当前位置:文档之家› 热泵性能分析

热泵性能分析

热泵性能分析
热泵性能分析

热泵性能分析

做好热泵压缩机性能试验,对热泵系统的性能分析要首先有明确的了解,主要是指运行中的参数对热泵制热量和C O P的影响,以指导试验的设计和进行。

热泵最主要的性能指标是制热系数,用符号

C O P表示。

H

制热系数的一般定义为

C O P=用户获得的热能/ 热泵消耗的电能或燃料能

H

蒸气压缩式热泵基本理论循环在T-s图和p-h图上的表示

当热泵工质的饱和液线较斜时,通常需对冷凝器出口工质进行适度过冷,以

减少节流后湿蒸汽的闪蒸气量,使4点的干度较小,提高单位质量工质的吸热量和制热量。

当压缩机工作时对工质蒸气中的液滴较敏感时,一般需使压缩机的进口温度具有一定的过热度(5~15℃),以确保压缩机压缩过程中的工质蒸气无液滴,保证压缩机工作的安全可靠。

过冷过热循环

性能指标及其计算公式, 单位质量吸热量:1'4e q h h =- 单位容积吸热量:1'

e ev q q v =

单位质量制热量:23'c q h h =-

单位容积制热量:1'

c v q q v =

单位质量耗功量:21'w h h =- 制热系数:c H q C O P w

=

热泵中工质的质量循环流量:c r c

Q m q =

热泵吸热量:e e r Q q m = 热泵耗功量:m r W w m = 节流后干度:3'111L L

h h X h h -=

- 1L h 蒸发压力下饱和液体的焓

热力学完善度:,H H C arnot

C O P C O P ξ=

,c

H C

a r

n o

t

c e

T C O P T T =-

c T :冷凝温度,K ;e T :蒸发温度,K 。

蒸气压缩式热泵的工况参数主要包括工质的冷凝温度c T (或冷凝压力),蒸发温度e T (或蒸发压力),冷凝器出口处工质过冷度sc T ?,蒸发器出口处工质的过热度sh T ?。工况参数变化时,热泵循环的性能也随之变化。

1. 冷凝温度

2. 蒸发温度

3.过冷度

4.过热度

蒸汽压缩式热泵的基本部件

基本部件:压缩机,冷凝器,节流部件,蒸发器。

辅助部件:油分离器,气液分离器,电磁阀,干燥过滤器,储液器,管道,泵,风机,特定系统专用部件,压力表,温度计,高低压控制器,温控

器等测控部件。

其他:如循环工质,润滑油,隔热材料等。

空气能热泵经济分析及案例

空气能热泵工作原理 空气能热泵热水器是创新一代的热水设备,是一种高效集热并转移热量的装置,用电能驱动热泵,由热泵装置中的压缩机、电子膨胀阀、干燥过滤器、四通阀、蒸发器、套管冷凝器、风机等主要部件组成,它成功地运用了逆卡诺原理,压缩机从蒸发器中吸入低温低压气体制冷剂,通过做功将制冷剂压缩成高温高压气体,高温高压气体进入冷凝器与水交换热量,在冷凝器中被冷凝成低温液体而释放出大量的热量,水吸收其释放出的热量而温度不断上升。被冷凝的高压低温液体经膨胀阀节流降压后,在蒸发器中通过风扇的作用,吸收周围空气热量从而挥发成低压气体,又被吸入压缩机中压缩,这样反复循环,从而制取热水。

空气能热泵特点 1、高效节能 空气能热泵热水器采用特殊高效环保冷媒,产热水温度可达65℃,工业用热泵产热水温度最高可达85℃。常温下平均热效率达460%(最高可达600%)。全年运行总费用与普通电热水器相比,节省可高达80%以上,与燃气、燃油锅炉比较节省达75%,与城市管道煤气比较节省达66%,与燃煤锅炉比较节省达57%以上,节能效果亦显著于太阳能热水器;空气能热泵将消耗的电能转化为4倍以上的热能,一度电当4度电用,实现制取热水。 节能就是省钱!投入产出比高,回报特快,具有良好的社会效益和经济效益。 2、绿色环保 空气能热泵热水器采用干净能源,无废气污染,无可燃烧排放物、无有毒气体排放,保持环境清洁。 3、安全可靠 空气能热泵热水器通过介质换热,水质洁净、无须用电与水进行接触,水电隔离,彻底消除触电隐患,不使用燃料,不存在易燃、易爆、中毒现象,真正做到绝对安全可靠。 4、长久耐用 正旭空气能热泵热水器使用美国谷轮压缩机、电子膨胀阀、四通阀等主要零配件采用世界名厂生产的优质产品,从而保证了热泵机组的质量,其使用寿命长达15年以上,远远高于其它类型热水器的使用寿命。 5、安装简便 可安装在楼顶、阳台、庭院、地下室等地方,无须专人看管,无须设置专用机房。 6、全天候应用 空气能热泵热水器不受夜晚、阴天、雨雪等任何天气影响,能够全年全天候提供热水,填补了太阳能热水器受天气环境影响不能保证随时供应热水的缺陷。 7、智能控制 正旭空气能热泵热水器超级智能微电脑全自动控制系统,可根据用户的需求,制热、感温、控温、保温、供水、补水、安全保护等全自动运行,无须人工监控,24小时全天候即开即用或定时供水。同时,本产品设计的智能除霜系统,确保在冬季气温条件较低的情况下仍能正常运行。 8、多点供水 采用大容量、高密度加厚型聚氨酯无氟整体发泡保温水箱,保温性能卓越,水量充足,可保证出水温度恒定,实现同时多点供水,随开随出,出水有力,使用舒服。 9、模块化设计 在用水量大时采用多台热泵机组并联安装使用模式,小型用水场所可单机使用,当用户用水量增大时,可随意增添。多机并联优点在其中一台如进行维护时不影响整个系统运行。 10、适用广泛 产品有不同规格型号系列,可满足工厂、酒店宾馆、学校、医院、美容院、洗浴中心、别墅、家庭等热水使用单位。

