当前位置:文档之家› 常用对流层区域拟合模型的比较分析

常用对流层区域拟合模型的比较分析

常用对流层区域拟合模型的比较分析
常用对流层区域拟合模型的比较分析

插值与数据拟合模型

第二讲 插值与数据拟合模型 函数插值与曲线拟合都是要根据一组数据构造一个函数作为近似,由于近似的要求不同,二者的数学方法上是完全不同的。而面对一个实际问题,究竟用插值还是拟合,有时容易确定,有时则并不明显。 在数学建模过程中,常常需要确定一个变量依存于另一个或更多的变量的关系,即函数。但实际上确定函数的形式(线性形式、乘法形式、幂指形式或其它形式)时往往没有先验的依据。只能在收集的实际数据的基础上对若干合乎理论的形式进行试验,从中选择一个最能拟合有关数据,即最有可能反映实际问题的函数形式,这就是数据拟合问题。 一、插值方法简介 插值问题的提法是,已知1+n 个节点n j y x j j ,,2,1,0),,( =,其中j x 互不相同,不妨设b x x x a n =<<<= 10,求任一插值点)(*j x x ≠处的插值*y 。),(j j y x 可以看成是由某个函数)(x g y =产生的,g 的解析表达式可能十分复杂,或不存在封闭形式。也可以未知。 求解的基本思路是,构造一个相对简单的函数)(x f y =,使f 通过全部节点,即),,2,1,0()(n j y x f j j ==,再由)(x f 计算插值,即*)(*x f y =。 1.拉格朗日多项式插值 插值多项式 从理论和计算的角度看,多项式是最简单的函数,设)(x f 是n 次多项式,记作 0111)(a x a x a x a x L n n n n n ++++=-- (1) 对于节点),(j j y x 应有 n j y x L j j n ,,2,1,0,)( == (2) 为了确定插值多项式)(x L n 中的系数011,,,,a a a a n n -,将(1)代入(2),有 ???????=++++=++++=++++---n n n n n n n n n n n n n n n n y a x a x a x a y a x a x a x a y a x a x a x a 01110111110001010 (3) 记 T n T n n n n n n n n n n y y y Y a a a A x x x x x x X ),,,(,),,,(,11110011111 100 ==?????? ? ??=---- 方程组(3)简写成 Y XA = (4) 注意X det 是Vandermonde 行列式,利用行列式性质可得 ∏≤<≤-= n k j j k x x X 0)(det 因j x 互不相同,故0det ≠X ,于是方程(4)中A 有唯一解,即根据1+n 个节点可以确定唯一的n 次插值多项式。 拉格朗日插值多项式 实际上比较方便的做法不是解方程(4)求A ,而是先构造一组基函数: n i x x x x x x x x x x x x x x x x x l n i i i i i i n i i i ,,2,1,0,) ())(()()())(()()(110110 =--------=+-+- (5) )(x l i 是n 次多项式,满足

离散数据拟合模型

辽宁工程技术大学上机实验 报告

(2)取定t0=1790,拟合待定参数x0和r; 程序代码: >> p=@(r,t)r(2).*exp(r(1).*(t-1790)); >> t=1790:10:2000; >> c=[,,,,,,,,, ,,,,,,,,,,,,]; >> r0=[,]; >> r=nlinfit(t,c,p,r0); >> sse=sum((c-p(r,t)).^2); >> plot(t,c,'b*',1790:1:2000,p(r,1790:1:2000),'b') >> axis([1790,2000,0,290]) >> xlabel('年份'),ylabel('人口(单位:百万)') >> title('拟合美国人口数据-指数增长型') >> legend('拟合数据') 程序调用: >> r r = >> sse sse = +003

(3)拟合待定参数t0, x0和r.要求写出程序,给出拟合参数和误差平方和的计算结果,并展示误差平方和最小的拟合效果图. 程序代码: >> p=@(r,t)r(2).*exp(r(1).*(t-1790+1.*r(3))); >> t=1790:10:2000; >> c=[,,,,,,,,, ,,,,,,,,,,,,]; >> r0=[,,1]; >> [r,x]=nlinfit(t,c,p,r0); >> sse=sum((c-p(r,t)).^2); >> a=1790+1.*r(3); >> subplot(2,1,1) >> plot(t,c,'b*',1790:1:2000,p(r,1790:1:2000),'b') >> axis([1790,2000,0,290]) >> xlabel('年份'),ylabel('人口(单位:百万)') >> title('拟合美国人口数据-指数增长型') >> legend('拟合数据') >> subplot(2,1,2) >> plot(t,x,'k+',[1790:2000],[0,0],'k') >> axis([1790,2000,-20,20])

