当前位置:文档之家› 空气制冷循环最优性能解析

空气制冷循环最优性能解析

空气制冷循环最优性能解析
空气制冷循环最优性能解析

溴化锂吸收式制冷原理

溴化锂吸收式制冷原理 溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水,多用于空调系统。 溴化锂的性质与食盐相似,属盐类。它的沸点为1265℃,故在一般的高温下对溴化锂水溶液加热时,可以认为仅产生水蒸气,整个系统中没有精馏设备,因而系统更加简单。溴化锂具有极强的吸水性,但溴化锂在水中的溶解度是随温度的降低而降低的,溶液的浓度不宜超过66%,否则运行中,当溶液温度降低时,将有溴化锂结晶析出的危险性,破坏循环的正常运行。溴化锂水溶液的水蒸气分压,比同温度下纯水的饱和蒸汽压小得多,故在相同压力下,溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力,这是溴化锂吸收式制冷机的机理之一。 溴化锂吸收式制冷原理同蒸汽压缩式制冷原理有相同之处,都是利用液态制冷剂在低温、低压条件下,蒸发、气化吸收载冷剂(冷水)的热负荷,产生制冷效应。所不同的是,溴化锂吸收式制冷是利用“溴化 锂一水”组成的二元溶液为工质对,完成制冷循环的。 在溴化锂吸收式制冷机内循环的二元工质对中,水是制冷剂。在真空(绝对压力:870Pa)状态下蒸发,具有较低的蒸发温度(5℃),从而吸收载冷剂热负荷,使之温度降低,源源不断地输出低温冷水。 工质对中溴化锂水溶液则是吸收剂,可在常温和低温下强烈地吸收水蒸气,但在高温下又能将其吸收的水分释放出来。制冷剂在二元溶液工质对中,不断地被吸收或释放出来。吸收与释放周而复始,不断循环,因此,蒸发制冷循环也连续不断。制冷过程所需的热能可为蒸汽,也可利用废热,废汽,以及地下热水(75'C以上)。在燃油或天然气充足的地方,还可采用直燃型溴化锂吸收式制冷机制取低温水。这 些特征充分表现出溴化锂吸收式制冷机良好的经济性能,促进了溴化锂吸收式制冷机的发展。 因为溴化锂吸收式制冷机的制冷剂是水,制冷温度只能在o℃以上,一般不低于5℃,故溴化锂吸收式制冷机多用于空气调节工程作低温冷源,特别适用于大、中型空调工程中使用。溴化锂吸收式制冷机在某些生产工艺中也可用作低温冷却水。 第一节吸收式制冷的基本原理 一、吸收式制冷机基本工作原理 从热力学原理知道,任何液体工质在由液态向气态转化过程必然向周围吸收热量。在汽化时会吸收汽化热。水在一定压力下汽化,而又必然是相应的温度。而且汽化压力愈低,汽化温度也愈低。如一个大气压下水的汽化温度为100~C,而在o.05大气压时汽化温度为33℃等。如果我们能创造一个 压力很低的条件,让水在这个压力条件下汽化吸热,就可以得到相应的低温。 一定温度和浓度的溴化锂溶液的饱和压力比同温度的水的饱和蒸汽压力低得多。由于溴化锂溶液和水之间存在蒸汽压力差,溴化锂溶液即吸收水的蒸汽,使水的蒸汽压力降低,水则进一步蒸发并吸收热量,而使本身的温度降低到对应的较低蒸汽压力的蒸发温度,从而实现制冷。 蒸汽压缩式制冷机的工作循环由压缩、冷凝、节流、蒸发四个基本过程组成。吸收式制冷机的基本工作过程实际上也是这四个过程,不过在压缩过程中,蒸汽不是利用压缩机的机械压缩,而是使用另一种方法完成的。如图2—1所示,由蒸发器出来的低压制冷剂蒸汽先进人吸收器,成在吸收器中用一种液态吸收剂来吸收,以维持蒸发器内的低压,在吸收的过程中要放出大量的溶解热。热量由管内冷却水或其他冷却介质带走,然后用溶液泵将这一由吸收剂与制冷剂混合而成的溶液送人发生器。溶液在发

