当前位置:文档之家› 数学归纳法(有答案解析)

数学归纳法(有答案解析)

数学归纳法(有答案解析)
数学归纳法(有答案解析)

数学归纳法

2015高考会这样考 1.考查数学归纳法的原理和证题步骤;2.用数学归纳法证明与等式、不等式或数列有关的命题,考查分析问题、解决问题的能力.

复习备考要这样做 1.理解数学归纳法的归纳递推思想及其在证题中的应用;2.规范书写数学归纳法的证题步骤. 一、知识梳理

数学归纳法

一般地,证明一个与正整数n 有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n 取第一个值n 0 (n 0∈N *)时命题成立;

(2)(归纳递推)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.上述证明方法叫作数学归纳法. [难点正本 疑点清源]

1.数学归纳法是一种重要的数学思想方法,主要用于解决与正整数有关的数学问题.证明时步骤(1)和(2)缺一不可,步骤(1)是步骤(2)的基础,步骤(2)是递推的依据.

2.在用数学归纳法证明时,第(1)步验算n =n 0的n 0不一定为1,而是根据题目要求,选择合适的起始值.第(2)步,证明n =k +1时命题也成立的过程,一定要用到归纳假设,否则就不是数学归纳法. 小试牛刀

1.凸k 边形内角和为f (k ),则凸k +1边形的内角和为f (k +1)=f (k )+________. 答案 π

解析 易得f (k +1)=f (k )+π.

2.用数学归纳法证明:“1+12+13+…+1

2n -1

1)”,由n =k (k >1)不等式成立,推证

n =k +1时,左边应增加的项的项数是________.

答案 2k

解析 n =k 时,左边=1+12+…+1

2k -1,当n =k +1时,

左边=1+12+13+…+12k -1+…+1

2k +1-1.

所以左边应增加的项的项数为2k .

3.用数学归纳法证明1+a +a 2+…+a n +1=1-a n +2

1-a (a ≠1,n ∈N +),在验证n =1成立时,

左边需计算的项是

( )

A .1

B .1+a

C .1+a +a 2

D .1+a +a 2+a 3

答案 C

解析 观察等式左边的特征易知选C.

4.已知n 为正偶数,用数学归纳法证明1-12+13-14+…-1

n =2?

????1n +2+1n +4

+…+12n 时,若已假设n =k (k ≥2且k 为偶数)时命题为真,则还需要用归纳假设再证( ) A .n =k +1时等式成立 B .n =k +2时等式成立 C .n =2k +2时等式成立 D .n =2(k +2)时等式成立 答案 B

解析 因为假设n =k (k ≥2且k 为偶数),故下一个偶数为k +2,故选B. 5.已知f (n )=1

n +

1

n +1+

1

n +2

+…+1

n

2,则

( )

A .f (n )中共有n 项,当n =2时,f (2)=12+1

3

B .f (n )中共有n +1项,当n =2时,f (2)=12+13+1

4

C .f (n )中共有n 2-n

项,当n =2时,f (2)=12+13

D .f (n )中共有n 2-n +1

项,当n =2时,f (2)=12+13+1

4

答案 D

解析 从n 到n 2共有n 2-n +1个数, 所以f (n )中共有n 2-n +1项. 二、典型例题

题型一 用数学归纳法证明等式 例1 已知

n ∈N *,证明:1-

12+13-14+...+12n -1-12n =1n +1+1n +2+ (12)

. 思维启迪:等式的左边有2n 项,右边有n 项,左边的分母是从1到2n 的连续正整数,末项与n 有关,右边的分母是从n +1到n +n 的连续正整数,首、末项都与n 有关. 证明 ①当n =1时,左边=1-12=1

2

右边=1

2

,等式成立;

②假设当n =k (k ∈N *)时等式成立,即 1-12+13-14+…+12k -1-12k

1

k +1+

1

k +2

+…+1

2k

那么当n =k +1时,

左边=1-12+13-14+…+12k -1-12k +12k +1-1-

1

2k +1

=? ??

??1k +1+1k +2+…+12k +12k +1-12k +1 =1k +2+1k +3+…+12k +1

2k +1+??

??

??1k +1-12k +1 =

1

k +1+1

1

k +1+2

+…+

1

k +1+k

1

k +1+k +1

=右边,

所以当n =k +1时等式也成立. 综合①②知对一切n ∈N *,等式都成立.

探究提高 用数学归纳法证明恒等式应注意:明确初始值n 0的取值并验证n =n 0时命题的真假(必不可少).“假设n =k (k ∈N *,且k ≥n 0)时命题正确”并写出命题形式分析“n =k +1时”命题是什么,并找出与“n =k ”时命题形式的差别.弄清左端应增加的项,明确等式左端变形目标,掌握恒等式变形常用的方法:乘法公式、因式分解、添拆项、配方等.简言之:两个步骤、一个结论;递推基础不可少,归纳假设要用到,结论写明莫忘掉.

【变式1】 用数学归纳法证明: 对任意的

n ∈N *,

1

1×3+1

3×5+…+

12n -12n +1

=n

2n +1

.

证明 (1)当n =1时,左边=11×3=1

3

右边=1

2×1+1=1

3,左边=右边,所以等式成立.

(2)假设当n =k (k ∈N *)时等式成立,即 1

1×3+1

3×5+…+12k -12k +1

=k

2k +1

则当n =k +1时,

11×3+13×5+…+12k -12k +1+

1

2k +1

2k +3

=k 2k +1+12k +1

2k +3

k 2k +3+1

2k +1

2k +3

2k 2+3k +12k +1

2k +3

=k +12k +3=k +1

2k +1+1

所以当n =k +1时,等式也成立. 由(1)(2)可知,对一切n ∈N *等式都成立.

题型二 用数学归纳法证明不等式 例2 用数学归纳法证明:

1+n

2≤1+12+13+…+12n ≤1

2

+n (n ∈N *).

思维启迪:利用假设后,要注意不等式的放大和缩小. 证明 (1)当n =1时,左边=1+12,右边=1

2+1,

∴32≤1+12≤3

2

,即命题成立. (2)假设当n =k (k ∈N *)时命题成立,即 1+k

2≤1+12+13+…+12k ≤1

2+k ,

则当n =k +1时,

1+12+13+…+12k +12k +1+12k +2+…+12k +2k

>1+k

2

+2k ·

12k +2k =1+k +1

2

. 又1+12+13+…+12k +12k +1+12k +2+…+1

2k +2k

<12+k +2k ·12k =1

2+(k +1),

即n =k +1时,命题成立.