(完整版)Matlab学习系列13.数据插值与拟合

13. 数据插值与拟合 实际中,通常需要处理实验或测量得到的离散数据(点)。插值与拟合方法就是要通过离散数据去确定一个近似函数(曲线或曲面),使其与已知数据有较高的拟合精度。 1.如果要求近似函数经过所已知的所有数据点,此时称为插值问 题(不需要函数表达式)。 2.如果不要求近似函数经过所有数据点,而是要求它能较好地反 映数据变化规律,称为数据拟合(必须有函数表达式)。 插值与拟合都是根据实际中一组已知数据来构造一个能够反映数据变化规律的近似函数。区别是:【插值】不一定得到近似函数的表达形式,仅通过插值方法找到未知点对应的值。【拟合】要求得到一个具体的近似函数的表达式。 因此,当数据量不够,但已知已有数据可信,需要补充数据,此时用【插值】。当数据基本够用,需要寻找因果变量之间的数量关系(推断出表达式),进而对未知的情形作预测,此时用【拟合】。

一、数据插值 根据选用不同类型的插值函数,逼近的效果就不同,一般有:(1)拉格朗日插值(lagrange插值) (2)分段线性插值 (3)Hermite (4)三次样条插值 Matlab 插值函数实现: (1)interp1( ) 一维插值 (2)intep2( ) 二维插值 (3)interp3( ) 三维插值 (4)intern( ) n维插值 1.一维插值(自变量是1维数据) 语法:yi = interp1(x0, y0, xi, ‘method’) 其中,x0, y0为原离散数据(x0为自变量,y0为因变量);xi为需要插值的节点,method为插值方法。 注:(1)要求x0是单调的,xi不超过x0的范围; (2)插值方法有‘nearest’——最邻近插值;‘linear’——线性插值;‘spline’——三次样条插值;‘cubic’——三次插值;

matlab_数学实验_实验报告_数据拟合

数据的分析之数据的拟合 一、实验项目:Matlab 数据拟合 二、实验目的和要求 1、掌握用matlab 作最小二乘多项式拟合和曲线拟合的方法。 2、通过实例学习如何用拟合方法解决实际问题,注意差值方法的区别。 3、鼓励不囿于固定的模式或秩序,灵活调整思路,突破思维的呆板性,找到打破常规的解决方法。并在文献检索 动手和动脑等方面得到锻炼。 三、实验内容 操作一:Malthus 人口指数增长模型 用以上数据检验马尔萨斯人口指数增长模型,根据检验结果进一步讨论马尔萨斯人口模型的改进。 马尔萨斯模型的基本假设是人口的增长率为常数,记为r 。记时刻t 的人口为()x t ,且初始时刻的人口为x 0,于是得到如下微分方程 (0)dx rx dt x x ?=???=? 需要先求微分方程的解,再用数据拟合模型中的参数。 一、分析 有这个方程很容易解出0()*rt x t x e = r>0时,是表示人口箭杆指数规律随时间无限增长,称为指数增长模型。 将上式取对数,可得y=rt+a ,y=lnx ,a=lnx0 二、用matlab 编码 t=1790:10:1980; x=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76.0 92 106.5 123.2 131.7 150.7 179.3 204.0 226.5]; p=polyfit(t,log(x),1); r=p(1) x0=exp(p(2)) x1=x0.*exp(r.*t); plot(t,x,'r',t,x1,'b')

三、结果和图像 0.0214r = 0 1.2480016x e =- 1780 1800182018401860188019001920194019601980 050 100 150 200 250 300 350 操练二:旧车价格预测 分析用什么形式的曲线来拟合数据,并预测使用4、5年后的轿车平均价格大致为多少。 一、分析 用matlab 编码绘制出点图,预测图像大致形状。

用多项式模型进行数据拟合实验报告(附代码)

实验题目: 用多项式模型进行数据拟合实验 1 实验目的 本实验使用多项式模型对数据进行拟合,目的在于: (1)掌握数据拟合的基本原理,学会使用数学的方法来判定数据拟合的情况; (2)掌握最小二乘法的基本原理及计算方法; (3)熟悉使用matlab 进行算法的实现。 2 实验步骤 2.1 算法原理 所谓拟合是指寻找一条平滑的曲线,最不失真地去表现测量数据。反过来说,对测量 的实验数据,要对其进行公式化处理,用计算方法构造函数来近似表达数据的函数关系。由于函数构造方法的不同,有许多的逼近方法,工程中常用最小平方逼近(最小二乘法理论)来实现曲线的拟合。 最小二乘拟合利用已知的数据得出一条直线或曲线,使之在坐标系上与已知数据之间的距离的平方和最小。模型主要有:1.直线型2.多项式型3.分数函数型4.指数函数型5.对数线性型6.高斯函数型等,根据应用情况,选用不同的拟合模型。其中多项式型拟合模型应用比较广泛。 给定一组测量数据()i i y x ,,其中m i ,,3,2,1,0Λ=,共m+1个数据点,取多项式P (x ),使得 min )]([020 2=-=∑∑==m i i i m i i y x p r ,则称函数P (x )为拟合函数或最小二乘解,此时,令 ∑==n k k k n x a x p 0 )(,使得min ])([02 002=??? ? ??-=-=∑∑∑===m i n k i k i k m i i i n y x a y x p I ,其中 n a a a a ,,,,210Λ为待求的未知数,n 为多项式的最高次幂,由此该问题化为求),,,(210n a a a a I I Λ=的极值问题。 由多元函数求极值的必要条件:0)(200 =-=??∑∑==m i j i n k i k i k i x y x a a I ,其中n j ,,2,1,0Λ= 得到: ∑∑∑===+=n k m i i j i k m i k j i y x a x )(,其中n j ,,2,1,0Λ=,这是一个关于n a a a a ,,,,210Λ的线 性方程组,用矩阵表示如下所示:

