当前位置:文档之家› 曲线拟合与预测建模分析两例

曲线拟合与预测建模分析两例

曲线拟合与预测建模分析两例
曲线拟合与预测建模分析两例

基于BP神经网络的曲线拟合

神经网络实验报告 基于BP网络的曲线拟合 学院:控制学院 姓名:李嘉頔 学号: 09423021 2015年6月

一、实验目的 ⑴ 掌握BP 神经网络的权值修改规则 ⑵ 利用BP 网络修改权值对y=sin(x)曲线实现拟合 二、实验要求 人工神经网络是近年来发展起来的模拟人脑生物过程的人工智能技术,具有自学习、自组织、自适应和很强的非线性映射能力。在人工神经网络的实际应用中,常采用BP 神经网络或它的变化形式,BP 神经网络是一种多层神经网络,因采用BP 算法而得名,主要应用于模式识别和分类、函数逼近、数据压缩等领域。 BP 网络是一种多层前馈神经网络,由输入层、隐层和输出层组成。层与层之间采用全互连方式,同一层之间不存在相互连接,隐层可以有一个或多个。BP 算法的学习过程由前向计算过程和误差反向传播过程组成,在前向计算过程中,输入信息从输入层经隐层逐层计算,并传向输出层,每层神经元的状态只影响下一层神经元的状态。如输出层不能得到期望的输出,则转入误差反向传播过程,误差信号沿原来的连接通路返回,通过修改各层的神经元的权值,使得网络系统误差最小,最终实现网络的实际输出与各自所对应的期望输出逼近。 三、实验内容 3.1 训练数据导入 要对BP 网络进行训练,必须准备训练样本。对样本数据的获取,可以通过用元素列表直接输入、创建数据文件,从数据文件中读取等方式,具体采用哪种方法,取决于数据的多少,数据文件的格式等。 本文采用直接输入100个样本数据的方式,同时采用归一化处理,可以加快网络的训练速度。将输入x 和输出y 都变为-1到1之间的数据,归一化后的训练样本如下图: -1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1 -1-0.8-0.6-0.4-0.200.20.40.60.81 3.2 网络初始化

数学建模拟合与差分习题答案

第一题 解:由题意可设 2 123()s t a t a t a =++ 中的A=(1a ,2a ,3a )使得: 2 6 1 [()]i i i s t s =-∑最小 用多项式拟合的命令 输入以下命令: 输出结果:A = 2.2488 11.0814 -0.5834 2() 2.2488t 11.0814t 0.5834f x =+- 第二题 输入以下命令: >> x=[19 25 31 38 44]; >> y=[19.0 32.3 49.0 73.3 97.8]; >> A=polyfit(x,y,2)

>> z=polyval(A,x); >> plot(x,y,'k+',x,z,'r') 输出结果:A = 0.0497 0.0193 0.6882 =x x (2+ f ) x + .0 6882 .0 0193 .0 0497 因为2 6882 .0 ) = .0 f+ x (x f+ ) b 0497 (x a =,所以2 x 草图 >> x=1200:400:4000; >> y=1200:400:3600; >> height=[1130 1250 1280 1230 1040 900 500 700; 1320 1450 1420 1400 1300 700 900 850; 1390 1500 1500 1400 900 1100 1060 950; 1500 1200 1100 1350 1450 1200 1150 1010; 1500 1200 1100 1550 1600 1550 1380 1070; 1500 1550 1600 1550 1600 1600 1600 1550; 1480 1500 1550 1510 1430 1300 1200 980]; >> mesh(x,y,height) >>

数学建模实验 ——曲线拟合与回归分析

曲线拟合与回归分析 1、有10个同类企业的生产性固定资产年平均价值和工业总产值资料如下: (1)说明两变量之间的相关方向; (2)建立直线回归方程; (3)计算估计标准误差; (4)估计生产性固定资产(自变量)为1100万元时的总资产 (因变量)的可能值。 解: (1)工业总产值是随着生产性固定资产价值的增长而增长的,存 在正向相关性。 用spss回归 (2)spss回归可知:若用y表示工业总产值(万元),用x表示生产性固定资产,二者可用如下的表达式近似表示: .0+ y =x 896 . 395 567 (3)spss回归知标准误差为80.216(万元)。 (4)当固定资产为1100时,总产值为: (0.896*1100+395.567-80.216~0.896*1100+395.567+80.216) 即(1301.0~146.4)这个范围内的某个值。 MATLAB程序如下所示: function [b,bint,r,rint,stats] = regression1 x = [318 910 200 409 415 502 314 1210 1022 1225]; y = [524 1019 638 815 913 928 605 1516 1219 1624]; X = [ones(size(x))', x']; [b,bint,r,rint,stats] = regress(y',X,0.05); display(b); display(stats); x1 = [300:10:1250]; y1 = b(1) + b(2)*x1; figure;plot(x,y,'ro',x1,y1,'g-');