压缩空气制冷循环

压缩空气制冷循环 压缩空气制冷循环以空气为工质,其循环的装置简图见图6-21,循环的 图和图如图6-22所示。从冷库出来的空气状态为1,其温度(为冷库温度)压力为,接着进入压缩机进行压缩,升温升压到、,再进入 冷却器进行定压放热,温度下降到(=),然后进入膨胀机实现膨胀,使压 力下降到,温度进一步下降到最后进(),入冷库进行定压吸热过 程完成循环。循环的最高压力与最低压力之比称作增压比,用表示。 进行循环分析时,为突出主要问题,假定所有的过程都是可逆过程、在压缩机内的压缩过程及膨胀机内的膨胀过程均为可逆绝热过程并且空气可作为比热容取定值的理想气体。 压缩空气理想制冷循环的构成与燃气轮机装置定压加热理想循环一样仅是方向相反?是的,在热力学分析上,压缩空气制冷循环可以视为布雷敦逆循环。 参看图6-22,循环中工质从低温热源(冷库)吸热量亦即循环中工质的制冷量: 排向高温热源的热量为 压气机消耗的功为 膨胀气缸中回收的功为

所以,循环消耗的净功是 因此,循环的制冷系数为 考虑到1-2,3-4都是可逆绝热过程,因而有 将之代入制冷系数表达式可得 (6-20) 上式表明,循环增压比越小,制冷系数越大。但增压比越小,单位质量工质的制冷量也越小。当由(/)下降到(/)时制冷量也由面积1-4-4’-1’-1下降为面积1-9-9’-1’-1。所以,不能太小。 在相同的低温热源(冷库)和高温热源之间工作的卡诺逆循环的制冷系数为 与式(6-20)比较,因为,所以,这里再次看到相同温度两热源(和)之间卡诺逆循环的制冷系数最大。 压缩空气制冷循环的制冷量为 (6-21) 式中,是循环工质的质流量。可见制冷量取决于温差和质流量。

吸收式制冷分析

第七章 吸收式制冷 吸收式制冷是液体气化制冷的另一种形式,它和蒸气压缩式制冷一样,是利用液态制冷剂在低温低压下气化以达到制冷目的的。所不同的是:蒸气压缩式制冷是靠消耗机械功(或电能)使热量从低温物体向高温物体转移,而吸收式制冷则依靠消耗热能来完成这种非自发过程。 第一节 吸收式制冷的基本原理 一、基本原理 对于吸收剂循环而言,可以将吸收器、发生器和溶液泵看作是一个“热力压缩机”,吸收器相当于压缩机的吸入侧,发生器相当于压缩机的压出侧。吸收剂可视为将已产生制冷效应的制冷剂蒸气从循环的低压侧输送到高压侧的运载液体。 二、吸收式制冷机的热力系数 蒸气压缩式制冷机用制冷系数ε评价其经济性,由于吸收式制冷机所消耗的能量主要是热能,故常以“热力系数”作为其经济性评价指标。热力系数ζ是吸收式制冷机所获得的制冷量0φ与消耗的热量g φ之比。 g φζφ= (7-1) 图7-1 吸收式与蒸气压缩式制冷循环的比较 (a )蒸气压缩式制冷循环 (b )吸收式制冷循环 (b ) (a )

0g a k e P φφφφφ++=+= (7-2) 00g e S S S S ?=?+?+?≥ (7-3) 0g e g e S T T T φφφ?=- - + ≥ (7-4) g e e g g T T T T P T T φφ--≥- (7-5) ) () (000T T T T T T e g e g g --≤ =φφζ (7-6) 最大热力系数ζmax 为 c c 0 max εηζ=--= T T T T T T e g e g (7-6a) 热力系数ζ与最大热力系数ζmax 之比称为热力完善度ηa ,即 max a ζηζ= (7-7) 第二节 二元溶液的特性 一、二元溶液的基本特性 B A v v V )1(1ξξ-+= (7-8) 两种液体混合前的比焓 k 蒸发器冷媒 环境 发生器热媒 图7-2 吸收式制冷系统与外界 的能量交换 图7-3 可逆吸收式制冷循环

制冷除湿

工业恒湿恒湿机系统的运作是通过三个相互联系的系统:制冷剂循环系统、空气循环系统、电器自控系统; 制冷剂循环系统: 蒸发器中的液态制冷剂吸收空气的热量(空气被降温及除湿)并开始蒸发,最终制冷剂与空之间形成一定的温度差,液态制冷剂亦完全蒸发变为气态,后被压缩机吸入并压缩(压力和温度增加),气态制冷剂通过冷凝器(风冷/水冷)吸收热量,凝结成液体。通过膨胀阀(或毛细管)节流后变成低温低压制冷剂进入蒸发器,完成制冷剂循环过程。 空气环系统: 风机负责将空气从回风口吸入,空气经过蒸发器(降温、除湿),加湿器,电加热器(升温)后经送风口送到用户需的空间内,送出的空气与空间内的空气混合后回到回风口。 电器自控系统: 包括电源部分和自动控制部分。