2013年数学建模数据拟合方法

数据拟合 问题的提出及最小二乘原理 取 x 的n 个不全相同的值n x x x ,,,21 作独立试验,得到样本 ()11,y x ,()22,y x ,…,()n n y x ,,则 i i i bx a y ε++=, 设()2 ,0~σεN i ,各 i ε 相互独立 于是 () 2 ,~σi i bx a N y +, n i ,,2,1 =。且由 n y y y ,,,21 的独立性,知n y y y ,,,21 的联合概率密度为 ()?? ? ?? ?---??? ??=∑=n i i i n bx a y L 12 2 21exp 21σπσ (1) 现用最大似然估计法来估计未知参数 b a ,。对于任意一组观察值 n y y y ,,,21 ,(1)式就是样本的似然函数。显然,要L 取最大值, 只需函数 ()() ∑=--=n i i i bx a y b a Q 12 , 取最小值。 如果 y 不是正态变量,则直接用(1)式估计b a ,使 y 的观察值 i y 与 i bx a + 偏差的平方和 ()b a Q , 为最小。这种方法叫最小二乘法。 如果y 是正态变量,则最小二乘法与最大似然估计法给出相同的结果。 取 ()b a Q ,分别关于b a ,的偏导数,并令它们等于0,得到b a ,

应满足方程 ()()???????=---=??=---=??∑∑==020211n i i i i n i i i x x b a y b Q x b a y a Q (2) (2)式称为正规方程组。解此方程组即可确定 b a ,,从而得到直线方程 bx a y +=*。 对一组测定数据用最小二乘原理找出其合适的数学公式,可以分以下几步: 1. 由观测数据作出散点图 2. 根据散点图确定近似公式的函数类 3. 用最小二乘原理确定函数中的未知参数 这一方法称为数据拟合法。 常用的曲线(函数类)有直线、多项式、双曲线、指数曲线等,实际操作中可以在直观判断的基础上,选几种曲线分别做拟合,然后比较看哪条曲线的最小二乘指标最小。 一. 多变量的数据拟合 若影响变量 y 的因素不只是一个,而是几个,譬如有 k 个因素 k x x x ,,,21 ,这时通过n 次实验可以得到数据表: 实验 1x 2x … k x y 1 11x 21x … 1k x 1y 2 12x 22x … 2k x 2y … … … … … … n n x 1 n x 2 … kn x n y

数学建模案例分析插值与拟合方法建模1数据插值方法及应用

第十章 插值与拟合方法建模 在生产实际中,常常要处理由实验或测量所得到的一批离散数据,插值与拟合方法就是要通过这些数据去确定某一类已经函数的参数,或寻求某个近似函数使之与已知数据有较高的拟合精度。插值与拟合的方法很多,这里主要介绍线性插值方法、多项式插值方法和样条插值方法,以及最小二乘拟合方法在实际问题中的应用。相应的理论和算法是数值分析的内容,这里不作详细介绍,请参阅有关的书籍。 §1 数据插值方法及应用 在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样点,要求由此建立变量之间的函数关系或得到样点之外的数据。与此有关的一类问题是当原始数据 ),(,),,(),,(1100n n y x y x y x 精度较高,要求确定一个初等函数)(x P y =(一般用多项式或分段 多项式函数)通过已知各数据点(节点),即n i x P y i i ,,1,0,)( ==,或要求得函数在另外一些点(插值点)处的数值,这便是插值问题。 1、分段线性插值 这是最通俗的一种方法,直观上就是将各数据点用折线连接起来。如果 b x x x a n =<<<= 10 那么分段线性插值公式为 n i x x x y x x x x y x x x x x P i i i i i i i i i i ,,2,1,,)(11 1 11 =≤<--+--= ----- 可以证明,当分点足够细时,分段线性插值是收敛的。其缺点是不能形成一条光滑曲线。 例1、已知欧洲一个国家的地图,为了算出它的国土面积,对地图作了如下测量:以由西向东方向为x 轴,由南向北方向为y 轴,选择方便的原点,并将从最西边界点到最东边界点在x 轴上的区间适当的分为若干段,在每个分点的y 方向测出南边界点和北边界点的y 坐标y1和y2,这样就得到下表的数据(单位:mm )。

