当前位置:文档之家› 攀长钢公司钛材生产工艺、装备及产品

攀长钢公司钛材生产工艺、装备及产品

攀长钢公司钛材生产工艺、装备及产品
攀长钢公司钛材生产工艺、装备及产品

钛合金特性及加工办法

精心整理 钛合金特性及加工方法 钛合金以其强度高、机械性能及抗蚀性良好而成为飞机及发动机理想的制造材料,但由于其切削加工性差,长期以来在很大程度上制约了它的应用。随着加工工艺技术的发展,近年来,钛合金已广泛应用于飞机发动机的压气机段、发动机罩、排气装置等零件的制造以及飞机的大梁隔框等结构框架件的制造。我公司某新型航空发动机的钛合金零件约占零件总数的11%。本文是在该新机试制过程中积累的对钛合金材料切削特性以及在不同加工方法下表现出的具体特点的认识及所应采取工艺措施的经验总结。 1钛合金的切削加工性及普遍原则 钛合金按金属组织分为a 相、b 相、a+b 相,分别以TA ,TB ,TC 表示其牌号和类型。我公司某新型发动 600 损严重。 要保持刀刃锋利,以保证排屑流畅,避免粘屑崩刃。 切削速度宜低,以免切削温度过高;进给量适中,过大易烧刀,过小则因刀刃在加工硬化层中工作而磨损过快;切削深度可较大,使刀尖在硬化层以下工作,有利于提高刀具耐用度。 加工时须加冷却液充分冷却。 切削钛合金时吃刀抗力较大,故工艺系统需保证有足够的刚度。由于钛合金易变形,所以切削夹紧力不能大,特别是在某些精加工工序时,必要时可使用一定的辅助支承。 以上是钛合金加工时需考虑的普遍原则,事实上,用不同的加工方法时及在不同的条件下存在着不同的矛盾突出点和解决问题的侧重点。 2钛合金切削加工的工艺措施

车削 钛合金车削易获得较好的表面粗糙度,加工硬化不严重,但切削温度高,刀具磨损快。针对这些特点,主要在刀具、切削参数方面采取以下措施: 刀具材料:根据工厂现有条件选用YG6,YG8,YG10HT。 刀具几何参数:合适的刀具前后角、刀尖磨圆。 较低的切削速度。 适中的进给量。 较深的切削深度。 选用的具体参数见表1。 表1车削钛合金参数表工序车刀前角go ° ° mm m/min mm mm/r 粗车56 精车56 铣削 了3 此外,为使钛合金顺利铣削,还应注意以下几点: 相对于通用标准铣刀,前角应减小,后角应加大。 铣削速度宜低。 尽量采用尖齿铣刀,避免使用铲齿铣刀。 刀尖应圆滑转接。 大量使用切削液。 为提高生产效率,可适当增加铣削深度与宽度,铣削深度一般粗加工为 1.5~3.0mm,精加工为0.2~0.5mm。 磨削 磨削钛合金零件常见的问题是粘屑造成砂轮堵塞以及零件表面烧伤。其原因是钛合金的导热性差,使磨削区产生高温,从而使钛合金与磨料发生粘结、扩散以及强烈的化学反应。粘屑和砂轮堵塞导致磨削比显著

海绵钛的生产工艺主要包括镁还原-蒸馏法(即克劳尔法)和钠还原-蒸馏法...

海绵钛的生产工艺主要包括镁还原-蒸馏法(即克劳尔法)和钠还原-蒸馏法两种方法在工业生产中应用,其它的方法目前都处于实验室阶段,预计未来十年内仍以克劳尔法生产为主。克劳尔法生产流程如下:钛矿--电炉熔炼生产高钛渣--氯化生产四氯化钛--精制提纯生产精四氯化钛--镁还原-蒸馏生产海绵钛--成品破碎包装。如果采用全流程生产(镁氯循环),以目前的原材料市场行情测算,生产每吨海绵钛生产成本约在6.5万元左右。生产出的海绵钛还需进行真空电弧炉熔铸成钛锭(或钛合金),再锻制或扎制成相应的管材、板材或丝材,才能在工业中应用。 一、Na 还原法 四氯化钛主要用作生产海绵钛、钛白粉及三氯化钛。其制取方法很多,主要有沸腾氯化、熔盐氯化和竖炉氯化3 种方法。沸腾氯化是现行生产四氯化钛的主要方法(中国、日本、美国采用),其次是熔盐氯化(独联体国家采用),而竖炉氯化已被淘汰。沸腾氯化一般是以钙镁含量低的高品位富钛料为原料,而熔盐氯化则可使用含高钙镁的原料。 1、沸腾氯化 沸腾氯化是采用细颗粒富钛料与固体碳质(石油焦)还原剂,在高温、氯气流的作用下呈流态化状态进行氯化反应,从而制取四氯化钛的方法。该法具有加速气-固相间传质及传热过程,强化生产的特点。国内外目前沸腾氯化使用的原料有高钛渣、天然金红石、人造金红石等。我国抚顺钛厂和遵义钛厂新建的沸腾氯化炉直径分别为Φ1.4 m与Φ2.4 m,采用独有的无筛板氯化技术,其中遵义钛厂设计日产粗四氯化钛70 t。 2、熔盐氯化 熔盐氯化是将磨细的钛渣或金红石和石油焦悬浮在熔盐(主要由KCl、NaCl、MgCl2 和CaCl2 组成)介质中,并通入氯气,从而制取四氯化钛的方法。一般也可使用电解镁的废电解质,在973K~1073K 条件下充入氯气,故氯化反应的速度受到熔体的性质、组成,还原剂的种类,原料的性质,氯化温度,氯气浓度及通入速度,熔体高度,配碳量等因素的影响。独联体四氯化钛生产中最佳的熔盐组成如表4 所示。 熔盐氯化法是前苏联20 世纪60 年代研制成功,用以生产四氯化钛的方法,该法不仅适用于前苏联的原料特点(钛渣含CaO+MgO 约6%),其炉子产能达20 t/m2 ~25 t/m2 四氯化钛,熔盐段截面积为6m2。大型熔盐氯化炉日产四氯化钛为120 t~150 t,原为矩形炉,现改为圆形炉,圆形熔盐氯化炉的尺寸为Φ 5.0 m×8.5 m,内径Φ 内为2.76 m,长方形为4.5 m×3.5 m×8.5 m。圆形炉内无死角,炉体强度增大,3 年大修1 次,比矩形炉使用年限延长近1 倍。熔盐氯化可使用多种富钛物料,除了含钙镁的钛渣外,现广泛使用由红钛铁矿(Fe2O3 3TiO2)熔炼的钛渣(TiO2 87%~91%),亦可使用金红石。 乌克兰采用熔盐氯化生产已有40 多年的历史,不仅适用于该国钛精矿MgO、CaO 含量高的特点,还具有以下优点:1)氯化装置单位生产率高,可达20 t/m2·d ~25t/m2·d TiCl4;2)氯化温度低,为800℃,很多杂质不会因氯化而进入TiCl4;3)从炉料到工业四氯化钛,钛的回收率高,可达95%;熔盐本身有净化TiCl4 的作用,获得TiCl4杂质含量低,钒、氯、硅、碳等杂质总含量≤2%;制得TiCl4 产物达98%以上,可使AlCl3、FeCl3、CaO、MgO 和SiO2 等杂质留在熔盐介质中,然后排出;4)对原料粒度组成要求不高,可利用细小粒度的钛渣;5)反应过程不产生COCl2,废气无爆炸危险。废气中Cl2 和HCl 含量非常小,对环境污染也不大。

