当前位置:文档之家› 万有引力定律知识点含答案

万有引力定律知识点含答案

万有引力定律知识点含答案
万有引力定律知识点含答案

万有引力定律

一、开普勒行星运动定律

开普勒行星运动的定律是在丹麦天文学家弟谷的大量观测数据的基础上概括出的,给出了行星运动的规律。

1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比、与它们之间距离r 的二次方成反比. 2.表达式:2

21r

m m G

F =,

G 为引力常量:G =6.67×10-11N·m 2/kg 2

. 3.适用条件

(1)公式适用于质点间的相互作用.当两物体间的距离远远大于物体本身的大小时,物体可视为质点. (2)质量分布均匀的球体可视为质点,r 是两球心间的距离. 三、环绕速度

1.第一宇宙速度又叫环绕速度.

r mv r

Mm G mg 2

12==得:gR r

GM

v ==

1=7.9 km/s. 第一宇宙速度是人造卫星的最大环绕速度,也是人造地球卫星的最小发射速度. 第二宇宙速度(脱离速度):v 2=11.2 km/s ,使物体挣脱地球引力束缚的最小发射速度. 第三宇宙速度(逃逸速度):v 3=16.7 km/s ,使物体挣脱太阳引力束缚的最小发射速度. 特别提醒:

(1)两种周期——自转周期和公转周期的不同

(2)两种速度——环绕速度与发射速度的不同,最大环绕速度等于最小发射速度

(3)两个半径——天体半径R和卫星轨道半径r的不同

四、近地卫星、赤道上物体及同步卫星的运行问题

1.近地卫星、同步卫星、赤道上的物体的比较

五、天体的追及相遇问题

两颗卫星在同一轨道平面内同向绕地球做匀速圆周运动,a卫星的角速度为ωa,b卫星的角速度为ωb,若某时刻两卫星正好同时通过地面同一点正上方,相距最近(如图甲所示)。当它们转过的角度之差Δθ=π,即满足ωaΔt-ωbΔt=π时,两卫星第一次相距最远(如图乙所示)。

图甲图乙

当它们转过的角度之差Δθ=2π,即满足ωaΔt-ωbΔt=2π时,两卫星再次相距最近。

经过一定的时间,两星又会相距最远和最近。

1.两星相距最远的条件:ωaΔt-ωbΔt=(2n+1)π(n=0,1,2,…)

2.两星相距最近的条件:ωaΔt-ωbΔt=2nπ(n=1,2,3…)

3.常用结论:

(1)同方向绕行的两天体转过的角度

π

θ

θn2

|

|

2

1

=

-

n

T

t

T

t

=

-

2

1(n=0、1、2、……)时

表明两物体相距最近。

(2)反方向转动的天体转过的角度

π

θ

θn2

|

|

2

1

=

+

n

T

t

T

t

=

+

2

1(n=0、1、2、……)时表

明两物体相遇或相距最近。

考点一天体质量和密度的计算

1.解决天体(卫星)运动问题的基本思路

(1)天体运动的向心力来源于天体之间的万有引力,即

(2)在中心天体表面或附近运动时,万有引力近似等于重力,即2R

Mm

G mg =(g 表示天体表面的重力加速度).

在行星表面重力加速度:2R Mm G

mg =,所以2R

M

G g = 在离地面高为h 的轨道处重力加速度:2)(h R Mm G g m +=',得2

)

(h R M

G g +=' 2.天体质量和密度的计算

(1)利用天体表面的重力加速度g 和天体半径R .

由于2R

Mm

G mg =,故天体质量G gR M 2=

天体密度:GR

g

V M πρ43=

=

(2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .

①由万有引力等于向心力,即r T m r Mm G 22)2(π=,得出中心天体质量2

3

24GT

r M π=; ②若已知天体半径R ,则天体的平均密度

③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密度

2

3GT V M π

ρ=

=

.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度. 3.黄金代换公式:GM =gR 2

例1.(多选)如图,地球赤道上的山丘e 、近地资源卫星p 和同步通信卫星q 均在赤道平面上绕地心做匀速圆周运动。设e 、p 、q 的圆周运动速率分别为v 1、v 2、v 3,向心加速度分别为a 1、

a 2、a 3,则( )

A .v 1>v 2>v 3

B .v 1<v 3<v 2

C .a 1>a 2>a 3

D .a 1<a 3<a 2

【答案】 BD

例2.(多选)“嫦娥二号”探月卫星于2010年10月1日成功发射,目前正在月球上方100km 的圆形轨道上运行。已知“嫦娥二号”卫星的运行周期、月球半径、月球表面重力加速度、万有引力恒量G 。根据以上信息可求出:()

A .卫星所在处的加速度

B .月球的平均密度

C .卫星线速度大小

D .卫星所需向心力 【答案】ABC

例3.(多选)2014年11月1日早上6时42分,被誉为“嫦娥5号”的“探路尖兵”载人飞行试验返回器在内蒙古四子王旗预定区域顺利着陆,标志着我国已全面突破和掌握航天器以接近第二宇宙速度的高速载人返回关键技术,为“嫦娥5号”任务顺利实施和探月工程持续推进奠定了坚实基

础.已知人造航天器在月球表面上空绕月球做匀速圆周运动,经过时间t(t 小于航天器的绕行周期),航天器运动的弧长为s ,航天器与月球的中心连线扫过角度为θ,引力常量为G ,则?:() A .航天器的轨道半径为

s θ??B .航天器的环绕周期为θ

πt

2 C .月球的质量为θ23Gt s D .月球的密度为2

2

4Gt 3θ

【答案】BC

例4.(多选)若宇航员在月球表面附近自高h 处以初速度v 0水平抛出一个小球,测出小球的水平射程为L .已知月球半径为R ,万有引力常量为G .则下列说法正确的是:()

A .月球表面的重力加速度2022hv g L =月

B .月球的质量22

022hR v m GL =月

C

.月球的第一宇宙速度v =.月球的平均密度2

2

32o hv GL

ρπ= 【答案】ABC 【解析】

平抛运动的时间0L t v =.再根据h=12gt 2

得,得2022hv g L 月=,故A 正确;由2Gm g R 月月=与2

022hv g L 月=,

可得:22022hR v m GL =月.故B

正确;第一宇宙速度:v

,解得v 故

C 正确;月球的平均密度20

22

343

32m hv GR L R ρππ=月

=,故D 错误;故选ABC. 【名师点睛】解决本题的关键知道平抛运动在水平方向上和竖直方向上的运动规律,以及掌握万有引力提供向心力以及万有引力等于重力这两个理论的运用。 考点二 卫星运行参量的比较与运算 1.卫星的动力学规律

由万有引力提供向心力,ma r mv r T m r m r

Mm G ====222

2)2(πω 2.卫星的各物理量随轨道半径变化的规律

例5.据报道,2016年2月18日嫦娥三号着陆器玉兔号成功自主“醒来”,嫦娥一号卫星系统总指挥兼总设计师叶培建院士介绍说,自2013年12月14日月面软着陆以来,中国嫦娥三号月球探测器创造了全世界在月工作最长记录。假如月球车在月球表面以初速度0v 竖直上抛出一个小球,经时间t 后小球回到出发点,已知月球的半径为R ,引力常量为G ,下列说法正确的是:() A 、月球表面的重力加速度为

v t

B 、月球的质量为2

0v

Gt

R

C

D

【答案】C

【名师点睛】根据竖直上抛求得月球表面的重力加速度,再根据重力与万有引力相等和万有引力提供卫星圆周运动向心力分析求解是关键.