数学建模插值及拟合详解

插值和拟合 实验目的:了解数值分析建模的方法,掌握用Matlab进行曲线拟合的方法,理解用插值法建模的思想,运用Matlab一些命令及编程实现插值建模。 实验要求:理解曲线拟合和插值方法的思想,熟悉Matlab相关的命令,完成相应的练习,并将操作过程、程序及结果记录下来。 实验内容: 一、插值 1.插值的基本思想 ·已知有n +1个节点(xj,yj),j = 0,1,…, n,其中xj互不相同,节点(xj, yj)可看成由某个函数y= f (x)产生; ·构造一个相对简单的函数y=P(x); ·使P通过全部节点,即P (xk) = yk,k=0,1,…, n ; ·用P (x)作为函数f ( x )的近似。 2.用MA TLAB作一维插值计算 yi=interp1(x,y,xi,'method') 注:yi—xi处的插值结果;x,y—插值节点;xi—被插值点;method—插值方法(‘nearest’:最邻近插值;‘linear’:线性插值;‘spline’:三次样条插值;‘cubic’:立方插值;缺省时:线性插值)。注意:所有的插值方法都要求x是单调的,并且xi不能够超过x的范围。 练习1:机床加工问题 每一刀只能沿x方向和y方向走非常小的一步。 表3-1给出了下轮廓线上的部分数据 但工艺要求铣床沿x方向每次只能移动0.1单位. 这时需求出当x坐标每改变0.1单位时的y坐标。 试完成加工所需的数据,画出曲线. 步骤1:用x0,y0两向量表示插值节点; 步骤2:被插值点x=0:0.1:15; y=y=interp1(x0,y0,x,'spline'); 步骤3:plot(x0,y0,'k+',x,y,'r') grid on 答:x0=[0 3 5 7 9 11 12 13 14 15 ]; y0=[0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6 ]; x=0:0.1:15; y=interp1(x0,y0,x,'spline'); plot(x0,y0,'k+',x,y,'r') grid on

数学建模使用MATLAB进行数据拟合

1.线性最小二乘法 x=[19 25 31 38 44]'; y=[19.0 32.3 49.0 73.3 97.8]'; r=[ones(5,1),x.^2]; ab=r\y % if AB=C then B=A\C x0=19:0.1:44; y0=ab(1)+ab(2)*x0.^2; plot(x,y,'o',x0,y0,'r') 运行结果: 2.多项式拟合方法 x0=[1990 1991 1992 1993 1994 1995 1996]; y0=[70 122 144 152 174 196 202]; a=polyfit(x0,y0,1) y97=polyval(a,1997) x1=1990:0.1:1997; y1=a(1)*x1+a(2);

plot(x1,y1) hold on plot(x0,y0,'*') plot(1997,y97,'o') 3.最小二乘优化 3.1 lsqlin函数 例四: x=[19 25 31 38 44]'; y=[19.0 32.3 49.0 73.3 97.8]'; r=[ones(5,1),x.^2]; ab=lsqlin(r,y) x0=19:0.1:44; y0=ab(1)+ab(2)*x0.^2; plot(x,y,'o',x0,y0,'r') 3.2lsqcurvefit函数

(1)定义函数 function f=fun1(x,tdata); f=x(1)+x(2)*exp(-0.02*x(3)*tdata); %其中x(1)=a,x(2)=b,x(3)=k (2) td=100:100:1000; cd=[4.54 4.99 5.35 5.65 5.90 6.10 6.26 6.39 6.50 6.59]; x0=[0.2 0.05 0.05]; x=lsqcurvefit(@fun1,x0,td,cd) %x(1)=a,x(2)=b,x(3)=k t=100:10:1000; c=x(1)+x(2)*exp(-0.02*x(3)*t); plot(t,c) hold on plot(td,cd,'*')