性能测试-linux资源监控

目录: Linux硬件基础 CPU:就像人的大脑,主要负责相关事情的判断以及实际处理的机制。 CPU:CPU的性能主要体现在其运行程序的速度上。影响运行速度的性能指标包括CPU的工作频率、Cache容量、指令系统和逻辑结构等参数。 查询指令:cat /proc/cpuinfo 内存:大脑中的记忆区块,将皮肤、眼睛等所收集到的信息记录起来的地方,以供CPU 进行判断。 内存:影响内存的性能主要是内存主频、内容容量。 查询指令:cat /proc/meminfo 硬盘:大脑中的记忆区块,将重要的数据记录起来,以便未来再次使用这些数据。 硬盘:容量、转速、平均访问时间、传输速率、缓存。 查询指令:fdisk -l (需要root权限) Linux监控命令 linux性能监控分析命令 vmstat vmstat使用说明 vmstat可以对操作系统的内存信息、进程状态、CPU活动、磁盘等信息进行监控,不足之处是无法对某个进程进行深入分析。 vmstat [-a] [-n] [-S unit] [delay [ count]] -a:显示活跃和非活跃内存 -m:显示slabinfo -n:只在开始时显示一次各字段名称。 -s:显示内存相关统计信息及多种系统活动数量。 delay:刷新时间间隔。如果不指定,只显示一条结果。 count:刷新次数。如果不指定刷新次数,但指定了刷新时间间隔,这时刷新次数为无穷。-d:显示各个磁盘相关统计信息。 Sar sar是非常强大性能分析命令,通过sar命令可以全面的获取系统的CPU、运行队列、磁盘I/O、交换区、内存、cpu中断、网络等性能数据。 sar 命 令行

污水源热泵工作原理及效益分析

污水源热本调研报告 所谓污水源热泵,主要是以城市污水做为提取和储存能量的冷热源,借助热泵机组系统内部制冷剂的物态循环变化,消耗少量的电能,从而达到制冷制暖效果的一种创新技术。 城市污水源热泵空调技术能实现冬季供暖、夏季空调、全年生活热水供应(很廉价的热水供应方案)、夏季部分免费生活热水供应。城市污水热泵空调是一项高新技术,具有节能、环保及经济效益,符合经济与社会的可持续性发展战略。城市污水源热泵机组以污水为冷热源,冬季采集来自污水的低品位热能,借助热泵系统,通过消耗部分电能(1份),将所取得的能量(大于4份)供给室内取暖;在夏季把室内的热量取出,释放到水中,以达到夏季空调的目的。 1、污水源热泵的工作原理 污水源热泵的主要工作原理是借助污水源热泵压缩机系统,消耗少量电能,在冬季把存于水中的低位热能“提取”出来,为用户供热,夏季则把室内的热量“提取”出来,释放到水中,从而降低室温,达到制冷的效果。其能量流动是利用热泵机组所消耗能量(电能)吸取的全部热能(即电能+吸收的热能)一起排输至高温热源,而起所消耗能量作用的是使介质压缩至高温高压状态,从而达到吸收低温热源中热能的作用。 污水源热泵系统由通过水源水管路和冷热水管路的水源系统、热泵系统、末端系统等部分相连接组成。根据原生污水是否直接进热泵机组蒸发器或者冷凝器可以将该系统分为直接利用和间接利用两种

方式。直接利用方式是指将污水中的热量通过热泵回收后输送到采暖空调建筑物;间接利用方式是指污水先通过热交换器进行热交换后,再把污水中的热量通过热泵进行回收输送到采暖空调建筑物。 2、污水源热泵系统的特点: (1)环保效益显著 城市污水源热泵是利用了污水作为冷热源,进行能量转换的供暖空调系统。供热时省去了燃煤、燃气、然油等锅炉房系统,没有燃烧过程,避免了排烟污染;供冷时省去了冷却水塔,避免了冷却塔的噪音及霉菌污染。不产生任何废渣、废水、废气和烟尘,环境效益显著。 (2)高效节能 冬季,污水温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季污水温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率提高。 (3)运行稳定可靠 污水的温度一年四季相对稳定,其波动的范围远远小于空气的变动。是很好的热泵热源和空调冷源,水体温度较恒定的特性,使得热泵机组运行更可靠、稳定,也保证了系统的高效性和经济性。不存在空气源热泵的冬季除霜等难点问题。 (4)一机多用,应用范围广 此热泵系统可供暖、空调,生活热水供应(夏季免费)等。一机多用,一套系统可以替换原来的锅炉加空调的两套装置或系统。 (5)投资运行费用低

性能测试通常需要监控的指标

?每台服务器每秒平均PV量= ((80%*总PV)/(24*60*60*(9/24)))/服务器数量, ?即每台服务器每秒平均PV量=2.14*(总PV)/* (24*60*60) /服务器数量 ?最高峰的pv量是1.29倍的平均pv值 性能测试策略 1.模拟生产线真实的硬件环境。 2.服务器置于同一机房,最大限度避免网络问题。 3.以PV为切入点,通过模型将其转换成性能测试可量化的TPS。 4.性能测试数据分为基础数据和业务数据两部分,索引和SQL都会被测试到。 5.日志等级设置成warn,避免大量打印log对性能测试结果的影响。 6.屏蔽ESI缓存,模拟最坏的情况。 7.先单场景,后混合场景,确保每个性能瓶颈都得到调优。 8.拆分问题,隔离分析,定位性能瓶颈。 9.根据性能测试通过标准,来判断被测性能点通过与否。 10.针对当前无法解决的性能瓶颈,录入QC域进行跟踪,并请专家进行风险评估。 性能测试压力变化模型

a点:性能期望值 b点:高于期望,系统资源处于临界点 c点:高于期望,拐点 d点:超过负载,系统崩溃 性能测试 a点到b点之间的系统性能,以性能预期目标为前提,对系统不断施加压力,验证系统在资源可接受范围内,是否能达到性能预期。 负载测试 b点的系统性能,对系统不断地增加压力或增加一定压力下的持续时间,直到系统的某项或多项性能指标达到极限,例如某种资源已经达到饱和状态等。 压力测试 b点到d点之间,超过安全负载的情况下,对系统不断施加压力,是通过确定一个系统的瓶颈或不能接收用户请求的性能点,来获得系统能提供的最大服务级别的测试。

稳定性测试 a点到b点之间,被测试系统在特定硬件、软件、网络环境条件下,给系统加载一定业务压力,使系统运行一段较长时间,以此检测系统是否稳定,一般稳定性测试时间为n*12小时。 监控指标 性能测试通常需要监控的指标包括: 1.服务器 Linux(包括CPU、Memory、Load、I/O)。 2.数据库:1.Mysql 2.Oracle(缓存命中、索引、单条SQL性能、数据库线程数、数据池连接数)。 3.中间件:1.Jboss 2. Apache(包括线程数、连接数、日志)。 4.网络:吞吐量、吞吐率。 5.应用: jvm内存、日志、Full GC频率。 6.监控工具(LoadRunner):用户执行情况、场景状态、事务响应时间、TPS等。 7.测试机资源:CPU、Memory、网络、磁盘空间。 监控工具 性能测试通常采用下列工具进行监控: 1.Profiler。一个记录log的类,阿里巴巴集团自主开发,嵌入到应用代码中使用。 2.Jstat。监控java 进程GC情况,判断GC是否正常。 3.JConsole。监控java内存、java CPU使用率、线程执行情况等,需要在JVM参数中进行配置。 4.JMap。监控java程序是否有内存泄漏,需要配合eclipse插件或者MemoryAnalyzer 来使用。 5.JProfiler。全面监控每个节点的CPU使用率、内存使用率、响应时间累计值、线程执行情况等,需要在JVM参数中进行配置。 6.Nmon。全面监控linux系统资源使用情况,包括CPU、内存、I/O等,可独立于应用监控。