纳米氢氧化镁阻燃剂的制备工艺

2009年第1期 青海师范大学学报(自然科学版) Journal of Qinghai Norm al U niversity(Natural Science) 2009 No.1纳米氢氧化镁阻燃剂的制备工艺 王书海,温小明 (青海师范大学化学系,青海西宁 810008) 摘 要:本文主要研究了湿法纳米氢氧化镁阻燃剂的制备工艺过程,对制得纳米氢氧化镁阻燃剂进行测试,并将粉体添加到 软质PVC体系中测定该体系的活化数、氧指数、拉伸强度和断裂伸长率等.通过单因素优选法和正交试验法分析,结果表 明,最佳的工艺条件:聚乙二醇(PEG)为分散剂,硬脂酸为改性剂,分散剂的用量为2 5%,改性时间为90min,改性温度为 70 ,改性剂用量为5%(质量分数);添加了纳米氢氧化镁阻燃剂粉体的软质PVC体系的阻燃性能有了显著提高,同时减少 了氢氧化镁添加剂的用量和降低了对体系机械力学性能的影响. 关键词:氢氧化镁;阻燃剂;纳米;表面改性;分散剂 中图分类号:O157 5 文献标识码:A 文章编号:1001-7542(2009)01-0043-05 0 引言 随着有机高分子材料的迅速发展和广泛应用,有机物的易燃性和燃烧后放出大量的 卤烟 越来越受到人们的关注.无机阻燃剂的研究被提上日程,无机阻燃剂氢氧化镁由于其分解温度高(340 ~ 490 )、无毒、无烟、抗酸、无腐蚀性、价格便宜等[1]优点受到人们的欢迎.但由于氢氧化镁其表面的强极性的,自身容易聚合.添加到有机材料中很难使其均匀分散,而且界面难以形成很好的结合.通常氢氧化镁阻燃剂在较高的填充量下(填充量高达60%[2])才有较好的阻燃效果,但较高的填充量下有机材料的机械性能和成形性急剧下降.很难在两者之间中和,氢氧化镁的超细化和表面改性成为制约氢氧化镁阻燃剂大量应用的关键. 李克民[3]通过用偶联剂对氢氧化镁表面改性处理添加到有机高分子材料中取得了较好的效果,显著的提高了有机高分子材料的阻燃、抗酸等性能.改性后的氢氧化镁一般颗粒较大,很难在有机高分子材料中达到较好分散的效果.何昌洪、张密林等[4]人以氯化镁和氨水为原料制得了粒径100nm~ 150nm的纳米氢氧化镁,较小颗粒的氢氧化镁由于表面强极性很容易二次聚合,易胶结,洗涤过滤困难,而且收率较低.刘立华、宋云华等[5]人选择了几种常用的表面改性剂对纳米氢氧化镁进行湿法表面改性处理,降低了对有机材料机械力学性能的影响,但制备纳米氢氧化镁条件较为苛刻,工艺较为复杂. 本文首次通过把湿法制得纳米氢氧化镁并不将其从体系中分离,直接在水溶液体系中对其进行包裹改性处理,可以有效的防止了纳米氢氧化镁的二次聚合和胶结.同时通过对不同的试剂和反应条件进行试验,确定了制备纳米氢氧化镁阻燃剂的最佳工艺条件. 1 实验 1 1 主要原料和仪器 1 1 1 原料和试剂 氢氧化镁粉末(由青海镁业有限公司提供;d>10um);聚乙二醇(PEG),(分子量6000上海化学试剂采购供应站);硬脂酸,(大连大平油脂化学有限公司);硬脂酸钠,(常州市环琦贸易有限公司);十二烷基苯磺酸钠,(上海英鹏化学试剂有限公司);钛酸酯偶联剂,(南京能德化工有限公司);十二烷基硫酸钠、 收稿日期:2008-04-09 作者简介:王书海(1986-),男(汉族),江苏徐州人,2007级研究生,研究方向:材料添加剂研究.

钛材焊接工艺指导书

钛材焊接工艺指导书 一、编制说明 本工艺指导书的编制依据为SHJ502-86、HGJ217-86《钛管道施工及验收规范》。 二、焊接准备 1 管材和焊材的检验 管材、管件和焊材均应有质量证明书,管材、管件的内外表面应光滑、清洁、无针孔、裂纹、折叠和腐蚀等缺陷;焊材表面应洁净,无氧化色,不应有裂纹、起皱、班疤和夹杂等缺陷。 2 焊接方法和焊接材料 1)焊接方法采用手工钨极氩弧焊。焊机应有高频引弧装置和电流衰减装置。 2)焊接材料采用与母材同材质和纯度更高一级。 3)氩弧纯度不应低于99.99%,含水量不大于300mg/m3 4)氩弧输送管采用塑料软管,不得采用橡胶管或其它吸湿性材料。 3 管子切割和坡口加工 1)管子切割采用机械切割或采用机械切割时其表面不得有氧化层等离子弧割。采用等离子弧切割时要用机械方法(砂轮)除去油污染层,管子加工应采用清洁的专用工具。

