当前位置:文档之家› 惯性参考系 力学相对性原理

惯性参考系 力学相对性原理

惯性参考系 力学相对性原理

惯性参考系 力学相对性原理

第10讲 非惯性参照系与惯性力

第10讲 非惯性参照系与惯性力 例1. 在光滑的水平轨道上有两个半径都是r 的小球A 和B ,质量分别为m 和m 2,当两球心的距离大于l 时(l 比r 2大得多)时,两球间无相互作用力,当两球间的距离等于或小于l 时,两球间存在着相互作用的恒定斥力F 。设A 球从远离B 球处以0v 沿两球心连线向原来静止的B 球运动。欲使两球不会发生接触,0v 必须满足什么条件? 例2. 如图所示,质量kg 8=M 的小车放在光滑水平面上,在小车的一端加一水平恒力N 8=F ,当小车向右运动速度达到m/s 5.1时,在小车的前端轻放一大小不计、质量为kg 2=m 的物块,物块与小车的动摩擦因数为2.0,小车足够长,则物块从放上小车开始经过s 5.1=t 通过的位移为多大? 例3. 某人质量kg 60=M ,一重物质量kg 50=m ,分别吊在一个定滑轮的两边。人握住绳子不动,则他落地的时间是t ,人若沿绳子向上攀爬,则他落地时间为t 2。若滑轮、绳子的质量及摩擦可不计,求此人往上爬时相对于绳子的加速度。

例4. 在天花板比地板高出m 2的实验火车的车厢里,悬挂着长为m 1的细线,细线下端连着一个小球,火车缓慢加速且加速度逐渐增大。问: (1)若加速度达到2 m/s 10时,细线恰好被拉断,则细线能承受的最大拉力为小球重力的多少倍? (2)若从细线被拉断的时刻起,火车的加速度保持不变则小球落地点与悬挂点之间的水平距离是多少? 例5. 如图所示,木柜宽l 2,其重心高度为h ,把木柜放于车上,车以加速度a 起动,试分析木柜在车上滑动、翻倒的条件,以防事故的发生。 例6. 如图所示,一质量为m 运动员骑摩托车在水平弯道上以速率v 转弯,车身与地面的夹角为α,其转弯半径为_________=R ,地面对摩托车的静摩擦力___________ =f 。

运动生物力学复习带答案

运动生物力学复习资料(本科) 绪论 1名词解释: 运动生物力学的概念:研究体育运动中人体及器械机械运动规律及应用的科学。 2填空题: (1)人体运动可以描述为:在(神经系统)控制下,以(肌肉收缩)为动力,以关节为(支点)、以骨骼为(杠杆)的机械运动。 (2)运动生物力学的测量方法可以分为:(运动学测量)、(动力学测量)、(人体测量)、以及(肌电图测量)。 (3)运动学测量参数主要包括肢体的角(位移)、角(速度)、角(加速度)等;动力学测量参数主要界定在(力的测量)方面;人体测量是用来测量人体环节的(长度)、(围度)以及(惯性参数),如质量、转动惯量;肌电图测量实际上是测量(肌肉收缩)时的神经支配特性。 2 简答题: (1)运动生物力学研究任务主要有哪些? 答案要点:一方面,利用力学原理和各种科学方法,结合运动解剖学和运动生理学等原理对运动进行综合评定,得出人体运动的内在联系及基本规律,确定不同运动项目运动行为的不同特点。另一方面,研究体育运动对人体有关器系结构及机能的反作用。其主要目的是为提高竞技体育成绩和增强人类体质服务的,并从中丰富和完善自身的理论和体系。具体如下: 第一,研究人体身体结构和机能的生物力学特性。 第二,研究各项动作技术,揭示动作技术原理,建立合理的动作技术模式来指导教学和训练。 第三,进行动作技术诊断,制定最佳运动技术方案。 第四,为探索预防运动创伤和康复手段提供力学依据。 第五,为设计和改进运动器械提供依据(包括鞋和服装)。 第六,为设计和创新高难度动作提供生物力学依据。

第七,为全民健身服务(扁平足、糖尿病足、脊柱生物力学)。 第一章人体运动实用力学基础 1名词解释: 质点:忽略大小、形状和内部结构而被视为有质量而无尺寸的几何点。 刚体:相互间距离始终保持不变的质点系组成的连续体。 平衡:物体相对于某一惯性参考系(地面可近似地看成是惯性参考系)保持静止或作匀速直线运动的状态。 失重:动态支撑反作用力小于体重的现象。 超重:动态支撑反作用力大于体重, 参考系:描述物体运动时作为参考的物体或物体群。 惯性参考系(静系):相对于地球静止或作匀速直线运动的参考系。 坐标系:为了定量的描述物体的运动,需要在参考系上标定尺度,标定了尺度的参考系即为坐标系。常用的是直角坐标系,又分为一维、二维、三维坐标系。 稳定平衡:人体在外力作用下,偏离平衡位置后,当外力撤除时,人体自然回复到平衡位置,而不需要通过肌肉收缩恢复平衡。特点:平衡时重心最低。 不稳定平衡:物体稍偏离平衡位置后,当去掉破坏平衡的力时,不能再恢复到原来的平衡位置。其特点是当物体偏离平衡位置时,其重心降低。 随遇平衡:人体在外力作用下,偏离平衡位置,当外力撤除时,人体既不回到原来的平衡位置,也不继续偏离原位置,而是在新的位置上保持平衡。特点:重心高度不变。有限度的稳定平衡:在一定的范围内,是稳定平衡,但超出范围时,偏离平衡位置则会失去平衡,成为不稳定平衡的情况。 2填空题: (1)运动是绝对的,但运动的描述是(相对的),因此在描述一个或物体的运动时,必须说明它相对于哪个物体才有明确的意义,称此物体为(参照物)。 (2)运动员沿400米跑道运动一周,其位移是(0 )米,所走过的路程是(400 )米。 (3)人体蹬起时,动态支撑反作用力大于体重,称为(超重)现象,下蹲时,动态支撑反作用力小于体重,称为(失重)现象。 (4)忽略空气阻力时,铅球从运动员手中抛出后只受到(重力)作用,这种斜抛运动可看作是由水平方向向上的(匀速直线)运动和竖直方向上的(匀变速度)运动的合

