数学实验常微分方程
- 格式:doc
- 大小:188.00 KB
- 文档页数:9
常微分方程数值解实验报告学院:数学与信息科学专业:信息与计算科学姓名:郑思义学号:201216524课程:常微分方程数值解实验一:常微分方程的数值解法1、分别用Euler 法、改进的Euler 法(预报校正格式)和S —K 法求解初值问题。
(h=0.1)并与真解作比较。
⎩⎨⎧=++-=10(1y')y x y 1.1实验代码:%欧拉法function [x,y]=naeuler(dyfun,xspan,y0,h)%dyfun 是常微分方程,xspan 是x 的取值范围,y0是初值,h 是步长 x=xspan(1):h:xspan(2); y(1)=y0;for n=1:length(x)-1y(n+1)=y(n)+h*feval(dyfun,x(n),y(n)); end%改进的欧拉法function [x,m,y]=naeuler2(dyfun,xspan,y0,h)%dyfun 是常微分方程,xspan 是x 的取值范围,y0是初值,h 是步长。
%返回值x 为x 取值,m 为预报解,y 为校正解 x=xspan(1):h:xspan(2); y(1)=y0;m=zeros(length(x)-1,1); for n=1:length(x)-1 k1=feval(dyfun,x(n),y(n)); y(n+1)=y(n)+h*k1; m(n)=y(n+1);k2=feval(dyfun,x(n+1),y(n+1)); y(n+1)=y(n)+h*(k1+k2)/2; end%四阶S —K 法function [x,y]=rk(dyfun,xspan,y0,h)%dyfun 是常微分方程,xspan 是x 的取值范围,y0是初值,h 是步长。
x=xspan(1):h:xspan(2); y(1)=y0;for n=1:length(x)-1 k1=feval(dyfun,x(n),y(n));k2=feval(dyfun,x(n)+h/2,y(n)+(h*k1)/2); k3=feval(dyfun,x(n)+h/2,y(n)+(h*k2)/2); k4=feval(dyfun,x(n)+h,y(n)+h*k3);y(n+1)=y(n)+(h/6)*(k1+2*k2+2*k3+k4);end%主程序x=[0:0.1:1];y=exp(-x)+x;dyfun=inline('-y+x+1');[x1,y1]=naeuler(dyfun,[0,1],1,0.1);[x2,m,y2]=naeuler2(dyfun,[0,1],1,0.1);[x3,y3]=rk(dyfun,[0,1],1,0.1);plot(x,y,'r',x1,y1,'+',x2,y2,'*',x3,y3,'o');xlabel('x');ylabel('y');legend('y为真解','y1为欧拉解','y2为改进欧拉解','y3为S—K解','Location','NorthWest');1.2实验结果:x 真解y 欧拉解y1 预报值m 校正值y2 S—K解y30.0 1.0000 1.0000 1.0000 1.00000.1 1.0048 1.0000 1.0000 1.0050 1.00480.2 1.0187 1.0100 1.0145 1.0190 1.01870.3 1.0408 1.0290 1.0371 1.0412 1.04080.4 1.0703 1.0561 1.0671 1.0708 1.07030.5 1.1065 1.0905 1.1037 1.1071 1.10650.6 1.1488 1.1314 1.1464 1.1494 1.14880.7 1.1966 1.1783 1.1945 1.1972 1.19660.8 1.2493 1.2305 1.2475 1.2500 1.24930.9 1.3066 1.2874 1.3050 1.3072 1.30661.0 1.3679 1.3487 1.3665 1.3685 1.36792、选取一种理论上收敛但是不稳定的算法对问题1进行计算,并与真解作比较。
实验报告实验项目名称常微分方程的数值解法实验室数学实验室所属课程名称微分方程数值解实验类型上机实验实验日期2013年3月11日班级10信息与计算科学学号2010119421姓名叶达伟成绩实验概述:【实验目的及要求】运用不同的数值解法来求解具体问题,并通过具体实例来分析比较各种常微分方程的数值解法的精度,为以后求解一般的常微分方程起到借鉴意义。
【实验原理】各种常微分方程的数值解法的原理,包括Euler法,改进Euler法,梯形法,Runge-Kutta方法,线性多步方法等。
【实验环境】(使用的软硬件)Matlab软件实验内容:【实验方案设计】我们分别运用Euler法,改进Euler法,RK方法和Adams隐式方法对同一问题进行求解,将数值解和解析解画在同一图像中,比较数值解的精度大小,得出结论。
【实验过程】(实验步骤、记录、数据、分析)我们首先来回顾一下原题:对于给定初值问题:1. 求出其解析解并用Matlab画出其图形;2. 采用Euler法取步长为0.5和0.25数值求解(2.16),并将结果画在同一幅图中,比较两者精度;3. 采用改进Euler法求解(2.16),步长取为0.5;4. 采用四级Runge-Kutta法求解(2.16),步长取为0.5;5. 采用Adams四阶隐格式计算(2.16),初值可由四级Runge-Kutta格式确定。