2)坡口形式为Ⅰ型。 3)管子切口及坡口表面应平整,不得有裂纹、重皮,并清除毛刺、凸凹、缩口、熔渣及氧化物等。切口平面最大倾斜度偏差不得超过2.5mm。 4 坡口及焊丝的清理 1)坡口及其两侧各25mm以内外表面清除油污后,用细锉或奥氏体不锈钢丝刷等方法清除其氧化膜、毛刺等缺陷。清洁采用清洁的专用工具。 2)经机械清理后的表面,焊前使用不含硫的丙酮或乙醇进行脱脂处理。脱脂严禁使用氧化物容剂,并避免将棉质纤维附于坡口表面。 3)焊丝的清理方法与母材焊口相同。 5 焊口组对 1)焊口组对间隙0~1mm。 2)管子组对应做到内壁平齐,对口挡边量不得超过0.2mm。 3)定位焊采用与正式焊接相同的焊接材料和焊接工艺,其焊缝长度一般为10mm左右,高度不超过1.3mm。 4)定位焊缝不得有裂纹、气孔、夹渣及氧化变色等缺陷,发现缺陷应及时清除。 三焊接工艺 1焊接位置采用转动平焊。

攀钢15Kt海绵钛项目简介

攀钢集团钛业有限责任公司15Kt/a海绵钛项目简介 攀钢“十一五”发展规划明确提出“做大钒钛、做精钢铁、做好资源、做强企业”,在这一战略思想的指导下,攀钢将实施一系列钛产业重大投资项目,使钛产业成为国内最大,国际上具有重要影响的钛产品完整的产业体系,而其中一个关键项目就是海绵钛工程,项目结合攀枝花钛铁矿资源的特点,引进乌克兰的熔盐氯化生产技术,采用“I”型炉生产海绵钛,所生产的产品定位于军工、航天、航空、医疗等高端市场。 1、项目产品及规模 本项目产品商品海绵钛,生产产能商品15000吨/年,优质品率达80%以上。 2、工艺流程简介 2.1海绵钛生产工艺流程 见附图1。 2.2海绵钛生产的各工序简介 2.2.1氯化原料准备 本工序按照盐氯化车间原料的要求将高钛渣、石油焦、氯化钠进行加工。高钛渣经过球磨机磨细后进入棒式磁选机进行磁选;石油焦经过筛分后进入圆锥破碎机进行破碎,然后再进行干燥和磁选;氯化钠干燥后和加工过

的高钛渣、石油焦一起加入氯化炉中进行粗四氯化钛生产。 2.2.2熔盐氯化 本工序采用熔盐氯化法生产粗四氯化钛(CTT)。升温后氯化炉中的钛渣和焦炭悬浮在氯化钠熔盐介质中,和通入的氯气反应生成TiCl4。生成的氯化产物以气体形式进入收尘室除去高沸点杂质,经收尘室后,气体混合物被送到喷淋洗涤器,在喷淋洗涤器中用四氯化钛循环矿浆对其进行喷淋,以洗涤出杂质并对混合气体降温。从喷淋洗涤器出来的气体混合物送入喷淋冷凝器中冷凝。喷淋槽中的冷凝物通过溢流进入收集罐,再由泵打入沉降槽中沉降,上部澄清液即为氯化工序产品—粗四氯化钛。 2.2.3精制TiCl4 精制工序是除去粗四氯化钛中的杂质(包括气体、液体和固体杂质),以使四氯化钛中杂质含量满足生产海绵钛要求。四氯化钛精制采用铝粉除钒,通过蒸馏塔除去四氯化钛中的钒,一级精馏除低沸点杂质,二级精馏除去高沸点杂质。 2.2.4还原蒸馏 本工序采用克劳尔法以及先进的设备“I”型炉来生产海绵钛。来自精制车间的精四氯化钛用Mg去还原,然后再真空蒸馏还原产品,以除去残留在海绵钛砣孔隙中的Mg和MgCl2,达到提纯除杂的目的。 2.2.5海绵钛砣加工 本工序采用液压顶出机将海绵钛砣从还原罐中顶出后清理底部与侧面的杂质,再将还蒸过程、除杂过程控制参数符合控制要求的海绵钛砣被送到高品质海绵钛加工线,其它送商品级海绵钛生产线。

海绵钛生产工艺

海绵钛生产工艺介绍 图1 劳尔法海绵钛生产工艺流程图 工艺流程简述: 电炉熔炼:即高钛渣生产。其工艺流程如下见图2 钛渣生产流程图。

图2 钛渣生产流程图 电炉熔炼法生产高钛渣是钛铁矿与固体还原剂无烟煤或石油焦等混合加入电炉中进行还原熔炼,矿中的氧化物被选择性地还原为金属铁,而钛的氧化物被富集在炉渣中,经渣铁分离获得高钛渣和副产品

金属铁,高钛渣经过冷却、破碎、磁选、磨粉后送氯化车间。 在钛渣生产流程中,主要用能为电。主要用能设备为自制6300kV〃A 矮烟罩电弧炉。 氯化:即粗四氯化钛的生产。主要流程图见图3。 图3 氯化钛生产流程图 破碎好的高钛渣、石油焦按一定比例进行称量配料,经过混合、干燥,用加料机由混合料斗从沸腾段上方加入氯化炉内。氯气从氯化炉底进入炉内,加入的混合料与氯气反应生成四氯化钛和其他杂质的

氯化物以及一氧化碳和二氧化碳等气体。沸点低于氯化温度的氯化物如:FeCl3、AlCl3 (升华气体)等气体就和TiCl4一起挥发逸出氯化炉,而沸点高于氯化温度的氯化物如:CaCl2、MgCl2等,与未反应的TiO2、C粉等一起留在炉内成为炉渣。 从氯化炉顶以气体逸出的混合气体,主要成分为TiCl4、AlCl3、FeCl3等,还有被气流夹带出来的固体颗粒,进入收尘器,由于减速降温的作用,使其中AlCl3、FeCl3等高沸点氯化物以及被气体带出的固体颗粒大部分被冷凝沉积下来。通过收尘器出来的混合气体进入淋洗塔,被冷冻盐水冷却后的TiCl4、的液体相接触,使TiCl4、等气体和高沸点杂质被淋洗下来,淋洗下来的TiCl4液体还含有较多的杂质,经过沉降、过滤以后,得到淡黄色或红棕色的粗四氯化钛液体。不能冷凝的气体经过尾气净化处理后达标通过烟囱排空。 在粗四氯化钛生产过程中,主要用能为石油焦、压缩空气、电、循环水以及低温盐水。主要设备有Ф1200氯化炉、Ф2400氯化炉以及附属的泵类设备。 精制:精制工艺流程图见图4 。