最新数学建模使用MATLAB进行数据拟合

1.线性最小二乘法 x=[19 25 31 38 44]'; y=[19.0 32.3 49.0 73.3 97.8]'; r=[ones(5,1),x.^2]; ab=r\y % if AB=C then B=A\C x0=19:0.1:44; y0=ab(1)+ab(2)*x0.^2; plot(x,y,'o',x0,y0,'r') 运行结果: 2.多项式拟合方法 x0=[1990 1991 1992 1993 1994 1995 1996]; y0=[70 122 144 152 174 196 202]; a=polyfit(x0,y0,1) y97=polyval(a,1997) x1=1990:0.1:1997; y1=a(1)*x1+a(2);

plot(x1,y1) hold on plot(x0,y0,'*') plot(1997,y97,'o') 3.最小二乘优化 3.1 lsqlin 函数 例四: x=[19 25 31 38 44]'; y=[19.0 32.3 49.0 73.3 97.8]'; r=[ones(5,1),x.^2]; ab=lsqlin(r,y) x0=19:0.1:44; y0=ab(1)+ab(2)*x0.^2; plot(x,y,'o',x0,y0,'r') 3.2lsqcurvefit 函数

(1)定义函数 function f=fun1(x,tdata); f=x(1)+x(2)*exp(-0.02*x(3)*tdata); %其中x(1)=a,x(2)=b,x(3)=k (2) td=100:100:1000; cd=[4.54 4.99 5.35 5.65 5.90 6.10 6.26 6.39 6.50 6.59]; x0=[0.2 0.05 0.05]; x=lsqcurvefit(@fun1,x0,td,cd) % x(1)=a,x(2)=b,x(3)=k t=100:10:1000; c=x(1)+x(2)*exp(-0.02*x(3)*t); plot(t,c) hold on plot(td,cd,'*')

matlab曲线拟合人口增长模型及其数量预测·优选.

实验目的 [1] 学习由实际问题去建立数学模型的全过程; [2] 训练综合应用数学模型、微分方程、函数拟合和预测的知识分析和解决实际问题; [3] 应用matlab 软件求解微分方程、作图、函数拟合等功能,设计matlab 程序来求解 其中的数学模型; [4] 提高论文写作、文字处理、排版等方面的能力; 通过完成该实验,学习和实践由简单到复杂,逐步求精的建模思想,学习如何建立反映人口增长规律的数学模型,学习在求解最小二乘拟合问题不收敛时,如何调整初值,变换函数和数据使优化迭代过程收敛。 应用实验(或综合实验) 一、实验内容 从1790—1980年间美国每隔10年的人口记录如表综2.1所示: 表综2.1 用以上数据检验马尔萨斯(Malthus)人口指数增长模型,根据检验结果进一步讨论马尔萨斯人口模型的改进,并利用至少两种模型来预测美国2010年的人口数量。 二、问题分析 1:Malthus 模型的基本假设是:人口的增长率为常数,记为 r 。记时刻t 的人口为x (t ),(即x (t )为模型的状态变量)且初始时刻的人口为x 0,于是得到如下微分方程: ?????==0 )0(d d x x rx t x 2:阻滞增长模型(或Logistic 模型) 由于资源、环境等因素对人口增长的阻滞作用,人 口增长到一定数量后,增长率会下降,假设人口的增长率为x 的减函数,如设 r(x)=r(1-x/x m ),其中r 为固有增长率(x 很小时),x m 为人口容量(资源、环境能容纳的最大数量),于是得到如下微分方程: ?? ???=-=0)0()1(d d x x x x rx t x m

数学建模案例分析-- 插值与拟合方法建模1数据插值方法及应用

第十章 插值与拟合方法建模 在生产实际中,常常要处理由实验或测量所得到的一批离散数据,插值与拟合方法就是要通过这些数据去确定某一类已经函数的参数,或寻求某个近似函数使之与已知数据有较高的拟合精度。插值与拟合的方法很多,这里主要介绍线性插值方法、多项式插值方法和样条插值方法,以及最小二乘拟合方法在实际问题中的应用。相应的理论和算法是数值分析的内容,这里不作详细介绍,请参阅有关的书籍。 §1 数据插值方法及应用 在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样点,要求由此建立变量之间的函数关系或得到样点之外的数据。与此有关的一类问题是当原始数据 ),(,),,(),,(1100n n y x y x y x 精度较高,要求确定一个初等函数)(x P y =(一般用多项式或分段 多项式函数)通过已知各数据点(节点),即n i x P y i i ,,1,0,)( ==,或要求得函数在另外一些点(插值点)处的数值,这便是插值问题。 1、分段线性插值 这是最通俗的一种方法,直观上就是将各数据点用折线连接起来。如果 b x x x a n =<<<= 10 那么分段线性插值公式为 n i x x x y x x x x y x x x x x P i i i i i i i i i i ,,2,1,,)(11 1 11 =≤<--+--= ----- 可以证明,当分点足够细时,分段线性插值是收敛的。其缺点是不能形成一条光滑曲线。 例1、已知欧洲一个国家的地图,为了算出它的国土面积,对地图作了如下测量:以由西向东方向为x 轴,由南向北方向为y 轴,选择方便的原点,并将从最西边界点到最东边界点在x 轴上的区间适当的分为若干段,在每个分点的y 方向测出南边界点和北边界点的y 坐标y1和y2,这样就得到下表的数据(单位:mm )。 根据地图的比例,18 mm 相当于40 km 。