下面,我们分五个步骤来完成这个问题:步骤一,求出(2.16)式的解析解并用Matlab 画出其图形; ,用Matlab 做出函数在上的图像,见下图:00.51 1.52 2.53 3.54 4.550.511.522.533.5x 1015y=exp(1/3 t 3-1.2t)exact solution图一 初值问题的解析解的图像步骤二,采用Euler 法取步长为0.5和0.25数值求解(2.16),并将结果画在同一幅图中,比较两者精度;我们采用Euler 法取步长为0.5和0.25数值求解,并且将数值解与解析解在一个图中呈现,见下图:00.51 1.52 2.53 3.54 4.550.511.522.533.5x 1015Numerical solution of Euler and exact solutionexact solution h=0.5h=0.25图二 Euler 方法的计算结果与解析解的比较从图像中不难看出,采用Euler 法取步长为0.5和0.25数值求解的误差不尽相同,也就是两种方法的计算精度不同,不妨将两者的绝对误差作图,可以使两种方法的精度更加直观化,见下图:00.51 1.52 2.53 3.54 4.550.511.522.533.5x 1015Absolute error of numerical solution and exact solutionh=0.5h=0.25图三 不同步长的Euler 法的计算结果与解析解的绝对误差的比较 从图像中我们不难看出,步长为0.25的Euler 法比步长为0.5的Euler 法的精度更高。
常微分方程实验报告一、实验目的常微分方程是数学分析和实际应用中非常重要的一部分,本次实验的主要目的是通过实际操作和计算,深入理解常微分方程的概念、性质和求解方法,并能够将其应用到实际问题中,提高我们解决数学问题和实际应用问题的能力。
二、实验原理常微分方程是指含有一个自变量和一个未知函数及其导数的等式。
求解常微分方程的方法有很多,常见的有变量分离法、一阶线性方程的求解方法(如常数变易法)、恰当方程的求解方法(通过积分因子)等。
对于一阶常微分方程,形如\(y' + p(x)y = q(x)\)的方程,可以使用积分因子\(e^{\int p(x)dx}\)来求解。
对于可分离变量的方程,形如\(g(y)dy = f(x)dx\),可以通过分别积分求解。
三、实验内容(一)一阶常微分方程的求解1、求解方程\(y' + 2xy = 2x\)首先,计算积分因子\(e^{\int 2xdx} = e^{x^2}\),然后将方程两边乘以积分因子得到:\((ye^{x^2})'= 2xe^{x^2}\)两边积分可得\(ye^{x^2} = e^{x^2} + C\),解得\(y =1 + Ce^{x^2}\)2、求解方程\(xy' y = x^2\)将方程化为\(y' \frac{y}{x} = x\),这里\(p(x) =\frac{1}{x}\),积分因子为\(e^{\int \frac{1}{x}dx} =\frac{1}{x}\)。
方程两边乘以积分因子得到\((\frac{y}{x})'= 1\),积分可得\(\frac{y}{x} = x + C\),即\(y = x^2 + Cx\)(二)二阶常微分方程的求解1、求解方程\(y'' 2y' + y = 0\)特征方程为\(r^2 2r + 1 = 0\),解得\(r = 1\)(二重根),所以通解为\(y =(C_1 + C_2x)e^x\)2、求解方程\(y''+ 4y = 0\)特征方程为\(r^2 + 4 = 0\),解得\(r =\pm 2i\),所以通解为\(y = C_1\cos(2x) + C_2\sin(2x)\)(三)应用常微分方程解决实际问题1、考虑一个物体在受到与速度成正比的阻力作用下的运动,其运动方程为\(m\frac{dv}{dt} = kv\)(其中\(m\)为物体质量,\(k\)为阻力系数),求解速度\(v\)随时间\(t\)的变化。
常微分方程数值解实验报告实验报告:常微分方程数值解1.引言常微分方程(Ordinary Differential Equations, ODEs)是数学领域中一个重要的研究对象,涉及到许多自然科学和工程技术领域的问题。
解常微分方程的数值方法是一种求解差分方程的方法,通过计算机找到方程的近似解,对于模拟和预测连续过程非常有用。
本实验旨在通过数值解法,验证和应用常微分方程的解,并比较不同数值方法的精度和效率。
2.实验目的2.1理解常微分方程的基本概念和数值解法;2.2掌握将常微分方程转化为数值求解问题的基本方法;2.3运用数值解法求解常微分方程;2.4比较不同数值解法的精度和效率。
3.实验内容3.1 欧拉方法(Euler Method)给定一个一阶常微分方程dy/dx=f(x,y),通过将其离散为差分形式,欧拉方法可以通过以下递推公式来求解:y_{n+1}=y_n+h*f(x_n,y_n)其中,h为步长,x_n和y_n为当前的x和y值。
3.2 改进的欧拉方法(Improved Euler Method)改进的欧拉方法使用欧拉方法的斜率的平均值来估计每一步中的斜率。
具体公式如下:k1=f(x_n,y_n)k2=f(x_n+h,y_n+h*k1)y_{n+1}=y_n+h*((k1+k2)/2)3.3 二阶龙格-库塔法(Second-order Runge-Kutta Method)二阶龙格-库塔法通过计算每个步骤中的两个斜率来估计每个步长中的斜率。
具体公式如下:k1=f(x_n,y_n)k2=f(x_n+h/2,y_n+(h/2)*k1)y_{n+1}=y_n+h*k24.实验步骤4.1选取常微分方程,并将其转化为数值求解问题的形式;4.2根据给定的初始条件和步长,使用欧拉方法、改进的欧拉方法和二阶龙格-库塔法求解该方程;4.3比较三种方法的数值解与理论解的差异,并分析其精度和效率;4.4尝试不同的步长,观察相应的数值解的变化。