电源部分通过接触器,对压缩机、风扇、电加器器,加湿器等供应电源 自动控制分部分又分为温、湿度控制及故障保护部分: 温、湿度控制是通过温、湿度控制器,将回风的温湿度与用户设定的温湿作对比,自动运行压缩机(降温、除湿),加湿器,电加热(升温)等元件,实现恒温恒湿的自动控制 故障保护控制是通过压力保护、延时器、继电器、过载保护等相互组合达到,对压缩机,风机,加湿器等元件进行故障保护的控制

自动调温除湿机的工作原 理 自动调温除湿机运作是通过三个相互联系的系统:制冷剂循环系统、空气循环系统、电器自控系统;

制冷剂循环系统: 蒸发器中液态制冷剂吸收空气中的热量并开始蒸发,空气降温除湿,液态制冷剂亦完全蒸发变为气态,后被压缩机吸入并压缩(压力和温度增加) 高温高压气态制冷剂通过电磁阀控制流向: 当流向③冷凝器(回热) 时,制冷剂向室内排放热量使空气升温,实现升温除湿;(升温除湿模式) 当流向⑦冷凝器(散热) 时,制冷剂通过冷却塔或风扇向室外排放热量,实现降温除湿;(降温除湿模式) 制冷剂压冷凝器内凝结成液体。通过膨胀阀(或毛细管)节流后变成低温低压制冷剂进入蒸发器,完成制冷剂循环过程。

工程中,为什么不采用压缩空气制冷循环

空气作为制冷剂,在压缩机中压力过大 空气的的常温沸点在-190度,要使空气在常温下冷凝需要很高的压力,高压力对压缩机,及压力容器的要求会提高很多,高低压压差很大,膨胀阀也比较难选型,而且我个人认为压缩空气的电损耗很大 空气制冷的特点及应用 1.制冷工质是空气,容易取得,且安全无害。 2.因为空气本身既是制冷剂又是载冷剂,所以可以采用直接吸热循环,省去负载热交换器和载冷体循环动力,可直接为被冷却物体工地温环境。 3.空气压缩制冷实际流程灵活多变,对于不同使用要求的适应行强。 4.很容易实现高温、低温实验共用一室的方案。 5.利用空气压缩制冷易于获得较低温度剂直接吸热的特点,可以采用蓄冷循环,实现利用小容量制冷设备短时供应大冷量的目的. 6.空气压缩式制冷的最大缺点是制冷系数小,在较高的使用温度下空气压缩式制冷的单位轴功率产冷量小于蒸气压缩式制冷量,且使用温度越高,相差也越大。另外,噪音大是空气制冷的又一缺点,但通过噪音控制措施,可以的到改善。 空气压缩式制冷主要在以下几个方面得到应用:空气调节系统,如飞机空调系统大都采用这种制冷方式;低温环境实验;生产工艺过程的快速冷却;气体液化与低温分离装置等。 混合空气做制冷剂在技术上不是问题,问题在于它的绝热指数很高,要使它在常温常压下相变极不经济。飞机空调却能够应用是因为高空环境条件不同,使上述的不经济变为经济,不可能变为可能,仅此而已 逆布雷顿(Brayton)循环 逆布雷顿循环最初亦用于热力发动机。逆向布雷顿循环可用来制冷(简称逆布雷顿循环)。它的制冷原理是利用等熵膨胀制冷效应。单级循环适用于77-150K的温度范围。两级循环适用于20K,最低温度可达12K。布雷顿循环由压缩机、膨胀机及换热器组成。从理论上分析,循环有最佳压比,相应的功率及机器重量为最小。最佳压比通常在2.5-3左右。美国Creare公司在军方资助下已制成5W/77K的长寿命逆布雷顿循环制冷机,该制冷机采用了气体轴承微型透平,已用于空间技术制冷。 个人观点,仅供参考 1.压缩空气单位制冷量小 2.制冷系数小 3.变温过程不可逆损失大 长期以来,空气制冷在空调领域的应用只局限于飞机空调,因为飞机座舱空气制冷空调装置能充分利用飞机原有设备和条件: 利用飞机涡轮喷气发动机作为制冷系统的动力源和压缩机,以机外冲压空气作为冷却介质,只增加透平膨胀机及其附属设备,提高设备利用率,实现系统小型化。 然而,要使空气制冷技术在空调领域得到推广,必须把其性能放在第一位考虑,这是当今世界能源紧缺的现实要求,也是产品具有竞争力的标志。近年来,欧美国家对空气制冷应用于住宅和列车空调的研究取得了很大的进展,美国早在1993年就设计出用于住宅和商业建筑空调(采暖、空调)的闭式空气循环制冷装置样机, 由Normalair -Garrett Limited 设计及制造的列车用闭式空气制冷空调系统于1998 年在往返于德国和荷兰的ICE- 3 高速列车上投入使