风冷热泵机组工作原理

风冷热泵机组工作原理 风冷热泵机组是中央空调机组的一部分,它主要区别于风冷冷水机组,风冷热泵机组通过强制换热,来满足室内温度的需要。风冷热泵主要用于家用中央空调领域,大型中央空调则一般采用水冷热泵机组,这和风冷热泵工作原理是分不开的,下面我们一起来认识一下风冷热泵以及风冷热泵原理。 什么是风冷热泵 “热泵”是一种能从自然界的空气、水或土壤中获取低品位热能,经过电力做功,提供可被人们所用的高品位热能的装置。 风冷热泵的风为何物,即是流动的空气,流动的空气作为热媒的热泵,即是空气源热泵只是在设置上,风冷热泵可能借助风机等设备加速空气流动,空气源热泵多数为自然流通。 风冷热泵机组应当放在空气对流良好的地方也就是说,他应当就是放在室外的,放室内,空气不流通,那么空气就会越来越冷,最后效率越来越低从低温环境中吸收热量,高温环境获得热量。 风冷热泵机组工作原理图 风冷热泵工作原理 风冷热泵机组是空调系统中的主机,由于采用风冷冷凝器不需要冷却塔,而

蒸发器是水冷的,夏天制冷时提供冷水,冬季制热时提供热水,风机盘管是空调系统的末端装置,装在室内如同把水从低处提升到高处而采用水泵那样,采用热泵可以把热量从低温抽吸到高温。所以热泵实质上是一种热量提升装置,热泵的作用是从周围环境中吸取热量,并把它传递给被加热的对象(温度较高的物体),其工作原理与制冷机相同,都是按照逆卡诺循环工作的、风冷热泵相对于空气源热泵来说他的能力要低一点,他的进出水温是5摄氏度左右(大部分公司的设置参数),而空气源的进出水温差能达到40摄氏度。 风冷热泵机组与风机盘管共同使用,前者提供冷水或热水,后者将冷水或热水通过热交换,吸出冷风或热风。我们可以形象的把风冷热泵机组比作是中央空调的大脑,如果大脑不工作了,那中央空调将丧失全部功能,系统也将停止运行。 本文由舒适100网编辑部整理发布

热泵性能实验室操作规程1

1、启动电柜 打上总电源柜开关,再打上电柜电源开关,按下电柜面板“启动”按键,启动整个电柜系统。2、测试用水准备 启动计算机,打开测试软件,查看水箱温度是否适合测试,如国标标况下水温是15℃,应把水温设定低15℃左右,设定好水箱温度,开启冷水机,使水温到达目标设定温度。 3、被测机准备 检查被测试机是否完好,若检查无误,则把被测试机搬到实验室里面去,被测试机尽量居中摆放,并检阅有关资料,填写热泵热水机测试记录表的内容。 4、被测机各参数点取样准备 把热电偶温度线用铝箔纸分别贴在压缩机排气管,回气管,冷凝出口,节流前,节流后,盘管温度探口,压机回油温度,并用一小块保温棉贴在铝箔纸上,用扎带扎好。温度线要贴在距各个管口处的25mm处。通常情况在以上部位布置测温点,如机组系统管路较长较复杂,可在其它系统管路关键点布点检测温度,如蒸发器较大,可考虑在蒸发器弯头处均布多几个温度点,带喷气冷却功能系统,应考虑在主回路冷却前后,喷气节流后等温度变化点布置探头等。连接好高低压传感器,主要确保系统冷媒不泄露,必要时需用检漏仪查看是否有冷媒泄露。 5、湿球纱布的更换 每次试验前务必更换新的湿球纱布,把纱布套入到湿球铂电阻上,不能起皱痕。 6、被测机接电源 实验室里的电箱分两种接线型式,为三相四线和单项两线型式,在测试机组时根据机组是单相还是三相来连接电源线。注意区分各相线,确保不出现错相、缺相。接好线后在电柜控制面板选择相对应电源选择,并在软件菜单上选择正确电源相参数。接好线后需重新检查一次线路是否按电路图接线正确,各接线端子是否接牢固, 7、被试机水路系统连接 用连接管把进出水管同机组进出水口连接好,接好水路系统后可先打开部分水阀,查看是否有泄漏现象,如有泄漏现象,需重新接管确保水路系统无漏水。为确保实验数据准确,给水路系统做好保温工作。工作过程注意保护好进出水温度探头,尽量不触及进出水探头位置。在测试软件上开启循环水泵,按设定的流量开始水路试运行。 8、放置实验环境取样器 在调试工况前一定要把取样风机启动并把取样器放在被测试机的回风面处。取样器上有孔边朝外,取样器摆放在距被测机回风面约为20cm处.取样器尽量放置在回风面中间位置。注意:(在做低温工况时要把取样风机处的取样盒里面的蒸馏水放掉,防止把取样盒蒸馏水的器皿冻裂。同时在测试软件上切换为湿度控制由湿度探头控制。)