常微分方程实验报告《常微分方程》综合性实验实验报告实验班级05应数(3)学生姓名江晓荣学生学号200530770314指导老师方平华南农业大学理学院应用数学系实验微分方程在数学建模中的应用及数值解的求法一、实验目的1.了解常微分方程的基本概念。
2.常微分方程的解了解析解和数值解。
3.学习、掌握MA TLAB 软件有关求解常微分方程的解析解和数值解的有关命令。
4. 掌握微分方程在数学建模中的应用。
二、实验内容1.用MA TLAB 函数dsolve 符号求解常微分方程的通解和特解。
2.用MA TLAB 软件数值求解常微分方程。
三、实验准备1.用MA TLAB 求常微分方程的解析解的命令用MA TLAB 函数dsolve 求常微分方程()(,,,,,,)0n F x y y y y y ''''''= (7.1)的通解的主要调用格式如下:S=dsolve('eqn', 'var')其中输入的量eqn 是改用符号方程表示的常微分方程(,,,2,)0F x y Dy D y Dny = ,导数用D 表示,2阶导数用D2表示,以此类推。
var 表示自变量,默认的自变量为t 。
输出量S 是常微分方程的解析通解。
如果给定常微分方程(7.1)的初始条件()00010(),(),,()n n y x a y x a y x a '=== ,则求方程(7.1)的特解的主要调用格式如下:S=dsolve('eqn', 'condition1 ',…'conditonn ','var')其中输入量eqn ,var 的含义如上,condition1,…conditonn 是初始条件。
输出量S 是常微分方程的特解。
2.常微分方程的数值解法除常系数线性微分方程可用特征根法求解、少数特殊方程可用初等积分法求解外,大部分微分方程无解析解,应用中主要依靠数值解法。
实验七常微分⽅程实验七常微分⽅程【实验⽬的】1.了解常微分⽅程的基本概念。
2.了解常微分⽅程的解析解。
3.了解常微分⽅程的数值解。
4.学习掌握MATLAB 软件有关的命令。
【实验内容】如右图所⽰,⼀根长l 的⽆弹性细线,⼀段固定,另⼀端悬挂⼀个质量为m 的⼩球,在重⼒的作⽤下⼩球处于垂直的平衡位置。
若使⼩球偏离平衡位置⼀个⾓度θ,让它⾃由,它就会沿圆弧摆动。
在不考虑空⽓阻⼒的情况下,⼩球会做⼀定周期的简谐运动。
利⽤⽜顿第⼆定律得到如下的微分⽅程0)0(',)0(,sin "0===θθθθθmg ml问该微分⽅程是线性的还是⾮线性的?是否存在解析解?如果不存在解析解,能否求出其近似解?【实验准备】1.微分⽅程的概念未知的函数以及它的某些阶的导数连同⾃变量都由⼀已知⽅程联系在⼀起的⽅程称为微分⽅程。
如果未知函数是⼀元函数,称为常微分⽅程。
常微分⽅程的⼀般形式为0),,",',,()(=n y y y y t F如果未知函数是多元函数,成为偏微分⽅程。
联系⼀些未知函数的⼀组微分⽅程组称为微分⽅程组。
微分⽅程中出现的未知函数的导数的最⾼阶解数称为微分⽅程的阶。
若⽅程中未知函数及其各阶导数都是⼀次的,称为线性常微分⽅程,⼀般表⽰为)()(')()(1)1(1)(t b y t a y t a y t a y n n n n =++++--若上式中的系数n i t a i ,,2,1),( =均与t ⽆关,称之为常系数或定常、⾃治、时不变的。
2.常微分⽅程的解析解有些微分⽅程可直接通过积分求解.例如,⼀解常系数常微分⽅程1+=y dtdy可化为dt y dy=+1,两边积分可得通解为1-=t ce y .其中c 为任意常数.有些常微分⽅程可⽤⼀些技巧,如分离变量法,积分因⼦法,常数变异法,降阶法等可化为可积分的⽅程⽽求得解析解(显式解).线性常微分⽅程的解满⾜叠加原理,从⽽他们的求解可归结为求⼀个特解和相应齐次微分⽅程的通解.⼀阶变系数线性微分⽅程总可⽤这⼀思路求得显式解。
1. 分别用Euler 法和ode45解下列常微分方程并与解析解比较: (1) ,(0)1,13y x y y x '=+=<<Euler 法:function [t,y]=euler(Fun,tspan,y0,h) t=tspan(1):h:tspan(2); y(1)=y0;for i=1:length(t)-1y(i+1)=y(i)+h.*feval(Fun,t(i),y(i)); end t=t'; y=y';function f=Fun(x,y) % 常微分方程的右端函数 f=x+y;>> [x,y]=euler('Fun',[0,3],1,0.1)>> [x,y] ans =0 1.0000 0.1000 1.1000 0.2000 1.2200 0.3000 1.3620 0.4000 1.5282 0.5000 1.7210 0.6000 1.9431 0.7000 2.1974 0.8000 2.4872 0.9000 2.8159 1.0000 3.1875 1.1000 3.6062 1.2000 4.0769 1.3000 4.6045 1.4000 5.1950 1.5000 5.8545 1.6000 6.5899 1.7000 7.4089 1.8000 8.3198 1.9000 9.3318 2.0000 10.4550 2.1000 11.7005 2.2000 13.0805 2.3000 14.6086 2.4000 16.2995 2.5000 18.1694 2.6000 20.2364 2.7000 22.5200 2.8000 25.0420 2.9000 27.8262 3.0000 30.8988ode45:>> [x,y]=ode45('Fun',[0,3],1) ans =0 1.0000 0.0502 1.0528 0.1005 1.1109 0.1507 1.17460.2010 1.2442 0.2760 1.3596 0.3510 1.4899 0.4260 1.63610.5010 1.7996 0.5760 