实际逆布雷顿空气制冷循环的性能研究_张振迎

低温与超导第35卷 第6期制冷技术 Refrigerati on Cryo .&Supercond .Vol .35 No .6 收稿日期:2007-08-02 作者简介:张振迎(1979-),男,硕士,主要研究方向:新型制冷空调装置及相关传热流动现象。 实际逆布雷顿空气制冷循环的性能研究 张振迎1 ,廖胜明 2 (1.河北理工大学,唐山063009;2.中南大学,长沙410083) 摘要:对实际逆布雷顿循环空气制冷循环进行了热力学分析,对其循环性能进行了数值模拟研究。结果表明,影响实际循环性能的主要因素有膨胀比、转动部件等熵效率、工作温度等;实际循环中存在一最优膨胀比;制冷机用作空调冷源时,膨胀比在最优膨胀比附近;最优膨胀比的大小受压缩机效率、膨胀机效率、换热器端部温度等因素影响。 关键词:逆布雷顿循环;制冷;性能 I nvesti ga ti on on perfor mance of actua l reverse -brayton a i r cycle Zhang Zhenying 1 ,L iao Sheng m ing 2 (1.Hebei Polytechnic University,Tangshan 063009,China;2.Central South University,Changsha 410083,China ) Abstract:The ther modynam ic analysis of the actual reverse -B rayt on air cycle was perfor med and the perf or mance was studied by nu 2merical si m ulati on .The results show that,the fact ors on the perfor mance of the actual cycle include the s welling rati o,the isentr op ic efficien 2cies of the r ot ors,working te mperature and etc .;there is an op ti m al s welling rati o f or the actual cycle;the refrigerat or can be used for air conditi oning near the op ti m al s welling rati o;the op ti m al s welling rati o is affected by the isentr op ic efficiencies of the r ot ors and the tempera 2ture of heat exchangers . Keywords:Reverse -B rayt on cycle,Refrigerati on,Perf or mance 1 引言 空气无毒无害,可以自由获得,对生态环境无破坏 作用,是最理想的制冷剂。但在很长一段时间内,由于技术和制造水平的限制,空气制冷机在普通制冷区域性能低下,应用推广受到了一定限制。随着高速透平机械和高效紧凑换热器的发展,效率显著提高,特别是随着CFC 工质的禁用,逆布雷顿循环空气制冷机再一次被人们所关注,20世纪90年代以来,先后有美国、澳大利亚、德国、日本、英国进行了空气制冷装置和技术的研究及试验,应用范围涉及住宅、列车空调、食品 冷冻和冷藏等几乎所有的制冷技术应用领域[1-2] 。 在我国,对于空气制冷机的研究才刚刚起步。西安交通大学低温技术研究所的陈纯正等人对空气制冷机进行了理论上的探讨,研究了空气制冷机数学模型 的建立、制冷系数的影响因素等[3-5] 。文献[6]对逆布雷顿循环空气制冷机进行了性能分析,并进一步提出了提高制冷机效率的改进方案,对系统参数和设计参数进行了优化设计。文献[7]对双级压缩空气循环的性能与优化进行了研究。 本文主要阐述了逆布雷顿循环空气制冷机的工作原理,对循环做了热力学分析,并进行了优化研究,研 究了膨胀比、部件等熵效率及工作温度对循环性能的影响,进而指出了提高制冷性能和效率的途径。 2 循环热力学分析 图1所示为逆布雷顿空气循环的原理图。图2为循环的T -s 图,图中T 0表示制冷温度,T c 表示环境温度,P c 表示高压压力,P o 表示低压压力。理论循环在T -s 中由1’-2’-3’-4’表示。实际循环中,压缩机与膨胀机中并非等熵过程,换热器中存在传热温差和流动损失,使得实际循环与理论循环差别很大。本文分析时作如下假设:(1)空气当作理想气体处理;(2)吸热、放热过程为等压过程;(3)压缩膨胀过程中的压力损失折算到进口压力上;(4)传热温差折算到换热器端部温度中。 采取上述假设后,即得到实际循环的T -s 图,如图2中的1-2s -3-4s -1过程。1-2s 、2s -3、3-4s 、4s -1分别表示实际循环的压缩、冷却、膨胀和吸热过程。 由于换热器端部温差的存在,气体出冷却器的实际温度比环境温度要高,即T 3>T c ,Δt c 表示其端部温差;同理, T 1T 2a ,T 4s >T 4a 。