超低温空气源热泵的工作原理及特点

超低温空气源热泵是以空气作为低品位热源来进行供暖或供热水的装置,同时 也可以进行夏季制冷。其特点是以准二级压缩喷气增焓热泵系统保证机组在-25℃能正常制热,实现了空气源热泵在寒冷地区供暖的可能。 热泵机组由蒸发器、冷凝器、压缩机、膨胀阀四大主要部件构成封闭系统,其 内充注有适量的工质。机组运行基本原理依据是逆卡诺循环原理:液态工质首 先在蒸发器内吸收空气中的热量而蒸发形成蒸汽(汽化),汽化潜热即为所回收 热量,而后经压缩机压缩成高温高压气体,进入冷凝器内冷凝成液态(液化)把 吸收的热量发给需要的加热的池水中,液态工质经膨胀阀降压膨胀后重新回到 膨胀阀内,吸收热量蒸发而完成一个循环,如此往复,不断吸收低温源的热而 输出所加热的泳池水中,直接达到预定温度。 相比于普通热泵在-10℃及更低温度下,由于蒸发温度过低,引起蒸发量较少,导致压缩机回气量少,从而影响冷凝放热。超低温热泵增加了一条联通压缩机 的喷射增焓支路,当压缩机回气不够时,喷射增焓支路会给压缩机补气,这样 冷凝器的放热量就会提高,因此在极低的温度下仍能正常制热。 二、性能 热泵循环是在冷凝温度(TCO)下定温放热,在蒸发温度(TEV)下定温吸热, 定熵地进行膨胀和压缩,所需的平衡功由外界提供。 COP=TCO/ (TCO-TEV)(1) 空气源热泵技术最大的优势就是经济节能,因为具有很高的能效,只需消耗一 部分电能,而能得到3~4倍于所耗电能的热能。空气源热泵在国标工况下的 COP值一般在2.9~4.5之间,容易满足要求;但是环境温度低于5℃后,机组能效开始衰减,普通的空气源热泵在-5℃下几乎都不能使用;超低温空气源机组 确可以在-25℃的低温环境下正常制热,此时的能效衰减至2.0以下。

空气源与水源热泵对比分析报告文案

空气源热泵与水源热泵比较 一、概述: 在我国主要利用三种热泵技术,分别是水源热泵,地源热泵,以及空气源热泵。 热泵即可制冷,又可制热。制冷时,其工作原理跟一般的冷气机没有区别;制热时,利用制冷循环系统的热端,将冷凝器排出的热量送入室内采暖或加热生活用水。这时,热泵的运行过程看起来就像是把低温端的热量,源源不断地抽送到高温端一样,所以形象地称之为热泵。如果热泵的冷端(蒸发器)直接置于室外的空气之中,称之为空气源热泵;如果其冷端(蒸发器)通过管道埋植于水中,则称之为水源热泵。 二、水源热泵 2.1优点: 2.1.1水源热泵技术属可再生能源利用技术 2.1.2水源热泵属经济有效的节能技术 2.1.3水源热泵环境效益显著 2.1.4水源热泵一机多用,应用范围广 2.1.5水源热泵空调系统维护费用低 2.1.6水源热泵高效节能。水源热泵是目前空调系统中能效比(COP值)最高的制冷、制热方式,理论计算可达到7(空气源热泵理论值为2--6),实际运行4~6。 2.2水源热泵的应用限制 2.2.1利用会受到制约; 2.2.2可利用的水源条件限制,对开式系统,地源要求必须满足一定的温度、水量和清洁度;

2.2.3水层的地理结构的限制,对于从地下抽水回灌的使用,必须考虑到使用地的地质的结构,保证用后尾水的回灌可以实现; 2.2.4投资的经济性,由于受到不同地区、不同用户及国家能源政策、燃料价格的影响,虽然总体来说,水源热泵的运行效率较高、费用较低,但与传统的空调制冷取暖方式相比,在不同地区不同需求的条件下,水源热泵的投资经济性会有所不同; 2.3水源热泵目前的市场状况: 水源热泵目前主要应用在北方冬季寒冷的地区,而在广阔的南方很少见到身影。 主要原因:南方主要以空气源热泵为主,冬天对空调制热的依赖不如北方明显,主要用来洗澡,所以空气源热泵基本能满足需要,并且工程相对简单,造价成本要低。所以这类产品有较大的局限性,所以必须要走产品的差异化道路,来做好产品的推广! 三、污水源热泵: 3.1简介:污水源热泵是水源热泵的一种。众所周知,水源热泵的优点是水的热容量大,设备传热性能好,所以换热设备较紧凑;水温的变化较室外空气温度的变化要小,因而污水源热泵的运行工况比空气源热泵的运行工况要稳定。处理后的污水是一种优良的引入注目的低温余热源,是水/水热泵或水/空气热泵的理想低温热源。 3.2污水源热泵的形式 污水源热泵形式繁多,根据热泵是否直接从污水中取热量,可分为直接式和间接式两种。 所谓的间接式污水源热泵是指热泵低位热源环路与污水热量抽取环路之间设有中间换热器或热泵低位热源环路通过水/污水浸没式换热器在污水池中直接吸取污水中的热量。而直接式污水源是城市污水可以通过热泵或热泵的蒸发器直接设置在污水池中,通过制冷剂气化吸取污水中的热量。

XX系统性能测试报告

XXXX系统性能测试报告

1 项目背景 为了了解XXXX系统的性能,特此对该网站进行了压力测试2 编写目的 描述该网站在大数据量的环境下,系统的执行效率和稳定性3 参考文档 4 参与测试人员 5 测试说明 5.1 测试对象 XXXX系统

5.2 测试环境结构图 5.3 软硬件环境 XXXXX 6 测试流程 1、搭建模拟用户真实运行环境 2、安装HP-LoadRunner11.00(以下简称LR) 3、使用LR中VuGen录制并调试测试脚本 4、对录制的脚本进行参数化 5、使用LR中Controller创建场景并执行 6、使用LR中Analysis组件分析测试结果 7、整理并分析测试结果,写测试总结报告 7 测试方法 使用HP公司的性能测试软件LoadRunner11.00,对本系统业务进行脚本录制,测试回放,逐步加压和跟踪记录。测试过程中,由LoadRunner的管理平台调用各前台测试,发起 各种组合业务请求,并跟踪记录服务器端的运行情况和返回给客户端的运行结果。录制登陆业务模块,并模拟30、50、80、100 个虚拟用户并发登陆、添加和提交操作,进行多次连续测试,完成测试目标。 测试评估及数据统计 此次测试通过同一台客户机模拟多个并发用户在因特网环境进行,未考虑因特网的稳定 性的问题。此次测试用户操作流程相对简单,只录制了三个事务,即:用户登录、添加和信息提交,从测试的数据来分析,各项性能指标基本在可控的范围之内。但在测试过程中也发 现一些不容忽视的问题,应予以重视。 1 、模拟80 个用户并发操作时,出现1 个未通过的事务,具体原因需结合程序、网络和服务器综合分析,系统的稳定性并非无可挑剔。 2 、用户登陆事务的平均响应时间与其他两个事务相比等待的时间要长,且波动也较大, 在网速变慢、用户数增加的外部条件下,有可能会影响到系统的稳定性。建议优化系统登录页面程序,提高系统的稳定性。