2013年数学建模数据拟合方法

数据拟合 问题的提出及最小二乘原理 取 x 的n 个不全相同的值n x x x ,,,21 作独立试验,得到样本 ()11,y x ,()22,y x ,…,()n n y x ,,则 i i i bx a y ε++=, 设()2 ,0~σεN i ,各 i ε 相互独立 于是 () 2 ,~σi i bx a N y +, n i ,,2,1 =。且由 n y y y ,,,21 的独立性,知n y y y ,,,21 的联合概率密度为 ()?? ? ?? ?---??? ??=∑=n i i i n bx a y L 12 2 21exp 21σπσ (1) 现用最大似然估计法来估计未知参数 b a ,。对于任意一组观察值 n y y y ,,,21 ,(1)式就是样本的似然函数。显然,要L 取最大值, 只需函数 ()() ∑=--=n i i i bx a y b a Q 12 , 取最小值。 如果 y 不是正态变量,则直接用(1)式估计b a ,使 y 的观察值 i y 与 i bx a + 偏差的平方和 ()b a Q , 为最小。这种方法叫最小二乘法。 如果y 是正态变量,则最小二乘法与最大似然估计法给出相同的结果。 取 ()b a Q ,分别关于b a ,的偏导数,并令它们等于0,得到b a ,

应满足方程 ()()???????=---=??=---=??∑∑==020211n i i i i n i i i x x b a y b Q x b a y a Q (2) (2)式称为正规方程组。解此方程组即可确定 b a ,,从而得到直线方程 bx a y +=*。 对一组测定数据用最小二乘原理找出其合适的数学公式,可以分以下几步: 1. 由观测数据作出散点图 2. 根据散点图确定近似公式的函数类 3. 用最小二乘原理确定函数中的未知参数 这一方法称为数据拟合法。 常用的曲线(函数类)有直线、多项式、双曲线、指数曲线等,实际操作中可以在直观判断的基础上,选几种曲线分别做拟合,然后比较看哪条曲线的最小二乘指标最小。 一. 多变量的数据拟合 若影响变量 y 的因素不只是一个,而是几个,譬如有 k 个因素 k x x x ,,,21 ,这时通过n 次实验可以得到数据表: 实验 1x 2x … k x y 1 11x 21x … 1k x 1y 2 12x 22x … 2k x 2y … … … … … … n n x 1 n x 2 … kn x n y

多元线性回归与曲线拟合

多元线性回归与曲线拟合

————————————————————————————————作者: ————————————————————————————————日期: ?

第十章:多元线性回归与曲线拟合―― Regression菜单详解(上) 回归分析是处理两个及两个以上变量间线性依存关系的统计方法。在医学领域中,此类问题很普遍,如人头发中某种金属元素的含量与血液中该元素的含量有关系,人的体表面积与身高、体重有关系;等等。回归分析就是用于说明这种依存变化的数学关系。 §10.1Linear过程 10.1.1 简单操作入门 调用此过程可完成二元或多元的线性回归分析。在多元线性回归分析中,用户还可根据需要,选用不同筛选自变量的方法(如:逐步法、向前法、向后法,等)。 例10.1:请分析在数据集Fat surfactant.sav中变量fat对变量spovl的大小有无影响? 显然,在这里spovl是连续性变量,而fat是分类变量,我们可用用单因素方差分析来解决这个问题。但此处我们要采用和方差分析等价的分析方法--回归分析来解决它。 回归分析和方差分析都可以被归入广义线性模型中,因此他们在模型的定义、计算方法等许多方面都非常近似,下面大家很快就会看到。 这里spovl是模型中的因变量,根据回归模型的要求,它必须是正态分布的变量才可以,我们可以用直方图来大致看一下,可以看到基本服从正态,因此不再检验其正态性,继续往下做。 10.1.1.1 界面详解 在菜单中选择Regression==>liner,系统弹出线性回归对话框如下:

除了大家熟悉的内容以外,里面还出现了一些特色菜,让我们来一一品尝。 【Dependent框】 用于选入回归分析的应变量。 【Block按钮组】 由Previous和Next两个按钮组成,用于将下面Independent框中选入的自变量分组。由于多元回归分析中自变量的选入方式有前进、后退、逐步等方法,如果对不同的自变量选入的方法不同,则用该按钮组将自变量分组选入即可。下面的例子会讲解其用法。 【Independent框】 用于选入回归分析的自变量。 【Method下拉列表】 用于选择对自变量的选入方法,有Enter(强行进入法)、Stepwise(逐步法)、Remove(强制剔除法)、Backward(向后法)、Forward(向前法)五种。该选项对当前Independent框中的所有变量均有效。