第四章 运动生物力学原理

第四章运动生物力学原理 第一节冲击动作的生物力学原理(李世明) 一、动作形式 在很多体育项目中存在碰撞现象,例如扣、踢以及拳击等动作都有碰撞现象。在这些碰撞动作中,运动链系统的远端环节(如踢球的脚,击球的手或器械等)尽量快地打击球或其它物体。在体育动作中,通过扣、踢等击打方式使人体四肢动量向运动器械实现转移的动作形式,我们可称之为冲击动作。 根据相互冲击的对象类型不同,可将体育运动中的冲击动作主要分为以下几种形式:人体对器械的冲击、人体对人体的冲击、人体对外界环境的冲击、器械对器械的冲击、器械对人体的冲击、器械对外界环境的冲击等。在这些冲击形式中,尽管有的形式人体不直接参与碰撞,如器械对外界环境的冲击,但是,这种形式仍然需要人使器械产生运动才能发生碰撞现象,如网球与地面的碰撞。这说明,无论是何种冲击形式,都需要人的参与,人的运动状态是不容忽视的。 (一)人体对器械的冲击 人体对器械的冲击主要包括排球运动中的扣球、发球和垫球,足球中的踢球、顶球,乒乓球、棒球、冰球、网球等的击球动作,表现形式为人体与器械之间的碰撞。体育动作中的绝大部分冲击性动作不仅仅是要使得人体环节动量有效完成传递,使器械获得较大的动量,还要求对器械击打的准确性、有效性。如网球中的击球、乒乓球中的扣球、羽毛球中的扣球以及排球中的扣球等都对运动中击打球的准确性有着很高的要求,因此,击打效果主要包括击打速度与击打准确性。如在排球扣球过程中,运动员的身体各环节的协调运动是高水平扣球的组成部分,而水平较低运动员的扣球是不协调的,在其环节的顺序活动中会存在许多重复动作,导致最终的打击球效果降低。 在排球技术中,由于球和前臂的接触时间较短,因此排球接发球也属于击球动作,但排球接发球,特别是排球接球并不是为了使球获得较大速度,而是为了获得更高的准确性,因此,技术因素在其中显得颇为重要。一般认为在接发球中前臂成功触球与下列三个因素有关(Marryatt & Holt, 1982): 1.触球时,手臂肘关节的角度越大(≈180°),接发球越成功。 2.触球时,左右臂的夹角越小(有效击球平面),接发球越成功。 3.在触球过程中,两肘关节中点轨迹与球反弹的轨迹间的差异越小,接发球越成功。 同排球扣球一样,在足球踢球运动中,运动员踢球效果也不仅仅表现在踢球的速度上,同等重要的还有踢球的准确性。在摆动腿前摆早期,大腿加速前摆的同时膝关节尽可能的靠近大腿,减少下肢的转动惯量,增加前摆速度,然后再通过伸小腿的方式加大转动半径,提高末端环节脚的线速度,从而提高脚踢 球的效果。有时为了踢出精准弧线球还要小关节(踝关节内旋发力)的密切配合,这都是提高准确击打球的重要因素所在。 人体对器械的冲击还存在另外一类,诸如体操中的一些推撑动作(如跳马)。在这些项目中,对碰撞之前的动作不象排球的击球动作一样要求较高,仅仅对运动员的助跑速度要求较高,根据动量定理可知,运动员在推撑过程中应该迅速有力,否则会因为运动员接触器械时间较长而减少了对人体的冲力,从而损失了水平速度,影响到动作的质量或完成。