纳米氢氧化镁的制备

纳米氢氧化镁的制备 1 前言 氢氧化镁为新型镁质无机阻燃剂, 具有无毒、无烟、阻燃效果好等特点, 近年来已成为减烟、抑烟、阻燃等方面重要的无机阻燃剂。随着我国高分子合成材料工业快速发展及阻燃法规不断健全和完善, 对阻燃剂需求随之增加, 作为无毒、抑烟型的环保无机阻燃剂Mg( OH) 2 的需求更是十分迫切, 我国无机阻燃剂占整个阻燃剂用量的50% , 其中氢氧化镁阻燃剂 占无机阻燃剂30% 左右, 每年需要氢氧化镁阻燃剂9 万t, 但我国目前氢氧化镁阻燃剂年生产能力约为1. 3 万t , 故我国氢氧化镁发展潜力巨大[1~ 2] 。我国是镁矿资源大国, 具有得天独厚的资源优势和良好的市场前景。因此, 我国应改进Mg(OH) 2 现有生产工艺、规模化生产, 并加强Mg(OH) 2 应用研究, 以促进我国Mg ( OH) 2 阻燃剂的生产和发展。我国生产的氢氧化镁纯度低, 粒度分布较宽, 而目前国外都需要高纯微细氢氧化镁产品, 特别是 高纯纳米级的氢氧化镁产品, 用于各种高档复合材料的阻燃成分[ 3~ 4] 。纳米氢氧化镁是指颗粒粒度介于1~ 100 nm 的氢氧化镁, 作为一种纳米材料, 它具有纳米材料所具有的共性特点, 即小尺寸效应、量子尺寸效应、表面效应、宏观量子效应等, 用它充填于复合材料中能大大提高材料的阻燃性能、力学性能和其它性能。 2 氢氧化镁与其他碱类的比较 质言之,氢氧化镁毕竟是一种“碱”,与其他传统碱相比当然是一种弱碱。具有独特的缓冲能力。氢氧化镁除在作为阻燃剂领域应用外,在其他领域应用特别是作为中和剂应用都基于这种特性。现将氢氧化镁比其他传统碱类物质所具有的优点综述如下。使用Mg(OH)2做中和剂时,溶液的pH值一般不会超过9,这恰好是美国环保局的“清洁水条例(CleanwaterAet)”中允许排放物pH值的最高限度[5],而其他碱类物质一般都大于12;与用生石灰、消石灰不同,用Mg(OH)2中和含硫酸的液体时形成可溶性的硫酸镁,可作为硫镁肥代替水镁矾(Kieserite),而用前者则会形成难溶的硫酸钙;Mg(OH)2中和能力强,中和同体积和同浓度的含酸废液,Mg(OH)2用量比通常碱的用量减少30%。由于中和速度慢,形成的砖泥致密,体积小,沉降快,过滤时间缩短,龄泥的处理和排人费用也比传统的处理方法减少30%,在温度零度时不结冰,从而可降低人工和维修费用。属弱碱性物质,作业处理和使用均安全可靠[6]。关于氢氧化镁的这些优点,国外有很多议论,如美国DOW化学公司氢氧化镁市场部经理Mark Tomik说:“这种化学品正在敦促越来越多的厂家对酸性液体进行处理时加以采用,以取代传统方法。他还说,用户通过使用氢氧化镁而不用其他碱类物质,在沉淀物处理和清除方面可节省60%的费用[5]。” 3 纳米氢氧化镁的制备技术[ 7] 3. 1 直接沉淀法 直接沉淀法制备纳米氢氧化镁是向含有Mg2+的溶液中加入沉淀剂, 使生成的沉淀从溶液中析出,最常见的是氢氧化钠法和氨法[ 8- 11] , 反应过程为: Mg2+ + 2NaOH Mg(OH)2 + 2Na+ ( 1) Mg2+ + 2NH3.H2O Mg(OH)2 + 2NH4+ ( 2) 直接沉淀法操作工艺简单, 控制反应条件可制得片状、针状和球形的纳米氢氧化镁粉体。东北大学林慧博等[7]研究了用NaOH 和MgC l2.6H2O制备纳米氢氧化镁的最佳工艺条件为:反应 温度80℃, 反应时间20 min, Mg2+ 和OH- 物质的量比为1 :2 ,Mg2+ 浓度为0. 5 mol/ L, 制得产品粒径约为90nm的片状均匀分散的氢氧化镁。由于氨的挥发性较强, 所以氨法制备纳米氢氧化镁容易造成环境污染。但用氢氧化钠方法制备纳米氢氧化镁成本相对较高,而且制备分散性良好的纳米氢氧化镁所需反应条件苛刻。

钛及钛合金铸件生产过程

钛及钛合金铸件生产 本规程适用于采用机加石磨铸型,真空凝亮炉熔铸的钛及钛合金铸件。 1工艺流程 2.1根据用户提供的零件蓝图及技术要求绘制铸造模型工艺图,并编写铸造工艺卡。 2.2机加石磨型生产钛铸件加工余量按GB/T11350 CT 9-MA F级。 3铸型制备 3.1对石墨电极的要求 3.1.1制作铸型的石墨电极应符合GB 3072。电极表面裂纹宽度不大于0.5mm。 3.2模型应严格按照工艺图、蓝图、工艺卡片制作,如有改动,需征得技术人员的许可。 3.3制作完毕后的铸型,模型工要先组装自检,然后检察员按工艺图和零件蓝图检查尺寸和结构,合格者方可使用。 4铸型焙烧

4.1铸型真空脱气前,电阻炉内培烧。 5铸型真空脱气 5.1焙烧后的模型取出后应立即装入脱气炉脱气。 5.2往炉内装型时,必须将厚、重、大的铸型装在下部,薄、轻、小易碰坏的铸型装在上部,注意轻拿轻放。 5.6经过脱气处理的铸型要放在干燥处,防止污染,吸潮。放置三天以上不用时,必须重新脱气。 6,。装炉 7.浇注 8出炉清理 8.1拆型时先拆一次性破坏部分,再拆其余部份,可重复使用的铸型放在指定的位置,并作上标记。 8.2反复使用的铸型表面允许有深度不大于3㎜,其面积不大于20mm2的孔洞,超过此规定者应修补并经检查合格后在使用。 8.3气割浇冒口时,应注意不要割伤铸件,所留余量10~20㎜之间。 8.4铸件清砂时要求将石墨清理干净,并清理干净,同时不损伤铸件。 8.5出炉后立即将坩埚和炉膛清理干净,并清除表面密封下法兰处的飞溅物. 9铸件精整 9.1外观 9.1.1清砂后的铸件飞边毛刺应打理干净,并打磨清除表面轻微留痕、冷隔等缺陷,与基体圆滑过度。 9.2焊接修补 9.2.1铸件上裸露的气孔、缩孔、疏松、裂纹、夹杂和打磨后的尺寸缺陷,应进行补焊。补焊前队缺陷部位应彻底清除干净直至露出光亮金属表面。补焊后按图纸整形。 9.2.2加工过程中暴露的缺陷,或X射线检查发现的缺陷,根据需要可进行焊接修补,同时内部缺陷焊补并整形后要在通过X射线,以确认满足需要。 9.2.3补焊应在氩弧保护下进行,焊缝不的有严重氧化现象。 10.表面质量 10.1.1铸件表面用目测检查没有铸型材料、附着的异物、氧化皮、冷隔、凹凸、飞边毛刺等及铸件内外表面光滑。 10.1.2合同中有要求时,铸件表面可参照GB9443进行无损检验或双方协商确定。 10.2内部质量 合同中有要求时,铸件可进行X射线检验或双方协商确定。 10.3化学成份 11.5几何尺寸 11.5.1铸件几何形状性和尺寸应符合铸件图样或订货协议的规定。 11.5.2铸件尺寸公差符合GB/T 6414的规定,一般不应低于CT 11级。 11.6检验合格产品由检查做出合格标示并出具产品质量证明书。 11.7检查不合格的产品应作出不合格标识,填写不合格品报告/处理申请单,按最终处置意见办理。