数学建模插值及拟合详解

插值和拟合 实验目的:了解数值分析建模的方法,掌握用Matlab进行曲线拟合的方法,理解用插值法建模的思想,运用Matlab一些命令及编程实现插值建模。 实验要求:理解曲线拟合和插值方法的思想,熟悉Matlab相关的命令,完成相应的练习,并将操作过程、程序及结果记录下来。 实验内容: 一、插值 1.插值的基本思想 ·已知有n +1个节点(xj,yj),j = 0,1,…, n,其中xj互不相同,节点(xj, yj)可看成由某个函数y= f (x)产生; ·构造一个相对简单的函数y=P(x); ·使P通过全部节点,即P (xk) = yk,k=0,1,…, n ; ·用P (x)作为函数f ( x )的近似。 2.用MA TLAB作一维插值计算 yi=interp1(x,y,xi,'method') 注:yi—xi处的插值结果;x,y—插值节点;xi—被插值点;method—插值方法(‘nearest’:最邻近插值;‘linear’:线性插值;‘spline’:三次样条插值;‘cubic’:立方插值;缺省时:线性插值)。注意:所有的插值方法都要求x是单调的,并且xi不能够超过x的范围。 练习1:机床加工问题 每一刀只能沿x方向和y方向走非常小的一步。 表3-1给出了下轮廓线上的部分数据 但工艺要求铣床沿x方向每次只能移动0.1单位. 这时需求出当x坐标每改变0.1单位时的y坐标。 试完成加工所需的数据,画出曲线. 步骤1:用x0,y0两向量表示插值节点; 步骤2:被插值点x=0:0.1:15; y=y=interp1(x0,y0,x,'spline'); 步骤3:plot(x0,y0,'k+',x,y,'r') grid on 答:x0=[0 3 5 7 9 11 12 13 14 15 ]; y0=[0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6 ]; x=0:0.1:15; y=interp1(x0,y0,x,'spline'); plot(x0,y0,'k+',x,y,'r') grid on

数学建模实验 ――曲线拟合与回归分析

曲线拟合与回归分析 1、有 10个同类企业的生产性固定资产年平均价值和工业总产值资料如下: (1说明两变量之间的相关方向; (2建立直线回归方程; (3计算估计标准误差; (4估计生产性固定资产(自变量为 1100万元时的总资产 (因变量的可能值。 解: (1工业总产值是随着生产性固定资产价值的增长而增长的,存 在正向相关性。 用 spss 回归 (2 spss 回归可知:若用 y 表示工业总产值(万元,用 x 表示生产性固定资产,二者可用如下的表达式近似表示: 567 . 395 896 . 0+ =x

y (3 spss 回归知标准误差为 80.216(万元。 (4当固定资产为 1100时,总产值为: (0.896*1100+395.567-80.216~0.896*1100+395.567+80.216 即(1301.0~146.4这个范围内的某个值。 MATLAB 程序如下所示: function [b,bint,r,rint,stats] = regression1 x = [318 910 200 409 415 502 314 1210 1022 1225]; y = [524 1019 638 815 913 928 605 1516 1219 1624]; X = [ones(size(x', x']; [b,bint,r,rint,stats] = regress(y',X,0.05; display(b; display(stats; x1 = [300:10:1250]; y1 = b(1 + b(2*x1;

figure;plot(x,y,'ro',x1,y1,'g-'; 生产性固定资产价值 (万元 工业总价值 (万元 industry = ones(6,1; construction = ones(6,1; industry(1 =1022; construction(1 = 1219; for i = 1:5

数学建模曲线拟合

曲线拟合 摘要 根究已有数据研究y关于x的关系,对于不同的要求得到不同的结果。 问题一中目标为使的各个观察值同按直线关系所预期的值的偏差平方和为最小,利用MATLAB中t lsqcurvefi函数在最小二乘法原理下拟合出所求直线。 问题二目标为使绝对偏差总和为最小,使用MATLAB中的fminsearch函数,在题目约束条件内求的最优答案,以此方法同样求得问题三中最大偏差为最小时的直线。 问题四拟合的曲线为二阶多项式,方法同前三问类似。 问题五为求得最佳的曲线,将之前的一次曲线换成多次曲线进行拟合得到新的结果。经试验发现高阶多项式的阶数越高拟和效果最好。 ) 关键词:函数拟合最小二乘法线性规划 | < ¥

一、问题的重述 已知一个量y 依赖于另一个量x ,现收集有数据如下: (1)求拟合以上数据的直线a bx y +=。目标为使y 的各个观察值同按直线关系所预期的值的偏差平方和为最小。 (2)求拟合以上数据的直线a bx y +=,目标为使y 的各个观察值同按直线关系所预期的值的绝对偏差总和为最小。 (3)求拟合以上数据的直线,目标为使y 的各个观察值同按直线关系所预期的值的最大偏差为最小。 (4)求拟合以上数据的曲线a bx cx y ++=2,实现(1)(2)(3)三种目标。 } (5)试一试其它的曲线,可否找出最好的? 二、问题的分析 对于问题一,利用MATLAB 中的最小二乘法对数据进行拟合得到直线,目标为使各个观察值同按直线关系所预期的值的偏差平方和为最小。 对于问题二、三、四均利用MATLAB 中的fminsearch 函数,在题目要求的约束条件下找到最佳答案。 对于问题五,改变多项式最高次次数,拟合后计算残差,和二次多项式比较,再增加次数后拟合,和原多项式比较残差,进而找到最好的曲线。 ~