超低温空气源热泵在严寒地区的应用

超低温空气源热泵在严寒地区的应用 ●PHNIX集团廖汉光 一、引言 人类进入二十一世纪,首先面临的是这样的矛盾,一方面,人民对生活品质的要求日益提高,另一方面是日益高涨的环保压力和能源价格。如何化解这个矛盾,是关系着人类可持续和谐发展的大问题。热泵作为一种可再生能源的利用模式,节能环保,受到越来越广泛的重视和应用。根据热量的来源,热泵可分为空气源热泵,土壤源热泵,水源(污水,海水,地下水)热泵等,上述热泵各有优缺点,土壤源热泵和水源热泵的热源稳定,无结霜化霜过程,但受自然条件的约束,空气源热泵热源灵活,受自然条件的限制大,热源不太稳定,有结霜和化霜的过程,在环境温度较低(小于-5℃)的情况下,制热量和能效比都大幅衰减。如何开发出在-15℃以下的环境温度条件下能够稳定有效地制热空气源热泵机组,是每一个的热泵生产厂家和开发人员面临的一个艰巨的问题。PHNIX(芬尼克兹)北极星系列超低温热泵机组的开发成功,使空气源热泵推广应用到高寒地区成为可能。 二、ZWKS系列压缩机 PHNIX(芬尼克兹)北极星系列超低温热泵机组使用的就是艾默生公司研发的ZWKS系列热泵热水器专用压缩机,该系列压缩机拥有先进的喷气增焓(EVI)技术,该技术不但能拓展空调热泵在北方地区的应用,还可以优先地提高空调系统的制冷制热性能,特别是可以使低环境温度下的制热量和COP得到显著提升。

EVI涡旋压缩机除了常规的吸气口和排气口外,还带有第二个吸气口,即蒸气喷射口,中压的制冷剂蒸气通过蒸气喷射口和位于定涡旋盘的喷射孔喷射到涡旋盘的中间腔,以增加制冷剂流量,结合带经济器的系统设计,达到增加系统制热量或COP,以及降低涡旋温度的目标。 由于热泵热水器的应用极为苛刻,艾默生公司对此专门设计了ZWKS系类热泵热水器专用涡旋压缩机,为适应高出水温度对应的高负载,对压缩机的点击进行了加强,对浮动密封、动涡旋以及动态排气阀进行了专门设计以适应低温制热水时的高压比运行特点,同时为了控制安全的排气温度,对EVI喷射通道进行了设计加强。 ZWKS压缩机机构图如下: 三、PHNIX北极星系列超低温热泵机组工作原理 下图是PHNIX北极星系列超低温热泵机组的工作原理:

水源热泵分析

水源热泵供暖系统供水温度的确定 因为水源热泵供暖系统能够将通常情况下不能被直接利用的低位热能从水源中取出,提升后并加以利用,具有良好的节能环保特性。现针对利用水源热泵系统进行供暖时,其供水温度的选择问题进行分析。 1、供水温度对水源热泵机组运行的影响 在冬季供暖工况下,如果水源热泵低温热源侧的进出口水温不变,则水源热泵的供水温度越高,其制热性能系数(cop值)就越低,提供相同的热量所需的运行费用就越高。COP=38.126△t-0.633,△t=(th.i+th.o)/2-(tc.i+tc.o)/2 2、合理的供水温度选择 通过上面的计算可知,利用水源热泵机组进行冬季供暖时,供水温度越低,机组的cop值就越大,经济性越好,但供水温度也不能太低,否则将导致末端散热设备过大或无法满足散热设备对供水温度的内在要求。显然合理的供水温度应该是既能满足用户的用热需求,同时又有最佳的经济性。 3、如果水源热泵机组供水温度过高,水流量不变的情况下,蒸发压力即吸气压力会增加,同样的对应的制热量也会增加,消耗功率也会增加。,主要原因是因为对机组而言,过高的蒸发器水体温度,会导致蒸发压力过高,而对特定的冷煤系统在应用过程中,冷凝压力是一个定值,这个时候压差比就比较小,压差比小就意味着压缩机而言回油会受到很大的影响,无法保证热泵系统的正常工作,温度过高也会烧坏压缩机。

解决设想方案 日本在1980年代开展了超级热泵计划,开发出4类热泵,其中有利用45度余热水,制热出水温度85的中高温热泵,以及利用80度余热水,产出150度蒸汽的高温热泵。 欧洲有采用改进离心压缩机性能技术路线的高温热泵,采用R134a制冷剂,三级离心压缩模式,制热出水温度可以达到85度。 一般需要解决以下几个关键技术问题。 1.压缩机的选择:热泵设备常用的压缩机类型主要是螺杆压缩机、全封闭涡旋压缩机与半封闭活塞压缩机等,经过对不同类型压缩机工作特性进行比较研究,高温热泵设备一般选用全封闭涡旋压缩机。 2.工质的选择:为保证高温热泵设备在稳定的可允许的工作压力下运用,采用特殊的制冷剂为工质,换热效率高并对环境无污染,对臭氧层无破坏作用。 3.氟路系统控制的优化:保证整体机组的长时间高温稳定运行和使用寿命,并根据环境温度和蒸发温度,自动调节高温空气热泵设备运行工作状态和调件。

软件性能测试方案

性能测试方案

目录 前言 (3) 1第一章系统性能测试概述 (3) 1.1 被测系统定义 (3) 1.1.1 功能简介 (4) 1.1.2 性能测试指标 (4) 1.2 系统结构及流程 (4) 1.2.1 系统总体结构 (4) 1.2.2 功能模块描述 (4) 1.2.3 业务流程 (5) 1.2.4 系统的关键点描述(KP) (5) 1.3 性能测试环境 (5) 2 第二章性能测试 (6) 2.1 压力测试 (6) 2.1.1 压力测试概述 (7) 2.1.2 测试目的 (7) 2.1.3 测试方法及测试用例 (7) 2.1.4 测试指标及期望 (8) 2.1.5 测试数据准备 (9) 2.1.6 运行状况记录 (99) 3第三章测试过程及结果描述 (90) 3.1 测试描述 ................................................................................................. 错误!未定义书签。 3.2 测试场景 ................................................................................................. 错误!未定义书签。 3.3 测试结果 ................................................................................................. 错误!未定义书签。 4 第四章测试报告 (11)