由(1)(2)可知,命题对所有n ∈N *都成立.

探究提高 (1)用数学归纳法证明与n 有关的不等式一般有两种具体形式:一是直接给出不等式,按要求进行证明;二是给出两个式子,按要求比较它们的大小,对第二类形式往往要先对n 取前几个值的情况分别验证比较,以免出现判断失误,最后猜出从某个n 值开始都成立的结论,常用数学归纳法证明.

(2)用数学归纳法证明不等式的关键是由n =k 时成立得n =k +1时成立,主要方法有①放缩法;②利用基本不等式法;③作差比较法等.

【变式2】 用数学归纳法证明:对一切大于1的自然数,不等式? ??

?

?

1+13? ????1+15·…·? ??

??1+12n -1>2n +12均成立.

证明 (1)当n =2时,左边=1+13=43;右边=52.

∵左边>右边,∴不等式成立. (2)假设当n =k (k ≥2,且k ∈N *)时不等式成立,即

? ????1+13? ????1+15·…·? ??

??1+12k -1>2k +1

2.

则当n =k +1时,

? ????1+13? ????1+15·…·? ????1+12k -1????

??1+1

2k +1-1

>

2k +12·2k +22k +1=2k +2

22k +1

=4k 2+8k +422k +1>4k 2+8k +322k +1

2k +32k +1

2

2k +1

2k +1+1

2

.

∴当n =k +1时,不等式也成立.

由(1)(2)知,对于一切大于1的自然数n ,不等式都成立.

题型三 用数学归纳法证明整除性问题

例3 用数学归纳法证明42n +1+3n +2能被13整除,其中n 为正整数.

思维启迪:当n =k +1时,把42(k +1)+1+3k +3配凑成42k +1+3k +2的形式是解题的关键. 证明 (1)当n =1时,42×1+1+31+2=91能被13整除. (2)假设当n =k (k ∈N +)时,42k +1+3k +2能被13整除, 则当n =k +1时,

方法一 42(k +1)+1+3k +3=42k +1·42+3k +2·3-42k +1·3+42k +1·3 =42k +1·13+3·(42k +1+3k +2),

∵42k +1·13能被13整除,42k +1+3k +2能被13整除. ∴42(k +1)+1+3k +3能被13整除.

方法二 因为[42(k +1)+1+3k +3]-3(42k +1+3k +2)

=(42k +1·42+3k +2·3)-3(42k +1+3k +2) =42k +1·13,

∵42k +1·13能被13整除,

∴[42(k +1)+1+3k +3]-3(42k +1+3k +2)能被13整除,因而42(k +1)+1+3k +3能被13整除, ∴当n =k +1时命题也成立,

由(1)(2)知,当n ∈N +时,42n +1+3n +2能被13整除.

探究提高 用数学归纳法证明整除问题,P (k )?P (k +1)的整式变形是个难点,找出它们之间的差异,然后将P (k +1)进行分拆、配凑成P (k )的形式,也可运用结论:“P (k )能被p 整除且P (k +1)-P (k )能被p 整除?P (k +1)能被p 整除.”

【变式3】 已知n 为正整数,a ∈Z ,用数学归纳法证明:a n +1+(a +1)2n -1能被a 2+a +1整除.

证明 (1)当n =1时,a n +1+(a +1)2n -1=a 2+a +1,能被a 2+a +1整除.

(2)假设n =k (k ∈N +)时,a k +1+(a +1)2k -1能被a 2+a +1整除,那么当n =k +1时,

a k +2+(a +1)2k +1

=(a +1)2[a k +1+(a +1)2k -1]+a k +2-a k +1(a +1)2

=(a +1)2[a k +1+(a +1)2k -1]-a k +1(a 2+a +1)能被a 2+a +1整除. 即当n =k +1时命题也成立.

根据(1)(2)可知,对于任意n ∈N +,a n +1+(a +1)2n -1能被a 2+a +1整除.

题型四 归纳、猜想、证明

【例4】在各项为正的数列{a n }中,数列的前n 项和S n 满足S n =12?

?

???a n +1a n .

(1)求a 1,a 2,a 3;(2)由(1)猜想数列{a n }的通项公式,并且用数学归纳法证明你的猜想. 审题视角 (1)数列{a n }的各项均为正数,且S n =12?

?

???a n +1a n ,所以可根据解方程求出a 1,

a 2,a 3;(2)观察a 1,a 2,a 3猜想出{a n }的通项公式a n ,然后再证明.

规范解答

解 (1)S 1=a 1=12? ?

???a 1+1a 1得a 21

=1. ∵a n >0,∴a 1=1,[1分] 由S 2=a 1+a 2=12? ?

???a 2+1a 2,

得a 22+2a 2-1=0,∴a 2=

2-1.[2分]

又由S 3=a 1+a 2+a 3=12? ?

???a 3+1a 3

得a 23+2

2a 3-1=0,∴a 3=

3- 2.[3分]

(2)猜想a n =

n -n -1 (n ∈N *)[5分]

证明:①当n =1时,a 1=1=1-

0,猜想成立.[6分]

②假设当n =k (k ∈N *)时猜想成立,

即a k =k -k -1,

则当n =k +1时,a k +1=S k +1-S k =12?

?

???a k +1+

1a k +1-12? ????

a k +1a k , 即a k +1=12? ?

???a k +1+

1a k +1-12?

??

???

k -k -1+

1

k -k -1 =12?

????

a k +1+

1a k +1-k ,

∴a 2k +1+2

ka k +1-1=0,∴a k +1=k +1-k .

即n =k +1时猜想成立.[11分] 由①②知,a n =

n -n -1 (n ∈N *).[12分]

温馨提醒 (1)本题运用了从特殊到一般的探索、归纳、猜想及证明的思维方式去探索和发现问题,并证明所得结论的正确性,这是非常重要的一种思维能力.

(2)本题易错原因是,第(1)问求a 1,a 2,a 3的值时,易计算错误或归纳不出a n 的一般表达式.第(2)问想不到再次利用解方程的方法求解,找不到解决问题的突破口.