氢氧化镁

氢氧化镁综合介绍 基本介绍: 氢氧化镁(化学式:Mg(OH)2、分子量58.32)是镁的氢氧化物,为白色晶体或粉末,难溶于水,广泛用作阻燃剂、抗酸剂和胃酸中和剂。氢氧化镁在水中的悬浊液称为氢氧化镁乳剂,简称镁乳,用于中和过多的胃酸和治疗便秘。水溶液,呈碱性。用做分析试剂,还用于制药工业。 物化性质: 白色晶体或粉末。水溶液呈碱性。2.36g/cm3。溶于稀酸和铵盐溶液,几乎不溶于水和醇。在水中的溶解度(18℃)为0.0009g/100g 。易吸收空气中的二氧化碳。在碱性溶液中加热到200℃以上时变成六方晶体系结晶。在350℃分解而成氧化镁和水。高于500℃时失去水转变为氧化镁。沸水中碳酸镁可转变为溶解性更差的氢氧化镁。粒径1.5-2μm ,目数10000,白度≥95。 生产工艺: 1、水镁石磨细法 由于由天然水镁石磨细生产氢氧化镁只是一个物理过程,因此需要较纯净的天然水镁石资源。天然矿物水镁石的主要成分是氢氧化镁, 是一种层状结构的氢氧化物, 属于三方晶系, 常见的构造有块状、球状及纤维状, 是迄今自然界发现的含镁量最高的一种矿物。水镁石磨细法制备氢氧化镁, 是将水镁石粉碎成水镁石粉 ( 150μm ) , 再将水镁石粉气流粉碎至 1~ 26μm 粉体 ( 由表面活性剂改性的氢氧化镁 ) 。该氢氧化镁制造工艺简单, 价格也较低。该方法生产的是重质氢氧化镁。 2、化学合成法 化学合成法是利用含有氯化镁的卤水、卤矿等与苛性碱类物质在水介质中反应, 生成氢氧化镁浆料, 经过滤、洗涤、干燥制得氢氧化镁。化学合成法中应用较多的方法包括氢氧化钙法、氨法、氢氧化钠法。采用这些方法生产的是轻质氢氧化镁。氢氧化钙法又称石灰乳法, 是以 Ca(OH)2为沉淀剂, 是一种传统的制备 方法。该法优点是原料易得, 生产工艺简单, 成本较低。但是, 由于所得产品粒度小 (可达 0. 51μm 以下) , 聚附倾向大, 难于沉降、过滤及洗涤, 并且易吸附硅、钙、铁等杂质离子,因此产品纯度低, 只适用于对纯度要求不太高的行业, 如烟气脱硫和酸性废水中和等。 氢氧化钠法是采用氯化镁水溶液与烧碱反应制备氢氧化镁。该方法优点是操作简单, 产物的形貌、粒度分布及纯度、晶体结构均易于控制, 适宜制备高纯微细产品。但是, 烧碱的使用会使成本增大;另外, 由于粒度较细, 过滤有一定困 难。用氢氧化钠沉淀卤水生成碱式氯化镁沉淀, 如果要得到氢氧化镁需要在高压 釜中再进行水热处理, 使之转化成氢氧化镁晶体。由于氢氧化钠是强碱, 如果条件控制不当会使生成的氢氧化镁形成胶体, 给产物性能的控制带来困难, 同时 也易带入较多的Na 和 Cl 。与氨法比较, 该方法的母液回收不如氨法容易。 + - +

钛材生产工艺

钛材生产工艺 目前,金属钛生产的工业方法是可劳尔法,产品为海绵钛。制取钛材传统的工艺是将海绵钛经熔铸成锭,再加工而成钛材。按此,从采矿到制成钛材的工艺过程的主要步骤为:钛矿-采矿-选矿-太精矿-富集-富钛料-氯化-粗TiCl4-精制-纯TiCl4-镁还原-海绵钛-熔铸-钛锭-加工-钛材或钛部件上述步骤中如果采矿得到的是金红石,则不必经过富集,可以直接进行氯化制取粗TiCI4。另外,熔铸作业应属冶金工艺,但有时也归入加工工艺。 上述工艺过程中的加工过程是指塑性加工和铸造而言。塑性加工方法又包括锻造、挤压、轧制、拉伸等。它可将钛锭加工成各种尺寸的饼材、环材、板材、管材、棒材、型材等制品,也可用铸造方法制成各种形状的零件、部件。 钛和钛合金塑性加工具有变形抗力大;常温塑性差、屈服极限和强度极限比值高、回弹大、对缺口敏感、变形过程易与模具粘结、加热时又易吸咐有害气体等特点,塑性加工较钢、铜困难。 故钛和钛合金的加工工艺必须考虑它们的这些特点。钛采用塑性加工,加土尺寸不受限制,又能够大批量生产,但成材率低,加工过程中产生大量废屑残料。针对钛塑性加工的上述缺点,近年来发展了钛的粉末冶金工艺。钛的粉末冶金流程与普通粉末冶金相同,只是烧结必须要在真空下进行。它适用于生产大批量、小尺寸的零件,特别适用于生产复杂的零部件。这种方法几乎无须再经过加工处理,成材率高,既可充分利用钛废料作原料,又可以降低生产成本,但不能生产大尺寸的钛件。钛的粉末冶金工艺流程为:钛粉(或钛合金粉)-筛分-混合-压制成形-烧结-辅助加工-钛制品。 钛材生产的原则流程钛材除了纯钛外,目前世界上已经生产出近30种牌号的钛合金。使用最广泛的钛合金是Ti-6Al-4V,Ti-5Al—2.5Sn等。 钛及钛合金的应用情况