运动生物力学的概念

一.运动生物力学的概念:运动生物力学的概念是研究体育运动中人体及器械机械运动规律的科学。 二.动能与势能的正确利用(高水平运动员动作的特征):1.高水平运动员在完成投掷动作时有效地利用了助跑速度。2.高水平运动员超越器械动作时间短,身体背弓大器械被充分引向身体后方。3.高水平运动员较好的利用了身体的动能及肌肉的弹性势能。 三.人体运动的形式:如果将人体简化为质点,人体运动可分为:直线运动和曲线运动。如果将人体简化为刚体,人体运动可分为:平动,转动和复合运动。2.斜抛物体的运动:1.定义:运动轨迹为抛物线 2.斜抛运动的构成:水平方向:匀速直线运动竖直方向:竖直上抛运动 四.牛顿第一定律(惯性定律):1.定义:任何物体,在不受力作用时,都保持静止或匀速直线运动状态。2.应用(保持跑速,动作连贯)牛顿第二定律及其应用1.定义F=ma 2:几点注意1.a是运动学量F是动力学量,他们都是矢量力是产生运动的原因,并且加速度方向与力的方向一致。 2.牛顿第二定律中的物体是被当做质点的 3.加速度与力同时出现同时消失,反应的是瞬时关系。应用:加速跑,超重,失重,弯道跑 五.牛顿第三定律及其应用:1.定义Fab=-Fba 2.应用:加速跑,起跳,投掷链球 六.动量与冲量 1.动量:K=mv 2.冲量:I=Ft 动量定理在体育中的应用1:落地缓冲动作:要减少对人体的冲力,就得延长力的作用时间。 七.人体平衡的力学条件人体平衡的力学条件是人体所受的合外力为零和合外力矩为零。表达式为:∑F=0,∑M=0 如:燕式平衡,单杠支臂悬垂 八.人体重心的概念:1.概念:人体全部环节所重力的合力的作用点,就叫人体重心 2.研究人体重心的意义:评定一个体育动作的质量,分析其技术特征和纠正错误动作等。都需要从人体重心的变化规律去分析,无论是动力性的动作还是静力性的姿势,探索其运动规律时,都离不开人体重心。 3.特点:人体中心不想物体那样恒定在一个点上,不仅在一段时间内,要受肌肉和脂肪的增长或消退等因素的影响,即使在每一瞬间,也要受呼吸,消化,血液循环等因素的影响,特别是在体育运动中,要受人体姿势变化的制约,随姿势的改变,有时甚至移出体外。例如:体操中的“桥”,背越式跳高的过杆动作等。 九.人体平衡的分类:1:根据支点相对中心位置分类:1:上支撑平衡:当人体处于平衡,切支撑点在人体重心上方,如:体操中的各类悬垂动作。2:下支撑平衡:当人体处于平衡,切支撑点在人体重心的下方,下支撑平衡在体育动作中最为常见如:站立,自由体操和平衡木的平衡动作以及田径,武术等。3:混合支撑平衡:是一种多支撑点的平衡状态,这时有的支撑点在人体重心上方,有的支撑点在人体重心下方。如:肋木侧身平衡根据平衡的稳定度分类:稳定平衡,不稳定平衡,随遇平衡,有限度的稳定平衡。 1:稳定平衡:人体在外力作用下,偏离平衡位置后,当外力撤除时,人体自然恢复平衡位置,而不需要通过肌肉收缩恢复平衡。如果物体偏离平衡位置的结果是物体重心升高,则该平衡是稳定平衡,多数上支撑平衡属于稳定平衡。如:单杠支臂悬垂 2:人体在外力的作用下,偏离平衡位置后,当外力撤除时,人体不仅不能回到原来的平衡位置,而是更加偏离平衡位置。如果物体偏离平衡位置的结果是物体的重心降低,则该平衡是稳定平衡,多数下支撑平衡属不稳定平衡。如:单臂手倒立 3:随遇平衡:人体在外力的作用下,偏离平衡位置后,当外力撤除时,人体既回不到原来的平衡位置,也不继续偏离原位置,而是在新位置上保持平衡。在体育中很少见。如:连续完成两个前滚翻。 4:有限度的稳定平衡:人体在外力作用下,一定限度内偏离平衡位置,当外力撤除时,人体回到平衡状态,但如果偏离平衡位置超过某一限度时,人体失去平衡。如:太极拳中的推手。

(完整版)弹性力学第十一章弹性力学的变分原理

第十一章弹性力学的变分原理知识点 静力可能的应力 弹性体的功能关系 功的互等定理 弹性体的总势能 虚应力 应变余能函数 应力变分方程 最小余能原理的近似解法扭转问题最小余能近似解有限元原理与变分原理有限元原理的基本概念有限元整体分析几何可能的位移 虚位移 虚功原理 最小势能原理 瑞利-里茨(Rayleigh-Ritz)法 伽辽金(Гапёркин)法 最小余能原理 平面问题最小余能近似解 基于最小势能原理的近似计算方法基于最小余能原理的近似计算方法有限元单元分析 一、内容介绍 由于偏微分方程边值问题的求解在数学上的困难,因此对于弹性力学问题,只能采用半逆解方法得到个别问题解答。一般问题的求解是十分困难的,甚至是不可能的。因此,开发弹性力学的数值或者近似解法就具有极为重要的作用。 变分原理就是一种最有成效的近似解法,就其本质而言,是把弹性力学的基本方程的定解问题,转换为求解泛函的极值或者驻值问题,这样就将基本方程由偏微分方程的边值问题转换为线性代数方程组。变分原理不仅是弹性力学近似解法的基础,而且也是数值计算方法,例如有限元方法等的理论基础。 本章将系统地介绍最小势能原理和最小余能原理,并且应用变分原理求解弹

性力学问题。最后,将介绍有限元方法的基本概念。 本章内容要求学习变分法数学基础知识,如果你没有学过上述课程,请学习附录3或者查阅参考资料。 二、重点 1、几何可能的位移和静力可能的应力; 2、弹性体的虚功原理; 3、 最小势能原理及其应用;4、最小余能原理及其应用;5、有限元原理 的基本概念。 §11.1 弹性变形体的功能原理 学习思路: 本节讨论弹性体的功能原理。能量原理为弹性力学开拓了新的求解思路,使得基本方程由数学上求解困难的偏微分方程边值问题转化为代数方程组。而功能关系是能量原理的基础。 首先建立静力可能的应力和几何可能的位移概念;静力可能的应力 和几何可能的位移可以是同一弹性体中的两种不同的受力状态和变形状态,二者彼此独立而且无任何关系。 建立弹性体的功能关系。功能关系可以描述为:对于弹性体,外力在任意一组几何可能的位移上所做的功,等于任意一组静力可能的应力在与上述几何可能的位移对应的应变分量上所做的功。 学习要点: 1、静力可能的应力; 2、几何可能的位移; 3、弹性体的功能关系; 4、真实应力和位移分量表达的功能关系。 1、静力可能的应力 假设弹性变形体的体积为V,包围此体积的表面积为S。表面积为S可以分为两部分所组成:一部分是表面积的位移给定,称为S u;另外一部分是表面积的面力给定,称为Sσ 。如图所示