1.9817 0.6510 2.1838 0.7260 2.40740.8010 2.6544 0.8760 2.9264 0.9510 3.2254 1.0260 3.55351.1010 3.9131 1.1760 4.3065 1.2510 4.7364 1.3260 5.20561.4010 5.7172 1.4760 6.2744 1.5510 6.8810 1.6260 7.54061.7010 8.2574 1.7760 9.0359 1.8510 9.8808 1.9260 10.79742.0010 11.7912 2.0760 12.8683 2.1510 14.0351 2.2260 15.29862.3010 16.6664 2.3760 18.1466 2.4510 19.7478 2.5260 21.47962.6010 23.3522 2.6760 25.3764 2.7510 27.5641 2.8260 29.92812.9010 32.4820 2.9257 33.3694 2.9505 34.2796 2.9752 35.21343.0000 36.1711解析解:>> y=dsolve('Dy=x+y','y(0)=1','x') y =2*exp(x) - x - 1(2) 20.01()2sin(),(0)0,(0)1,05y y y t y y t ''''-+===<< Euler 法:function f=Fun(t,y)% 常微分方程的右端函数f=[y(2);0.01*y(2)^2-2*y(1)+sin(t)];>> [t,y]=euler('Fun',[0,5],[0,1],0.2) ode45:>> [t,y]=ode45('Fun',[0,5],[0,1])t =0 0.0001 0.0001 0.0002 0.0002 0.0005 0.0007 0.0010 0.0012 0.00250.0037 0.0050 0.0062 0.0125 0.0188 0.0251 0.0313 0.0627 0.0941 0.12550.1569 0.2819 0.4069 0.5319 0.6569 0.7819 0.9069 1.0319 1.1569 1.28191.4069 1.5319 1.6569 1.7819 1.90692.0319 2.1569 2.2819 2.4069 2.53192.6569 2.7819 2.90693.0319 3.1569 3.2819 3.4069 3.5319 3.6569 3.78193.90694.0319 4.1569 4.2819 4.4069 4.5319 4.6569 4.7427 4.8285 4.91425.0000y =0 1.0000 0.0001 1.0000 0.0001 1.0000 0.0002 1.0000 0.0002 1.00000.0005 1.0000 0.0007 1.0000 0.0010 1.0000 0.0012 1.0000 0.0025 1.00000.0037 1.0000 0.0050 1.0000 0.0062 1.0000 0.0125 1.0000 0.0188 1.00000.0251 0.9999 0.0313 0.9998 0.0627 0.9987 0.0941 0.9965 0.1253 0.99340.1564 0.9893 0.2786 0.9632 0.3966 0.9220 0.5085 0.8662 0.6126 0.79670.7072 0.7146 0.7908 0.6210 0.8620 0.5176 0.9198 0.4058 0.9632 0.28760.9915 0.1647 1.0043 0.0392 1.0013 -0.0869 0.9826 -0.2117 0.9485 -0.33310.8996 -0.4490 0.8365 -0.5578 0.7605 -0.6577 0.6725 -0.7471 0.5742 -0.8246 0.4669 -0.8889 0.3525 -0.9393 0.2327 -0.9748 0.1095 -0.9950 -0.0154 -0.9996 -0.1398 -0.9887 -0.2619 -0.9624 -0.3798 -0.9212 -0.4916 -0.8657 -0.5957 -0.7970 -0.6904 -0.7161 -0.7742 -0.6242 -0.8460 -0.5228 -0.9046 -0.4134 -0.9491 -0.2978 -0.9789 -0.1777 -0.9934 -0.0549 -0.9945 0.0300 -0.9883 0.1146 -0.9748 0.1985 -0.9543 0.28092. 求一通过原点的曲线,它在(,)x y 处的切线斜率等于22,0 1.57.x y x +<<若x 上限增为1.58,1.60会发生什么?function f=Fun(x,y) % 常微分方程的右端函数 f=2*x+y.