数据拟合方法研究

数据拟合方法研究 中文摘要 在我们实际的实验和勘探中,都会产生大量的数据。为了解释这些数据或者根据这些数据做出预测、判断,给决策者提供重要的依据。需要对测量数据进行拟合,寻找一个反映数据变化规律的函数。 本文介绍了几种常用的数据拟合方法,线性拟合、二次函数拟合、数据的n次多项式拟合等。并着重对曲线拟合进行了研究,介绍了线性与非线性模型的曲线拟合方法,最小二乘法、牛顿迭代法等。在传统的曲线拟合基础上,为了提高曲线拟合精度,本文还研究了多项式的摆动问题,从实践的角度分析了产生这些摆动及偏差的因素和特点,总结了在实践中减小这些偏差的处理方法。采用最小二乘法使变量转换后所得新变量离均差平方和最小,并不一定能使原响应变量的离均差平方和最小,所以其模型的拟合精度仍有提高的空间。本文以残数法与最小二乘法相结合,采用非线性最小二乘法来得到拟合效果更好的曲线模型。随着计算机技术的发展,实验数据处理越来越方便。但也提出了新的课题,就是在选择数据处理方法时应该比以往更为慎重。因为稍有不慎,就会非常方便地根据正确的实验数据得出不确切的乃至错误的结论。所以提高拟合的准确度是非常有必要的 关键词:数据拟合、最小二乘法、曲线拟合、多项式摆动、残数法

Data Fitting Method Abstract In our experiments and exploration, it will produce large amounts of data. In order to explain these data to make predictions based on these data to determine, provide an important basis for policy makers .Need to fit the measured data to find a function to reflect data changes in the law.This article describes several commonly used data fitting methods, and focused on a nonlinear curve fitting of the model. This paper introduces some commonly used data fitting method, linear fitting, secondary function fitting, data n times polynomial fitting etc. T And focuses on the curve fitting, introduced the linear and nonlinear model of curve fitting method, the least square method, Newton iterative method, etc. In the traditional curve fitting basis, in order to improve the curve fitting precision, this paper also studies the polynomial swing, from the perspective of the practice the oscillation and deviation of factors and characteristics, and summarizes the decrease in practice the treatment method of these deviations. The least square method to variable after converting from new variables are the sum of squared residuals minimum, not necessarily make the original response from all the variables of the sum of squared residuals minimum, so the model fitting precision still has room to improve.Based on the number of residual method and least square method, and the combination of nonlinear least square method to get better fitting effect of curve model.With the development of computer technology, the experiment

插值与拟合模型

插值与拟合模型 水道测量数据问题 表1给出了在以码(1码=0.914米)为单位的直角坐标为X,Y的水面一点处以英尺(1英尺=0.3048米)计的水深Z。水深数据是在低潮时测得的。 表1 水道测量数据在低潮时测得的水深 船的吃水深度为5英尺。在矩形区域(75,200)ⅹ(-50,150)里哪些地方船要避免进入。 解答: 所给14个点的平面散点图如下,其中有两点不落在所给区域:(75,200)ⅹ(-50,150)。

图17.1 水道离散点平面图 本问题采用地球科学上的反距离权重法(IDW)。首先将所给区域(75,200)ⅹ(-50,150)按较细的网格进行剖分。然后利用所给14个点的水深值Z ,按照IDW 方法求出所有剖分点的水深值Z ,并找出水深低于5米的点。然后作出水底曲面图,等值线图,标出水深低于5米的区域。 IDW 算法: 设有n 个点(,,)i i i x y z ,计算平面上任意点(,)x y 的z 值。 1 .n i i i z w z == ∑ 其中权重: 1 1/1/p i i n p i i d w d == ∑ ,i d = 即(,)x y 处的z 值由各已知点加权得到,其权重为(,)x y 到各点距离的p 次方成反比。 p 决定距离(,)x y 近的(,)i i x y 作用的相对大小。当p 越大,则当(,)i i x y 距离(,)x y 越近, 其相对作用越大,越远相对作用越小。本题取3p =。 按照IDW 方法,x 方向剖分50个区间,区间间隔2.5;y 方向剖分80个区间,区间间隔 2.5dy =得到的水底河床图及等值线图如下。实现的Matlab 程序见后。

数学建模实验 ――曲线拟合与回归分析

曲线拟合与回归分析 1、有 10个同类企业的生产性固定资产年平均价值和工业总产值资料如下: (1说明两变量之间的相关方向; (2建立直线回归方程; (3计算估计标准误差; (4估计生产性固定资产(自变量为 1100万元时的总资产 (因变量的可能值。 解: (1工业总产值是随着生产性固定资产价值的增长而增长的,存 在正向相关性。 用 spss 回归 (2 spss 回归可知:若用 y 表示工业总产值(万元,用 x 表示生产性固定资产,二者可用如下的表达式近似表示: 567 . 395 896 . 0+ =x

y (3 spss 回归知标准误差为 80.216(万元。 (4当固定资产为 1100时,总产值为: (0.896*1100+395.567-80.216~0.896*1100+395.567+80.216 即(1301.0~146.4这个范围内的某个值。 MATLAB 程序如下所示: function [b,bint,r,rint,stats] = regression1 x = [318 910 200 409 415 502 314 1210 1022 1225]; y = [524 1019 638 815 913 928 605 1516 1219 1624]; X = [ones(size(x', x']; [b,bint,r,rint,stats] = regress(y',X,0.05; display(b; display(stats; x1 = [300:10:1250]; y1 = b(1 + b(2*x1;

figure;plot(x,y,'ro',x1,y1,'g-'; 生产性固定资产价值 (万元 工业总价值 (万元 industry = ones(6,1; construction = ones(6,1; industry(1 =1022; construction(1 = 1219; for i = 1:5