非惯性系和惯性力错误--绝对与相对时空观

非惯性系和惯性力错误--绝对与相对时空观 杨山 (马鞍山传承教育物理组,安徽马鞍山,243000) 摘要:分析物理问题时我们要遵循客观性原则,当我们坐在加速的小车内看挂在天花板上的小球相对车厢静止且没有受力反而发生变化,于是引入了惯性力与非惯性系,其实这是主观意识造成的人为误导。地球之所以能看作惯性系是因为地球质量远大于观测物体,如果换作轮船上研究自行车的动力学问题,则轮船的质量不再像地球一样可以被忽略掉了。本文将遵循牛顿三定律,诠释如何正确运用三定律走出惯性力的教育误区。 关键词:牛顿三大定律;惯性力;非惯性系;力; 引言: 牛顿是一名伟大的物理学家,他在物理学方面的成就犹如中国古神话中的盘古有着开天辟地的意义。牛顿三定律是完美的,当我们误认为其存在缺陷而引入惯性系和非惯性系、惯性力等概念时反而破坏了三定律的完美。力的产生必然是相互作用的两个或几个物体,是一个系统问题,产生的效果也是系统效果,我们不应该孤立的去分析力的问题,三定律的力是物体间或者参考系间的相互作用产生,惯性系和非惯性系的引入从一定程度上起了误导作用,而使我们孤立的去分析力的问题。当然问题要追溯到牛顿本人木桶实验,这位伟大的物理学家没有能给完美的三定律一个更好的归宿。 牛顿经典力学有着一股难以抵抗的诱人之美,但是随着物理学的发展,牛顿力学出现了一些运用上的瑕疵,之后随着惯性系和非惯性系、引力质量与惯性质量、相对论等物理新理论的引入弥补了这一瑕疵,于是人类的时空观也发生了变化,牛顿定律成为了一种不完美的定律,其适用范围也只在惯性系中适用。其实牛顿定律并非如此局限,惯性系与非惯性系的划分[1]似乎对牛顿定律意义不大。正文: 关于惯性系与非惯性系的划分是教育误导,惯性力是不该引入的一种力。 先将牛顿三大定律摘录如下: 1)牛顿第一定律内容:任何物体都保持静止或匀速直线运动的状态,直到受到其它物体的作用力迫使它改变这种状态为止。 2)牛顿第二定律内容:物体在受到合外力的作用会产生加速度,加速度的方向和合外力的方向相同,加速度的大小正比于合外力的大小与物体的质量成反比。 3)牛顿第三定律内容:两个物体之间的作用力和反作用力,在同一条直线上,大小相等,方向相反。 自然界的变化有很多种,我们分别从相对性观点看下面两个变化的例子: ①如有A和B两个气球,B气球漏气变小。我们依据相对性原理选择B为参照系而会认为A相对于B变大了,这是唯心的主观意识,就算没有A做对比我们依旧可以说B变小了,因为B相对于自己的原来状态发生了绝对性变化。 ②如果有A和B两个人静止在地球上,当B做跑步运动时,我们一般认为B发生了运动,但是从相对性原理上我们可以认为A相对于B在发生了运动。但这只是一种相对性是主观错觉,这种观点犹如哲学的万物因我而动的观点。这一

对力学变分原理发展的一些回顾

对力学变分原理发展的一些回顾 ——严正驳斥何吉欢的造谣诽谤 刘高联 I)引言 从一月底开始,何吉欢匿名(不断变换着各种化名,如阿正、阿山、阿长江、东施等,有时也用本名)在互联网上对我、廖世俊、黄典贵等教授以及国家自然科学基金委和上海交大进行了大量的造谣诬蔑和人身攻击。只要是对他的学术错误、道德作风、申请奖励或基金等有过不同意见,你都会立即遭到他的恶意攻击,无一幸免,他完全是一套流氓势派。近5年来,何吉欢炮制了大量文章,其数量之滥、逻辑之混乱、错误之奇、手法之‘巧’,实在让我们大开眼界,不愧为造文章之圣手!就因为我最清楚他的品学底细,又不肯同他同流合污,因而就成了他欺世盗名、立地升天的唯一障碍,必欲去之而后快。于是竟搞起了恶人先告状的勾当,妄想通过互联网进行造谣诽谤宣传把我搞臭,他就可以自由飞升了。且慢,何吉欢自吹的‘伟大’发现(发现了Lagrange乘子的逻辑矛盾等)、践踏热力学第二定律、声称建立了国际上最好的变分原理等,都可以从他在国内外的‘巨著’白纸黑字中进行检验的,而他诬蔑我的剽窃也是有历史可查的,不是由他说了就算的。现在就让我们来看看事实。 II)连续介质力学变分原理简史 引入缩写:VP—变分原理;GVP—广义变分原理;SGVP—亚广义变分原理;GGVP—GVP的普遍形式;PDE—偏微分方程。

A)弹性力学: 1865、1873:Cotterill & Castigliano提出了弹性静力学最小势能、余能原理1914、1950:Hellinger & Reissner提出弹性静力学广义VP 1954、1955:胡-鹫(胡海昌-Washizu)广义VP 1979(1964):钱伟长用拉氏乘子法首先将最小势(余)能VP推广到GVP(机械工程学报,1979年第2期) 1983:钱伟长,高阶拉氏乘子法(应用数学和力学,1983年第2期) B)流体力学 1882:Helmholtz粘性缓流最小耗散VP 1929:Bateman势流的VP 1955、1963:Herivel-Lin欧拉型GVP(林氏约束) 1979(1976):刘高联,旋成面叶栅正命题VP与GVP(力学学报,1979年第4期)全国叶轮机气动热力学交流会(1976年5月,北京) 1980(1978):刘高联,旋成面叶栅杂交命题GVP(Scientia Sinica, 1980, No. 10)1984:钱伟长,粘性VP(用权余法从PDE导VP)(应用数学和力学,1984年第3期) 1985:胡海昌,关于拉氏乘子及其它(力学学报,1985年第5期) III)建立与PDE对应的VP的方法: A)数学方法: 1)Vainberg定理:对N - f = 0 VP存在性要求N对称,即为有势算子(充分,但非必要)