例6.某卫星发射中心在发射卫星时,首先将该卫星发射到低空轨道1,待测试正常后通过点火加速使其进入高空轨道2,已知卫星在上述两轨道运行时均做匀速圆周运动,假设卫星的质量不变,在两轨道上稳定运行时的动能之比为1:4:21=k k E E 。如果卫星在两轨道的向心加速度分别用1a 、

2a 表示,角速度分别用1ω、2ω表示,周期分别用1T 、2T 表示,轨道半径分别用、2r 表示。则下

列比例式正确的是:()

A .1a :2a =4∶1B.1ω:2ω=2∶1 C .1T :2T =1∶8D.:2r =1∶2

【答案】C

【解析】在两轨道上稳定运行时的动能之比为1:4:21=k k E E ,则根据2

12

k E mv =

可得12:2:1v v =,根据公式22Mm v G m r r =

可得v =1和轨道2的半径之比为

12:1:4r r =,根据公式2Mm G

ma r =可得2M a G r =,故1a :2a =16∶1,根据公式22

Mm

G m r r

ω=

可得ω

=

1ω:2ω=8∶1,根据公式2r v T π=可得1T :2T =1∶8,故C 正确; 【名师点睛】在万有引力这一块,涉及的公式和物理量非常多,掌握公式

222

224Mm v r G m m r m ma r r T

πω====在做题的时候,首先明确过程中的向心力,然后弄清楚各

个物理量表示的含义,最后选择合适的公式分析解题,另外这一块的计算量一是非常大的,所以需要细心计算

例7.(多选)假设若干年后,由于地球的变化,地球半径变小,但地球质量不变,地球的自转周期不变,则相对于现在:() A .地球表面的重力加速度变大

B .发射一颗卫星需要的最小发射速度变大

C .地球同步卫星距离地球表面的高度变大

D .地球同步卫星绕地球做圆周运动的线速度变大 【答案】ABC

【名师点睛】地球表面物体的重力在不考虑地球自转的影响时,就等于地球对物体的万有引力,由此可得2

r Mm

G

mg =,可知不同高度出的g 值关系;同步卫星的特点是在赤道所在平面,周期与地球自转周期相同,应用的模型是同步卫星绕地球做匀速圆周运动。

考点三 宇宙速度卫星变轨问题的分析

1.第一宇宙速度v 1=7.9 km/s ,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度.

2.第一宇宙速度的两种求法:

(1)r mv r Mm G 212=,所以r GM v =1

(2)r

mv mg 2

1=,所以gR v =1.

3.当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将变轨运行:

(1)当卫星的速度突然增加时,r mv r

Mm G 2

2<,即万有引力不足以提供向心力,卫星将做离心运动,

脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由r

GM

v =可知其运行速度比原轨道时减小.

(2)当卫星的速度突然减小时,r mv r

Mm G 2

2>,即万有引力大于所需要的向心力,卫星将做近心运

动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由r

GM

v =

可知其运行速度比原轨道时增大.

4.处理卫星变轨问题的思路和方法 (1)要增大卫星的轨道半径,必须加速;

(2)当轨道半径增大时,卫星的机械能随之增大. 5.卫星变轨问题的判断:

(1)卫星的速度变大时,做离心运动,重新稳定时,轨道半径变大. (2)卫星的速度变小时,做近心运动,重新稳定时,轨道半径变小.

(3)圆轨道与椭圆轨道相切时,切点处外面的轨道上的速度大,向心加速度相同. 6.特别提醒:“三个不同”

(1)两种周期——自转周期和公转周期的不同

(2)两种速度——环绕速度与发射速度的不同,最大环绕速度等于最小发射速度 (3)两个半径——天体半径R 和卫星轨道半径r 的不同

例8.(多选)“嫦娥一号”探月卫星沿地月转移轨道到达月球附近,在距月球表面200km 的p 点进行第一次“刹车制动”后被月球俘获,进入椭圆轨道Ⅰ绕月飞行,如图所示。之后,卫星在p 点经过几次“刹车制动”,最终在距月球表面200km 的圆形轨道Ⅲ上绕月球做匀速圆周运动。用T 1、T 2、

T 3分别表示卫星在椭圆轨道Ⅰ、Ⅱ和圆形轨道Ⅲ上运动的周期,用a 1、a 2、a 3分别表示卫星沿三个轨道运动到p 点的加速度,用v 1、v 2、v 3分别表示卫星沿三个轨道运动到p 点的速度,用F 1、F 2、F 3分别表示卫星沿三个轨道运动到p 点时受到的万有引力,则下面关系式中正确的是:() A.a 1=a 2=a 3B.v 1<v 2<v 3C.T 1>T 2>T 3D.F 1=F 2=F 3 【答案】ACD

例9.(多选)2015年12月10日,我国成功将中星1C 卫星发射升空,卫星顺利进入预定转移轨道。如图所示是某卫星沿椭圆轨道也能地球运动的示意图,已知地球半径为R ,地球表面重力加速度g ,卫星远地点P 距地心O 的距离为3R ,则:() A

B 、卫星经过远地点时的速度最小

C 、卫星经过远地点时的加速度小于

9

g D 、卫星经过远地点时加速,卫星有可能再次经过远地点 【答案】ABD

【解析】若卫星以半径为3R 做匀速圆周运动,则22(3)3GMm v m R R

=,在根据2

GM g R =,整理可以

得到v =

由于卫星到达远地点P 后做椭圆运动,故在P

,故选项A 正确;根据半径与速度的关系可以知道,半径越大则速度越小,故远地点速度最小,故选项B 正确;根据

'2(3)GMm m R g =,2()GMm mg R =,则在远地点,'9

g g =,故选项C 错误;卫星经过远地点时加速,则可以以半径为3R 做匀速圆周运动,则可以再次经过远地点,故选项D 正确。

【名师点睛】解决本题的关键掌握万有引力提供向心力这一重要理论,并能灵活运用,以及知道变轨的原理,当万有引力小于向心力,做离心运动,当万有引力大于向心力,做近心运动. 例10.(多选)火星探测已成为世界各国航天领域的研究热点.现有人想设计发射一颗火星的同步卫星.若已知火星的质量M ,半径R 0,火星表面的重力加速度g 0自转的角速度ω0,引力常量G ,则同步卫星离火星表面的高度为:() A

0R B

0R D

【答案】AC

考点三 双星系统模型问题的分析与计算 1.双星系统模型的特点:

(1)两星都绕它们连线上的一点做匀速圆周运动,故两星的角速度、周期相等.

(2)两星之间的万有引力提供各自做匀速圆周运动的向心力,所以它们的向心力大小相等; (3)两星的轨道半径之和等于两星间的距离,即r 1+r 2=L. 2.双星系统模型的三大规律: (1)双星系统的周期、角速度相同.

(2)轨道半径之比与质量成反比.

(3)双星系统的周期的平方与双星间距离的三次方之比只与双星的总质量有关,而与双星个体的质量无关.