数学建模课件--最小二乘法拟合.(优选)

26 / 11word. 4.最小二乘法线性拟合 我们知道,用作图法求出直线的斜率a 和截据b ,可以确定这条直线所对应的经验公式,但用作图法拟合直线时,由于作图连线有较大的随意性,尤其在测量数据比较分散时,对同一组测量数据,不同的人去处理,所得结果有差异,因此是一种粗略的数据处理方法,求出的a 和b 误差较大。用最小二乘法拟合直线处理数据时,任何人去处理同一组数据,只要处理过程没有错误,得到的斜率a 和截据b 是唯一的。 最小二乘法就是将一组符合Y=a+bX 关系的测量数据,用计算的方法求出最佳的a 和b 。显然,关键是如何求出最佳的a 和b 。 (1) 求回归直线 设直线方程的表达式为: bx a y += (2-6-1) 要根据测量数据求出最佳的a 和b 。对满足线性关系的一组等精度测量数据(x i ,y i ),假定自变量x i 的误差可以忽略,则在同一x i 下,测量点y i 和直线上的点a+bx i 的偏差d i 如下: 111bx a y d --= 222bx a y d --= n n n bx a y d --= 显然最好测量点都在直线上(即d 1=d 2=……=d n =0),求出的a 和b 是最理想的,但测量点不可能都在直线上,这样只有考虑d 1、d 2、……、d n 为最小,也就是考虑d 1+d 2+……+d n 为最小,但因d 1、d 2、……、d n 有正有负,加起来可能相互抵消,因此不可取;而|d 1|+ |d 2|+……+ |d n |又不好解方程,因而不可行。现在采取一种等效方法:当d 12+d 22+……+d n 2 对a 和b 为最小时,d 1、d 2、……、d n 也为最小。取(d 12+d 22+……+d n 2 )为最小值,求a 和b 的方法叫最小二乘法。 令 ∑== n i i d D 1 2=21 1 2][i i n i n i i b a y d D --== ∑∑== (2-6-2) D 对a 和b 分别求一阶偏导数为: ][21 1∑∑==---=??n i i n i i x b na y a D

以曲线拟合预测我国经济发展和工资增长

关键词:最小二乘法;经济发展;工资增长;预测 中图分类号:f249.24 文献标识码:a 文章编号:1001-828x(2012)02-000-02 一、问题的重述 经济发展是伴随着经济结构、社会和政治体制变革的经济增长,即不仅意味着产出的增长,还意味着随着产出的增加而出现的产出与收入结构的变化以及经济条件、政治条件、文化条件的变化。在经济学中,常用gdp来衡量该国或地区的经济发展综合水平。这也是目前各个国家和地区常采用的衡量手段。而收入水平也在很大程度上影响着国家经济的发展,于是gnp也被看成是衡量国民经济发展情况的一个重要指标。 职工平均工资是反映一个国家或地区劳动者收入水平的重要指标。该指标在经济运行中的作用体现在以下几个方面:职工平均工资指标关系到劳动者目前乃至退休后的切身利益,对人口就业起到导向作用;职工平均工资数据也是政府部门制定最低工资标准、计算各项社会保险(基本养老保险、基本医疗保险、失业保险)、住房公积金缴费基数的依据;是法院在判定突发事件如工伤、车祸等对受害人给予经济补偿的参考依据。同时,通过各单位、地区或行业不同时期职工平均工资的对比,可以看出平均工资水平增减变动及存在差距。对企业来说,职工平均工资与企业平均利税、劳动生产率等有密切的联系。平均工资与平均劳动效率比较,可以判断工资水平和增长速度是否合理。可见,它既是反映职工生活水平高低的“晴雨表”,也是衡量是否正确处理国家、企业与个人三者利益关系的测量器。准确的职工平均工资,能正确地反映职工生活水平的高低,衡量出国家经济的发展状况。 二、需要解决的问题及问题分析 将在中国统计年鉴中收集到的1978-2009年全国gdp、gnp的相关数据转化为曲线,并通过对比曲线趋势图,简单、合理的预测未来我国经济发展态势。 作为收益与成本的复合指标――工资,是经济增长的一个决定因素,因此,工资的变动必然会影响经济增长。而在经济增长过程中,中国工资的变动及其调节与经济理论有很多出入的地方,需要进行有效的措施加以校正。以山东为例,通过对山东以前的经济增长与工资增长之间的关系进行相关研究中梳理得出,经济增长与工资增长之间存在内在关系,并对此关系进行了合理的分析与假设,从而对2011年至2035年的山东省职工的年平均工资作了简化、合理的假设。 三、模型的建立与求解 模型的假设:假定职工的平均工资与人均gdp保持同等的增幅。 (一)对未来中国经济、工资增长情况的分析与预测 1.对于未来中国经济发展和工资增长的形势,我们收集了相关资料,也进行了分析与讨论。 gdp:国内生产总值(gross domestic product)是指在一定时期内(一个季度或一年),一个国家或地区的经济中所生产出的全部最终产品和劳务的价值,常被公认为衡量国家经济状况的最佳指标,是衡量一国经济发展的重要指标。 gnp:国民生产总值,是最重要的宏观经济指标,它是指一个国家地区的国民经济在一定时期(一般1年)内以货币表现的全部最终产品(含货物和服务)价值的总和,是衡量全国平均收入水平的重要指标。 在中国统计年鉴中收集到了1978-2009年全国gdp、gnp的相关数据,为了更清晰地了解该信息,将抽象的数据转化为了直观的曲线图,对比如下:

数学建模数据之简单处理技巧(Mathematica)总结

数学建模数据之简单处理技巧 人们在生产实践与科学研究中经常会得到一系列的数据,然后通过这些数据得到某种内在规律,这就叫数据处理(Adjustment of Data )。科学家开发了许多方法来处理这个问题,最初由Gauss 发展起来,用于彗星轨道(Orbits of Comets )的计算以及三角测量术中。主要方法有:最小二乘平方法、平均误差及误差延伸法则、直接测量的处理、以及一个函数用较简单函数表示的问题。数据拟合(Fit )就是其中的一种。 假设已经得到数据列data1 = { y1, y2, y3,…,yn}, 现在需要寻找此数据列所满足的规律。Mathematica 系统提供了拟合命令Fit ,使用的格式如下,例如: f[x] = Fit[ data1, { 1, x, x 2, x 3 }, x ] 表示用最小误差平方法去拟合数据data1,而且指明用32,,,1x x x 构成的函数基,线性表出拟合函数f[x]。此处,得到的拟合函数f[x] 按x = j, f[ j ] = yj (data1中第j 个数据)处理数据; 一般地,假设有2维数据 data2 = { { x 1, y 1 }, { x 2, y 2 }, … }, 则命令 Fit[ data2, { 1, f 1[x], f 2[x], … }, x ] 表示用最小误差平方法去拟合数据data2,而且指明用一元函数列{ 1, f 1[x], f 2[x], …}去线性表出拟合函数F[x]。 假设有3维数据 data3 = { { x 1, y 1, z 1 }, { x 2, y 2, z 2 }, … } }, 则命令 f[x, y] = Fit[ data3, {1,f 1[x,y],f 2[x,y],…},{x,y} ] 表示用最小误差平方法去拟合数据data3,而且指明用2元函数列{ 1, f 1[x, y], f 2[x, y], …}去线性表出拟合函数f[x, y]。 数据拟合典型例子 d = { { 1, 1}, { 2, -2 }, { 3, 3 }, { 4, -4 }, { 5, 5 }, { 6, 6 }}; g1 = ListPlot[ d, PlotStyl e -> { Hue[ 0 ], PointSize[ .03 ] } ] f1 = Fit[ d, { 1, x, x^2, x^3, x^4 }, x ]; Print[“f1 = ”, f1] g2 = Plot[ f1, { x, 1, 10 }, PlotStyle -> Hue[ .6 ] ] f2 = Fit[ d, { 1, x, x^2, x^3, x^4, x^5}, x ]; Print[“f2 = ”, f2] g3 = Plot[ f2, { x, 1, 10 }, PlotStyle ->{ GrayLevel[ 0 ], Dashing[ { .03 } ] } ] Show[ g1, g2, g3 ] 得到结果: 图1-1-52 f1=-3.33333+8.12169x -5.30556x 2+1.2037x 3-0.0833333x 4

数学建模:最小二乘拟合实验

《数学建模期末实验作业》 院系:数学学院 专业:信息与计算科学 年级:2014级 试题编号:37 胡克定律得综合评价分析 背景摘要: 利用一个打蛋器与一个物理学公式,毁掉一面六英寸厚得承重墙,这么天方夜谭得事您能相信吗?但它却真得发生了! 《越狱》这一电视剧相信很多人都耳熟,即使没瞧过里面得内容,但应该都曾经听过它得大名.在《越狱》第一季第六集中,Michael要通过地下管道爬到医务室得下面,但就是一条重要通道就是被封死得,因此必须要把这个封死得墙破坏掉,由于就是混凝土结构,因此破坏起来很难,Michael从纹身上拓下魔鬼得画像,投影在掩住管道入口得墙上,用“胡克定律”计算出最佳位置,再用小巧得打蛋器在承重墙上钻出了几个小洞,最后借助这几个小洞毁掉了这堵承重墙。 相信大多数人都觉得很梦幻很不科学,但事实就就是这样得令人惊讶。搜狐娱乐曾经报道过,有《越狱》粉丝不相信这一情节,在现实生活中进行实验,结果真得重现了“胡克定律”凿墙这一情节。 胡克定律得表达式为F=k·x或△F=k·Δx,其中k就是常数,就是物体得劲度(倔强)系数。在国际单位制中,F得单位就是牛,x得单位就是米,它