^2;>> [x,y]=ode45('Fun',[0,1.57],0) x =0 0.0393 0.0785 0.1178 0.1570 0.1963 0.2355 0.2748 0.3140 0.3533 0.3925 0.4318 0.4710 0.5103 0.5495 0.5888 0.6280 0.6673 0.7065 0.7458 0.7850 0.8243 0.8635 0.9028 0.9420 0.9813 1.0205 1.0598 1.0990 1.1383 1.1775 1.2168 1.2560 1.2953 1.3345 1.3738 1.4130 1.4248 1.4367 1.4485 1.4604 1.4722 1.4840 1.4959 1.5077 1.5140 1.5203 1.5265 1.5328 1.5376 1.5424 1.5472 1.5519 1.5543 1.5567 1.5591 1.5614 1.5631 1.5647 1.5664 1.5681 1.5685 1.5690 1.5695 1.5700 y =0 0.0015 0.0062 0.0139 0.0247 0.0386 0.0556 0.0758 0.09920.1259 0.1559 0.1895 0.2266 0.2675 0.3124 0.3615 0.4152 0.4738 0.5378 0.6076 0.6841 0.7679 0.8601 0.9620 1.0751 1.2014 1.3434 1.5045 1.6892 1.9037 2.1557 2.4577 2.8282 3.3003 3.9056 4.7317 5.9549 6.4431 7.0116 7.6832 8.4902 9.4821 10.7170 12.3090 14.4551 15.9220 17.7080 19.9390 22.8164 25.6450 29.2282 33.9673 40.5910 44.9434 50.3088 57.1229 66.1087 74.3108 84.7123 98.4901 117.7875 124.9206 132.9699 142.1268 152.6415若x 上限增为1.58,1.60,则超出运算的范围,发生溢出。
实验六 常微分方程的Matlab 解法一、实验目的1. 了解常微分方程的解析解。
2. 了解常微分方程的数值解。
3. 学习掌握MATLAB 软件有关的命令。
二、实验内容一根长l 的无弹性细线,一段固定,另一端悬挂一个质量为m 的小球,在重力的作用下小球处于垂直的平衡位置。
若使小球偏离平衡位置一个角度θ,让它自由,它就会沿圆弧摆动。
在不考虑空气阻力的情况下,小球会做一定周期的简谐运动。
利用牛顿第二定律得到如 下的微分方程0)0(',)0(,sin "0===θθθθθmg ml问该微分方程是线性的还是非线性的?是否存在解析解?如果不存在解析解,能否求出其近似解?三、实验准备MATLAB 中主要用dsolve 求符号解析解,ode45,ode23,ode15s 求数值解。
ode45是最常用的求解微分方程数值解的命令,对于刚性方程组不宜采用。
ode23与ode45类似,只是精度低一些。
ode12s 用来求解刚性方程组,是用格式同ode45。
可以用help dsolve, help ode45查阅有关这些命令的详细信息.四、实验方法与步骤练习1 求下列微分方程的解析解 (1)b ay y +='(2)1)0(',0)0(,)2sin(''==-=y y y x y (3)1)0(',1)0(',','==-=+=g f f g g g f f 方程(1)求解的MATLAB 代码为:clear;s=dsolve('Dy=a*y+b')结果为s =-b/a+exp(a*t)*C1方程(2)求解的MATLAB 代码为:clear;s=dsolve('D2y=sin(2*x)-y','y(0)=0','Dy(0)=1','x') simplify(s) %以最简形式显示s结果为s =(-1/6*cos(3*x)-1/2*cos(x))*sin(x)+(-1/2*sin(x)+1/6*sin(3*x))*cos(x)+5/3*sin(x) ans =-2/3*sin(x)*cos(x)+5/3*sin(x) 方程(3)求解的MATLAB 代码为:clear;s=dsolve('Df=f+g','Dg=g-f','f(0)=1','g(0)=1') simplify(s.f) %s 是一个结构 simplify(s.g)结果为ans =exp(t)*cos(t)+exp(t)*sin(t) ans =-exp(t)*sin(t)+exp(t)*cos(t) 练习2 求解微分方程,1)0(,1'=++-=y t y y先求解析解,再求数值解,并进行比较。
实验一 常微分方程1. 分别用Euler 法和ode45解下列常微分方程并与解析解比较: (1) ,(0)1,13y x y y x '=+=<<Euler 法:function [t,y]=euler(Fun,tspan,y0,h) t=tspan(1):h:tspan(2); y(1)=y0;for i=1:length(t)-1y(i+1)=y(i)+h.*feval(Fun,t(i),y(i)); end t=t'; y=y';function f=Fun(x,y) % 常微分方程的右端函数 f=x+y;>> [x,y]=euler('Fun',[0,3],1,0.1)>> [x,y] ans =0 1.0000 0.1000 1.1000 0.2000 1.2200 0.3000 1.3620 0.4000 1.5282 0.5000 1.7210 0.6000 1.9431 0.7000 2.1974 0.8000 2.4872 0.9000 2.8159 1.0000 3.1875 1.1000 3.6062 1.2000 4.0769 1.3000 4.6045 1.4000 5.1950 1.5000 5.8545 1.6000 6.5899 1.7000 7.4089 1.8000 8.3198 1.9000 9.3318 2.0000 10.4550 2.1000 11.7005 2.2000 13.0805 2.3000 14.6086 2.4000 16.2995 2.5000 18.1694 2.6000 20.2364 2.7000 22.5200 2.8000 