3.解答双星问题应注意“两等”“两不等”

①双星问题的“两等”:它们的角速度相等;双星做匀速圆周运动的向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等的.

②“两不等”:双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离;由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等.

例11.2015年7月14日,“新视野”号太空探测器近距离飞掠冥王星.冥王星与其附近的另一星体卡戎可视为双星系统,同时绕它们连线上的O点做匀速圆周运动.O点到冥王星的距离为两者连线距离的八分之一,下列关于冥王星与卡戎的说法正确的是:()

A.质量之比为8∶1B.向心力大小之比为1∶7

C.角速度大小之比为1∶7D.线速度大小之比为1∶7

【答案】D

【名师点睛】由于双星和它们围绕运动的中心点总保持三点共线,所以在相同时间内转过的角度必相等,即双星做匀速圆周运动的角速度必相等,角速度相等,周期也必然相同

例12.2015年9月14日,美国的LIG O探测设施接收到一个来自GW150914的引力波信号,此信号是由两个黑洞的合并过程产生的。如果将某个双黑洞系统简化为如图所示的圆周运动模型,两黑洞绕O点做匀速圆周运动。在相互强大的引力作用下,两黑洞间的距离逐渐减小,在此过程中,两黑洞做圆周运动的:()

A.周期均逐渐增大

B.线速度均逐渐减小

C.角速度均逐渐增大

D.向心加速度均逐渐减小

【答案】C

例13.宇宙中两个相距较近的星球可以看成双星,它们只在相互间的万有引力作用下,绕两球心连线上的某一固定点做周期相同的匀速圆周运动,根据宇宙大爆炸理论,双星间的距离不断缓慢增加,双星系统仍视为做匀速圆周运动,则下列说法正确的是:()

A.双星相互间的万有引力保持不变B.双星做圆周运动的角速度均增大

C.双星做圆周运动的加速度均减小D.双星做圆周运动的周期均减小

【答案】C

例14.某行星和地球绕太阳公转的轨道均可视为圆。每过N年,该行星会运行到日地连线的延长线上,如题图所示。该行星与地球的公转半径比为

A.

2

3

1

()

N

N

+

B.

2

3

()

1

N

N-C.

3

2

1

()

N

N

+

D.

3

2

()

1

N

N-

【答案】B

【解析】由题意每过N年地球比行星多运动一周,即

1

=

-

T

N

T

N

,

再结合开普勒第三定律

C

R

T

=

3

2

32

3

2)

1-

(

)

(

N

N

T

T

R

R

=

=

,B正确。

万有引力定律公式总结

万有引力公式 线速度 角速度 向心加速度 向心力 两个基本思路 1.万有引力提供向心力:r m r n m ma r T m r m r v m r M G ωππω======22222 2244m 2.忽略地球自转的影响: mg R GM =2 m (2 g R GM =,黄金代换式) 一、测量中心天体的质量和密度 测质量: 1.已知表面重力加速度g ,和地球半径R 。(mg R GM =2m ,则G gR M 2= ) 2.已知环绕天体周期T 和轨道半径r 。(r T m r Mm G 2224π= ,则2 3 24GT r M π=) 3.已知环绕天体的线速度v 和轨道半径r 。(r v m r Mm G 22=,则G r v M 2=) 4.已知环绕天体的角速度ω和轨道半径r 。(r m r Mm G 2 2ω=,则G r M 32ω=) 5.已知环绕天体的线速度v 和周期T 。(T r v π2=,r v m r M G 22m =,联立得G T M π2v 3=) 测密度: 已知环绕天体的质量m 、周期T 、轨道半径r 。中心天体的半径R ,求中心天体的密度ρ 解:由万有引力充当向心力

r T m r Mm G 2224π= 则2 324GT r M π= ——① 又3 3 4R V M πρρ? == ——② 联立两式得:3 23 3R GT r πρ= 当R=r 时,有2 3GT π ρ= 二、星球表面重力加速度、轨道重力加速度问题 1.在星球表面: 2 R GM mg =(g 为表面重力加速度,R 为星球半径) 2.离地面高h: 2 ) (h R GM g m += '(g '为h 高处的重力加速度) 联立得g'与g 的关系: 2 2 )('h R gR g += 三、卫星绕行的向心加速度、速度、角速度、周期与半径的关系 1.ma r M G =2m ,则2 a r M G =(卫星离地心越远,向心加速度越小) 2.r v m r Mm G 2 2=,则r GM v = (卫星离地心越远,它运行的速度越小) 3.r m r Mm G 22ω=,则3r GM =ω(卫星离的心越远,它运行的角速度越小) 4.r T m r Mm G 22 24π=,则GM T 3 2r 4π= (卫星离的心越远,它运行的周期越大)

万有引力定律应用的12种典型案例

3232 万有引力定律应用的12种典型案例 万有引力定律不仅是高考的一个大重点,而且是自然科学的一个重大课题,也是同学们最感兴趣的科学论题之一。 特别是我国“神州五号”载人飞船的发射成功,更激发了同学们研究卫星,探索宇宙的信心。 下面我们就来探讨一下万有引力定律在天文学上应用的12个典型案例: 【案例1】天体的质量与密度的估算 下列哪一组数据能够估算出地球的质量 A.月球绕地球运行的周期与月地之间的距离 B.地球表面的重力加速度与地球的半径 C.绕地球运行卫星的周期与线速度 D.地球表面卫星的周期与地球的密度 解析:人造地球卫星环绕地球做匀速圆周运动。月球也是地球的一颗卫星。 设地球的质量为M ,卫星的质量为m ,卫星的运行周期为T ,轨道半径为r 根据万有引力定律: r T 4m r Mm G 22 2π=……①得: 2 32G T r 4M π=……②可见A 正确 而T r 2v π= ……由②③知C 正确 对地球表面的卫星,轨道半径等于地球的半径,r=R ……④ 由于3 R 4M 3 π= ρ……⑤结合②④⑤得: G 3T 2π = ρ 可见D 错误 地球表面的物体,其重力近似等于地球对物体的引力 由2R Mm G mg =得:G g R M 2=可见B 正确

3333 【探讨评价】根据牛顿定律,只能求出中心天体的质量,不能解决环绕天体的质量;能够根据已知条件和已知的常量,运用物理规律估算物理量,这也是高考对学生的要求。总之,牛顿万有引力定律是解决天体运动问题的关键。 【案例2】普通卫星的运动问题 我国自行研制发射的“风云一号”“风云二号”气象卫星的运行轨道是不同的。“风云一号”是极地圆形轨道卫星,其轨道平面与赤道平面垂直,周期为12 h ,“风云二号”是同步轨道卫星,其运行轨道就是赤道平面,周期为24 h 。问:哪颗卫星的向心加速度大哪颗卫星的线速度大若某天上午8点,“风云一号”正好通过赤道附近太平洋上一个小岛的上空,那么“风云一号”下次通过该岛上空的时间应该是多少 解析:本题主要考察普通卫星的运动特点及其规律 由开普勒第三定律T 2 ∝r 3 知:“风云二号”卫星的轨道半径较大 又根据牛顿万有引力定律r v m ma r Mm G 22==得: 2r M G a =,可见“风云一号”卫星的向心加速度大, r GM v = ,可见“风云一号”卫星的线速度大, “风云一号”下次通过该岛上空,地球正好自转一周,故需要时间24h ,即第二天上午8点钟。 【探讨评价】由万有引力定律得:2M a G r = ,v = ω= 2T = ⑴所有运动学量量都是r 的函数。我们应该建立函数的思想。 ⑵运动学量v 、a 、ω、f 随着r 的增加而减小,只有T 随着r 的增加而增加。 ⑶任何卫星的环绕速度不大于7.9km/s ,运动周期不小于85min 。 ⑷学会总结规律,灵活运用规律解题也是一种重要的学习方法。 【案例3】同步卫星的运动 下列关于地球同步卫星的说法中正确的是: A 、为避免通讯卫星在轨道上相撞,应使它们运行在不同的轨道上 B 、通讯卫星定点在地球赤道上空某处,所有通讯卫星的周期都是24h C 、不同国家发射通讯卫星的地点不同,这些卫星的轨道不一定在同一平面上