就是形变量(弹性形变),k得单位就是牛/米.倔强系数在数值上等于弹簧伸长(或缩短)单位长度时得弹力。 弹性定律就是胡克最重要得发现之一,也就是力学最重要基本定律之一.在现代,仍然就是物理学得重要基本理论。胡克得弹性定律指出:弹簧在发生弹性形变时,弹簧得弹力Ff与弹簧得伸长量(或压缩量)x成正比,即F=-k·x.k就是物质得弹性系数,它由材料得性质所决定,负号表示弹簧所产生得弹力与其伸长(或压缩)得方向相反。 但当我们进行多次实验,便会发现随着F得逐步增大,便不再服从胡克定律.为此我们应当运用插值与拟合得内容,探索更加准确得公式。 一、建模问题 1、问题提出 1、1问题背景 弹簧在压力F 得作用下伸长x,一定范围内服从胡克定理:F与x成正比,即F=kx。现在得到下面一组F,x数据,并在(x,F)坐标下作图,可以瞧到当F大到一定数据值后,就不服从这个定律了。 表1—1 试根据上述所给出得数据及已知得胡克公式,解决一下问题: (1)试由数据确定k (2)给出不服从胡克定理时得近似公式 1、3 问题分析 这就是一道关于弹簧劲度系数得问题,对于此类建模有实际得价值,而且也可以让我们拓宽物理学习得视野,很有价值。 二、模型假设 通过阅读题目与查阅资料,我们可以发现,F得值就是随着X得改变而改变得,当X小于某一值时,F遵循胡克定律,而当X大于某一值时,F便不再遵循胡克定律,故我们可以提出以下假设。 假设1:当X<9时,F遵循胡克定律。 假设2:当X>9时,F不遵循胡克定律。

多元线性回归与曲线拟合

第十章:多元线性回归与曲线拟合―― Regression菜单详解(上) (医学统计之星:张文彤) 回归分析是处理两个及两个以上变量间线性依存关系的统计方法。在医学领域中,此类问题很普遍,如人头发中某种金属元素的含量与血液中该元素的含量有关系,人的体表面积与身高、体重有关系;等等。回归分析就是用于说明这种依存变化的数学关系。 §10.1Linear过程 10.1.1 简单操作入门 调用此过程可完成二元或多元的线性回归分析。在多元线性回归分析中,用户还可根据需要,选用不同筛选自变量的方法(如:逐步法、向前法、向后法,等)。 例10.1:请分析在数据集Fat surfactant.sav中变量fat对变量spovl的大小有无影响? 显然,在这里spovl是连续性变量,而fat是分类变量,我们可用用单因素方差分析来解决这个问题。但此处我们要采用和方差分析等价的分析方法--回归分析来解决它。 回归分析和方差分析都可以被归入广义线性模型中,因此他们在模型的定义、计算方法等许多方面都非常近似,下面大家很快就会看到。 这里spovl是模型中的因变量,根据回归模型的要求,它必须是正态分布的变量才可以,我们可以用直方图来大致看一下,可以看到基本服从正态,因此不再检验其正态性,继续往下做。 10.1.1.1 界面详解 在菜单中选择Regression==>liner,系统弹出线性回归对话框如下:

除了大家熟悉的内容以外,里面还出现了一些特色菜,让我们来一一品尝。 【Dependent框】 用于选入回归分析的应变量。 【Block按钮组】 由Previous和Next两个按钮组成,用于将下面Independent框中选入的自变量分组。由于多元回归分析中自变量的选入方式有前进、后退、逐步等方法,如果对不同的自变量选入的方法不同,则用该按钮组将自变量分组选入即可。下面的例子会讲解其用法。 【Independent框】 用于选入回归分析的自变量。 【Method下拉列表】 用于选择对自变量的选入方法,有Enter(强行进入法)、Stepwise(逐步法)、Remove(强制剔除法)、Backward(向后法)、Forward(向前法)五种。该选项对当前Independent框中的所有变量均有效。

数学建模~插值与拟合

插值与拟合 —、概述 我们经常会遇到大量的数据需要处理, 而处理数据的关键就在于这些算法,例如 数据拟合、参数估计、插值等数据处理算 法。此类问题在 MATLAB 中有很多现成的 函数可以调用,熟悉MATLAB,这些方法 都能游刃有余的用好。 倒血观

110 预测点和实测点的图形 插值后的图形 ■?】? Q "a* ^>4?八 )?2? 十 J*l ? D ?SI 丢R 咳娥□ Q 0 ? 1 ? L? i . 1 ?? ? ro>?? 昨 ■ :eERC?》□ k - B O uts nltt — l!fe wi ? i :;—4.直 ----- ? : w ? n .??< pr 瓷量 h ii I i ? —UE!. 2 冷爲 ,p bbb. it- —— ?t: ?..」 ! bRB :: 黑就55r"A 数据拟合在很多赛题中有应用,与图形 处理有关的问题很多与插值和拟合有关系, 例如 98年美国赛A 题,生物组织切片的三维插 值处 理,94年A 题逢山开路,山体海拔高度的 插值计算,2003年吵的沸沸扬扬的“非典” 问题也要用到数据拟合算法,观察数据的走 向进行处理, 2005年的雨量预报的评价的插 值计算。2001年的 公交车调度拟合问题, 2003年的饮酒驾车拟合问题。 * 22 12