方法与技巧

1.在数学归纳法中,归纳奠基和归纳递推缺一不可.在较复杂的式子中,注意由n =k 到n =k +1时,式子中项数的变化,应仔细分析,观察通项.同时还应注意,不用假设的证法不是数学归纳法.

2.对于证明等式问题,在证n =k +1等式也成立时,应及时把结论和推导过程对比,以减

少计算时的复杂程度;对于整除性问题,关键是凑假设;证明不等式时,一般要运用放缩法.

3.归纳—猜想—证明属于探索性问题的一种,一般经过计算、观察、归纳,然后猜想出结论,再用数学归纳法证明.由于“猜想”是“证明”的前提和“对象”,务必保证猜想的正确性,同时必须注意数学归纳法步骤的书写. 失误与防范

1.数学归纳法仅适用于与正整数有关的数学命题.

2.严格按照数学归纳法的三个步骤书写,特别是对初始值的验证不可省略,有时要取两个(或

两个以上)初始值进行验证;初始值的验证是归纳假设的基础. 3.注意n =k +1时命题的正确性.

4.在进行n =k +1命题证明时,一定要用n =k 时的命题,没有用到该命题而推理证明的方法不是数学归纳法. 课堂练习

一、选择题(每小题5分,共20分)

1.用数学归纳法证明“1+2+22+…+2n +2=2n +3-1”,在验证n =1时,左边计算所得的式子为 ( )

A .1

B .1+2

C .1+2+22

D .1+2+22+23

答案 D

解析 左边的指数从0开始,依次加1,直到n +2,所以当n =1时,应加到23,故 选D.

2.用数学归纳法证明“2n >n 2+1对于n ≥n 0的正整数n 都成立”时,第一步证明中的起始值n 0应取 ( )

A .2

B .3

C .5

D .6

答案 C

解析 令n 0分别取2,3,5,6,依次验证即得. 3.用数学归纳法证明1+2+3+…+n 2=n 4+n 2

2,则当n =k +1时左端应在n =k 的基础上加上

( )

A .k 2+1

B .(k +1)2 C.

k +14+

k +1

2

2

D .(k 2+1)+(k 2+2)+…+(k +1)2

答案 D

解析 当n =k 时,左端=1+2+3+…+k 2.

当n =k +1时,左端=1+2+3+…+k 2+(k 2+1)+(k 2+2)+…+(k +1)2,

故当n =k +1时,左端应在n =k 的基础上加上(k 2+1)+(k 2+2)+…+(k +1)2.故应选D. 4.用数学归纳法证明:“(n +1)·(n +2)·…·(n +n )=2n ·1·3·…·(2n -1)”,从“k 到k +1”左端需增乘的代数式为

( )

A .2k +1

B .2(2k +1) C.2k +1k +1

D.2k +3k +1

答案 B

解析 n =k +1时,左端为

(k +2)(k +3)·…·[(k +1)+(k -1)][(k +1)+k ][(k +1)+(k +1)]=(k +2)(k +3)·…·(k +

k )(2k +1)(2k +2)

=(k +1)(k +2)·…·(k +k )[2(2k +1)], ∴应乘2(2k +1).

二、填空题(每小题5分,共15分)

5.用数学归纳法证明“2n +1≥n 2+n +2(n ∈N +)”时,第一步验证为________. 答案 当n =1时,左边=4≥右边,不等式成立 解析 由n ∈N +可知初始值为1.

6.若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是________. 答案 f (k +1)=f (k )+(2k +1)2+(2k +2)2 解析 ∵f (k )=12+22+…+(2k )2,

∴f (k +1)=12+22+…+(2k )2+(2k +1)2+(2k +2)2; ∴f (k +1)=f (k )+(2k +1)2+(2k +2)2.

7.用数学归纳法证明“当n 为正奇数时,x n +y n 能被x +y 整除”,当第二步假设n =2k -1(k ∈N +)命题为真时,进而需证n =________时,命题亦真. 答案 2k +1

解析 因为n 为正奇数,所以与2k -1相邻的下一个奇数是2k +1. 三、解答题(共22分)

8.(10分)若n 为大于1的自然数,求证: 1

n +1+1n +2+…+12n >13

24

. 证明 (1)当n =2时,1

2+1+1

2+2=7

12>1324.

(2)假设当n =k (k ∈N +)时不等式成立, 即1

k +1+1

k +2+…+12k >13

24, 那么当n =k +1时, 1

k +2+

1

k +3

+…+1

2k +1

1k +2+

1

k +3

+…+1

2k +1

2k +1+1

2k +2+1

k +1-1

k +1

=? ??

??1k +1+1k +2+1k +3+…+12k +12k +1+12k +2-1

k +1

>1324+12k +1+12k +2-1k +1=1324+12k +1-12k +2 =1324+

122k +1

k +1>1324

.

这就是说,当n =k +1时,不等式也成立.

由(1)(2)可知,原不等式对任意大于1的自然数都成立. 9.(12分)已知点P n (a n ,b n )满足a n +1=a n ·b n +1,b n +1=

b n

1-4a 2

n

(n ∈N *)且点P 1的坐标为(1,-

1).

(1)求过点P 1,P 2的直线l 的方程;

(2)试用数学归纳法证明:对于n ∈N *,点P n 都在(1)中的直线l 上. (1)解 由P 1的坐标为(1,-1)知a 1=1,b 1=-1. ∴b 2=b 1

1-4a 21

=13.a 2=a 1·b 2=1

3.

∴点P 2的坐标为? ??

??13,13,

∴直线l 的方程为2x +y =1. (2)证明 ①当n =1时, 2a 1+b 1=2×1+(-1)=1成立. ②假设当n =k (k ∈N *)时,

2a k +b k =1成立,则当n =k +1时, 2a k +1+b k +1=2a k ·b k +1+b k +1=b k

1-4a 2k

(2a k +1)

=b k

1-2a k =1-2a k

1-2a k

=1, ∴当n =k +1时,命题也成立.

由①②知,对于n ∈N *,都有2a n +b n =1, 即点P n 在直线l 上. 课后练习

一、选择题(每小题5分,共15分) 1.对于不等式

n 2+n

(1)当n =1时,

12+1<1+1,不等式成立.