曲线运动+万有引力定律知识点总结

曲线运动 1.曲线运动的特征 (1)曲线运动的轨迹是曲线。 (2)由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。即使其速度大小保持恒定,由于其方向不断变化,所以说:曲线运动一定是变速运动。 (3)由于曲线运动的速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的中速度必不为零,所受到的合外力必不为零,必定有加速度。(注意:合外力为零只有两种状态:静止和匀速直线运动。) 曲线运动速度方向一定变化,曲线运动一定是变速运动,反之,变速运动不一定是曲线运动。2.物体做曲线运动的条件 (1)从动力学角度看:物体所受合外力方向跟它的速度方向不在同一条直线上。 (2)从运动学角度看:物体的加速度方向跟它的速度方向不在同一条直线上。 3.匀变速运动:加速度(大小和方向)不变的运动。 也可以说是:合外力不变的运动。 4曲线运动的合力、轨迹、速度之间的关系 (1)轨迹特点:轨迹在速度方向和合力方向之间,且向合力方向一侧弯曲。 (2)合力的效果:合力沿切线方向的分力F2改变速度的大小,沿径向的分力F1改变速度的方向。 ①当合力方向与速度方向的夹角为锐角时,物体的速率将增大。 ②当合力方向与速度方向的夹角为钝角时,物体的速率将减小。 ③当合力方向与速度方向垂直时,物体的速率不变。(举例:匀速圆周运动) 平抛运动基本规律 1.速度:0 x y v v v gt = ? ?= ? 合速度:2 2 y x v v v+ =方向: o x y v gt v v = = θ tan 2.位移 2 1 2 x v t y gt = ? ? ? = ?? 合位移:22 x x y =+ 合 方向: o v gt x y 2 1 tan= = α 3.时间由:2 2 1 gt y=得 g y t 2 =(由下落的高度y决定)

物理必修2《万有引力》典型例题

【1】天体的质量与密度的估算 下列哪一组数据能够估算出地球的质量 A.月球绕地球运行的周期与月地之间的距离 B.地球表面的重力加速度与地球的半径 C.绕地球运行卫星的周期与线速度 D.地球表面卫星的周期与地球的密度 解析:人造地球卫星环绕地球做匀速圆周运动。月球也是地球的一颗卫星。 设地球的质量为M ,卫星的质量为m ,卫星的运行周期为T ,轨道半径为r 根据万有引力定律:r T 4m r Mm G 2 22π=……①得:23 2G T r 4M π=……②可见A 正确 而T r 2v π= ……由②③知C 正确 对地球表面的卫星,轨道半径等于地球的半径,r=R ……④ 由于3 R 4M 3 π= ρ ……⑤结合②④⑤得: G 3T 2π = ρ 可见D 错误 球表面的物体,其重力近似等于地球对物体的引力 由2 R Mm G mg =得:G g R M 2= 可见B 正确 【2】普通卫星的运动问题 我国自行研制发射的“风云一号”“风云二号”气象卫星的运行轨道是不同的。“风云一号”是极地圆形轨道卫星,其轨道平面与赤道平面垂直,周期为12 h ,“风云二号”是同步轨道卫星,其运行轨道就是赤道平面,周期为24 h 。问:哪颗卫星的向心加速度大?哪颗卫星的线速度大?若某天上午8点,“风云一号”正好通过赤道附近太平洋上一个小岛的上空,那么“风云一号”下次通过该岛上空的时间应该是多少? 解析:由开普勒第三定律T 2∝r 3知:“风云二号”卫星的轨道半径较大 又根据牛顿万有引力定律r v m ma r Mm G 2 2==得: 2r M G a =,可见“风云一号”卫星的向心加速度大, r GM v =,可见“风云一号”卫星的线速度大, “风云一号”下次通过该岛上空,地球正好自转一周,故需要时间24h ,即第二天上午8点钟。 【探讨评价】由万有引力定律得:2 M a G r =,v = ω= 2T π = 【3】同步卫星的运动 下列关于地球同步卫星的说法中正确的是: A 、为避免通讯卫星在轨道上相撞,应使它们运行在不同的轨道上 B 、通讯卫星定点在地球赤道上空某处,所有通讯卫星的周期都是24h C 、不同国家发射通讯卫星的地点不同,这些卫星的轨道不一定在同一平面上 D 、不同通讯卫星运行的线速度大小是相同的,加速度的大小也是相同的。

万有引力定律典型例题解析

万有引力定律·典型例题解析 【例1】设地球的质量为M ,地球半径为R ,月球绕地球运转的轨道半径为r ,试证在地球引力的作用下: (1)g (2)(3)r 60R 地面上物体的重力加速度= ;月球绕地球运转的加速度=;已知=,利用前两问的结果求的值; GM R GM r g 22αα (4)已知r =3.8×108m ,月球绕地球运转的周期T =27.3d ,计算月球绕地球运转时的向心加速度a ; (5)已知地球表面重力加速度g =9.80m/s 2,利用第(4)问的计算结果, 求 的值.α g 解析: (1)略;(2)略; (3)2.77×10-4; (4)2.70×10-3m/s 2 (5)2.75×10-4 点拨:①利用万有引力等于重力的关系,即=.②利用万有引力等于向心力的关系,即=.③利用重力等于向心力 G Mm r mg G Mm r m 2 2α 的关系,即mg =ma .以上三个关系式中的a 是向心加速度,根据题目 的条件可以用、ω或来表示.v r r T 2224r 2 π 【例】月球质量是地球质量的 ,月球半径是地球半径的,在21811 38. 距月球表面14m 高处,有一质量m =60kg 的物体自由下落. (1)它落到月球表面需用多少时间? (2)它在月球上的“重力”和质量跟在地球上是否相同(已知地球表面重力