惯性系与非惯性系之间的物理规律的有关讨论

目录 摘要 (1) Abstract........................................... 错误!未定义书签。 1 引言 (1) 2 参考系的基本概念透析 (2) 2.1 参考系 (2) 2.2 惯性系和非惯性系 (2) 2.3 非惯性参考系的应用范围 (2) 3 非惯性参考系中的力学研究 (2) 3.1 非惯性参照系与惯性力 (2) 3.2 牛顿水桶实验 (3) 3.3 非惯性参照系与科里奥利惯性力 (4) 3.4 科里奥利加速度的实质 (4) 4 广义相对性原理 (4) 5 非惯性参照系附加引力场 (5) 6 总结 (5) 参考文献 (5)

惯性系与非惯性系之间的物理规律的有关讨论 摘要:汽车开动,人向后仰,刹车时人向前倾,与平稳前进时完全两样,类似的情况还很多。这些现象使人们在动力学中把参照系分为两类:惯性系与非惯性系。在一般问题中,地球可看成是惯性系,匀速直线运动的汽车也是惯性系,正在开动或刹车的汽车是非惯性系。从地球上考察,刹车时人向前倾正符合惯性定律;从汽车上考察,人在水平方向未受力而向前倾,这不符合牛顿定律。为什么牛顿定律不适用于非惯性系?非惯性系中的运动定律是怎样的?本文拟就这些问题做一简单讨论。 关键词:参考系;惯性系;非惯性系;广义相对论 Inertial and non-inertial reference system between the physical laws about discuss Abstract:The car started, people leaned back, when the brake is person to lean forward, and smooth progress completely different, similar case has a lot of. These phenomena so that people in the dynamics in the reference frame is divided into two categories: inertial and non-inertial reference system. In general, the earth can be thought of as the inertial system, uniform linear motion of the car is inertial system, moving or brakes is non inertial system. From the earth expedition, when the brake is in line with the law of inertia people forward; from the car inspection, people in the horizontal direction without force and forward, this does not accord with Newton's laws. Why Newton's law is not applicable to non inertial system? In non-inertial motion law is how? This paper tries to make a simple discussion of these issues. Key words:Reference system; Inertial system; Non inertia system; General relativity 1 引言 对一切运动的描述,都是相对于某个参考系的。参考系选取的不同,对运动的描述,或者说运动方程的形式,也随之不同。人类从经验中发现,总可以找到这样的参考系:其时间是均匀流逝的,空间是均匀和各向同性的;在这样的参考系内,描述运动的方程有着最简单的形式。这样的参考系就是惯性系。而相反的,相对于惯性系(静止或匀速运动的参考系)加速运动的参考系称为非惯性系参考系。地球有自转和公转,我们在地球上所观察到的各种力学现象,实际上是非惯性系中的力学问题,因此,研究惯性系与非惯性系中的各种物理现象、总结其规律对于我们认识世界、改造世界有其重大意义。 2 参考系的基本概念透析

伽利略的相对性原理

伽利略的相对性原理 最早提出相对论的主题即运动的相对性问题的,是近代科学之父伽利略。在中世纪的欧洲,托勒密的地球中心说长期以来占据着统治地位。而伽利略则拥护哥白尼的太阳中心说。当时的学者们强烈反对伽利略关于“地球在运动”的观点,其理由如下:(1)我们感觉不到地球在运动。(2)如果地球既有公转也有自转,那么地球上的物体岂不是都会被向后抛吗?(3)如果地球在自西向东自转的话,那么从高处由静止落下的石头,将不会落到正下方,而必然会落到偏西的位置。不是没有观察到这样的事实吗? 实际上地球的自转速度是很大的,在赤道上达到了每秒460米。对于这些批评,伽利略分别进行了如下反驳。对于第一点,我们感觉不到地球在运动,与我们乘坐以匀速运动的船时感觉不到船在运动是一样的。这种想法与相对性原理以及作为相对论的基础的惯性系的概念相联系。对于第二点和第三点,因为地球上的物体与地球一起运动着,下落的石头在水平方向与地球以同样的速度运动,所以仍然会落到正下方,这个观点与惯性定律相联系。 惯性定律可以表述为:“如果物体完全不受外力作用,它将保持匀速直线运动状态(静止的物体将保持静止)。”这是由笛卡儿继承伽利略的观点最终完成的。惯性定律看起来像是最理所当然的定律,实际上并非如此。在日常生活中,运动的物体会自然地停止下来。这是因为摩擦力和空气阻力是不可避免的。在伽利略以前,人们认为像大炮的炮弹等投掷出去的物体依靠最初获得的“势”而运动,失去势以后就会停止下来。而伽利略和笛卡儿则洞察到如果没有外力作用,物体具有保持匀速直线运动的性质。以后,这个定律成了力学的基本定律。伽利略。笛卡儿不能用实验完全证明惯性定律,这是由于在地球上不可能实现没有摩擦和空气阻力的环境。现在,可以清楚地看到惯性定律的作用,在无重力的宇宙飞船中就可以直截了当地看到。观看关闭发动机后航行的宇宙飞船中的情景,物体一旦开始运动就不会停止,从中能很好地理解惯性定律的正确性。 惯性系 那么,惯性定律在任何地方都成立吗?不,并非在任何地方都成立。在作匀速直线运动的电车和汽车中,与在地面上一样,惯性定律是成立的。但是,当电车和汽车起动、刹车和沿弯道行驶时它就不成立了。放在电车地板上的圆球,当电车起动时自然会开始滚动。在沿着弯曲的道路行驶的电车中,圆球不会沿直线运动。即在速度和运动方向变化的地方(非惯性系),惯性定律不成立。