(2)假设当n =k (k ∈N *)时,不等式成立,即k 2+k

k +12+k +1=k 2+3k +2

=k +2

2

=(k +1)+1,

∴当n =k +1时,不等式成立,则上述证法

( )

A .过程全部正确

B .n =1验得不正确

C .归纳假设不正确

D .从n =k 到n =k +1的推理不正确 答案 D

解析 在n =k +1时,没有应用n =k 时的假设,不是数学归纳法. 2.用数学归纳法证明不等式

1

n +1

1

n +2+…+12n <1314

(n ≥2,n ∈N *)的过程中,由n =k 递推到n =k +1时不等式左边

( )

A .增加了一项1

2k +1

B .增加了两项1

2k +1、1

2k +2

C .增加了B 中两项但减少了一项1

k +1

D .以上各种情况均不对 答案 C

解析 ∵n =k 时,左边=1

k +1+1k +2+…+1

2k

,n =k +1时,

左边=

1

k +2+1k +3+…+12k +12k +1+1

2k +2

, ∴增加了两项1

2k +1、1

2k +2,少了一项1

k +1

.

3.用数学归纳法证明不等式1+1

2+1

4+…+1

2n -1>127

64 (n ∈N *)成立,其初始值至少应取

( )

A .7

B .8

C .9

D .10

答案 B

解析 左边=1+12+14+…+1

2n -1=

1-1

2n

1-

12

=2-1

2

n -1,代入验证可知n 的最小值是8.

二、填空题(每小题5分,共15分)

4.已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,则第60个数对是________.

答案 (5,7)

解析 本题规律:2=1+1;3=1+2=2+1; 4=1+3=2+2=3+1; 5=1+4=2+3=3+2=4+1; …;

一个整数n 所拥有数对为(n -1)对. 设1+2+3+…+(n -1)=60,∴

n -1n

2

=60,

∴n =11时还多5对数,且这5对数和都为12, 12=1+11=2+10=3+9=4+8=5+7, ∴第60个数对为(5,7).

5.用数学归纳法证明? ????1+13? ????1+15? ????1+17…? ??

??1+12k -1>2k +1

2 (k >1),则当n =k +1时,

左端应乘上____________________________,这个乘上去的代数式共有因式的个数是__________.

答案 ? ????1+12k

+1? ????1+12k +3…? ??

??

1+12k +1-1 2k -1 解析 因为分母的公差为2,所以乘上去的第一个因式是? ??

??

1+12k

+1,最后一个是? ??

??1+12k +1-1,根据等差数列通项公式可求得共有2k +1-1-2k +12+1=2k -2k

-1=2k -1项.

6.在数列{a n }中,a 1=1

3且S n =n (2n -1)a n ,通过计算a 2,a 3,a 4,猜想a n 的表达式是________.

答案 a n =

1

2n -1

2n +1

解析 当n =2时,a 1+a 2=6a 2,即a 2=15a 1=1

15;

当n =3时,a 1+a 2+a 3=15a 3, 即a 3=114(a 1+a 2)=1

35

当n =4时,a 1+a 2+a 3+a 4=28a 4, 即a 4=1

27(a 1+a 2+a 3)=1

63

. ∴a 1=13=11×3,a 2=115=13×5,a 3=135=15×7,a 4=1

7×9

故猜想a n =1

2n -1

2n +1

.

三、解答题

7.(13分)已知函数f (x )=ax -32x 2的最大值不大于16,又当x ∈????

??14,12时,f (x )≥1

8. (1)求a 的值;

(2)设0

n +1.

(1)解 由题意,知

f (x )=ax -32x 2=-32? ????x -a 32+a 26

.

又f (x )max ≤1

6,所以f ? ????a 3=a 26≤16

.

所以a 2≤1.

又当x ∈????

??14,12时,f (x )≥1

8,

所以????

? f ? ????12≥18

,f ? ????14≥1

8

,即?????

a 2-38≥1

8,a 4-332≥18,

解得a ≥1.

又因为a 2≤1,所以a =1. (2)证明 用数学归纳法证明:

①当n =1时,0

2

,显然结论成立.

因为当x ∈? ??

??0,12时,0

6,

所以0

3.

故n =2时,原不等式也成立. ②假设当

n =k (k ≥2,k ∈N *)时,不等式0

1

k +1

成立.

因为f (x )=ax -32x 2的对称轴为直线x =1

3,所以当x ∈? ??

??0,13时,f (x )为增函数.

所以由0

k +1≤1

3,得0

??1k +1. 于是,0

k +1-32

·

1

k +1

2

1

k +2-

1

k +2=

1

k +2-

k +4

2k +1

2

k +2

<1k +2

.

所以当n =k +1时,原不等式也成立. 根据①②,知对任何n ∈N *,不等式

a n <1

n +1

成立.

《数学归纳法及其应用举例》教案

《数学归纳法及其应用举例》教案 中卫市第一中学 俞清华 教学目标: 1.认知目标:了解数学归纳法的原理,掌握用数学归纳法证题的方法。 2.能力目标:培养学生理解分析、归纳推理和独立实践的能力。 3.情感目标:激发学生的求知欲,增强学生的学习热情,培养学生辩证唯物主义的世界观 和勇于探索的科学精神。 教学重点: 了解数学归纳法的原理及掌握用数学归纳法证题的方法。 教学难点: 数学归纳法原理的了解及递推思想在解题中的体现。 教学过程: 一.创设情境,回顾引入 师:本节课我们学习《数学归纳法及其应用举例》(板书)。首先给大家讲一个故事:从前有 一个员外的儿子学写字,当老师教他写数字的时候,告诉他一、二、三的写法时,员外儿子很高兴,告诉老师他会写数字了。过了不久,员外要写请帖宴请亲朋好友到家里做客,员外儿子自告奋勇地要写请帖。结果早晨开始写,一直到了晚间也没有写完,请问同学们,这是为什么呢? 生:因为有姓“万”的。 师:对!有姓“万”的。员外儿子万万也没有想到“万”不是一万横,而是这么写的“万”。通过这个故事,你对员外儿子有何评价呢? 生:(学生的评价主要会有两种,一是员外儿子愚蠢,二是员外儿子还是聪明的。) 师:其实员外儿子观察、归纳、猜想的能力还是很不错的,但遗憾的是他猜错了!在数学 上,我们很多时候是通过观察→归纳→猜想,这种思维过程去发现某些结论,它是一种创造性的思维过程。那么,我们在以前的学习过程中,有没有也像员外儿子那样猜想过某些结论呢? 生:有。例如等差数列通项公式的推导。 师:很好。我们是由等差数列前几项满足的规律:d a a 011+=,d a a +=12,d a a 213+=,d a a 314+=,……归纳出了它的通项公式的。其实我们推导等差数列通项公式的方法和员外儿子猜想数字写法的方法都是归纳法。那么你能说说什么是归纳法,归纳法有什么特点吗? 生:由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。特点:特殊→一般。 师:对。(投影展示有关定义) 像这种由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。根据推理过程中考察的 对象是涉及事物的一部分还是全部,分为不完全归纳法和完全归纳法。 完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又 叫做枚举法。那么,用完全归纳法得出的结论可靠吗? 生:(齐答)可靠。 师:用不完全归纳法得出的结论是不是也是可靠的呢?为什么?