加速度g 地=9.8m/s 2)? 解析:(1)4s (2)588N 点拨:(1)物体在月球上的“重力”等于月球对物体的万有引力,设 mg G M m R mg G M m R 22月月月 地地地 =.同理,物体在地球上的“重力”等于地球对物体的 万有引力,设=. 以上两式相除得=,根据=可得物体落到月球表 面需用时间为==×=. 月月g 1.75m /s S gt t 4s 2 2 12 2214 175S g . (2)在月球上和地球上,物体的质量都是60kg .物体在月球上的“重力”和在地球上的重力分别为G 月=mg 月=60×1.75N =105N ,G 地=mg 地=60×9.8N =588N . 跟踪反馈 1.如图43-1所示,两球的半径分别为r 1和r 2,均小于r ,两球质量分布均匀,大小分别为m 1、m 2,则两球间的万有引力大小为: [ ] A .Gm 1m 2/r 2 B .Gm 1m 2/r 12 C .Gm 1m 2/(r 1+r 2)2 D .Gm 1m 2/(r 1+r 2+r)2

高中物理公式大全全集万有引力

五、万有引力 1、开普勒三定律: ⑴开普勒第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上 ⑵开普勒第二定律(面积定律):太阳和行星的连线在相等的时间内扫过相等的面积 ⑶开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等 对T 1、T 2表示两个行星的公转周期,R 1、R 2表示两行星椭圆轨道的半长轴,则周期定律可表示为32 312221R R T T = 或k T R =3 3,比值k 是与行星无关而只与太阳有关的恒量 【注意】:⑴开普勒定律不仅适用于行星,也适用于卫星,只不过此时k T R =33 ‘ ,比值k ’ 是 由行星的质量所决定的另一恒量。 ⑵行星的轨道都跟圆近似,因此计算时可以认为行星是做匀速圆周运动 ⑶开普勒定律是总结行星运动的观察结果而总结归纳出来的规律,它们每一条都 是经验定律,都是从观察行星运动所取得的资料中总结出来的。 例题:飞船沿半径为R 的圆周绕地球运动,其周期为T ,如果飞船要返回地面,可在轨道上的某一点A 处,将速率降低到适当数值,从而使飞船沿着以地心为焦点的椭圆轨道运动,椭圆和地球表面在B 点相切,如图所示,如果地球半径为R 0,求飞船由A 点到B 点所需要的时间。 解析:依开普勒第三定律知,飞船绕地球做圆周(半长轴和半短轴相等的特殊椭圆)运动时,其轨道半径的三次方跟周期的平方的比值,等于飞船绕地球沿椭圆轨道运动时,其半长轴的三次方跟周期平方和比值,飞船椭圆轨道的半长轴为 2 R R +,设飞船沿椭圆轨道运动的周期一、知识网络 二、 画龙点睛 概念

高考物理万有引力定律的应用技巧和方法完整版及练习题含解析

高考物理万有引力定律的应用技巧和方法完整版及练习题含解析 一、高中物理精讲专题测试万有引力定律的应用 1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求: (1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F R m -(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】 (1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l 在最高点:2 22mv F mg l += ① 在最低点:2 11mv F mg l -= ② 由机械能守恒定律,得 221211222 mv mg l mv =?+ ③ 由①②③,解得1 2 6F F g m -= (2) 2 GMm mg R = 2GMm R =2 mv R 两式联立得:12()6F F R m -

(3)在星球表面:2 GMm mg R = ④ 星球密度:M V ρ= ⑤ 由④⑤,解得12 8F F GmR ρπ-= 点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度. 2.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少? (3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1 )2 ,16(2)速度之比为2 【解析】 【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解; 解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2 Mm G mg R = a 卫星 2 224a GMm m R R T π= 解得2a T =b 卫星2 2 24·4(4)b GMm m R R T π= 解得16b T = (2)卫星做匀速圆周运动,F F =引向, a 卫星2 2a mv GMm R R =

高一物理 万有引力定律 典型例题解析

万有引力定律 典型例题解析 【例1】设地球的质量为M ,地球半径为R ,月球绕地球运转的轨道半径为r ,试证在地球引力的作用下: (1)g (2)(3)r 60R 地面上物体的重力加速度= ;月球绕地球运转的加速度=;已知=,利用前两问的结果求的值;GM R GM r g 2 2αα (4)已知r =3.8×108m ,月球绕地球运转的周期T =27.3d ,计算月球绕地球运转时的向心加速度a ; (5)已知地球表面重力加速度g =9.80m/s 2,利用第(4)问的计算结果, 求的值.αg 解析: (1)略;(2)略; (3)2.77×10-4; (4)2.70×10-3m/s 2 (5)2.75×10-4 点拨:①利用万有引力等于重力的关系,即=.②利用万有引力等于向心力的关系,即=.③利用重力等于向心力G Mm r mg G Mm r m 22α 的关系,即mg =ma .以上三个关系式中的a 是向心加速度,根据题目 的条件可以用、ω或来表示.v r r T 2224r 2π

【例】月球质量是地球质量的,月球半径是地球半径的,在2181138. 距月球表面14m 高处,有一质量m =60kg 的物体自由下落. (1)它落到月球表面需用多少时间? (2)它在月球上的“重力”和质量跟在地球上是否相同(已知地球表面重力加速度g 地=9.8m/s 2)? 解析:(1)4s (2)588N 点拨:(1)物体在月球上的“重力”等于月球对物体的万有引力,设 mg G M m R mg G M m R 22月月月地地地=.同理,物体在地球上的“重力”等于地球对物体的 万有引力,设=. 以上两式相除得=,根据=可得物体落到月球表面需用时间为==×=.月月g 1.75m /s S gt t 4s 2212 2214175S g . (2)在月球上和地球上,物体的质量都是60kg .物体在月球上的“重力”和在地球上的重力分别为G 月=mg 月=60×1.75N =105N ,G 地=mg 地=60×9.8N =588N . 跟踪反馈 1.如图43-1所示,两球的半径分别为r 1和r 2,均小于r ,两球质量

高中物理《万有引力定律》知识点

高中物理《万有引力定律》知识点 万有引力是由于物体具有质量而在物体之间产生的一种相互作用。它的大小和物体的质量以及两个物体之间的距离有关。物体的质量越大,它们之间的万有引力就越大;物体之间的距离越远,它们之间的万有引力就越小。 两个可看作质点的物体之间的万有引力,可以用以下公式计算:F=Gmm/r^2,即万有引力等于引力常量乘以两物体质量的乘积除以它们距离的平方。其中G代表引力常量,其值约为6.67×10的负11次方单位N·m2/kg2。为英国科学家卡文迪许通过扭秤实验测得。 万有引力的推导:若将行星的轨道近似的看成圆形,从开普勒第二定律可得行星运动的角速度是一定的,即:ω=2π/T 如果行星的质量是m,离太阳的距离是r,周期是T,那么由运动方程式可得,行星受到的力的作用大小为mrω^2=mr(4π^2)/T^2 另外,由开普勒第三定律可得 r^3/T^2=常数k' 那么沿太阳方向的力为 mr(4π^2)/T^2=mk'(4π^2)/r^2 由作用力和反作用力的关系可知,太阳也受到以上相同大小的力。从太阳的角度看,