气—气热泵性能测试

实验三气—气热泵性能测试 一、实验目的 1、熟悉热泵装置的组成,领会制冷与供热的对立统一关系; 2、明确热泵在节能技术上能作出的贡献; 3、了解热力完善度是衡量热泵性能的主要技术指标; 4、了解热泵和蒸气压缩制冷机的工作过程。 二、实验装置和工作原理 实验装置为压缩式气—气热泵,流程如图1所示,使用R22作为制冷剂,主要组成部件有压缩机、室外换热器、室内换热器、节流毛细管、干燥过滤器、气液分离器、轴流风机等,由四通阀组成四道换向机构,可进行蒸气压缩式制冷机和气—气压缩式热泵工作性能的实验。 室外风机 室内 风机图1 制冷系统流程示意图 1、蒸汽压缩制冷缩环 参考流程图,调节开关构成蒸汽压缩制冷系统。在室内换热器(蒸发器)中产生低压制冷剂蒸汽。在压缩机中被压缩到冷凝压力P1,消耗了机械功W,然后进入冷凝器中,因受到冷却介质的冷却而凝结成液体,凝结时压力保持不变,并放出热量Q,由冷凝器出来的制冷机液体,经节流毛细管膨胀到蒸发压力P0,温度降到与之相对应的饱和温度下,此时的成为低压两相状态气液混合物,进入蒸发器,在其中制取冷量Q0,并回复到起始状态完成一个循环。在蒸汽压缩制冷循环中,液体膨胀过程不用膨胀机而用膨胀节流阀或毛细管来实现,这就使设备大为简化。虽然膨胀阀和毛细管不能回收膨胀功,但因液体的膨胀功很小,因此引起的损失也不大。 循环的热平衡式为: W Q Q- = 循环所消耗的压缩功为W,故循环的制冷系数为: Q W ε= 2、压缩式气—气热泵循环 调节开关构成压缩式气—气热泵循环。它的工作原理是,利用介质的饱和温度随着压力的变化这一特性而工作的。制冷机(冷介质)从低温热源(管外界容气)吸收热量,蒸发变为蒸汽,然后经压

水源热泵与风冷热泵的比较

致领导函 尊敬的XXX领导: 您好! 非常感谢贵单位给我公司提供的这次参与空调系统说明的机会。多年来,清华同方秉承清华大学“自强不息、厚德载物”的校训,不以纯粹的出售产品为目的,而是以向广大顾客提供最适合其本身特点要求的服务为最高宗旨,竭尽全力、精益求精使企业取得了长足的发展,赢得了广泛的赞誉。 清华同方是具有新型空调设计、开发、制造、工程安装等综合服务能力为一体的高科技公司,以清华大学的高技术人才为依托,始终保持领先一步的技术优势。产品质量和工程安装质量也已在人民大会堂、故宫博物院、中央电视台、毛主席纪念堂、中国国际航空公司等数百项国家重大工程中经受住了严格的考验和检验。清华同方产品的先进性、质量的可靠性、服务的有效性已得到广泛的认证和中央领导人的认可。 我公司根据贵方工程概况及地理特点,本着合理、科学、用户至上的原则向贵方推荐: 二十一世纪最有效的供暖、空调技术 ——清华同方GHP型水源中央空调系统 2009年4月

二十一世纪最有效的供暖、空调技术 ——节能环保型水源热泵空调系统 地源热泵是一种利用地表浅层地热资源(也称地能,包括土壤、地下水和江、河、湖、海以及城市污水等)作为冷热源的即可供热又可制冷的高效、节能、环保的空调系统。地源热泵利用浅层地能温度相对稳定的特性,通过输入少量的高品位能源(如电能),使建筑达到供热或制冷的目的。地源热泵可以取代锅炉或市政管网等传统的供暖方式和中央空调系统。地能分别在冬季作为热泵供暖的热源和夏季空调的冷源,即在冬季,把地能中的热量“取”出来,提高温度后,供给室内采暖;夏季,把室内的热量取出来,释放到地能中去。地源热泵消耗1KW的能量,用户可以得到4KW以上的热量或冷量。同时,它还可以供应给生活用水,是一种有效地利用能源的方式。 污水、井水、费水、费冷、费热、综合利用 根据现场调查,特向甲方提供节能减排最佳方案: 1、夏季制冷时,抽取地下低温井水通过机组吸取水冷量后送至其它生产设备循环利用。 也可利用生产设备产生的费冷,通过机组吸收费冷循环利用。 2、冬季制热时,利用生产设备排出高温污水吸取热量后送至污水处理车间。

低温空气源热泵系统在北方地区的应用案例

长期以来空气源热泵空调系统,主要应用于长江流域及其以南地区。本文主要介绍低温空气源热泵系统在北方地区的应用案例,并对系统设计的注意 事项进行了阐述,对系统初投资和运行费用进行了分析。实际运行证明,低温空气源热泵空调系统在北方制热是可行的,并且运行费用很低。 1、工程简介阿里斯顿电器(德国)集团有限公司出版 秦皇岛市百信图书广场位于秦皇岛市开发区,目前是秦皇岛市最大的综合类图书市场。本建筑长49.2m,宽35.1m,总建筑面积6900m2;建筑共计4 层,总高度为15.9m。一层、二层、三层是图书市场,四层为办公室。本建筑自2001年6月开始施工,2002年10月完工,2002年11月空调开始调试运行 。 3、冷热源选择 3.1 冷热源选择依据 秦皇岛市是全国闻名的度假旅游城市,市政府对环境污染问题特别重视,尤其是冬季供暖产生的污染问题。秦皇岛市供暖期较长,约为5个月。供 暖资源也很丰富:煤、油、城市集中煤气、电和城市集中供热,由于本项目在开发区,没有城市集中供热,燃煤也被禁止使用,可利用的资源仅为油 、城市集中煤气和电。秦皇岛市没有电增容,城市煤气有市政费用。同时在与开发商接触过程中,开发商提出以下几点要求: ①安全、环保、没有污染;②运行费用低;③系统运行可靠;④维护方便。 3.2 冷热源初投资比较 根据开发商提出的要求,提供以下比较方案:方案1,空气源热泵空调系统;方案2,螺杆冷水机组+电锅炉;方案3,螺杆冷水机组+煤气锅炉;方 案4,螺杆冷水机组+油锅炉。各种方案初投资,见表3。

3.3 运行费用分析比较 夏季,各种方案的系统制冷系数接近,又由于秦皇岛市夏季制冷期较短,这里不做比较,仅对冬季供热时的运行费用进行分析比较,结果见表4。 3.4 结果分析 通过以上分析可以看出,空气源热泵空调系统不仅初投资较低,其冬季运行费用也优于其他三种方案,所以,本工程选用低温空气源热泵机组作 为空调系统冷热源。 4、机房设计 4.1 空气源热泵机组选型 图1设备布置图 1 低温空气源热泵空调机组 2 冷热水循环水泵 3 电加热器 4 电子水处理器 5 膨胀水箱 6 电器及控制装置 根据空调负荷,选用清华同方低温空气源热泵机组FS-U-R-360型2台。单台制冷量408 kW,供回水温度7-12℃,输入功率122.4 Kw;单台制热量 420 kW,供回水温度45-40℃,输入功率122.4 Kw。低温空气源热泵机组设置在四层屋顶,冷热循环水泵、电加热器和电气控制设置在水泵房内。设备