(完整版)数学归纳法经典例题详解

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

高中数学 数学归纳法

13.4 数学归纳法 一、填空题 1.用数学归纳法证明1+12+13…+1 2n -1<n (n ∈N ,且n >1),第一步要证的不 等式是________. 解析 n =2时,左边=1+12+122-1=1+12+1 3,右边=2. 答案 1+12+1 3<2 2.用数学归纳法证明: 121×3+223×5+…+n 2(2n -1)(2n +1)=n(n +1)2(2n +1);当推证当n =k +1等式也成立时,用上归纳假设后需要证明的等式是 . 解析 当n =k +1时,121×3+223×5+…+k 2(2k -1)(2k +1)+(k +1)2(2k +1)(2k +3) =k(k +1)2(2k +1)+(k +1)2 (2k +1)(2k +3) 故只需证明k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2) 2(2k +3)即可. 答案 k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2) 2(2k +3) 3.若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是________. 解析 ∵f (k )=12+22+…+(2k )2, ∴f (k +1)=12+22+…+(2k )2+(2k +1)2+(2k +2)2; ∴f (k +1)=f (k )+(2k +1)2+(2k +2)2. 答案 f (k +1)=f (k )+(2k +1)2+(2k +2)23.若存在正整数m ,使得f (n )= (2n -7)3n +9(n ∈N *)能被m 整除,则m =________. 解析 f (1)=-6,f (2)=-18,f (3)=-18,猜想:m =-6. 答案 6 4.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,要利用归纳

数学归纳法典型例习题

欢迎阅读数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 四. ??? ??? (1 ??? (2()时命题成立,证明当时命题也成立。??? 开始的所有正整数 ??? 即只 称为数学归纳法,这两步各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 ? 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n=k+1时也成假设了,命题并没有得到证明。 ??? 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。

? 2、运用数学归纳法时易犯的错误 ??? (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。 ??? (2)没有利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就通不过去了。 ??? (3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”,是数学归纳法的关键一步,也是证明问题最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性。 ? 例1. 时,。 ,右边,左边 时等式成立,即有,则当时, 由①,②可知,对一切等式都成立。 的取值是否有关,由到时 (2 到 本题证明时若利用数列求和中的拆项相消法,即 ,则这不是归纳假设,这是套用数学归纳法的一种伪证。 (3)在步骤②的证明过程中,突出了两个凑字,一“凑”假设,二“凑”结论,关键是明确 时证明的目标,充分考虑由到时,命题形式之间的区别和联系。

数学:2.3《数学归纳法》教案(新人教A版选修2-2) (2)

数学:2.3《数学归纳法》教案(新人教A 版选修2-2) 第一课时 2.3 数学归纳法(一) 教学要求:了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤,能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写. 教学重点:能用数学归纳法证明一些简单的数学命题. 教学难点:数学归纳法中递推思想的理解. 教学过程: 一、复习准备: 1. 问题1: 在数列{}n a 中,*111,,()1n n n a a a n N a +== ∈+,先算出a 2,a 3,a 4的值,再推测通项a n 的公式. (过程:212a =,313a =,41 4 a =,由此得到:*1,n a n N n =∈) 2. 问题2:2()41f n n n =++,当n ∈N 时,()f n 是否都为质数? 过程:(0)f =41,(1)f =43,(2)f =47,(3)f =53,(4)f =61,(5)f =71,(6)f =83, (7)f =97,(8)f =113,(9)f =131,(10)f =151,… (39)f =1 601.但是(40)f =1 681=412是合数 3. 问题3:多米诺骨牌游戏. 成功的两个条件:(1)第一张牌被推倒;(2)骨牌的排列,保证前一张牌倒则后一张牌也必定倒. 二、讲授新课: 1. 教学数学归纳法概念: ① 给出定义:归纳法:由一些特殊事例推出一般结论的推理方法. 特点:由特殊→一般. 不完全归纳法:根据事物的部分(而不是全部)特例得出一般结论的推理方法叫不完全归纳法. 完全归纳法:把研究对象一一都考查到了而推出结论的归纳法称为完全归纳

数学归纳法证明例题

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n . 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 那么当n =k+1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n=k 这一步,当n=k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k+1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k

()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n},使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+n an =n(n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n=1,2,3时找出来{a n },然后再证明一般性. 解:将n=1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a1+2a 2+3a3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k+1)(k +2) 那么当n=k +1时, a1+2a 2+3a 3+…+ka k +(k+1)ak +1 = k(k +1)(k +2)+ (k +1)[3(k+1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n=k +1时,也存在一个等差数列an =3n +3使a 1+2a 2+3a 3+…+n an=n (n +1)(n+2)成立. 综合上述,可知存在一个等差数列an =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n=n(n+1)(n +2)都成立.