(太阳的质量m)(k'')(4π^2)/r^2 是太阳受到沿行星方向的力。因为是相同大小的力,由这两个式子比较可知,k'包含了太阳的质量m,k''包含了行星的质量m。由此可知,这两个力与两个天体质量的乘积成正比,它称为万有引力。 如果引入一个新的常数(称万有引力常数),再考虑太阳和行星的质量,以及先前得出的4·π2,那么可以表示为万有引力=Gmm/r^2 两个通常物体之间的万有引力极其微小,我们察觉不到它,可以不予考虑。比如,两个质量都是60千克的人,相距0.5米,他们之间的万有引力还不足百万分之一牛顿,而一只蚂蚁拖动细草梗的力竟是这个引力的1000倍!但是,天体系统中,由于天体的质量很大,万有引力就起着决定性的作用。在天体中质量还算很小的地球,对其他的物体的万有引力已经具有巨大的影响,它把人类、大气和所有地面物体束缚在地球上,它使月球和人造地球卫星绕地球旋转而不离去。 重力,就是由于地面附近的物体受到地球的万有引力而产生的。 任意两个物体或两个粒子间的与其质量乘积相关的吸引力。自然界中最普遍的力。简称引力,有时也称重力。在粒子物理学中则称引力相互作用和强力、弱力、电磁力合称

最新万有引力定律 经典例题

1.天体运动的分析方法 2.中心天体质量和密度的估算 (1)已知天体表面的重力加速度g和天体半径R G Mm R2=mg? ? ? ?天体质量:M=gR2G 天体密度:ρ= 3g 4πGR (2)已知卫星绕天体做圆周运动的周期T和轨道半径r ?? ? ??①G Mm r2=m 4π2 T2r?M= 4π2r3 GT2 ②ρ= M 4 3 πR3 = 3πr3 GT2R3 ③卫星在天体表面附近飞行时,r=R,则ρ= 3π GT2 1.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知() A.太阳位于木星运行轨道的中心 B.火星和木星绕太阳运行速度的大小始终相等 C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方 D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 解析:由开普勒第一定律(轨道定律)可知,太阳位于木星运行轨道的一个焦点上,A 错误;火星和木星绕太阳运行的轨道不同,运行速度的大小不可能始终相等,B错误;根据开普勒第三定律(周期定律)知所有行星轨道的半长轴的三次方与它的公转周期的平方的比值是一个常数,C正确;对于某一个行星来说,其与太阳连线在相同的时间内扫过的面积相等,不同行星在相同的时间内扫过的面积不相等,D错误. 答案:C 2.(2016·郑州二检)据报道,目前我国正在研制“萤火二号”火星探测器.探测器升空

后,先在近地轨道上以线速度v 环绕地球飞行,再调整速度进入地火转移轨道,最后再一次调整速度以线速度v ′在火星表面附近环绕飞行.若认为地球和火星都是质量分布均匀的球体,已知火星与地球的半径之比为1∶2,密度之比为5∶7,设火星与地球表面重力加速度分别为g ′和g ,下列结论正确的是( ) A .g ′∶g =4∶1 B .g ′∶g =10∶7 C .v ′∶v = 528 D .v ′∶v = 514 解析:在天体表面附近,重力与万有引力近似相等,由G Mm R 2=mg ,M =ρ43 πR 3 ,解两式得g =4 3G πρR ,所以g ′∶g =5∶14,A 、B 项错;探测器在天体表面飞行时,万有引力 充当向心力,由G Mm R 2=m v 2R ,M =ρ4 3πR 3,解两式得v =2R G πρ 3 ,所以v ′∶v =528 ,C 项正确,D 项错. 答案:C 3.嫦娥三号”探月卫星于2013年12月2日1点30分在西昌卫星发射中心发射,将实现“落月”的新阶段.若已知引力常量G ,月球绕地球做圆周运动的半径r 1、周期T 1,“嫦娥三号”探月卫星绕月球做圆周运动的环月轨道(见图)半径r 2、周期T 2,不计其他天体的影响,则根据题目条件可以( ) A .求出“嫦娥三号”探月卫星的质量 B .求出地球与月球之间的万有引力 C .求出地球的密度 D.r 13T 12=r 23T 2 2 解析:绕地球转动的月球受力为GMM ′r 12=M ′r 14π2 T 1 2得T 1= 4π2r 13 GM =4π2r 13 Gρ43πr 3.由于不知道地球半径r ,无法求出地球密度,C 错误;对“嫦娥三号”而言,GM ′m r 22 =mr 24π2 T 2 2,T 2=4π2r 23 GM ′ ,已知“嫦娥三号”的周期和半径,可求出月球质量M ′,但是所

(完整版)万有引力与航天重点知识、公式总结

万有引力与航天重点规律方法总结 一.三种模型 1.匀速圆周运动模型: 无论是自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可看成质点,围绕中心天体(视为静止)做匀速圆周运动 2.双星模型: 将两颗彼此距离较近的恒星称为双星,它们相互之间的万有引力提供各自 转动的向心力。 3.“天体相遇”模型: 两天体相遇,实际上是指两天体相距最近。 二.两种学说 1.地心说:代表人物是古希腊科学家托勒密 2/日心说:代表人物是波兰天文学家哥白尼 三.两个定律 1.开普勒定律: 第一定律(又叫椭圆定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆 的一个焦点上 第二定律(又叫面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫 过相同的面积。 第三定律(又叫周期定律):所有行星绕太阳运动的椭圆轨道的半长轴R 的三次方跟公 转周期T 的二次方的比值都相等。 表达式为:)4(2 23 π GM K K T R == k 只与中心天体质量有关的 定值与行星无关 2.牛顿万有引力定律 1687年在《自然哲学的数学原理》正式提出万有引力定律 ⑴.内容:宇宙间的一切物体都是相互吸引的.两个物体间引力的方向在它们的连线上,引力的大小跟它们的质量的乘积成正比,跟它们之间的距离的二次方成反比. ⑵.数学表达式: r F Mm G 2 =万 ⑶.适用条件: a.适用于两个质点或者两个均匀球体之间的相互作用。(两物体为均匀球体时,r 为两球心间的距离) b. 当0→r 时,物体不可以处理为质点,不能直接用万有引力公式计算 c. 认为当0→r 时,引力∞→F 的说法是错误的 ⑷.对定律的理解 a.普遍性:任何客观存在的有质量的物体之间都有这种相互作用力 b.相互性:两个物体间的万有引力是一对作用力和反作用力,而不是平衡力关系。 c.宏观性:在通常情况下万有引力非常小,只有在质量巨大的星球间或天体与天体附 近的物体间,它的存在才有实际意义. d.特殊性:两个物体间的万有引力只与它们本身的质量、它们之间的距离有关.与所在 空间的性质无关,与周期及有无其它物体无关. (5)引力常数G :

万有引力定律典型例题分析

“万有引力定律”的典型例题 例5 【例1】假如一个作圆周运动的人造地球卫星的轨道半径增大到原来的2倍,仍作圆周运动,则 [ ] A.根据公式v=ωr,可知卫星运动的线速度将增大到原来的2倍 D.根据上述选答B和C中给出的公式,可知卫星运动的线速度将 【分析】人造地球卫星绕地球作匀速圆周运动时,由地球对它的引力作向心力,即 卫星运动的线速度

当卫星的轨道半径增大为原来的2倍时,由于角速度会发生变化, 错,D正确. 同理,当卫星的轨道半径增大为原来的2倍时,由于线速度的变化,卫星所需的向心力不是减为原来的1/2,而是减小到原来的1/4.B错,C正确. 【答】C、D. 【说明】物体作匀速圆周运动时,线速度、角速度、向心加速度、向心力和轨道半径间有一定的牵制关系.例如,只有当ω不变时,线速度才与半径成正比;同样,当线速度不变时,同一物体的向心力才与半径成反比.使用中不能脱离条件. 研究卫星的运动时,最根本的是抓住引力等于向心力这一关系. 【例2】估算天体的质量 【解】把卫星(或行星)绕中心天体的运动看成是匀速圆周运动,由中心天体对卫星(或行星)的引力作为它绕中心天体的向心力.根据 得 因此,只需测出卫星(或行星)的运动半径r和周期T,即可算出中心天体的质量M.