数模实验第四版数据拟合与模型参数估计

数学模型实验—实验报告4 学院:河北大学工商学院专业:电气七班姓名:李青青 学号:2012484098 实验时间:2014/4/15 实验地点:B3-301 一、实验项目:数据拟合与模型参数估计 二、实验目的和要求 a.了解数据拟合的原理和Matlab中的有关命令。 Polfit:MATLAB函数:p=polyfit(x,y,n) [p,s]= polyfit(x,y,n) 说明:x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。x必须是单调的。矩阵s用于生成预测值的误差估计。(见下一函数polyval) 多项式曲线求值函数:polyval( ) 调用格式:y=polyval(p,x) [y,DELTA]=polyval(p,x,s) 说明:y=polyval(p,x)为返回对应自变量x在给定系数P的多项式的值。 [y,DELTA]=polyval(p,x,s) 使用polyfit函数的选项输出s得出误差估计Y DELTA。它假设polyfit函数数据输入的误差是独立正态的,并且方差为常数。则Y DELTA将至少包含50%的预测值。 Polyval

polyval函数的主要功能是多项式的估值运算,其语法格式为y = poly val(p,x),输入变量p是长度为n+1的向量,各元素是依次按降幂排列的多项式的系数,函数返回的是那次多项式p在x处的值,x可以是一个数,也可以是一个矩阵或者一个向量,在后两种情况下,该指令计算的是在X中任意元素处的多项式p的估值。 polyvalm的主要功能是用于matlab中多项式求值。其语法格式为y=polyvalm(a,A),其中a为多项式行向量表示,A为指定矩阵。 Lsqlin 约束线性最小二乘 函数lsqlin 格式x = lsqlin(C,d,A,b) %求在约束条件下,方程Cx = d的最小二乘解x。 x = lsqlin(C,d,A,b,Aeq,beq) %Aeq、beq满足等式约束,若没有不等式约束,则设A=[ ],b=[ ]。 x = lsqlin(C,d,A,b,Aeq,beq,lb,ub) %lb、ub满足,若没有等式约束,则Aeq=[ ],beq=[ ]。 x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0) % x0为初始解向量,若x没有界,则lb=[ ],ub=[ ]。 x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,options) % options为指定优化参数 lsqcurvefit

离散数据拟合模型

工程技术大学上机实验报告

>> r r = 0.0212 >> sse sse = 1.7418e+004 程序代码: >> p=(r,t)r(2).*exp(r(1).*(t-1790)); >> t=1790:10:2000; >> c=[3.9,5.3,7.2,9.6,12.9,17.1,23.2,31.4,38.6, 50.2,62.9,76.0,92.0,106.5,123.2,131.7,150.7,179.3,204.0,226.5,251.4,281.4]; >> r0=[0.0359,3.9]; >> r=nlinfit(t,c,p,r0); >> sse=sum((c-p(r,t)).A2); >> plot(t,c,'b*',1790:1:2000,p(r,1790:1:2000),'b') >> axis([1790,2000,0,290]) >> xlabel('年份'),ylabel('人口(单位:百万)') >> title('拟合美国人口数据-指数增长型') >> legend('拟合数据') 程序调用: >> r r =0.0142 14.9940 >> sse sse = 2.2639e+003 程序代码: >> p=(r,t)r(2).*exp(r(1).*(t-1790+1.*r(3))); >> t=1790:10:2000; >> c=[3.9,5.3,7.2,9.6,12.9,17.1,23.2,31.4,38.6, 50.2,62.9,76.0,92.0,106.5,123.2,131.7,150.7,179.3,204.0,226.5,251.4,281.4]; >> r0=[0.0359,3.9,1]; >> [r,x]=nlinfit(t,c,p,r0); >> sse=sum((c-p(r,t)).A2); >> a=1790+1.*r(3); >> subplot(2,1,1) >> plot(t,c,'b*',1790:1:2000,p(r,1790:1:2000),'b') >> axis([1790,2000,0,290]) >> xlabel('年份'),ylabel('人口(单位:百万)') >> title('拟合美国人口数据-指数增长型') >> legend('拟合数据') >> subplot(2,1,2) >> plot(t,x,'k+',[1790:2000],[0,0],'k') >> axis([1790,2000,-20,20]) >> xlabel('年份'),ylabel('人口(单位:百万)') >> title('拟合误差') 程序调用: >> r r = 0.0142 7.3264 50.3522 >> x x = Columns 1 through 5 -11.0940 -11.9857 -12.7277 -13.3735 -13.5848 Columns 6 through 10 -13.4328 -11.9995 -9.1795 -8.1818 -3.7321 Columns 11 through 15 0.7248 4.3218 9.3664 11.2364 13.3761 Columns 16 through 20 5.0903 4.7390 11.0299 10.0111 2.8613