25.0420 2.9000 27.8262 3.0000 30.8988ode45:>> [x,y]=ode45('Fun',[0,3],1) ans =0 1.0000 0.0502 1.0528 0.1005 1.1109 0.1507 1.17460.2010 1.2442 0.2760 1.3596 0.3510 1.4899 0.4260 1.63610.5010 1.7996 0.5760 1.9817 0.6510 2.1838 0.7260 2.4074实验一 常微分方程0.8010 2.6544 0.8760 2.9264 0.9510 3.2254 1.0260 3.55351.1010 3.9131 1.1760 4.3065 1.2510 4.7364 1.3260 5.20561.4010 5.7172 1.4760 6.2744 1.5510 6.8810 1.6260 7.54061.7010 8.2574 1.7760 9.0359 1.8510 9.8808 1.9260 10.79742.0010 11.7912 2.0760 12.8683 2.1510 14.0351 2.2260 15.29862.3010 16.6664 2.3760 18.1466 2.4510 19.7478 2.5260 21.47962.6010 23.3522 2.6760 25.3764 2.7510 27.5641 2.8260 29.92812.9010 32.4820 2.9257 33.3694 2.9505 34.2796 2.9752 35.21343.0000 36.1711解析解:>> y=dsolve('Dy=x+y','y(0)=1','x') y =2*exp(x) - x - 1(2) 20.01()2sin(),(0)0,(0)1,05y y y t y y t ''''-+===<< Euler 法:实验一常微分方程function f=Fun(t,y)% 常微分方程的右端函数f=[y(2);0.01*y(2)^2-2*y(1)+sin(t)];>> [t,y]=euler('Fun',[0,5],[0,1],0.2)ode45:>> [t,y]=ode45('Fun',[0,5],[0,1])t =0 0.0001 0.0001 0.0002 0.0002 0.0005 0.0007 0.0010 0.0012 0.00250.0037 0.0050 0.0062 0.0125 0.0188 0.0251 0.0313 0.0627 0.0941 0.12550.1569 0.2819 0.4069 0.5319 0.6569 0.7819 0.9069 1.0319 1.1569 1.28191.4069 1.5319 1.6569 1.7819 1.90692.0319 2.1569 2.2819 2.4069 2.53192.6569 2.7819 2.90693.0319 3.1569 3.2819 3.4069 3.5319 3.6569 3.78193.90694.0319 4.1569 4.2819 4.4069 4.5319 4.6569 4.7427 4.8285 4.91425.0000y =0 1.0000 0.0001 1.0000 0.0001 1.0000 0.0002 1.0000 0.0002 1.00000.0005 1.0000 0.0007 1.0000 0.0010 1.0000 0.0012 1.0000 0.0025 1.00000.0037 1.0000 0.0050 1.0000 0.0062 1.0000 0.0125 1.0000 0.0188 1.00000.0251 0.9999 0.0313 0.9998 0.0627 0.9987 0.0941 0.9965 0.1253 0.99340.1564 0.9893 0.2786 0.9632 0.3966 0.9220 0.5085 0.8662 0.6126 0.79670.7072 0.7146 0.7908 0.6210 0.8620 0.5176 0.9198 0.4058 0.9632 0.28760.9915 0.1647 1.0043 0.0392 1.0013 -0.0869 0.9826 -0.2117 0.9485 -0.33310.8996 -0.4490 0.8365 -0.5578 0.7605 -0.6577 0.6725 -0.7471 0.5742 -0.8246实验一 常微分方程0.4669 -0.8889 0.3525 -0.9393 0.2327 -0.9748 0.1095 -0.9950 -0.0154 -0.9996-0.1398 -0.9887 -0.2619 -0.9624 -0.3798 -0.9212 -0.4916 -0.8657 -0.5957 -0.7970-0.6904 -0.7161 -0.7742 -0.6242 -0.8460 -0.5228 -0.9046 -0.4134 -0.9491 -0.2978-0.9789 -0.1777 -0.9934 -0.0549 -0.9945 0.0300 -0.9883 0.1146 -0.9748 0.1985-0.9543 0.28092. 求一通过原点的曲线,它在(,)x y 处的切线斜率等于22,0 1.57.x y x +<<若x 上限增为1.58,1.60会发生什么?function f=Fun(x,y) % 常微分方程的右端函数 f=2*x+y.