【例3】登月飞行器关闭发动机后在离月球表面112km的空中沿圆形轨道绕月球飞行,周期是120.5min.已知月球半径是1740km,根据这些数据计算月球的平均密度.(G=6.67×10-11Nm2/kg2) 【分析】要计算月球的平均密度,首先应求出质量M.飞行器绕月球做匀速圆周运动的向心力是由月球对它的万有引力提供的. 【解】根据牛顿第二定律有 从上式中消去飞行器质量m后可解得 根据密度公式有 【例4】如图1所示,在一个半径为R、质量为M的均匀球体中, 连线上、与球心相距d的质点m的引力是多大? 【分析】把整个球体对质点的引力看成是挖去的小球体和剩余部分对质点的引力之和,即可得解.

万有引力定律公式总结

万有引力定律知识点 班级: 姓名: 一、三种模型 1、匀速圆周运动模型:无论自然天体还是人造天体都可以看成质点,围绕中心天体做匀速圆周运动。 2、双星模型:将两颗彼此距离较近的恒星称为双星,它们相互之间的万有引力提供各自转动的向心力。 3、“天体相遇”模型:两天体相遇,实际上是指两天体相距最近。 二、两种学说 1、地心说:代表人物是古希腊科学托勒密 2、日心说:代表人物是波兰天文学家哥白尼 三、两个定律 第一定律(椭圆定律):所有行星绕太阳的运动轨道都是椭圆,太阳位于椭圆的每一个焦点上。 第二定律(面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫过相同的面积。 第三定律(周期定律):所有行星绕太阳运动的椭圆轨道半长轴R 的三次方跟公转周期T 的二次方的比值都相等。 (表达式 ) 四、基础公式 线速度:v ==== 角速度:== == 向心力:F=m =m(2r=m(2 )2r= m(2)2r=m =m 向心加速度:a= = (2r= (2)2r= (2 )2r== 五、两个基本思路 1.万有引力提供向心力:ma r T m r m r v m r M G ====22 2224m πω 2.忽略地球自转的影响: mg R GM =2m (2g R GM =,黄金代换式) 六、测量中心天体的质量和密度 测质量: 1.已知表面重力加速度g ,和地球半径R 。(mg R GM =2m ,则G gR M 2=)一般用于地球 2.已知环绕天体周期T 和轨道半径r 。(r T m r Mm G 2224π= ,则2 3 24GT r M π=) 3.已知环绕天体的线速度v 和轨道半径r 。(r v m r Mm G 22=,则G r v M 2=) 4.已知环绕天体的角速度ω和轨道半径r (r m r Mm G 22ω=,则G r M 32ω=) 5.已知环绕天体的线速度v 和周期T (T r v π2=,r v m r M G 22m =,联立得G T M π2v 3=) 测密度:

万有引力与航天重点知识归纳及经典例题练习

第五讲 万有引力定律重点归纳讲练 知识梳理 考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 (2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。 (3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式: k T a =23 。其中k 值与太阳有关,与行星无关。 (4) 推广:开普勒行星运动定律不仅适用于行星绕太阳运转,也适用于卫星绕地球运转。当卫星绕行星旋转时,k T a =2 3 ,但k 值不同,k 与行星有关,与卫星无关。 (5) 中学阶段对天体运动的处理办法: ①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k T R =2 3 ,R ——轨道半径。 2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2 成反比。 (2) 公式:2 21r m m G F =,G 叫万有引力常量,2211 /10 67.6kg m N G ??=-。 (3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。 (4) 两个物体间的万有引力也遵循牛顿第三定律。 3. 万有引力与重力的关系 (1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。 ①在赤道上,F=F 向+mg ,即R m R Mm G mg 22 ω-=; ②在两极F=mg ,即mg R Mm G =2 ;故纬度越大,重力加速度越大。 由以上分析可知,重力和重力加速度都随纬度的增加而增大。 (2) 物体受到的重力随地面高度的变化而变化。在地面上,2 2 R GM g mg R Mm G =?=;在地球表面高度为h 处: 22)()(h R GM g mg h R Mm G h h +=?=+,所以g h R R g h 2 2 ) (+=,随高度的增加,重力加速度减小。 考点二、万有引力定律的应用——求天体质量及密度 1.T 、r 法:2 3 2224)2(GT r M T mr r Mm G ππ=?=,再根据3 23 33,34R GT r V M R V πρρπ=?== ,当r=R 时,2 3GT πρ= 2.g 、R 法:G g R M mg R Mm G 22 = ?=,再根据GR g V M R V πρρπ43,3 43=?== 3.v 、r 法:G rv M r v m r Mm G 2 22 =?=

万有引力知识点总结

万有引力定律 1. 考纲要求 一 万有引力定律: 1. 开普勒行星运动定律 (1) 所有的行星围绕太阳运动的轨道是_____,太阳处在____上,这就是开普勒第一定律,又称椭圆轨道定律。 (2)对于每一个行星而言,太阳和行星的连线在相等的时间内扫过相等的____.这就是开普勒第二定律,又称面积定律。 (3)所有行星轨道的半长轴的三次方跟公转周期的二次方的比值____。这就是开普勒第三定律,又称周期定律。 若用R 表示椭圆轨道的半长轴,T 表示公转周期,则k T R =2 2(k 是一个与行星无关的 量)。 2. 万有引力定律 (1) 内容:自然界中任何两个物体都相互吸引,引力的大小与物理质量的乘积成____, 与它们之间距离的平方成_______. (2) 公式:_______________________________________, G 为万有引力常量。 G = _______________________ N.2 2 /kg m . (3) 适用条件:公式适用于质点间万有引力大小的计算,当两个物体间的距离_______ 物体本身的大小时,物体可视为质点。另外,公式也适用于均匀球体间万有引力大小的计算,只不过r 应是________的距离。 (4) 两个物体之间的引力是一对作用力与反作用力,总是大小_______、方向______。 3. 应用万有引力分析天体的运动 (1) 基本方法:把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由______ 提供。公式为: a )2( 2 2 2 2 m r T m r m r v m r Mm G ====πω 考纲内容 能力要求 考向定位 1.万有引力定律及其应用 2.环绕速度 3.第二宇宙速度和第三宇宙速度 1.掌握万有引力定律的内容,并 能够用万有引力定律求解相关问题。 2.理解第一宇宙速的意义。 3.了解第二宇宙速度和第三宇宙速度 万有引力定律是广东高考的必考内容,也是全国高考命题的一个热点内容。考生要熟练掌握该定律的内容,还要知道其主要应用,要求能够结合该定律与牛顿第二定律估算天体质量、密度、计算天体间的距离(卫星高度)、以及分析卫星运动轨道等相关问题。 要理解环绕速度实际上是卫星在天体表面做匀速圆周运动时的线速度。 由于高考计算题量减少,故本节命题应当会以选择题为主,难度较以前会有所降低。

万有引力定律知识点(含答案)

万有引力定律 一、开普勒行星运动定律 开普勒行星运动的定律是在丹麦天文学家弟谷的大量观测数据的 基础上概括出的,给出了行星运动的规律。 K值只取决于中心 天体的质量 通常椭圆轨道近似 处理为圆轨道 也适于用卫星绕行 星的运动 1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连 线上,引力的大小及物体的质量m1和m2的乘积成正比、及它们之间距离 r的二次方成反比.