溴化锂吸收式制冷机的工作原理

溴化锂吸收式制冷机的工作原理 冷水在蒸发器内被来自冷凝器减压节流后的低温冷剂水冷却,冷剂水自身吸收冷水热量后蒸发,成为冷剂蒸汽,进入吸收器内,被浓溶液吸收,浓溶液变成稀溶液。吸收器里的稀溶液,由溶液泵送往热交换器、热回收器后温度升高,最后进入再生器,在再生器中稀溶液被加热,成为最终浓溶液。浓溶液流经热交换器,温度被降低,进入吸收器,滴淋在冷却水管上,吸收来自蒸发器的冷剂蒸汽,成为稀溶液。另一方面,在再生器内,外部高温水加热溴化锂溶液后产生的水蒸汽,进入冷凝器被冷却,经减压节流,变成低温冷剂水,进入蒸发器,滴淋在冷水管上,冷却进入蒸发器的冷水。该系统由两组再生器、冷凝器、蒸发器、吸收器、热交换器、溶液泵及热回收器组成,并且依靠热源水、冷水的串联将这两组系统有机地结合在一起,通过对高温侧、低温侧溶液循环量和制冷量的最佳分配,实现温度、压力、浓度等参数在两个循环之间的优化配置,并且最大限度的利用热源水的热量,使热水温度可降到66℃。以上循环如此反复进行,最终达到制取低温冷水的目的。 溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水,多用于空调系统。溴化锂的性质与食盐相似,属盐类。它的沸点为1265℃,故在一般的高温下对溴化锂水溶液加热时,可以认为仅产生水蒸气,整个系统中没有精馏设备,因而系统更加简单。溴化锂具有极强的吸水性,但溴化锂在水中的溶解度是随温度的降低而降低的,溶液的浓度不宜超过66%,否则运行中,当溶液温度降低时,将有溴化锂结晶析出的危险性,破坏循环的正常运行。溴化锂水溶液的水蒸气分压,比同温度下纯水的饱和蒸汽压小得多,故在相同压力下,溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力,这是溴化锂吸收式制冷机的机理之一。 单效溴化锂吸收式制冷机 溴化锂吸收式制冷机原理工作原理与循环 溶液的蒸气压力是对平衡状态而言的。如果蒸气压力为0.85kPa的溴化锂溶液与具有1kPa压力(7℃)的水蒸气接触,蒸气和液体不处于平衡状态,此时溶液具有吸收水蒸气的能力,直到水蒸气的压力降低到稍高于0.85kPa(例如:0.87kPa)为止。 图1 吸收制冷的原理 0.87kPa和0.85kPa之间的压差用于克服连接管道中的流动阻力以及由于过程偏离平衡状态而产生的压差,如图1所示。水在5℃下蒸发时,就可能从较高温度的被冷却介质中吸收气化潜热,使被冷却介质冷却。 为了使水在低压下不断气化,并使所产生的蒸气不断地被吸收,从而保证吸收过程的不断进行,供吸收用的溶液的浓度必须大于吸收终了的溶液的浓度。为此,除了必须不断地供给蒸发器纯水外,还必须不断地供给新的浓溶液,如图1所示。显然,这样做是不经济的。

溴化锂吸收式制冷机的溶液循环

在吸收式制冷机中,溶液的循环是至关重要的。因为它是用溶液的浓缩和吸收而使低压蒸汽变成高压蒸汽,从而取代压缩机的的关键问题所在。 在溴化锂吸收式制冷机中,发生器和吸收器中起到上述作用的是溴化锂溶液,它的吸收水蒸汽的能力很强。吸收式制冷机的溶液循环原理如图2.2.1所示。 图2.2.1 吸收式制冷机的溶液循环 在吸收器中吸收了低压水蒸汽的溴化锂溶液浓度变小,温度也较低,被溶液泵送往使之浓缩的发生器中,被管内流动的高压工作蒸汽加热至对应压力下的沸点,使之沸腾并产生冷剂蒸汽,因发生器中的压力较高,所以冷剂蒸汽的压力也较高,也就是说通过泵的升压和工作蒸汽的加热,使低压蒸汽的压力升高。 溶液沸腾产生出冷剂蒸汽后,浓度和温度都有所升高,又具有了吸收水蒸汽的能力。因发生器中的压力比吸收器中的压力要高得多,故在送往吸收器中让其吸收水蒸汽时必须通过节流阀降压。 在吸收器中,溶液被喷淋在内通冷却水的传热管管簇上,因溶液在吸收水蒸汽时要放出大量的吸收热,故需大量的冷却水进行冷却,实验和理论都表明,溶液的浓度越高、温度越低,吸收水蒸汽的能力就越强,所以,在实际中,要努力提高其浓度、降低其温度,但要注意避免因浓度过高、温度过低而结晶。