钛合金3-钛合金加工工艺分析

钛合金的加工工艺 钛合金有着与钛金属类似的大气高温污染(吸收氢氧氮)、强度高导致的刀具寿命短、导热性差导致的粘刀等等一系列麻烦。此外,热加工带来的金属相不均匀,晶粒粗大,残余应力,等等,也是钛合金热加工的难题。因此,工业纯钛和钛合金基材,在国际上基本是自由贸易(这与高性能碳纤维复合材料的禁运有很大的差异。详情见拙文《浅析碳纤维复合材料在航空航天领域的应用https://www.doczj.com/doc/7614933535.html,/s/blog_56c70d4b010165l9.html》)然而,买得起未必用得起,正是加工工艺的复杂,将绝大多数国家挡在了钛合金应用的门外。 下面,我们来看***钛合金加工工艺的情况。 一、下料切割工艺 钛合金制件之前,先要将大块钛合金进行初步切割,做下料准备。钛合金的切割,不像一般金属,很难用火焰方法进行,否则高温污染会导致材料脆化。因此多用等离子切割、激光切割、铣切来进行。但是这些方法,要么是材料容易产生热应力离散变形(如激光切割)、或者成本太高无法满足大量生产(如离子束切割),要么是残料率高(如铣切)。因此,人们想出了另一种常温切割方式:高压水切割。 水切割,就是水刀,呵呵。以前咱听说水滴石穿,那可要万年功夫。这次是水切钛断,立等可取啊。 中国航空报载,沈飞公司工艺研究所的首席专家蒲永伟,对水切割技术有深厚积累,潜心研究此项技术的钛切割应用,获得成功,顺利实施了40~100毫米厚的钛合金板材切割。由于是常温操作,切割质量好,且其效率是常规切割方法的50倍以上,材料费大大节约。至今,钛合金的水切割方式,在国内的应用已经接近10年。 二、铸造工艺

铸件加工,需要熔化钛合金进行浇注。同样,由于钛合金的化学活性,熔化的液态钛合金,几乎与所有的耐火材料起反应。因此其熔化和浇注必须在惰性气体(如氩气)保护或者真空环境下进行。 国内应用方面: 中国船舶新闻网报道,中国在消化吸收国外先进技术的基础上,掌握和发展了金属型、捣实型、机加工石墨型,以及氧化物面层陶瓷型壳等钛合金铸造技术,可以生产最大直径达150 0毫米X400毫米,最小壁厚为0.8毫米,单重达到近800千克的整体钛合金铸件,每年铸造钛合金用量达5000吨,具备了钛及钛合金精密铸件的基本生产技术。 根据热加工论坛的报道:我国航天用铸造钛合金的应用始于20世纪80 年代中期,现已有ZTi3,ZTiAl4,ZTiAl5Sn2. 5,ZTiAl6V4,ZTiAl6Zr2MoV等品牌(品牌的第一个字母Z,代表铸造)。 2001年,由北航、华中理工研制的ZTC4 钛合金(即对TC4进行铸造加工后的合金件),利用热等静压和熔模精密铸造成型技术,研制了某型飞机用钛合金精铸件。该铸件外型尺寸为6 30mm ×300mm ×130mm ,最小壁厚2. 5mm ,为复杂的框形结构。 中科院金属研究所网站报道: 2011年5月,沈阳向中国科学院金属研究所研发的钛铝母合金制备技术,通过了英国罗罗公司(Rolls-Royce)的质量审核。 2013年4月17日,罗罗航空发动机公司在沈阳,正式向该所颁发了钛铝涡轮叶片精密铸造技术质量认证证书。

高纯氧化镁的制备方法汇总

高纯氧化镁制备方法 1.卤水制备氧化镁 1.1石灰法 将氯化镁溶液与煅烧石灰石(或白云石)灰乳反应生成氢氧化镁,煅烧得氧化镁。 此法会产生1t镁砂会产生2.76吨CaCl2,如果不能对其进行有效利用,会造成新的废物堆积,只是生产不能扩大。 1.2碳铵法 碳酸氢铵(或二氧化碳和氨)同氯化镁溶液反应生成碱式碳酸镁,经煅烧得到氧化镁。

该法以碳酸氢氨为原料,蒸发水量大,势必耗能较大,生产成本较高。如果能够利用合成氨工厂排放的二氧化碳及中间产品氨为原料,可降低其成本。 1.3氨法 将水氯化镁石(或老卤)与液氨加入晶种沉镁,沉淀经洗涤、烘干、煅烧得到氧化镁产品。 此法沉镁效率可达80%-85%,氨转化率可达80%,产品中氧化镁质量分数在99%以上,副产品NH4Cl可作为化肥化工原料,而且无三废,基本无污染。如在沉镁过程中添加特殊晶种核心,可产生超细氧化镁、磁性氧化镁和空气氧化镁等等。 1.4纯碱法 将卤水与纯碱反应,生成碱式碳酸镁沉淀,洗涤脱水后煅烧,制得氧化镁。 此法制得的氧化镁产品纯度较高,工艺简单,能耗小,但使用纯碱会使成本过高。

以上方法都在液相中反应,通过加入沉淀剂、洗涤剂和化学精制等方法除去杂质离子,保持碱式碳酸镁或氢氧化镁的纯度,最终高纯镁砂纯度可达99.9%以上。但是卤水生产高纯镁砂成本过高,能源消耗大,生产工艺复杂,存在很多难点. 1.5水氯镁石直接热解 含水氯化镁直接在空气(或热气流)中加热,随着温度升高能逐步失去结晶水。反应方程式如下: 该法工艺流程较简单,不需消耗任何辅助原料,使生产成本降低,更易实现镁的高值化和产业化。现行方法主要有喷雾法和沸腾炉法。 1.5.1喷雾热解法 将卤水直接喷入热分解反应炉中进行热分解,煅烧后得粗氧化镁,多次水洗除去未完全分解的可溶性氯化物,粗氧化镁完全水化生成氢氧化镁,煅烧至轻质氧化镁,再重烧得到高纯镁砂,纯度可达99%以上。 喷雾法工艺流程用此法生产氧化镁具有工业规模的厂家是以色列Mishor Rotem的死海方镁石公司。此工艺的热解时间短,生产成本较低,但回收率比较低,氯化氢尾气腐蚀性强,对设备的要求很高,而且对氯化氢尾气的吸收和浓缩有很大难度。 1.5.2沸腾炉热解法 将原料经沸腾炉脱水,热解和焙烧,产品由出料管自动溢入集料缶储存。 矿石沸腾炉炉体散热较大,应采用适当的隔热保温措施,才能较低散热,提高炉子的有效热利用率。 2.固体矿制备氧化镁 2.1煅烧菱镁矿法 菱镁矿中含90%以上的碳酸镁,以及少量碳酸钙和其他微量杂质,直接煅烧便能得到纯度较