湖水源热泵的应用分析

湖水源热泵的应用分析 在空调行业提倡节能减排的前提下,湖水源热泵作为能效比高,无污染的热量交换,实现利用可再生能源节能的目的,应用案例越来越多。本文通过对深圳某学校拟设计的湖水源热泵,在南方的气候,具体的湖水条件下,通过计算分析,讨论湖水源热泵应用的可行性。 标签:湖水源热泵空调湖水冷却 1 工程概况 学校附近约 1.5万平米的湖水作为夏季空调冷源,为确保实际工程中不会出现因湖水散热能力不足而导致湖水源热泵效率下降的状况,需要对湖水源热泵应用在某学校的可行性做如下科学验证:“在极端情况下,持续的空调系统排热是否会使湖水温度明显升高(>30℃)。” 2 计算模型 2.1 基本原理在实际应用过程中,湖水存在的得热和散热环节包括:①空调系统的排热,QHV AC;②湖水吸收的太阳辐射,Qsolar;③湖水表面与空气热湿交换,Qair;④湖水与湖底和四壁的对流换热,Qsoil。 环节①和②主要发生在白天,主要使湖水温度升高,环节③和④全天都会存在,主要使湖水温度降低。各个环节的综合效果可能是白天湖水在获取空调排热和吸收太阳辐射后温度升高,夜间通过对流换热和蒸发向外散热,温度逐渐降低。 根据以上分析,建立湖水的能量平衡方程式如下: ρVC=QHV AC+Qsolar+Qair+Qsoil(1) 其中,ρ——水密度,1000 kg/m3; V——水体积,湖水深1~3米,平均按照2米计算,湖水表面积为1.5万m2,则水的体积为30000m3; τ——时间,s; QHV AC——空调系统在当前小时内排放的热量,kJ; Qsolar——湖水当前小时吸收的太阳辐射热量,kJ; Qair——湖水当前小时与空气热质交换获得的热量,kJ;

太阳能热泵原理及技术分析

太阳能热泵原理及技术分析 热泵技术是一种新型的节能制冷供热技术,长期以来主要应用于建筑物的采暖空调领域。因热泵制热在节能降耗及环保方面的良好表现,卫生热水供应系统也越来越多的采用热泵设备作为热源[2]。其中以室外空气为热源的空气源热泵,结构简单,不需要专用机房,安装使用方便,在卫生热水供应方面具有不可替代的优势,除了比较大型的空气源热泵热水系统外,现在已有多个品牌的小型的家用空气源热泵热水器也投放市场。但空气源热泵的一个主要缺点是供热能力和供热性能系数随着室外气温的降低而降低,所以它的使用受到环境温度的限制,一般适用于最低温度-10℃以上的地区[3]。 将热泵技术与太阳能结合供应生活热水,国内外进行了许多这方面的研究,主要有两种方式,一种是直接以空气源热泵作为太阳能系统的辅助加热设备,另一种是利用太阳能热水为低温热源或将太阳能集热器作为热泵的蒸发器的太阳能热泵系统。前者以太阳能直接加热为主以空气源热泵为辅,解决太阳能供热的连续性问题,但仍旧无法摆脱环境温度对热泵制热性能的影响;后者完全以太阳能作为热泵热源,大大提高了太阳能的利用效率,但太阳能资源不足时仍需要增加其它辅助热源,并且热泵供热能力受太阳能集热量的限制,规模一般比较小。 在大型的太阳能中央热水系统中,空气源热泵无疑是一种比较理想的辅助加热设备,为了改善空气源热泵在低温环境下制热运行的性能,扩大它的使用区域,结合国内外太阳能热泵研究中的先进经验,我们研制了一种适合于低温环境中工作的太阳能—热泵中央热水系统。该系统采用一种新型的采用低温太阳能辅助的空气源热泵机组和太阳能集热系统结合,太阳能和热泵互为辅助热源,最大限度的利用太阳能,解决阴雨天气及冬季环境温度较低太阳能资源不足时热水供应保证率,做到全年、全天候供应热水。 1太阳能—热泵中央热水系统组成 1.1太阳能—热泵中央热水系统基本组成 太阳能—热泵中央热水系统的主要组成部分为太阳能集热器和太阳能辅助加热空气源热泵机组,其他辅助设备与常规的中央热水系统相同,包括太阳能循环泵、热水加热环泵、换热器、热水箱及控制器等。 1.2太阳能辅助加热空气源热泵机组 1.2.1太阳能辅助加热空气源热泵机组工作原理 为使空气源热泵在低温环境中高效、稳定、可靠的运行,国内外众多科研单位和生产企业进行了研发和改进,归纳起来主要有三种方式。一是依靠外界辅助热源来提高热泵低温制热性能,比如通过电加热提高热泵制热出水温度、采用燃烧器辅助加热室外换热器、在压缩机周围敷设相变蓄热材料以增加低温条件下制热运行出力等等;二是通过改善制冷剂循环系统来提高热泵的低温制热性能,比如采用双级压缩的空气源热泵,设中间补气回路的空气源热泵等;三是采用变频系统,低温工况下让压缩机高速工作增加工质循环量,同时向压缩机工作腔喷液以防止其过热,从而使热泵机组能够正常运行。 太阳能辅助加热空气源热泵机组是基于上述第一种方式而产生的,如图2所示。在机组的蒸发器上增加了一辅助换热器。热泵在低温环境下制热运行时,高于环境温度的太阳能热水流经该辅助换热器,与将进入蒸发器的室外空气进行热量交换提高其温度,从而使制冷剂在

多联机与风冷热泵机组对比(DOC)

五峰酒店空调工程 方 案 对 比 文 件

日期:2012年10月30日

目录 一、项目情况简介 (4) 二、空调性能的综合对比 (6) 1、空调系统的介绍 (6) 2、空调性能特点的综合比较 (9) 3、初投资比较 (12) 4、运行费用比较 (13) 5、使用及维护方面的对比 (14) 三、结论及建议 (15)