图2.2.2 有溶液热交换器的吸收式制冷机的溶液循环 另外,从图中不难看出,一方面稀溶液温度较低,送往发生器后需消耗能量对其加热;而另一方面,浓溶液的温度较高,在吸收器中需冷却才能有较强的吸收水蒸汽的能力,所以,如能使浓溶液和稀溶液进行热交换,无疑可提高机组的性能系数。 因此,在实际的溴化锂吸收式制冷机中,一般都设有溶液热交换器(如图2.2.2所示)。在溶液热交换器中,稀溶液在管内流动,而浓溶液的管外(壳程)流动,从而达到热交换的目的。

制冷循环与热泵

ωnet +q L 要点: 1、 制冷循环 2、 热泵 3、 热泵实例讲解 4、 发展趋势 前言 制冷循环与热泵 制冷循环与热泵的热力学本质是相同的,都是使热量从低温物体传向高温物 体。 制冷与热泵循环的经济性指标: ε '= q H ωnet = = ε + 1 > 1 ωnet 式中,ε′-热泵供暖系数(热泵工作性能系数 COP ′); ε-制冷循环的制冷系数(制冷装置的工作性能系数 COP ); q H -供给室内空气的热量; q L -取自环境介质的热量; ωnet -供给系统的净功。

一、制冷循环 制冷系统的工作原理,制冷系统(压缩式制冷)一般由四部分组成:压缩机、冷凝器、节流阀、蒸发器。其工作过程为:低温低压的液态制冷剂(例如氟利昂),首先在蒸发器(例如空调室内机)里从高温热源(例如常温空气)吸热并气化成低压蒸气。然后制冷剂气体在压缩机内压缩成高温高压的蒸气,该高温高压气体在冷凝器内被低温热源(例如冷却水)冷却凝结成高压液体。再经节流元件(毛细管、热力膨胀阀、电子膨胀阀等)节流成低温低压液态制冷剂。如此就完成一个制冷循环。 1.1、压缩空气制冷循环 图中Tc为冷库中需要保持的温度,To为环境温度。从冷库出来的空气(状态1),T1=Tc;进入压气机后被绝热压缩到状态2,此时温度已高于To;然后进入冷却器,在定压下将热量传给冷却水,达到状态3,T3=To;再导入膨胀机绝热膨胀到状态4,此时温度已低于Tc;最后进入冷库,在定压下自冷库吸收热量,回到状态1,完成循环。 1.2、吸收式制冷循环 吸收式制冷循环利用制冷剂在溶液中不同温度下具有不同溶解度的特性,使制冷剂在较低的温度和压力下被吸收剂(即溶剂)吸收,同时又使它在较高

溴化锂吸收式制冷机的工作原理最详细的讲解概要

溴化锂吸收式制冷机的工作原理是: https://www.doczj.com/doc/7515960979.html,/showProduct.asp?f_id=737 冷水在蒸发器内被来自冷凝器减压节流后的低温冷剂水冷却,冷剂水自身吸收冷水热量后蒸发,成为冷剂蒸汽,进入吸收器内,被浓溶液吸收,浓溶液变成稀溶液。吸收器里的稀溶液,由溶液泵送往热交换器、热回收器后温度升高,最后进入再生器,在再生器中稀溶液被加热,成为最终浓溶液。浓溶液流经热交换器,温度被降低,进入吸收器,滴淋在冷却水管上,吸收来自蒸发器的冷剂蒸汽,成为稀溶液。另一方面,在再生器内,外部高温水加热溴化锂溶液后产生的水蒸汽,进入冷凝器被冷却,经减压节流,变成低温冷剂水,进入蒸发器,滴淋在冷水管上,冷却进入蒸发器的冷水。该系统由两组再生器、冷凝器、蒸发器、吸收器、热交换器、溶液泵及热回收器组成,并且依靠热源水、冷水的串联将这两组系统有机地结合在一起,通过对高温侧、低温侧溶液循环量和制冷量的最佳分配,实现温度、压力、浓度等参数在两个循环之间的优化配置,并且最大限度的利用热源水的热量,使热水温度可降到66℃。以上循环如此反复进行,最终达到制取低温冷水的目的。 溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水,多用于空调系统。 溴化锂的性质与食盐相似,属盐类。它的沸点为1265℃,故在一般的高温下对溴化锂水溶液加热时,可以认为仅产生水蒸气,整个系统中没有精馏设备,因而系统更加简单。溴化锂具有极强的吸水性,但溴化锂在水中的溶解度是随温度的降低而降低的,溶液的浓度不宜超过66%,否则运行中,当溶液温度降低时,将有溴化锂结晶析出的危险性,破坏循环的正常运行。溴化锂水溶液的水蒸气分压,比同温度下纯水的饱和蒸汽压小得多,故在相同压力下,溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力,这是溴化锂吸收式制冷机的机理之一。 工作原理与循环 溶液的蒸气压力是对平衡状态而言的。如果蒸气压力为0.85kPa的溴化锂溶液与具有1kPa 压力(7℃)的水蒸气接触,蒸气和液体不处于平衡状态,此时溶液具有吸收水蒸气的能力,直到水蒸气的压力降低到稍高于0.85kPa(例如:0.87kPa)为止。 图1 吸收制冷的原理