(完整版)数学归纳法经典例题及答案(2)

数学归纳法(2016.4.21) 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ Λ. 那么当n =k +1时, 11 1 31 21 1++++++k k Λ 1 1 1211 2+++=++

数学归纳法经典例题及答案精品

【关键字】认识、问题、要点 数学归纳法( 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立. 题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 这就是说,当n =k +1时,不等式成立. 由①、②可知,原不等式对任意自然数n 都成立. 说明:这里要注意,当n =k +1时,要证的目标是 1211 1 31 21 1+<++++++k k k ,当代入归纳假设后,就是要证明:

1211 2+<++k k k . 认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题 例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *). (1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值. (2)设b n = a 22n -3,T n = b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3 . 解: (1)当n =5时, 原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5 令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243. (2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2 b n =a 22 n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2, 右边=2(2+1)(2-1)3 =2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立, 即T k =k (k +1)(k -1)3 成立 那么,当n =k +1时, 左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3 +k (k +1) =k (k +1)?? ??k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3 =右边. 故当n =k +1时,等式成立. 综上①②,当n ≥2时,T n =n (n +1)(n -1)3 .

用数学归纳法证明不等式

人教版选修4—5不等式选讲 课题:用数学归纳法证明不等式 教学目标: 1、牢固掌握数学归纳法的证明步骤,熟练表达数学归纳法证明的过程。 2、通过事例,学生掌握运用数学归纳法,证明不等式的思想方法。 3、培养学生的逻辑思维能力,运算能力和分析问题,解决问题的能力。 重点、难点: 1、巩固对数学归纳法意义和有效性的理解,并能正确表达解题过程,以及掌握用数学归纳法证明不等式的基本思路。 2、应用数学归纳法证明的不同方法的选择和解题技巧。 教学过程: 一、复习导入: 1、上节课学习了数学归纳法及运用数学归纳法解题的步骤,请同学们回顾,说出数学归纳法的步骤? (1)数学归纳法是用于证明某些与自然数有关的命题的一种方法。 (2)步骤:1)归纳奠基; 2)归纳递推。 2、作业讲评:(出示小黑板) 习题:用数学归纳法证明:2+4+6+8+……+2n=n(n+1) 如采用下面的证法,对吗? 证明:①当n=1时,左边=2=右边,则等式成立。 ②假设n=k时,(k∈N,k≥1)等式成立, 即2+4+6+8+……+2k=k(k+1) 当n=k+1时, 2+4+6+8+……+2k+2(k+1) ∴ n=k+1时,等式成立。 由①②可知,对于任意自然数n,原等式都成立。 (1)学生思考讨论。

(2)师生总结:1)不正确 2)因为在证明n=k+1时,未用到归纳假设,直接用等差数列求和公式,违背了数学归纳法本质:递推性。 二、新知探究 明确了数学归纳法本质,我们共同讨论如何用数学归纳法证明不等式。 (出示小黑板) 例1 观察下面两个数列,从第几项起a n始终小于b n?证明你的结论。 {a n=n2}:1,4,9,16,25,36,49,64,81, …… {b n=2n}:2,4,8,16,32,64,128,256,512,…… (1)学生观察思考 (2)师生分析 (3)解:从第5项起,a n< b n,即 n2<2n,n∈N+(n≥5) 证明:(1)当 n=5时,有52<25,命题成立。 即k2<2k 当n=k+1时,因为 (k+1)2=k2+2k+1<k2+2k+k=k2+3k<k2+k2=2k2<2×2k=2k+1 所以,(k+1)2<2k+1 即n=k+1时,命题成立。 由(1)(2)可知n2<2n(n∈N+,n≥5) 学生思考、小组讨论:①放缩技巧:k2+2k+1<k2+2k+k;k2+3k<k2+k2 ②归纳假设:2k2<2×2k 例2证明不等式│Sin nθ│≤n│Sinθ│(n∈N+) 分析:这是一个涉及正整数n的三角函数问题,又与绝对值有关,在证明递推关系时,应注意利用三角函数的性质及绝对值不等式。 证明:(1)当 n=1时,上式左边=│Sinθ│=右边,不等式成立。 (2)假设当n=k(k≥1)时命题成立, 即有│Sin kθ│≤k│Sinθ│

导数典型例题(含答案)

导数典型例题 导数作为考试内容的考查力度逐年增大.考点涉及到了导数的所有内容,如导数的定义,导数的几何意义、物理意义,用导数研究函数的单调性,求函数的最(极)值等等,考查的题型有客观题(选择题、填空题)、主观题(解答题)、考查的形式具有综合性和多样性的特点.并且,导数与传统内容如二次函数、二次方程、三角函数、不等式等的综合考查成为新的热点. 一、与导数概念有关的问题 【例1】函数f (x )=x (x -1) (x -2)…(x -100)在x=0处的导数值为 .1002 C ! 解法一 f '(0)=x f x f x ?-?+→?) 0()0(lim = x x x x x ?--?-?-??→?0 )100()2)(1(lim 0 Λ =lim 0 →?x (Δx -1)(Δx -2)…(Δx -100)=(-1)(-2)…(-100)=100! ∴选D. 解法二 设f (x )=a 101x 101+ a 100x 100+…+ a 1x +a 0,则f '(0)= a 1,而a 1=(-1)(-2)…(-100)=100!. ∴选D. 点评 解法一是应用导数的定义直接求解,函数在某点的导数就是函数在这点平均变化率的极限.解法二是根据导数的四则运算求导法则使问题获解. 【例2】 已知函数f (x )=n n n k k n n n n x c n x c k x c x c c 11212210 ++++++ΛΛ,n ∈N *,则 x x f x f x ??--?+→?) 2()22(lim 0 = . 解 ∵ x x f x f x ??--?+→?) 2()22(lim 0 =2x f x f x ?-?+→?2) 2()22(lim + []x f x f x ?--?-+→?-) 2()(2lim 0 =2f '(2)+ f '(2)=3 f '(2), 又∵f '(x )=1 1 2 1 --+++++n n n k k n n n x c x c x c c ΛΛ, ∴f '(2)= 21(2n n n k n k n n c c c c 222221+++++ΛΛ)=21[(1+2)n -1]= 2 1(3n -1). 点评 导数定义中的“增量Δx ”有多种形式,可以为正也可以为负,如 x m x f x m x f x ?--?-→?-)()(000 lim ,且其定义形式可以是 x m x f x m x f x ?--?-→?) ()(000 lim ,也可以是 00 ) ()(lim x x x f x f x --→?(令Δx =x -x 0得到),本题是导数的定义与多项式函数求导及二项式定理有关 知识的综合题,连接交汇、自然,背景新颖. 【例3】 如圆的半径以2 cm/s 的等速度增加,则圆半径R =10 cm 时,圆面积增加的速度是 .