一、项目情况简介 1、工程概况 本工程为五峰酒店项目,建筑面积24000㎡,其中空调面积大约13000㎡。2、工程分析 主要对酒店客房部分空调方案进行对比,面积约为8000㎡。 3、供选择方案分析 (1)风冷模块空调机组 制冷/制热:采用风冷模块机组制冷和制热(冬季配有辅助电加热补充) 对工程硬件方面的要求: ①需要在屋面放置主机; ②需要一个机房专门放置水泵和其他配件(大概50平米) ③由于冬季制热效果一般,需要配辅助电加热作为制热补充,因此配电需要增容。 (2)变频多联式空调机组 制冷/制热:采用变频多联机空调系统进行制冷和制热。 对工程硬件方面的要求: ①需要在屋面安放空调室外机。 4、对比的项目 (1)两种空调性能的综合对比; (2)初投资比较; (3)运行费用的比较;

(4)使用及维护方面的对比;

二、空调性能的综合对比 1、空调系统的介绍 方案一——风冷模块冷水机组 (1)系统组成部分 A:机房部分:水泵、膨胀水箱等 B:室外部分:风冷模块主机 C:末端空气处理设备:风机盘管、阀门、管路; (2)工作原理 风冷热泵机组冷却/加热冷冻水,冷冻水将冷量/热量带入到房间里。 风机盘管 膨胀水箱 冷冻水泵 风冷热泵主机

空气源热泵节能改造案例

空气源热泵节能改造案例: 某大学学生浴室热水机组改造 项目背景 1.改造前用能状况诊断 某大学学生浴室有燃油热水锅炉,需要6个锅炉工进行值班,每天消耗燃油费用约1500元。 2.改造前用能系统存在的问题 燃油热水锅炉运行时存在环境污染,运行费用高,能源浪费严重等情况。 技术方案 1.技术原理 (1)叙述采用的节能技术的原理(提供技术原理图); (2)叙述采用节能技术及原因; (3)叙述电能替代技术的关键能效指标(设备效率、能效比或产品单耗); (4)叙述该技术使用条件和技术优势。 节能技术的原理:热泵系统中的冷媒(R22、R417A 等)把空气、水、土壤中的低温热能吸收进来,通过压缩机压缩后转移为高温热能,用以加热水以供使用。热泵做功的过程是能量转移过程,而非能量转换过程,效率更高。 系统组成包括:热泵热水机组、储热水箱、自动控制系统等。自来水被热泵系统制成生活热水,保存在储热水箱中,通过送水

管路送到各用户的用水点,系统的运行、检测、控制、保护、管理等功能均由自动控制系统完成。 采用节能技术及原因: 节能:替代燃油热水锅炉,热泵系统是一种高效率的能量转移系统,无需燃气加热或电加热,具有高效节能和利于环保的优势。 环保:热泵系统避免了燃油锅炉运行时产生的环境污染。 能量高:具有输出能量与输入能量之比可达3倍,远高于燃油锅炉0.6-0.8倍。 易控制:改造后热泵机组运行稳定可靠,费用下降,原有的污染消除。因实现了全自动运行,无需人工值守,减少了6个锅炉工的岗位。 适用条件和技术优势: 目前热泵技术在大部分领域取代燃油热水锅炉,广泛应用于热水用水量大,供水温度要求不高(55℃以下)的学校、宾馆、

直热式与循环式热泵热水机组的性能对比分析

直热式与循环式热泵热水机组的性能对比分析 一、直热式热水机组原理示意图(BSJ) A、直热式热水机组系统流程说明: 1、正常运行模式:通过水箱液位传感器的控制,机组把来自空气和阳光的低品味热能提高并传输给自来水,经过充分的换热自来水温度上升到设定温度后进入保温水箱,通过热水管网用户即可享受到舒适的恒温热水。 2、保温水箱温水运行模式:当用户隔了一段比较长的时间不用水箱里的热水后其中的水温会有所降低(通常一天会损失1℃-3℃,实际损失程度视水箱的保温条件而定);当保温水箱内的水温降低到用户设定温度之下后机组启动该运行模式;即回水泵打开,保温水箱中的水进入机组再热又回到水箱直到水箱水温上升到用户设定值,由于水箱内的水是有限的所以这一模式的运行时间会比较短,对机组不会产生不良影响。 B、直热式热水机组特点: 1、用户用水舒适性强,出水温度稳定:机组内部设有电动流量调节阀(根据当前进水温度、环境温度、设定的出水温度、机组当前的能力值,进行计算后自动调节),用户也可以根据需要设定用水温度(BSJ 机组出厂默认设置为60℃出水); 2、机组运行效率高、寿命长,在正常运行模式下自来水以一站式的流程直接被机组加热到设定温度而进入保温水箱,通过这样的直热方式低温的自来水吸收了机组产生的热量,同时机组里制冷剂在冷凝段得到充分的热量释放,制冷系统压力比较低,压缩机克服系统压力所消耗的电能也就比较少,这就是直热式热水机组所特有的高能效奥秘所在(能效比COP高达4.5以上),优良的冷媒运行条件下压缩机运行寿命更长。 二、循环式热水机组系统 循环式热水机组在安装工程中有两种方式:一种是直接循环式,另一种是间接循环式,尽管形式上两种循环式有一定的区别:直接循环式系统跟直接加热式系统一样简单明了;间接循环式却要另外设置多余的水箱,需要比较大的占地面积,工程辅材也比较多,虽然是两种循环式系统但是万变不离其宗,他们都是采用循环式热水机组,该机组本质的特性决定了它们注定逃脱不了天生具来的种种缺陷。 A、循环式热水机组系统流程说明: 循环式热水机组运行模式单一,即只有循环的启、停;被教条化的设计在面对用户用热负荷变化、环境温度变化等诸多客观影响因素的时候自身调节却显得苍白无力;因为循环式机组无法调节出水温度,具体表现在当用户在某一时段大量用水时要想防止水箱水温降低就只能采用启动机组循环加热,在水箱中设置感温包,通过感温包感测到的水箱水温来决定机组是运行还是停止,在正常运行模式下用户不停的用水,自来水也不停的补充到水箱中,有冷水的补充当然水箱的水温会降低,此时机组运行,温水不停的进入机组被再次加热;正是这种参数不可控制的特性导致用户用水温度不能保持稳定,更谈不上有任何的舒适度。 B、循环式热水机组特点: 1、用户用水舒适性差,出水温度不能确定:机组内部没有设置相应装置以实现机组的自我调节功能,唯一决定机组启、停的传感器就是保温水箱的感温包,由于数据采样点的设置远离机组,机组往往接收到的运行条件信号跟其自身运行工况(水环境、气候环境)偏离甚远导致各功能件协调运行出现脱节;这种脱节在实际的应用中会表现为用户用水忽冷忽热,在商业场合很容易招致客户反感而投诉。

相关主题
文本预览
相关文档 最新文档