喝两瓶酒的拟合曲线喝1?5瓶酒的拟合曲线 Az ? 2 4> LAs 在实际中,常常要处理由实验或测量所得到的一些离散数据。插值与拟合方法就是要通过这些数据去确定某一类已知函数的参数或寻求某个近似函数,使所得到的近似函 数与已知数据有较高的拟合精度。 如果要求这个近似函数(曲线或曲面)经过所已知的所有数据点,则称此类问题为 插值问题。(不需要函数表达式)

数学建模算法分类及应用

1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算 法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要 处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题 属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、 Lingo软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉 及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计 中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是 用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实 现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛 题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好 使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只 认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非 常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常 用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调 用)

Matlab最小二乘法曲线拟合

最小二乘法在曲线拟合中比较普遍。拟合的模型主要有 1.直线型 2.多项式型 3.分数函数型 4.指数函数型 5.对数线性型 6.高斯函数型 ...... 一般对于LS问题,通常利用反斜杠运算“\”、fminsearch或优化工具箱提供的极小化函数求解。在Matlab 中,曲线拟合工具箱也提供了曲线拟合的图形界面操作。在命令提示符后键入:cftool,即可根据数据,选择适当的拟合模型。 “\”命令 1.假设要拟合的多项式是:y=a+b*x+c*x^ 2.首先建立设计矩阵X: X=[ones(size(x)) x x^2]; 执行: para=X\y para中包含了三个参数:para(1)=a;para(2)=b;para(3)=c; 这种方法对于系数是线性的模型也适应。 2.假设要拟合:y=a+b*exp(x)+cx*exp(x^2) 设计矩阵X为 X=[ones(size(x)) exp(x) x.*exp(x.^2)]; para=X\y 3.多重回归(乘积回归) 设要拟合:y=a+b*x+c*t,其中x和t是预测变量,y是响应变量。设计矩阵为 X=[ones(size(x)) x t] %注意x,t大小相等! para=X\y

polyfit函数 polyfit函数不需要输入设计矩阵,在参数估计中,polyfit会根据输入的数据生成设计矩阵。 1.假设要拟合的多项式是:y=a+b*x+c*x^2 p=polyfit(x,y,2) 然后可以使用polyval在t处预测: y_hat=polyval(p,t) polyfit函数可以给出置信区间。 [p S]=polyfit(x,y,2) %S中包含了标准差 [y_fit,delta] = polyval(p,t,S) %按照拟合模型在t处预测 在每个t处的95%CI为:*delta, y_fit+*delta) 2.指数模型也适应 假设要拟合:y = a+b*exp(x)+c*exp(x.2) p=polyfit(x,log(y),2) fminsearch函数 fminsearch是优化工具箱的极小化函数。LS问题的基本思想就是残差的平方和(一种范数,由此,LS产生了许多应用)最小,因此可以利用fminsearch函数进行曲线拟合。 假设要拟合:y = a+b*exp(x)+c*exp(x.2) 首先建立函数,可以通过m文件或函数句柄建立: x=[......]'; y=[......]'; f=@(p,x) p(1)+p(2)*exp(x)+p(3)*exp(x.2) %注意向量化:p(1)=a;p(2)=b;p(3)=c; %可以根据需要选择是否优化参数 %opt=options() p0=ones(3,1);%初值

曲线拟合问题讲解

曲线拟合问题 摘要 本文首先对给定数据根据不同要求进行多次直线拟合,分别求得使所拟直线预期值的偏差平方和、绝对偏差总和和最大偏差最小的三类拟合直线,然后再求得二次曲线条件下满足三类要求的二次拟合曲线,最后运用其他曲线对给定数据进行拟合,得到吻合度最高的曲线。 针对问题一,构建线性回归方程,运用最小二乘法及lingo软件使得目标函数预 期值的即拟合偏差平方和达到最小,从而得到拟合曲线^ 0.80310480.0123077 i y x- =。 针对问题二,构建给定数据的线性回归方程,使得目标函数即预期值的绝对偏差综合最小,但由于绝对偏差较难处理,采用转化的思想将对绝对偏差的求解转化为对偏 差平方和开方的求解,从而得到拟合曲线^ 0.650.575 i y x =+。 针对问题三,构建给定数据的线性回归方程,运用lingo软件使得目标函数即预 期值的最大偏差最小,从而得到拟合曲线^ 1.13 1.879 i y x =-。 针对问题四,构建给定数据的二次方程,运用lingo软件分别求得三类不同条件下 的最优拟合曲线,偏差平方和达到最小:^ 2 1 0.097030110.138534 1.425301 i i y x x - =+,绝 对偏差总和达到最小:^ 2 1 0.041481480.27111111 i i y x x + =+,观测值与预测值最大偏差为 最小:^ 2 1 0.025568180.76590910.6923295 i i y x x- =+。 针对问题五,本文做出给定数据散点图,构建不同曲线类型进行拟合,得到2R即吻合度最高的曲线类型,运用Matlab软件求得该曲线类型的方程。 本文的特色在于利用图标直观表达拟合曲线,增强文章可靠性及真实性,并构建不同的曲线类型,得到吻合度最高的拟合曲线。 关键词:曲线拟合、线性回归、lingo

相关主题
文本预览
相关文档 最新文档