实用文库汇编之数学归纳法经典例题及答案

*实用文库汇编之数学归纳法(2016.4.21)* 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 11 1 31 21 1++++++k k 1 1 1211 2+++=++

矩阵典型习题解析

2 矩阵 矩阵是学好线性代数这门课程的基础,而对于初学者来讲,对于矩阵的理解是尤为的重要;许多学生在最初的学习过程中感觉矩阵很难,这也是因为对矩阵所表示的内涵模糊的缘故。其实当我们把矩阵与我们的实际生产经济活动相联系的时候,我们才会发现,原来用矩阵来表示这些“繁琐”的事物来是多么的奇妙!于是当我们对矩阵产生无比的兴奋时,那么一切问题都会变得那么的简单! 2.1 知识要点解析 2.1.1 矩阵的概念 1.矩阵的定义 由m×n个数a ij(i 1,2, ,m; j 1,2, , n)组成的m行n 列的矩形数表 a11 a12 a1n a2n a m1 a m2 a mn 称为m×n矩阵,记为 A (a ij )m n 2.特殊矩阵 (1)方阵:行数与列数相等的矩阵; (2)上(下)三角阵:主对角线以下(上)的元素全为零的方阵称为上(下)三角阵; (3)对角阵:主对角线以外的元素全为零的方阵; (4)数量矩阵:主对角线上元素相同的对角阵; (5)单位矩阵:主对角线上元素全是 1 的对角阵,记为E; (6)零矩阵:元素全为零的矩阵。 3.矩阵的相等 设 A (a ij )mn; B (b ij )mn 若a ij b ij(i 1,2, ,m; j 1,2, ,n),则称 A 与B相等,记为A=B 2.1.2 矩阵的运算

1.加法 (1)定义:设 A (A ij )mn ,B (b ij ) mn ,则 C A B (a ij b ij )mn (2) 运算规律 ① A+B=B+A ; ②( A+B )+C=A+(B+C ) ③ A+O=A ④ A+(-A ) =0, –A 是 A 的负矩阵 2.数与矩阵的乘法 (1)定义:设 A (a ij ) mn , k 为常数,则 kA (ka ij )mn (2)运算规律 ①K (A+B) =KA+KB , ② (K+L )A=KA+LA , ③ (KL) A= K (LA) 3.矩阵的乘法 (1)定义:设 A (a ij )mn ,B (b ij )np .则 n AB C (C ij )mp ,其中 C ij a ik b kj k1 (2) 运算规律 ① (AB)C A (BC) ;② A(B C) AB AC ③ (B C)A BA CA 3)方阵的幂 ①定义:A (a ij ) n ,则 A k A K A ②运算规律: A m A n A m n (A m )n A (4)矩阵乘法与幂运算与数的运算不同之处。 ① AB BA ② AB 0, 不能推出 A 0或B 0; ③ (AB)k A k B k 4.矩阵的转置 (1) 定义:设矩阵 A=(a ij )mn ,将 A 的行与列的元素位置交换,称为矩阵 A 的转置,记为 A T (a ji )nm , (2) 运算规律 ①(A T )T A; ②(A B)T A T B T ; ③(kA)T KA T ; ④ (AB)T B T A T 。

数学归纳法证明及其使用技巧

步骤 第一数学归纳法 一般地,证明一个与自然数n有关的命题P(n),有如下步骤: (1)证明当n取第一个值n0时命题成立。n0对于一般数列取值为0或1,但 也有特殊情况; (2)假设当n=k(k≥n0,k为自然数)时命题成立,证明当n=k+1时命题也成立。 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 第二数学归纳法 对于某个与自然数有关的命题P(n), (1)验证n=n0,n=n1时P(n)成立; (2)假设n≤k时命题成立,并在此基础上,推出n=k+1命题也成立。 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 倒推归纳法 又名反向归纳法 (1)验证对于无穷多个自然数n命题P(n)成立(无穷多个自然数可以就是一 个无穷数列中的数,如对于算术几何不等式的证明,可以就是2^k,k≥1); (2)假设P(k+1)(k≥n0)成立,并在此基础上,推出P(k)成立, 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立; 螺旋式归纳法 对两个与自然数有关的命题P(n),Q(n), (1)验证n=n0时P(n)成立; (2)假设P(k)(k>n0)成立,能推出Q(k)成立,假设 Q(k)成立,能推出 P(k+1) 成立; 综合(1)(2),对一切自然数n(≥n0),P(n),Q(n)都成立。 应用 1确定一个表达式在所有自然数范围内就是成立的或者用于确定一个其她的形式在一个无穷序列就是成立的。 2数理逻辑与计算机科学广义的形式的观点指出能被求出值的表达式就是等价表达式。

3证明数列前n项与与通项公式的成立。 4证明与自然数有关的不等式。 变体 在应用,数学归纳法常常需要采取一些变化来适应实际的需求。下面介绍一些常见的数学归纳法变体。 从0以外的数字开始 如果我们想证明的命题并不就是针对全部自然数,而只就是针对所有大于等于某个数字b的自然数,那么证明的步骤需要做如下修改: 第一步,证明当n=b时命题成立。第二步,证明如果n=m(m≥b)成立,那么可以推导出n=m+1也成立。 用这个方法可以证明诸如“当n≥3时,n^2>2n”这一类命题。 针对偶数或奇数 如果我们想证明的命题并不就是针对全部自然数,而只就是针对所有奇数或偶数,那么证明的步骤需要做如下修改: 奇数方面: 第一步,证明当n=1时命题成立。第二步,证明如果n=m成立,那么可以推导出n=m+2也成立。 偶数方面: 第一步,证明当n=0或2时命题成立。第二步,证明如果n=m成立,那么可以推导出n=m+2也成立。 递降归纳法 数学归纳法并不就是只能应用于形如“对任意的n”这样的命题。对于形如“对任意的n=0,1,2,、、、,m”这样的命题,如果对一般的n比较复杂,而n=m 比较容易验证,并且我们可以实现从k到k-1的递推,k=1,、、、,m的话,我们就能应用归纳法得到对于任意的n=0,1,2,、、、,m,原命题均成立。如果命题P(n)在n=1,2,3,、、、、、、,t时成立,并且对于任意自然数k,由 P(k),P(k+1),P(k+2),、、、、、、,P(k+t-1)成立,其中t就是一个常量,那么P(n)对于一切自然数都成立、 跳跃归纳法