镁热还原法生产海绵钛的基本原理---乘钒钛文化之风 创钒钛产业之都

镁热还原法生产海绵钛的基本原理---乘钒钛文化之 风创钒钛产业之都 原创邹建新王能为教授等 镁还原法生产海绵钛是目前唯一工业化的生产方法。在高温下用金属Mg或Na还原TiCl4,得到金属钛,呈海绵状,纯度为 98.5%~99.7%,工业上叫作海绵钛。 用镁还原法生产金属钛是在密闭的钢制反应器中进行。将纯金属镁放入反应器中并充满惰性气体,加热使镁熔化(650℃),在高温下,以一定的流速放入TiCl4 与熔融的镁反应。 镁热还原过程为间歇作业,在惰性气体氩或氦的保护下进行,还原温度为800℃~900℃,在还原过程中间歇排出生成物MgCl2。 还原所得产物中夹有MgCl2和金属镁,可用真空蒸馏法除去并回收。真空蒸馏温度为950℃~1000℃。 生产海绵钛的原料:液态TiCl4、金属Mg,典型化学成分如表4.8.1和表4.8.2所示。 生产海绵钛的产品:海绵钛(金属钛)、MgCl2。海绵钛产品的国家标准如表4.8.3所示,海绵钛外观如图4.8.1所示。 生产海绵钛的工艺:克劳尔法(镁热还原法)、亨特法(钠还原法,已淘汰)。 生产海绵钛的设备:倒“U”型或“I”型还原–蒸馏炉,还原罐如图4.8.2所示。

表4.8.1 四氯化钛原料典型化学成分 指标 TiCl 4 Si Fe V 比色度 含量 > 99.9% < 0.004% < 0.0007% < 0.0007% 5mg K 2Cr 2O 7/L 表4.8.2 金属Mg 原料典型化学成分,% 元素 Mg 总杂质 Mn Fe Si Al Cu Cl - K Na 含量 99.9 0.08 0.05 0.04 0.01 0.02 0.01 0.05 0.005 0.01 表4.8.3 国内海绵钛产品标准(GB/T2524-2010) 图 4.8.1 含Mg 和MgCl 2杂质的粗海绵钛 图 4.8.2 还原反应罐 Mg 还原TiCl 4的主反应: TiCl 4(g )+2Mg(l)─→2MgCl 2(l)+Ti(s) ΔG=-462200+136T (987~1200K) ΔG 01000 = -312.66 kJ/mol 常压下,TiCl 4为液态,熔点-23℃,沸点123℃;Mg 的熔点649℃,沸点1107℃。还原温度一般控制在750~1000℃?。 由于TiCl 4和Mg 中存在微量杂质,Mg 还原TiCl 4过程中会出现副反应: 产品 等级 产品 牌号 化学成分(质量分数)/% 布氏硬度 HBW10/1500/30 不大于 Ti 不小于 杂质,不大于 Fe Si Cl C N O Mn Mg H 0A 级 MHT-95 99.8 0.03 0.01 0.06 0.01 0.01 0.05 0.01 0.01 0.003 95 0级 MHT-100 99.7 0.05 0.02 0.06 0.02 0.01 0.06 0.01 0.02 0.003 100 1级 MHT-110 99.6 0.08 0.02 0.08 0.02 0.02 0.08 0.01 0.03 0.005 110 2级 MHT-125 99.5 0.12 0.03 0.10 0.03 0.03 0.10 0.02 0.04 0.005 125 3级 MHT-140 99.3 0.20 0.03 0.15 0.03 0.04 0.15 0.02 0.06 0.010 140 4级 MHT-160 99.1 0.30 0.04 0.15 0.04 0.05 0.20 0.03 0.09 0.012 160 5级 MHT-200 98.5 0.40 0.06 0.30 0.05 0.10 0.30 0.08 0.15 0.030 200

氢氧化镁生产工艺方法论证

氢氧化镁生产工艺方案 对比论证 张南江 目前,国内的氢氧化镁生产的主流工艺还是采用卤水氨法工艺技术。采用卤水石灰法工艺的不多。并且因为原料和工艺技术的局限,产品质量满足不了用户的要求。但是,在国外的主要氢氧化镁生产国家,大量采用的是卤水石灰法工艺技术。并且他们的产品质量并不低。 国外的成功经验提示了我们。为此我们进行了卤水石灰法新工艺的攻关并且取得了成功。产品质量接近或者达到了卤水氨法的水平,生产成本大幅度降低。并且在副产品综合利用和高附加值产品的开发方面取得了成功。 下面把卤水氨法和卤水石灰法两种工艺技术做简单的比较论证分析: 1、质量指标:卤水氨法生产的产品在质量指标方面,从产品的纯度看是最好的。但是我们现在用卤水石灰法生产的产品质量已经接近或者达到了卤水氨法的指标。某些指标甚至高于卤水氨法。 2、生产成本:与卤水氨法和其他各种工艺方法相比,卤水石灰法是最经济的。一吨液氨价格是在2600元左右。1吨石灰只有100~200元。所以采用卤水石灰法工艺技术是非常经济合算的。需要特别提出的是,在国际上的大的氧化镁生产企业,都用的是卤水石灰工艺。傻子过年看隔壁。外国人不比中国人笨多少。他们不使用卤水氨法工艺肯定有道理。 3、副产品回收。用卤水氨法生产的副产品是氯化铵。用卤水石灰法的副产品是氯化钙和硫酸钙。二水氯化钙的市场价格大约在1000元/吨。无水氯化钙价格大约1700元。远远高于氯化铵的价格。特别是卤水石灰法工艺很容易得到纯度很高的氯化钙溶液。卤水石灰法的副产品还可以生产成为硫酸钙。我们已经开发成功了晶须硫酸钙产品的工艺技术。晶须硫酸钙产品的售价大约1.2万元/吨。但是作为副产品的原材料几乎不要钱。附加值非常高。除此之外,煅烧石灰所产生的二氧化碳气体我公司充分利用来进行碳化法生产高纯碳酸镁、高活性氧化镁,真正做到了“吃干榨净”,充分的利用资源,实现循环经济和可持续发展。 4、环境问题。氨氮是国家严格限制排放的物质。所以反应产生的氯化铵母液的浓缩回收是一个很大的问题。在很多地方的回收成本可能要大于销售价格。实际上很多氧化镁生产企业目前都是在违章排放。其次是生产过程的环境问题。卤水氨法的生产工序有非常浓重的氨臭味。严重影响生产工人的身体健康。要解决环境问题可能要很大的力度。发达国家为什么不采用卤水氨法,可能环境问题占非常重要的因素。毕竟人在氨味严重的地方工作一定时间,肯定要得职业病。