弹性力学第十一章弹性力学的变分原理

第十一章 弹性力学的变分原理 几何可能的位移 虚位移 虚功原理 最小势能原理 瑞利-里茨 (Rayleigh-Ritz) 法 伽辽金(Γa∏epκuH )法 最小余能原理 平面问题最小余能近似解 基于最小 势能原理的近似计算方法 基于最小余能原理的近似计算方法 有限元单元分析 一、内容介绍 由于偏微分方程边值问题的求解在数学上的困 难,因此对于弹性力学问题, 只能采用半逆解方法得到个别问题解答。 一般问题的求解是十分困难的, 甚至是 不可能的。因此,开发弹性力学的数值或者近似解法就具有极为重要的作用。 变分原理就是一种最有成效的近似解法,就其本质而言,是把弹性力学的基 本方程的定解问题, 转换为求解泛函的极值或者驻值问题, 这样就将基本方程由 偏微分方程的边值问题转换为线性代数方程组。 变分原理不仅是弹性力学近似解 法的基础,而且也是数值计算方法,例如有限元方法等的理论基础。 本章将系统地介绍最小势能原理和最小余能原理, 并且应用变分原理求解弹 性力学问题。最后,将介绍有限元方法的基本概念。 本章内容要求学习变分法数学基础知识,如果你没有学过上述课程,请学习 附录3或者查阅参考资料。 知识点 静力可能的应力 弹性体的功能关系 功的互等定理 弹性体的总势能 虚应力 应变余能函数 应力变分方 程 最小余能原理的近似解 法 扭转问题最小余能近似解 有限元原理与变分原理 有限元原理的基本概念 有 限元整体分析

、重点 1几何可能的位移和静力可能的应力;2、弹性体的虚功原理;3、最小势能原理及其应用;4、最小余能原理及其应用;5、有限元原理的基本概念。 §11.1弹性变形体的功能原理 学习思路: 本节讨论弹性体的功能原理。能量原理为弹性力学开拓了新的求解思路,使 得基本方程由数学上求解困难的偏微分方程边值问题转化为代数方程组。而功能关系是能量原理的基础。 (Tt UJ C 首先建立静力可能的应力「:,和几何可能的位移’概念;静力可能的应力 和几何可能的位移;可以是同一弹性体中的两种不同的受力状态和变形状态,二者彼此独立而且无任何关系。 建立弹性体的功能关系。功能关系可以描述为:对于弹性体,外力在任意一组几何可能的位移上所做的功,等于任意一组静力可能的应力在与上述几何可能的位移对应的应变分量上所做的功。 学习要点: 1、静力可能的应力; 2、几何可能的位移; 3、弹性体的功能关系; 4、真实应力和位移分量表达的功能关系。 1、静力可能的应力 假设弹性变形体的体积为V,包围此体积的表面积为S。表面积为S可以分为两部分所组成:一部分是表面积的位移给定,称为S u;另外一部分是表面积的面力给定,称为S O如图所示

大学物理(2.2.2)--常见力非惯性系惯性力

一、几种常见的力 1.万有引力(Law of Gravitation ) 1)文字叙述:在两个相距为r ,质量分别为m 1,m 2的质点间有万有引力,其方向沿着它们的连线,其大小与它们的质量的乘积成正比,与它们之间的距离的平方成反比,即2)数学表示 0221 r r m m G F = ——引力质量Gravitational Mass 其中 211..1067.6--?=kg m N G ——引力常量。 2.重力(Gravity )——本质上归结于万有引力。 1)文字叙述:物体重力就是指忽略地球的自转效 应时,地球表明附近物体所受的地球的引力,即物体与 地球之间的万有引力。其方向指向地心。 2)数学表示 G=mg g=9.8m.s -2——重力加速度。 3)思考题: 赤道的重力加速度大还是两极的重力加速度大?为什么? 3.弹性力(Elastic Force ) 大家知道,两个物体相互接触,彼此将产生形变,使其内部产生反抗力——形变恢复力(弹性力)。形变是产生弹性力的条件之一。例如:板擦和桌子相互接触,彼此有了一定的形变,在各自的接触部分产生弹性力。所以,弹性力是一种与物体的形变有关的接触力。即发生形变的物体,由于要恢复原状,对与它接触的物体会产生力的作用,这种物体因形变而产生欲使其恢复原来形状的力叫做弹性力。常见的弹性力有:1)弹簧中的弹性力:弹簧被拉伸或压缩时产生的弹性力。 胡克定律(Hooke Law ):在弹性限度内,弹性力的大小与弹簧的伸长量成正比,方向指向平 衡位置。 数学表示 f=-kx—— k 为弹簧的劲度系数(Stiffness )。 k 的值决定于弹簧本身的性质。而弹簧弹性力的方向总是指向平衡位置。 2)绳子被拉紧时所产生的张力 绳的张力:即绳内部各段之间的弹 性作用力。下面以AB 段为研究对象,设 其质量为m A 点和B 点的张力:'A A T T -=、'B B T T -=由牛顿第二定律:a m T T B A =+(1)当a =0或者m →0时,F T T B A =-=',绳子上各点张力相同而且拉力相等。 (2)当a ≠0,而且m ≠0 (绳子质量不能忽略时),绳子上各点的张力不F 图2-2 弹簧的弹力 m

