍数泡沫灭火系统 局部应用式中倍数泡沫灭火系统又可分为固定式和半固定式两种,可以用来扑救较小封闭空间的A类和B类火灾,也可对易燃液体的溢流火灾或某些有毒液体迅速

重视油库固定泡沫灭火系统的检查维护(最新版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 重视油库固定泡沫灭火系统的检 查维护(最新版)

重视油库固定泡沫灭火系统的检查维护(最 新版) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 重视油库固定泡沫灭火系统的检查维护——引言(一) 油库固定泡沫灭火系统是油库听重要设施,也是油库在发生火灾事故时的最后一道防线,作为“养兵千日,用兵一时”的设备,确保油库灭火系统的可靠是油库管理的重要任务之一。据了解,在油库固定泡沫灭火系统的检查维护中还存在一些不可忽视的问题,应引起注意。 重视油库固定泡沫灭火系统的检查维护——存在的问题(二) 1.消防泡沫泵站是油库固定消防的重要设备,是固定消防系统的心脏,在检查维护中存在不到位的问题。重使用轻维护保养,没能按规定时间保养发动机和泵浦,没有按规定运行时间更换机油和过滤器;操作人员专业技术素质低,发生故障不知如何处理,更谈不上检查维护。据对5个油库的了解,其中就有4个油库的固定消防泵站操作人员没有经过专业培训,采用临时顶班。

相关主题
文本预览
相关文档 最新文档