^2;>> [x,y]=ode45('Fun',[0,1.57],0) x =0 0.0393 0.0785 0.1178 0.1570 0.1963 0.2355 0.2748 0.3140 0.3533 0.3925 0.4318 0.4710 0.5103 0.5495 0.5888 0.6280 0.6673 0.7065 0.7458 0.7850 0.8243 0.8635 0.9028 0.9420 0.9813 1.0205 1.0598 1.0990 1.1383 1.1775 1.2168 1.2560 1.2953 1.3345 1.3738 1.4130 1.4248 1.4367 1.4485 1.4604 1.4722 1.4840 1.4959 1.5077 1.5140 1.5203 1.5265 1.5328 1.5376 1.5424 1.5472 1.5519 1.5543 1.5567 1.5591 1.5614 1.5631 1.5647 1.5664 1.5681 1.5685 1.5690 1.5695 1.5700 y =实验一 常微分方程0 0.0015 0.0062 0.0139 0.0247 0.0386 0.0556 0.0758 0.09920.1259 0.1559 0.1895 0.2266 0.2675 0.3124 0.3615 0.4152 0.4738 0.5378 0.6076 0.6841 0.7679 0.8601 0.9620 1.0751 1.2014 1.3434 1.5045 1.6892 1.9037 2.1557 2.4577 2.8282 3.3003 3.9056 4.7317 5.9549 6.4431 7.0116 7.6832 8.4902 9.4821 10.7170 12.3090 14.4551 15.9220 17.7080 19.9390 22.8164 25.6450 29.2282 33.9673 40.5910 44.9434 50.3088 57.1229 66.1087 74.3108 84.7123 98.4901 117.7875 124.9206 132.9699 142.1268 152.641500.20.40.60.81 1.2 1.4 1.6若x 上限增为1.58,1.60,则超出运算的范围,发生溢出。
实验六 常微分方程的Matlab 解法一、实验目的1. 了解常微分方程的解析解。
2. 了解常微分方程的数值解。
3. 学习掌握MATLAB 软件有关的命令。
二、实验内容一根长l 的无弹性细线,一段固定,另一端悬挂一个质量为m 的小球,在重力的作用下小球处于垂直的平衡位置。
若使小球偏离平衡位置一个角度θ,让它自由,它就会沿圆弧摆动。
在不考虑空气阻力的情况下,小球会做一定周期的简谐运动。
利用牛顿第二定律得到如 下的微分方程0)0(',)0(,sin "0===θθθθθmg ml问该微分方程是线性的还是非线性的?是否存在解析解?如果不存在解析解,能否求出其近似解?三、实验准备MATLAB 中主要用dsolve 求符号解析解,ode45,ode23,ode15s 求数值解。
ode45是最常用的求解微分方程数值解的命令,对于刚性方程组不宜采用。
ode23与ode45类似,只是精度低一些。
ode12s 用来求解刚性方程组,是用格式同ode45。
可以用help dsolve, help ode45查阅有关这些命令的详细信息.四、实验方法与步骤练习1 求下列微分方程的解析解(1)b ay y +='(2)1)0(',0)0(,)2sin(''==-=y y y x y(3)1)0(',1)0(',','==-=+=g f f g g g f f方程(1)求解的MATLAB 代码为:clear;s=dsolve('Dy=a*y+b')结果为s =-b/a+exp(a*t)*C1方程(2)求解的MATLAB 代码为:clear;s=dsolve('D2y=sin(2*x)-y','y(0)=0','Dy(0)=1','x')simplify(s) %以最简形式显示s结果为s =(-1/6*cos(3*x)-1/2*cos(x))*sin(x)+(-1/2*sin(x)+1/6*sin(3*x))*cos(x)+5/3*sin(x)ans =-2/3*sin(x)*cos(x)+5/3*sin(x)方程(3)求解的MATLAB 代码为:clear;s=dsolve('Df=f+g','Dg=g-f','f(0)=1','g(0)=1')simplify(s.f) %s 是一个结构simplify(s.g)结果为ans =exp(t)*cos(t)+exp(t)*sin(t)ans =-exp(t)*sin(t)+exp(t)*cos(t)练习2 求解微分方程,1)0(,1'=++-=y t y y先求解析解,再求数值解,并进行比较。
由clear;s=dsolve('Dy=-y+t+1','y(0)=1','t')simplify(s)可得解析解为t e t y -+=。
下面再求其数值解,先编写M 文件fun8.m%M 函数fun8.mfunction f=fun8(t,y)f=-y+t+1;再用命令clear; close; t=0:0.1:1;y=t+exp(-t); plot(t,y); %化解析解的图形hold on; %保留已经画好的图形,如果下面再画图,两个图形和并在一起[t,y]=ode45('fun8',[0,1],1);plot(t,y,'ro'); %画数值解图形,用红色小圈画xlabel('t'),ylabel('y')结果见图6.7.1图6.7.1 解析解与数值解由图7.1可见,解析解和数值解吻合得很好。