工程热力学第十一章制冷循环作业

第11 致冷循环 例1压缩空气制冷循环运行温度 , ,如果循环 增压分别为 3 和 6 ,分别计算它们的循环性能系数和每 kg 工质的制冷量。假定空气为理想气体,此热容取定值 。 解:由 1 1.411.4 1 1 1 2.71213 1a k k επ--= ==-- 1 1.411.4 2 1 1 1.4961 6 1 b k k επ--= = =-- 11 1.4 14 1.4 4.30311()()300()219.183k k k k a a p T T T K p π---===?= 1 1.4 11.44.01 1( ) 300()179.816k k b b T T K π--==?= 11 1.41 2 1.42.111 ()2903396.93k k k k a a p T T T K p π---===?= 1 1.411.4 2.1290648 3.86k k b b T T K π--==?= .141() 1.005(290219.18)71.2/c a p a q c T T kJ kg =-=?-= .141() 1.005(290179.81)110.7/c b p b q c T T kJ kg =-=?-= 例2 一理想蒸汽压缩制冷系统,制冷量为20冷吨,以氟利昂22为制冷剂,冷凝温度为30℃,蒸发温度为-30℃。求:(1)1公斤工质的制冷量q 0;(2)循环制冷量;(3)消耗的功率;(4)循环制冷系数;(5)冷凝器的热负荷。 解 参考图10.2示: S T T 0T c 4 21 ρ3 ρ2 1

38 (3)压缩机所消耗的功及功率 5.111475.15812=-=-=h h w kcal/kg 2.199735.118.1736=?==mw W kcal/h 22.23860 2.19973==th N kW (4)循环制冷系数 3.35 .113800==== εσw q W Q (5)冷凝器热负荷Q K 因h 4=h s ,Q k =mq k =m(h 2-h 4)=1736.8×(158.5-109)=85971.6 kcal/h

压缩空气冷冻式干燥机

◎压缩空气冷冻式干燥机 ,使冷媒达到充分的冷却,从而提高机台的制冷效率,同时避免机台冷凝器散热不良所带来 的高压跳机或机台故障。 一、工况条件与技术指标 Working condition and technical data 进气温度(Inlet temperature): ≤80℃ 冷却方式(Cooling method): 风冷(Air-cooling) 进气压力(Inlet pressure): 0.4~1.0MPa 压力损失(Pressure drop): ≤0.03MPa 压力露点(Dew point): 2~10℃ 制冷剂(Refrigerant): R22 二、伽利略冷冻式干燥机产品特点: 1)人性化设计:科学合理结构设计,外型新颖,美观大方,操作、维护、保养方便,安装简便(无基础)。2)机器制冷系统及空气系统经专家结合全国各地不同工况的差异性进行综合准确计算,设计参数留20%以上的裕量。 3)制冷压缩机:采用国际知名品牌,如:松下、谷轮、泰康、美优乐公司等高性能制冷压缩机,低震动、低噪音、性能可靠、节能高效,确保整机的使用寿命长。压缩机防护等级为IP54级。 4)特殊热交换设计,可降低入口温度,并提高出口空气温度,可避免管路产生水滴,影响生产环境。5)多种形式(单、集、联控、PLC、变频等)的控制线路。适合不同用户的选用。 6)完善的智能保护装置:特设冷媒高低压保护、相序缺相保护、过低温保护以及自动融霜、故障自动停机、自动报警、电机过热保护等保护功能。 7)自动排水器按需设置,除水效率高。浮球式、电子定时可根据机器工况选择设置。 8)本机组采用独特的旋风式分离器。可将冷凝水从空气中彻底分离出来,并在各种气流条件下防止液态水份随压缩空气带出,保持高效的运行,达到最佳之干燥除水目的。 三、型号规格与性能参数 Model,size & technical data