数学归纳法原理:【第二归纳法】【跳跃归纳法】【反向归纳法】

数学归纳法原理(六种):【第二归纳法】【跳跃归纳法】【反向归纳法】 一行骨牌,如果都充分地靠近在一起(即留有适当间隔),那么只要推倒第一个,这一行骨牌都会倒塌;竖立的梯子,已知第一级属于可到达的范围,并且任何一级都能到达次一级,那么我们就可以确信能到达梯子的任何一级;一串鞭炮一经点燃,就会炸个不停,直到炸完为止;……,日常生活中这样的事例还多着呢! 数学归纳法原理设P(n)是与自然数n有关的命题.若 (I)命题P(1)成立; (Ⅱ)对所有的自然数k,若P(k)成立,推得P(k+1)也成立. 由(I)、(Ⅱ)可知命题P(n)对一切自然数n成立. 我们将在“最小数原理”一章中介绍它的证明, 运用数学归纳法原理证题的方法,是中学数学中的一个重要的方法,它是一种递推的方法,它与归纳法有着本质的不同.由一系列有限的特殊事例得出一般结论的推理方法,通常叫做归纳法,用归纳法可以帮助我们从具体事例中发现一般规律,但是,仅根据一系列有限的特殊事例得出的一般结论的真假性还不能肯定,这就需要采用数学归纳法证明它的正确性. 一个与自然数n有关的命题P(n),常常可以用数学归纳法予以证明,证明的步骤为:(I)验证当n取第1个值no时,命题P(no)成立,这一步称为初始验证步. (Ⅱ)假设当n=k(k∈N,后≥no)时命题P(k)成立,由此推得命题P(k+1)成立.这一步称为归纳论证步. (Ⅲ)下结论,根据(I)、(Ⅱ)或由数学归纳法原理断定,对任何自然数(n≥no)命题 P(n)成立.这一步称为归纳断言步, 为了运用好数学归纳法原理,下面从有关注意事项与技巧及运用递推思想解题等几个方面作点介绍. 运用数学归纳法证题时应注意的事项与技巧三个步骤缺一不可 第一步是递推的基础,第二步是递推的依据,第三步是递推的过程与结论.三步缺一不可.数学归纳法的其他几种形式还有:第二数学归纳法;跳跃数学归纳法;倒推数学归纳法(反向归纳法);分段数学归纳法二元有限数学归纳法;双向数学归纳法;跷跷板数学归纳法;同步数学归纳法等。 1.5归纳法原理与反归纳法 数学归纳法是中学教学中经常使用的方法.中学教材中的数学归纳法是这样叙述的:如果一个命题与自然数有关,命题对n=1正确;若假设此命题对n-1正确,就能推出命题对n也正确,则命题对所有自然数都正确.通俗的说法:命题对n=1正确,因而命题对n=2也正确,然后命题对n=3也正确,如此类推,命题对所有自然数都正确.对于中学生来说,这样形象地说明就足够了;但是毕竟自然数是无限的,因而

数学归纳法的七种变式及其应用..

数学归纳法的七种变式及其应用 摘要:数学归纳法是解决与自然有关命题的一种行之有效的方法,又是数学证明 的又一种常用形式.数学归纳法不仅能够证明自然数命题,在实数中也广泛应用,还能对一些数学定理进行证明.在中学时学习了第一数学归纳法和第二数学归纳法,因而对一些命题进行了简单证明.在原有的基础上,给出了数学归纳法的另外五种变式,其中涉及到反向归纳法、二重归纳法、螺旋式归纳法、跳跃归纳法和关于实数的连续归纳法,并简单的举例说明了每种变式在数学各分支的应用.这就突破了数学归纳法仅在自然数中的应用,为今后的数学命题证明提供了一种行之有效的证明方法——数学归纳法. 关键词:数学归纳法;七种变式;应用 1引言 归纳法是由特殊事例得出一般结论的归纳推理方法,一般性结论的正确性依赖于各个个别论断的正确性。数学归纳法的本质[]4 是证明一个命题对于所有的自然数都是成立 的.由于它在本质上是与数的概念联系在一起,所以数学归纳法可以运用到数学的各个分支,例如:证明等式、不等式,三角函数,数的整除,在几何中的应用等. 数学归纳法的基本思想是用于证明与自然数有关的命题的正确性的证明方法,如第一数学归纳法,操作步骤简单明了.在第一数学归纳法的基础上,又衍生出了第二数学归纳法,反向归纳法,二重归纳法等证明方法.从而可以解决更多的数学命题. 2 数学归纳法的变式及应用 2.1 第一数学归纳法 设()p n 是一个含有正整数n 的命题,如果满足: 1) ()1p 成立(即当1n =时命题成立); 2)只要假设()p k 成立(归纳假设),由此就可证得()1p k +也成立(k 是自然数),就能保证对于任意的自然数n ,命题()p n 都成立. 通常所讨论的命题不都全是与全体自然数有关,而是从某个自然数a 开始的,因此,将第一类数学归纳法修改为: 设()p n 是一个含有正整数n 的命题(n a ≥,*a N ∈), 如果 1)当n =a 时,()p a 成立;

数学归纳法典型例题

实用文档 文案大全数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 数学归纳法的原理及应用 四. 知识分析 【知识梳理】 数学归纳法是证明关于正整数n的命题的一种方法,在高等数学中有着重要的用途,因而成为高考的热点之一。近几年的高考试题,不但要求能用数学归纳法去证明现代的结论,而且加强了对于不完全归纳法应用的考查,既要求归纳发现结论,又要求能证明结论的正确性,因此,初步形成“观察—-归纳—-猜想—-证明”的思维模式,就显得特别重要。 一般地,证明一个与正整数n有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n取第一个值n = n0时命题成立; (2)(归纳递推)假设n= k()时命题成立,

证明当时命题也成立。 只要完成这两个步骤,就可以断定命题对从开始的所有正整数n 都成立。上述证明方法叫做数学归纳法。 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递性的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步 实用文档 文案大全各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n =k+1时也成假设了,命题并没有得到证明。 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。 2、运用数学归纳法时易犯的错误 (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。

相关主题
文本预览
相关文档 最新文档