2.表达式:,G为引力常量:G=6.67×10-11N·m2/kg2. 3.适用条件 (1)公式适用于质点间的相互作用.当两物体间的距离远远大于物体本身的大小时,物体可视为质点. (2)质量分布均匀的球体可视为质点,r是两球心间的距离. 三、环绕速度 1.第一宇宙速度又叫环绕速度. 得:=7.9 km/s. 第一宇宙速度是人造卫星的最大环绕速度,也是人造地球卫星的最小发射速度. 第二宇宙速度(脱离速度):v2=11.2 km/s,使物体挣脱地球引力束缚的最小发射速度. 第三宇宙速度(逃逸速度):v3=16.7 km/s,使物体挣脱太阳引力束缚的最小发射速度. 特别提醒: (1) 两种周期——自转周期和公转周期的不同 (2)两种速度——环绕速度及发射速度的不同,最大环绕速度等于最小发射速度 (3)两个半径——天体半径R和卫星轨道半径r的不同 四、近地卫星、赤道上物体及同步卫星的运行问题 1.近地卫星、同步卫星、赤道上的物体的比较

ω3=ω自 = GM R+h3 a3=ω23(R+h) = GM R+h2 五、天体的追及相遇问题 两颗卫星在同一轨道平面内同向绕地球做匀速圆周运动,a卫星的角速度为ωa,b卫星的角速度为ωb,若某时刻两卫星正好同时通过地面同一点正上方,相距最近(如图甲所示)。当它们转过的角度之差Δθ=π,即满足ωaΔt-ωbΔt=π时,两卫星第一次相距最远(如图乙所示)。 图甲图乙 当它们转过的角度之差Δθ=2π,即满足ωaΔt-ωbΔt=2π时,两卫星再次相距最近。 经过一定的时间,两星又会相距最远和最近。 1. 两星相距最远的条件:ωaΔt-ωbΔt=(2n+1)π(n=0,1,2,…) 2. 两星相距最近的条件:ωaΔt-ωbΔt=2nπ(n=1,2,3…)

最新万有引力定律·典型例题解析

万有引力定律·典型例题解析 【例1】设地球的质量为M ,地球半径为R ,月球绕地球运转的轨道半径为r ,试证在地球引力的作用下: (1)g (2)(3)r 60R 地面上物体的重力加速度= ;月球绕地球运转的加速度=;已知=,利用前两问的结果求的值; GM R GM r g 22αα (4)已知r =3.8×108m ,月球绕地球运转的周期T =27.3d ,计算月球绕地球运转时的向心加速度a ; (5)已知地球表面重力加速度g =9.80m/s 2,利用第(4)问的计算结果, 求 的值.α g 解析: (1)略;(2)略; (3)2.77×10-4; (4)2.70×10-3m/s 2 (5)2.75×10-4 点拨:①利用万有引力等于重力的关系,即=.②利用万有引力等于向心力的关系,即=.③利用重力等于向心力 G Mm r mg G Mm r m 2 2α 的关系,即mg =ma .以上三个关系式中的a 是向心加速度,根据题目 的条件可以用、ω或来表示.v r r T 2224r 2 π 【例】月球质量是地球质量的 ,月球半径是地球半径的,在21811 38. 距月球表面14m 高处,有一质量m =60kg 的物体自由下落. (1)它落到月球表面需用多少时间? (2)它在月球上的“重力”和质量跟在地球上是否相同(已知地球表面重力

加速度g 地=9.8m/s 2)? 解析:(1)4s (2)588N 点拨:(1)物体在月球上的“重力”等于月球对物体的万有引力,设 mg G M m R mg G M m R 22月月月 地地地 =.同理,物体在地球上的“重力”等于地球对物体的 万有引力,设=. 以上两式相除得=,根据=可得物体落到月球表 面需用时间为==×=. 月月g 1.75m /s S gt t 4s 2 2 12 2214 175S g . (2)在月球上和地球上,物体的质量都是60kg .物体在月球上的“重力”和在地球上的重力分别为G 月=mg 月=60×1.75N =105N ,G 地=mg 地=60×9.8N =588N . 跟踪反馈 1.如图43-1所示,两球的半径分别为r 1和r 2,均小于r ,两球质量分布均匀,大小分别为m 1、m 2,则两球间的万有引力大小为: [ ] A .Gm 1m 2/r 2 B .Gm 1m 2/r 12 C .Gm 1m 2/(r 1+r 2)2 D .Gm 1m 2/(r 1+r 2+r)2

高考物理万有引力定律知识点总结

高考物理万有引力定律知识点总结 (万有引力定律及其应用 环绕速度 第二宇宙速度 第三宇宙速度) 一.开普勒行星运动规律: 行星轨道视为圆处理 则3 2r K T =(K 只与中心天体质量M 有关) 理解: (1)k 是与太阳质量有关而与行星无关的常量. 由于行星的椭圆轨道都跟圆近似,在 近似的计算中,可以认为行星都是以太阳为圆心做匀速圆周运动,在这种情况下,a 可代表 轨道半径. (2)开普勒第三定律不仅适用于行星,也适用于卫星,只不过此时 a 3 /T 2 =k ′,比值 k ′是由行星的质量所决定的另一常量,与卫星无关. 二、万有引力定律 (1)内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量 的乘积成正比,跟它们的距离的平方成反比. (2)公式:F =G 221 r m m ,其中2211/1067.6kg m N G ??=-,叫做引力常量。 (3)适用条件:此公式适用于质点间的相互作用.当两物体间的距离远远大于物体本身 的大小时,物体可视为质点.均匀的球体可视为质点,r 是两球心间的距离.一个均匀球体 与球外一个质点间的万有引力也适用,其中r 为球心到质点间的距离. 说明: (1)对万有引力定律公式中各量的意义一定要准确理解,尤其是距离r 的取值,一定要 搞清它是两质点之间的距离. 质量分布均匀的球体间的相互作用力,用万有引力公式计算, 式中的r 是两个球体球心间的距离. (2)不能将公式中r 作纯数学处理而违背物理事实,如认为r→0时,引力F→∞,这是 错误的,因为当物体间的距离r→0时,物体不可以视为质点,所以公式F =Gm 1m 2r 2就不能直接应用计算. (3)物体间的万有引力是一对作用力和反作用力,总是大小相等、方向相反的,遵循牛 顿第三定律,因此谈不上质量大的物体对质量小的物体的引力大于质量小的物体对质量大的 物体的引力,更谈不上相互作用的一对物体间的引力是一对平衡力.

相关主题
文本预览
相关文档 最新文档