模型拟合

2004年全国大学生数学建模竞赛C题及建模论文 C题饮酒驾车 据报载,2003年全国道路交通事故死亡人数为10.4372万,其中因饮酒驾车造成的占有相当的比例。 针对这种严重的道路交通情况,国家质量监督检验检疫局2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阈值与检验》国家标准,新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车(原标准是小于100毫克/百毫升),血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车(原标准是大于或等于100毫克/百毫升)。 大李在中午12点喝了一瓶啤酒,下午6点检查时符合新的驾车标准,紧接着他在吃晚饭时又喝了一瓶啤酒,为了保险起见他呆到凌晨2点才驾车回家,又一次遭遇检查时却被定为饮酒驾车,这让他既懊恼又困惑,为什么喝同样多的酒,两次检查结果会不一样呢? 请你参考下面给出的数据(或自己收集资料)建立饮酒后血液中酒精含量的数学模型,并讨论以下问题: 1.对大李碰到的情况做出解释; 2.在喝了3瓶啤酒或者半斤低度白酒后多长时间内驾车就会违反上述标准,在以下情况下回答: 1)酒是在很短时间内喝的; 2)酒是在较长一段时间(比如2小时)内喝的。 3.怎样估计血液中的酒精含量在什么时间最高。 4.根据你的模型论证:如果天天喝酒,是否还能开车? 5.根据你做的模型并结合新的国家标准写一篇短文,给想喝一点酒的司机如何驾车提出忠告。 参考数据 1.人的体液占人的体重的65%至70%,其中血液只占体重的7%左右;而药物(包括酒精)在血液中的含量与在体液中的含量大体是一样的。 2.体重约70kg的某人在短时间内喝下2瓶啤酒后,隔一定时间测量他的血液中酒精含量(毫克/百毫升),得到数据如下: 0.250.50.751 1.52 2.53 3.54 4.55 时间(小 时) 酒精含量306875828277686858515041 678910111213141516 时间(小 时) 酒精含量3835282518151210774 酒后不开车 摘要 近年来,因饮酒、醉酒驾车而造成的交通事故频发,且呈逐年上升趋势。加

多元线性回归与曲线拟合

第十章:多元线性回归与曲线拟合―― Regression菜单详解(上) 回归分析是处理两个及两个以上变量间线性依存关系的统计方法。在医学领域中,此类问题很普遍,如人头发中某种金属元素的含量与血液中该元素的含量有关系,人的体表面积与身高、体重有关系;等等。回归分析就是用于说明这种依存变化的数学关系。 §10.1Linear过程 10.1.1 简单操作入门 调用此过程可完成二元或多元的线性回归分析。在多元线性回归分析中,用户还可根据需要,选用不同筛选自变量的方法(如:逐步法、向前法、向后法,等)。 例10.1:请分析在数据集Fat surfactant.sav中变量fat对变量spovl的大小有无影响? 显然,在这里spovl是连续性变量,而fat是分类变量,我们可用用单因素方差分析来解决这个问题。但此处我们要采用和方差分析等价的分析方法--回归分析来解决它。 回归分析和方差分析都可以被归入广义线性模型中,因此他们在模型的定义、计算方法等许多方面都非常近似,下面大家很快就会看到。 这里spovl是模型中的因变量,根据回归模型的要求,它必须是正态分布的变量才可以,我们可以用直方图来大致看一下,可以看到基本服从正态,因此不再检验其正态性,继续往下做。 10.1.1.1 界面详解 在菜单中选择Regression==>liner,系统弹出线性回归对话框如下:

除了大家熟悉的内容以外,里面还出现了一些特色菜,让我们来一一品尝。 【Dependent框】 用于选入回归分析的应变量。 【Block按钮组】 由Previous和Next两个按钮组成,用于将下面Independent框中选入的自变量分组。由于多元回归分析中自变量的选入方式有前进、后退、逐步等方法,如果对不同的自变量选入的方法不同,则用该按钮组将自变量分组选入即可。下面的例子会讲解其用法。 【Independent框】 用于选入回归分析的自变量。 【Method下拉列表】 用于选择对自变量的选入方法,有Enter(强行进入法)、Stepwise(逐步法)、Remove(强制剔除法)、Backward(向后法)、Forward(向前法)五种。该选项对当前Independent框中的所有变量均有效。