钛及钛合金锻造生产工艺规程汇总

更改控制页

本工艺规程适用于真空熔炼的钛及钛合金铸锭经加热、锻造、机加工等工序而制成棒坯、棒材、板坯、饼环材的生产,制定了每个生产工序的工艺制度和管理要求。 1简明工艺流程见表1。 2铸锭的准备 2.1生产工艺员在接到生产作业计划后,要仔细对计划部分内容进行审核,如有问题,及时和计划员沟通,确定无误后,方可编制生产工艺。并通知相关人员到库房领料。 2.2领料人员应根据GB/3620.1 钛及钛合金牌号和化学成分及化学成分允许偏差GB/3620.2及企标的有关规定,核对铸锭合格证,并核对合金牌号、锭号、规格和重量是否与实物相符,确认无误后,再进行转料。 2.3 铸锭转入锻造厂房应摆放整齐,将标识摆放于易看到的方位或用金属(记号笔)在铸锭的两端或表面将锭号明显标出。 2.4生产工艺员在投料前应仔细研究产品所执行的技术标准,保证其化学成份能满足该产品的技术要求。否则,不能投料。 2.5铸锭转入锻造车间后炉工在装炉前必须对铸锭进行涂层,涂层时将铸锭用垫木或导辊垫起,并将铸锭表面的杂脏物、油污用清洗剂擦洗干净后再涂防氧化涂层。 2.6涂层时将写锭号的地方不要涂,以便装炉前确认锭号是否正确。 2.7涂层的厚度应控制在0.2~0.4㎜。涂层后必须干透即24小时后方可装炉

铸锭 ↓ 涂层 ↓ 加热 ↓ 锻造 ↓ ↓↓↓ 打磨刨面打磨 ↓↓↓ 加热修磨加热↓↓↓ 锻造检查锻造↓↓↓ 热处理称重刻口↓↓↓ 机加板坯锯切↓↓ 探伤平头倒角↓↓ 取样 ↓↓ 检查 ↓↓ 修磨 ↓↓ 检查热处理↓↓ 称重机加↓↓ 包装探伤↓↓ 棒材取样 ↓ 检查 ↓ 称重 ↓ 包装 ↓ 饼环材

镁热法生产海绵钛还原过程反应熔池的传热模型

doi:10.3969/j.issn.1007-7545.2013.11.007 镁热法生产海绵钛还原过程反应熔池的传热模型 王文豪,吴复忠,金会心,高成涛 (贵州大学材料与冶金学院,贵阳550025) 摘要:利用VOF多相流模型、能量方程、RNG k-ε方程及其边界条件,建立镁热法生产海绵钛还原熔池的传热模型。结果表明,计算得到的温度场分布与实测值吻合较好。 关键词:海绵钛;还原;熔池;传热;模拟 中图分类号:TF823;TF061 文献标志码:A 文章编号:1007-7545(2013)11-0000-00 Heat Transfer Model of Molten Bath in Sponge Titanium Production with Magnesiothermic Reduction WANG Wen-hao, WU Fu-zhong, JIN Hui-xin, GAO Cheng-tao (School of Materials and Metallurgy, Guizhou University, Guiyang 550025, China) Abstract: Heat transfer model of molten bath in sponge titanium production by magnesiothermic reduction was established with VOF multiphase flow model, energy equation, RNG k-εequation and its boundary conditions. The results show that the temperature field distribution by calculation preferably coincides with the measured value. Key words: sponge titanium; reduction; molten pool; heat conduction; simulation 镁热还原—真空蒸馏法在海绵钛工业生产中已占据主导地位[1]。该方法在实现Mg-Cl2-MgCl2闭路循环的同时,由于还原后立即进行真空蒸馏,蒸馏物仍处于高温状态,达到了节能目的,但是由于还原过程中,反应釜的散热能力弱,极大地限制了TiCl4的加料速度,致使还原过程周期长、电耗高[2-3]。国内对海绵钛还原熔池内传热与流动的方式及机理的研究还处于空白状态[4-5]。本文以多相湍流模型为基础,研究还原过程反应熔池的传热,揭示还原熔池内部的传热与流动状态,能够为研究和改善反应釜内的能量传递与质量流动过程提供依据。 1 物理模型 1.1 物理模型的简化 镁还原TiCl4是一个复杂的物理化学过程,液态TiCl4经管道加入反应釜后,由于反应釜内温度较高,TiCl4迅速气化,气态TiCl4与液态金属镁液面接触并发生反应。在模拟研究时需要对实际生产模型进行合理的简化和假设:1)化学反应过程不是整个生产过程的限制性环节,即TiCl4加入后迅速与金属镁发生化学反应,反应区内四氯化钛和金属镁不可能大量存在;2)不考虑炉内过程沿圆周方向的变化,即只把海绵钛还原生成过程看成是具有轴对称的问题来处理。 1.2 物理模型 研究过程中涉及到的各物质物性参数如表1所示。模拟计算采用单孔加料的方式,加料孔直径为20 mm,反应釜熔池液面上部为气相,采用氩气填充(图1)。 表1 不同物质的物性参数 Table 1 Physical property parameters of materials 物质名称密度/(kg·m-3) 热熔/(J·kg-1·K-1) 导热系数/(W·m-1·K-1) 黏度/(Pa·s) Mg 1 544 1 323.7 99.24 2.51×10-4 TiCl4566 562.6 0.50 3.95×10-4 Ti 4 850 544.3 7.44 - MgCl2 1 688 972.4 3.25 3.22×10-4 收稿日期:2013-05-08 基金名称:教育部重点项目(教技司[2012]76号);贵州省科技厅社会发展攻关项目(黔科合SY[2010]3011号);贵州省科技厅工业攻关项目(黔科合GZ字[2011]3013号);贵州省教育厅重点项目(黔教科(2011)033号);贵州大学研究生创新基金(理工[2012026]) 作者简介:王文豪(1989-),男,安徽蒙城人,硕士研究生.

相关主题
文本预览
相关文档 最新文档