下面我们讨论实验引例中的单摆问题.练习3 求方程0)0(',)0(,sin "0===θθθθθmg ml的数值解.不妨取15)0(,8.9,1===θg l .则上面方程可化为0)0(',15)0(,sin 8.9"===θθθθ先看看有没有解析解.运行MATLAB 代码clear;s=dsolve('D2y=9.8*sin(y)','y(0)=15','Dy(0)=0','t')simplify(s)知原方程没有解析解.下面求数值解.令',21θθ==y y 可将原方程化为如下方程组⎪⎩⎪⎨⎧====0)0(,15)0()sin(8.9''211221y y y yy y建立M 文件fun9.m 如下%M 文件fun9.mfunction f=fun9(t,y)f=[y(2), 9.8*sin(y(1))]'; %f 向量必须为一列向量运行MATLAB 代码clear; close;[t,y]=ode45('fun9',[0,10],[15,0]);plot(t,y(:,1)); %画θ随时间变化图,y(:2)则表示'θ的值xlabel('t'),ylabel('y1')结果见图6.7.2图6.7.2 数值解由图6.7.2可见,θ随时间t 周期变化。
练习4 (刚性方程组求解)求下面刚性微分方程的解⎪⎩⎪⎨⎧==-=--=1)0(,2)0(,100'99.9901.0'2122211y y y y y y y 使用dsolve 可知解析解为)100ex p(),100ex p()01.0ex p(21t y t t y -=-+-=下面求数值解. 建立M 文件fun10.m 如下%M 文件fun10.mfunction f=fun10(t,y) f=[-0.01*y(1)-99.99*y(2), -100*y(2)]';运行MATLAB 代码clear; close;[t,y]=ode45('fun10',[0,10],[2,1]);plot(t,y); text(1,1.1,'y1'); text(1,0.1,'y2');xlabel('t'),ylabel('y')结果见图6.7.3图6.7.3 数值解图6.7.3给人的感觉似乎是1y 始终大于0.5.但由21,y y 的解析解可知,当∞→t 时,两个分量21,y y 均趋于0.2y 下降极快,0001.0)1.0(2<y ; 而1y 下降很慢,0183.0)400(2≈y (见下图6.7.4).若用clear; close;[t,y]=ode45('fun10',[0,400],[2,1]);tstep=length(t) %求计算总步数minh=min(diff(t)) %最小步长maxh=max(diff(t)) %最大步长结果为tstep =48261minh =5.0238e-004maxh =0.0102可见计算太慢,t 需要48261步才能到达400.一方面,由于2y 下降太快,为了保证数值稳定性,步长h 须足够小;另一方面,由于1y 下降太慢,为了反映解的完整性,时间区间须足够长,这就造成计算量太大.这类方程称为刚性方程或病态方程.ode45不适用于病态方程,下面我们用ode15s 求解.clear; close;[t,y]=ode15s('fun10',[0,400],[2,1]);plot(t,y); text(100,0.5,'y1'); text(1,0.1,'y2');xlabel('t'),ylabel('y')tstep=length(t)minh=min(diff(t))maxh=max(diff(t))结果为tstep = 92minh =3.5777e-004maxh =32.1282可见只需92步,最大步长为32,速度快了约500倍.函数图形见图6.7.4.图6.7.4 数值解练习5 (Lorenz 吸引子) 求常微分方程⎪⎪⎪⎩⎪⎪⎪⎨⎧+-=--=+-=xyz dt dzxz y x dtdy yx dt dx38281010的数值解,初值取1)0()0()0(===z y x . 先建立M 文件Lorenzf.m 如下%M 文件Lorenzf.mfunction f=lorenzf(t,x)sig=10;bet=8/3;rho=28;f=[sig*(x(2)-x(1)),x(1).*(rho-x(3))-x(2),x(1).*x(2)-bet*x(3)]; f=f(:);运行MATLAB 代码clear; close;[t,y]=ode45('Lorenzf',[0,100],[1,1,1]);plot3(y(:,1),y(:,2),y(:,3));xlabel x;ylabel y;zlabel z;运行结果如图6.7.5.xy z图6.7.5 Lorenz 吸引子实验作业1.求下列微分方程的解析解(1) 一阶线性方程2'3=-y x y(2) 贝努利方程0'2=--y xy y(3) 高阶线性齐次方程02'3"'"=+--y y y y(4) 高阶线性非齐次方程x y y y sin 32'3"=+-2.求方程3)0(',1)0(,'2")1(2===+y y xy y x的解析解和数值解,并进行比较3.分别用ode45和ode15s 求解Van-del-Pol 方程()⎪⎩⎪⎨⎧===---1)0',0)0(0)1(1000222x x xdt dxx dt xd的数值解,并进行比较.4. (Rosseler 吸引子)用ode45数值求解方程⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=+=+-=)()(c x z b dtdz ayx dtdy z y dt dx 其中初值取8)0(,3)0(,2)0(===z y x ,参数7.5,2.0,2.0===c b a . 阅读资料我国微分方程界的先辈申又枨教授申又枨,数学家、数学教育家。
从事函数论及微分方程的研究。
主要成就涉及复变函数的插值理论。
是在新中国建立微分方程学科研究的创始人之一。
申又枨,1901年6月13日生于山西高平鼓楼。
原名申祖佑,曾用名申幼声。