数据插值与数据拟合

数据插值与数据拟合 1、一维数据插值: y=interp1(x0,y0,x,’method’) ‘method’共有四种方法选择: ‘nearest’ 最近点插值法取较近点的值 ‘linear’线性插值法用直线连接数据点 ‘spline’样条插值法用三次样条曲线通过数据点 ‘cubic’立方插值法用三次曲线通过数据点 例:对,,用个节点(等分)作上述四种插值,用m=21个插值点(等分)作图比较结果; 练习: 根据程序washu.可得,x=0:3的193个数据,即对应得y值,现在将 x=0:56图形形状不变 从而得到x=1:56的对应的y值,并且比较分析,哪一种插值效果好 2、 数据拟合 P=polyfit(x,y,n)返回系数从高到低 polyval(p,x) 例、在化工生产中获得的氯气的等级随生产时间下降。假定在时,与之间有如下形式的非线性模型: 现收集了44组数据: 80.49160.43280.41 80.49180.46280.40 100.48180.45300.40 100.47200.42300.40 100.48200.42300.38 100.47200.43320.41 120.46200.41320.40 120.46220.41340.40 120.45220.40360.41 120.43240.42360.38

140.45240.40380.40 140.43240.40380.40 140.43260.41400.39 160.44260.40420.39 160.43260.41 要求利用该数据求的值,以确定模型。 练习 问题1: N P K 施肥量(kg/ha) 产量 (t/ha) 施肥量 (kg/ha) 产量 (t/ha) 施肥量 (kg/ha) 产量 (t/ha) 0 34 67 101 135 202 259 336 404 47115.18 21.36 25.72 32.29 34.03 39.45 43.15 43.46 40.83 30.75 24 49 73 98 147 196 245 294 342 33.46 32.47 36.06 37.96 41.04 40.09 41.26 42.17 40.36 42.73 47 93 140 186 279 372 465 558 651 18.98 27.35 34.86 38.52 38.44 37.73 38.43 43.87 42.77 46.22 (1)将上面第一个表中以施肥量为自变量n,产量为函数y,用最小二乘法拟合函数,输出a1,b1,c1的值,给出拟合误差R^2,并进行图形比较(2) 将上面第二个表中以施肥量为自变量p,产量为函数y,用最小二乘法拟合函数,输出a,b的值,给出拟合误差R^2,并进行图形比较 (3) 将上面第三个表中以施肥量为自变量k,产量为函数y,用最小二乘法拟合函数,输出a3,b3,c3的值,给出拟合误差R^2,并进行图形比较Quadratic: Compound:

插值方法与数据拟合

第三章 插值方法与数据拟合 所讨论的问题给复杂的函数 ()f x 找一简单的函数()p x 如多项式、三角函数 等,并让其满足一定的条件,让其近似的取代原函数 ()f x 。 或 有一数据表格,我们需要找一函数取近似的表征该表数据。 §1 拉格朗日(L a g r a n g e )插值 在函数类中多项式具有最简单的性质。 1230123()...n n p x a a x a x a x a x =+++++ 设 ()y f x =在区间[a ,b ]连续的实函数已知在该区间上n +1个不同点i x 的函 数值()1,2,...,i i y f x i n == 或 有数据表有1n +对数据 1,2,...,i i x y i n →= 插值节点 我们需要找一个n 次多项式 1230123()...n n p x a a x a x a x a x =+++++ 使得在这些点上函数值等于插值节点的值。 ()i i y p x = 1、线性插值 已知两个点的函数值:0 011x y x y →→ 做一线性函数使得在两个节点上函数值为节点值。 0011() ()y p x y p x == 函数为:

0011 01 010110 ()()()p x l x y l x y x x x x y y x x x x =+--=+-- 基函数()i l x 为一次函数,且在节点上 1()0j i i j j i x x l x x x =??=?≠?? 几何意义:过两点做直线。按x 变化量平均。 2、抛物线插值 已知三个点的函数值:0 01122x y x y x y →→→ 做二次函数使得在三个节点上函数值为节点值。 001122() ()()y p x y p x y p x === 函数为: 001122 0012 21012010210122021 ()()()()p x l x y l x y l x y x x x x x x x x x x x x y y y x x x x x x x x x x x x =++------=++------ 基函数()i l x 为二次函数,且在节点上 1()0j i i j j i x x l x x x =??=?≠?? 3、拉格朗日插值 已知n +1个点的函数值:0 011,....,n n x y x y x y →→→ 做n 次函数使得在n +1个节点上函数值为节点值。 0011() (),...,()n n y p x y p x y p x === 函数为:

相关主题
文本预览
相关文档 最新文档