从运动生物力学原理谈运动损伤的发生原因及防治

·运动医学· 从运动生物力学原理谈运动损伤 的发生原因及防治 戈定(同济医科大学式汉‘30030) 摘要:运动损伤的发生原因多种多样,但从根本_卜讲.上要是由于运动训练及技术动作违背r 运 动解剖学、生理学及生物力学的科学原理所致。本文欲探讨此力一面生物力学的原因及防治方法。 关键词:运动生物力学,运动损伤,原因,防治 On the Causes of Exercises Injury and Prevention,Treatment from the Perspective of Sports E3iomechanics (*e Dcn} (Tuug.lt Me准备活动的不够充分;<3>场地、器材的小合理或突然变异的情况;机体机能状态低卜时的超负荷运动3}. 综卜所述,运动损伤以运动系统的创伤为主,多发生于从事运动训练及体育锻炼的人群之 中,尤以刚开始从事卜述活动的人为多数,发生的原因主要以技术动作的不合.理,场地器材的 不规范,以及超负荷大强度的运动训练所致。所谓技术动作不合理,实际_卜就是运动时的技术 动作不符合本人人体解剖结构及生理机能的客观条件要求,不符合运动生物力学的规律,这类 技术动作有些是竞技体育的客观要求,但大多数则是对卜述知识、概念的掌握不够,认识不足 所造成的,所以从人体解剖、生理学及运动生物力学的观点来看一,错误的动作技术既不利于人 体竟技水平、运动能力的提高,义是造成运动损伤的必然因素。本文研究的目的就在于提高人 们对此问题的认识,努力消灭造成运动损伤的必然因素,增加知识,提高预见度,尽[__L 避免运动

非惯性系中的力学

非惯性系中的力学 牛顿运动定律只适用于惯性系,在非惯性系中,为了能得到形式上与牛顿第二定律一致的动力学方程,就需要引入惯性力的概念. 一.直线加速系中的惯性力 设非惯性参考系的加速度为a 参,物体相对于参考系的加速度为a 相 ,物体实际的加速度为a 绝, 则有: a绝= a参+a相.那么,物体”受到”的惯性力F惯=-m a参,其方向与a参的方向相反. 惯性力是虚构的力,不是真实力,因此,惯性力不是自然界中物体间的相互作用,因此不属于牛顿第 三定律涉及的范围之内,它没有施力物体,不存在与之对应的反作用力. 在非惯性系中,考虑到惯性力后的动力学方程为: 式中, F 合 为物体实际受到的合力. 二,匀速转动系中的惯性力 圆盘以角速度ω绕铅直轴转动,在圆盘上用长为r的轻线将质量为m的小球系于盘心且小不球相对于圆盘静止,即随盘一起作匀速圆周运动.从惯性系观察,小球在线拉力T的作用一下作圆周运动,符合牛顿第二定律.以圆盘为参考系,小球受到拉力T的作用,却保持静止,没有加速度,不符合牛顿第二定律.所以,相对于惯性系作匀速转动的参考系也是非惯性系,要在这种参考系中保持牛顿第二定律 形式不变,在质点静止于此参考系的情况下,应引入惯性力:F 惯 =mω2r.这个力叫做惯性离心力.若质点静止于匀速转动的参考系中,则作用于此物体所有相互作用力与惯性离心力的合力等于零,即: 例1.在火车车厢内有一长l,倾角为的斜面,当车厢以恒定加速度a0从静止开始运动时,物体自倾角为θ的斜面顶部A点由静止开始下滑,已知斜面的静摩因数为μ,求物体滑至斜面底部B点时,物体相对于车厢的速度,并讨论当a0与μ一定时,倾角θ为多大时,物体可静止于A点? 例2.如图所示,定滑轮A的一侧持有m1=5kg的物体,另一侧挂有轻滑轮B,滑轮B两侧挂着民m2=3kg,m3=2kg的物体,求每个物体的加速度。

运动生物力学 教案

运动生物力学教案(1) 授课内容 第一章运动生物力学概念 一、运动生物力学的概念 1、生物力学是研究活体系统机械运动规律的科学。 生物力学分为两大类: (1)普通生物力学(或称理论生物力学) (2)局部生物力学(或称应用生物力学),例如:人类工程生物力学、劳动生物力学、整形生物力学等等。 2、运动生物力学是研究体育运动中人体机械运动规律的科学。

人体复杂的运动技术建立在生物学和力学的规律之上,运动生物力学用数学、力学等对运动动作加以定量描述。 运动生物力学从力学角度和生物学角度进行研究,以力学、解剖学、生理学和各专项技术理论为基础,研究人体的动作技术原理,以及最佳运动技术。 人体机械运动表现为两种形式: (1)人体自身发生的形变,即人体各环节之间相对的位移运动。 (2)相对于其周围环境而发生的位移运动。 牛顿定律适用条件:刚体运动,而生物体会发生明显的形变。 因此在人体运动中具体应用时要进行适当变通,研究活体时须注意各种力对生物体所做的功。 二、运动生物力学的任务和内容 (一)运动生物力学的任务 1、研究运动员身体结构和机能的生物力学特征 2、研究各项动作技术,确立动作技术原理,建立动作技术模式来指导教学和训练 3、结合运动员个人的身体形态,机能和运动素质等特点研究适合个人的最佳动作技术方案和进行运动技术诊断。 4、探索预防运动创伤和康复手段的力学依据 5、设计和改进运动器械,运动器械应符合运动生物力学原理。 (二)运动生物力学的内容 1、运动生物力学概论:概念、任务内容、发展史。 2、人体运动实用力学基础:运动生物力学以力学理论研究人体机械运动规律,因此人体运动的运动学、动力学、静力学、转动力学、流体力学等等是运动生物力学的基础知识。 3、骨、肌肉及人体基本活动的生物力学。如:骨、骨械杆原理、肌肉结构的力学模型,肌肉收缩的力学特性和功能关系;人体各环节运动的基本形式和力学原理等。 4、人体运动数据采集和处理。 5、动作技术的生物力学分析,如:投掷、跳远、跑步、球类、游泳等动作的力学分析。 三、运动生物力学的发展简史

伽利略相对性原理

伽利略相对性原理 相对运动概念在应用到自由度数很大甚至无限大的系统时就会受到限制.可是只要我们回到那种不可分割的,整体连续的表象,只要我们放弃单个物体位置和运动的参数变化以及为些所必备的坐标系,那么绝对运动和相对运动的对立就被撤消了.对某一宏观体积中质点的热运动来说,相对性的概念就没有什么用途.不过当我们规定系统的自由度数不太大,并且可以不间断地记录每一质点的位置和速度,那么相对性的概念还可以保持下来.这样,要是可以把宇宙气体(不去研究里面个别质点的位置和速度)同连续介质组成一体的话,牛顿的绝对空间或许就获得唯理论的意义.当绝对空间具有洛仑兹那种全部充满空间以太的特征的时候,绝对空间也同样会获得唯理论的意义.(尽管已为后来的一系列实验所驳倒)在物理学中,力学的终极概念得到了因果解释.对物理学来说,力的概念(力场的概念)是个必须加以分析的概念.物理学确定了力的数值,在个别情况下,当质点无摩擦地运动时(即摩擦力可以忽略时)力可以是坐标的函数.这种函数的形式应由引力论、弹性理论、电动力学理论中对引力、弹性力、电力、磁力的研究给出,并且这种研究与力学不同,完全按另一种方式进行,这些力已不再是终极概念,恰恰相反,现代科学的任务正是要用物理的或数学的方法把它们从另外的量推演出来. 划分物理学和力学的界限也就把场方程和运动方程加以区分.或许正如前面所指出的那样,既然忽略了离散存在质点和场的相互作用,所以场方程和运动方程都是线性的.在用抽象的理论认证某个质点的时候在力学上就把这个质点看成是一种纯属被动的实体,而力也就施加在它上面,同时又和这个质点本身无关,这也正是解决力学问题的前提.在场论中力场被相应地看成所谓被动的一面,看成是不依赖于场的粒子(即场源)的函数.根据力来确定运动,根据力与坐标的关系确定力是牛顿在《自然哲学的数学原理》中所提出的两个问题.在解决第一个问题时,牛顿依据的是他所阐明的运动公理.同时在《原理》中还解决了另一个问题,确定了把力(引力)和坐标联系起来的函数的形式.如所周知,这是古典物理学的出发点.以后物理学的其他部门就是按牛顿的引力场的式样构成的. 在物理学发展的影响下,当力学把标量也包括到自己的基本概念之中的时候,已知力和初始条件就能决定质点位置的牛顿运动方程将要被另一种方程所取代. 就科学思维能力和风格的影响来说只有极少数的科学发现可以同广义坐标方法相提并论.把空间中质点的位置,即古典力学的原始的形象和被当成是多维“空间”的点的系统的位形相对应,从几何的观点来说这是在拉格朗日把四维时空引入科学之后所采取的下一个步骤.当达朗贝尔在《百科全书》【4】的量度一文中写到他的一些“机敏的熟人”把时间看

第3章_弹性力学经典变分原理

第3章 弹性力学经典变分原理 3.1 弹性力学基础 3.1.1 变形分析 要研究物体变形首先要研究其位移如何来描述。在数学上,我们引进物质坐标和空间坐标的概念分别来描述物体上某一点的位置变动,具体说来,先取一Descartes 坐标系做参照系,变形前物体的构形为B ,其每个质点的位置可用一组我们称之为物质坐标的坐标值来表示;变形后物体的构形变成B ’,取另一个Descartes 坐标系做参照系,我们称之为空间坐标系。如下图,变形前任一点P在物质坐标系中的坐标为),,(321X X X ,变形后P 变化到Q 点在空间坐标系中的坐标为),,(321x x x 。 图3.1物质坐标系和空间坐标系 矢量PQ 表示了质点P 的位移,记为u 。为简单和方便起见,一般取两个参照系相重合,这时位移矢量u 的分量i u 可以用下式来表示 ,(1,2,3)i i i u x X i =-= (3.1.1) 其中变形后质点的坐标)3,2,1(=i x i 与变形前的坐标)3,2,1(=i X i 存在着确定的关系。我们可以把变形后质点的坐标看成是变形前质点物质坐标的函数,即 123(,,), (1,2,3)i i x x X X X i == (3.1.2) 也可以用其逆变换 (数学上要求Jacobi 行列式不为零) 来表述,也就是从变形后空间坐标描述的质点,来追涉变形前这一质点的坐标 123(,,),(1,2,3)i i X X x x x i == (3.1.3) 如果把位移u 看作是变形前坐标、即物质坐标的函数 123(,,), (1,2,3)i i u u X X X i == (3.1.4) 称之为Lagrange 描述。如果把位移u 看作是变形后坐标、即空间坐标的函数 123(,,),(1,2,3)i i u u x x x i == (3.1.5) 称之为Euler 描述。 我们取变形前P 点),,(321X X X 及相邻P’112233(d ,d ,d )X X X X X X +++,它们之间的长度平方为

相关主题
文本预览
相关文档 最新文档