吸收式制冷机组

溴化锂吸收式制冷机是以溴化锂溶液为吸收剂,以水为制冷剂,利用水在高真空下蒸发吸热达到制 冷的目的。 为使制冷过程能连续不断地进行下去,蒸发后的冷剂水蒸气被溴化锂溶液所吸收,溶液变稀,这一过程是在吸收器中发生的,然后以热能为动力,将溶液加热使其水份分离出来,而溶液变浓, 这一过程是在发生器中进行的。发生器中得到的蒸汽在冷凝器中凝结成水,经节流后再送至蒸发器 中蒸发。如此循环达到连续制冷的目的。 可见溴化锂吸收式制冷机主要是由吸收器、发生器、冷凝器和蒸发器四部分组成的。 从吸收器出来的溴化锂稀溶液,由溶液泵(即发生器泵),升压经溶液热交换器,被发生器出来 的高温浓溶液加热温度提高后,进入发生器。在发生器中受到传热管内热源蒸汽加热,溶液温度提 高直至沸腾,溶液中的水份逐渐蒸发出来,而溶液浓度不断增大。 单效溴化锂吸收式制冷机的热源蒸汽压力一般为0.098MPa(表压)。发生器中蒸发出来的冷剂水蒸气向上经挡液板进入冷凝器,挡液板起汽液分离作用,防止液滴随蒸汽进入冷凝器。冷凝器的 传热管内通入冷却水,所以管外冷剂水蒸气被冷却水冷却,冷凝成水,此即冷剂水。 积聚在冷凝器下部的冷剂水经节流后流入蒸发器内,因为冷凝器中的压力比蒸发器中的压力要高。如:当冷凝器温度为45℃时,冷凝压力为9580Pa(71.9mmHg);蒸发温度为5℃时,蒸发压力872Pa(6.45mmHg)。U型管是起液封作用的,防止冷凝器中的蒸汽直接进入蒸发器。 冷剂水进入蒸发器后,由于压力降低首先闪蒸出部分冷剂水蒸气。因蒸发器为喷淋式热交换器,喷淋量要比蒸发量大许多倍,故大部分冷剂水是聚集在蒸发器的水盘内的,然后由冷剂水泵升压后 送入蒸发器的喷淋管中,经喷嘴喷淋到管簇外表面上,在吸取了流过管内的冷媒水的热量后,蒸发 成低压的冷剂水蒸气。由于蒸发器内压力较低,故可以得到生产工艺过程或空调系统所需要的低温 冷媒水,达到制冷的目的。例如蒸发器压力为872Pa时,冷剂水的蒸发温度为5℃,这时可以得到7℃的冷媒水。 蒸发出来的冷剂蒸汽经挡液板将其夹杂的液滴分离后进入吸收器,被由吸收器泵送来并均匀喷淋在吸收管簇外表的中间溶液所吸收,溶液重新变稀。中间溶液是由来自溶液热交换器放热降温后 的浓溶液和吸收器液囊中的稀溶液混合得到的。为保证吸收过程的不断进行,需将吸收过程所放出 的热量由传热管内的冷却水及时带走。中间溶液吸收了一定量的水蒸气后成为稀溶液,聚集在吸收 器底部液囊中,再由发生器泵送到发生器,如此循环不已。 由上述循环工作过程可见,吸收式制冷机与压缩式制冷机在获取冷量的原理上是相同的,都是利用高压液体制冷剂经节流阀(或U型管)节流降压后,在低压下蒸发来制取冷量,它们都有起同样 作用的冷凝、蒸发和节流装置。而主要区别在于由低压冷剂蒸汽如何变成高压蒸汽所采用的方法不同,压缩式制冷机是通过原动机驱动压缩机来实现的,而吸收式制冷机是通过吸收器,溶液泵和发 生器等设备来实现的。 从吸收器出来的稀溶液温度较低,而稀溶液温度越低,则在发生器中需要更多热量。自发生器出来的浓溶液温度较高,而浓溶液温度越高,在吸收器中则要求更多的冷却水量。因此设置溶液交

工程热力学思考题答案,第十一章

工程热力学思考题答案,第 十一章 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第十一章 制冷循环 1.家用冰箱的使用说明书上指出,冰箱应放置在通风处,并距墙壁适当距离,以及不要把冰箱温度设置过低,为什么 答:为了维持冰箱的低温,需要将热量不断地传输到高温热源(环境大气),如果冰箱传输到环境大气中的热量不能及时散去,会使高温热源温度升高,从而使制冷系数降低,所以为了维持较低的稳定的高温热源温度,应将冰箱放置在通风处,并距墙壁适当距离。 在一定环境温度下,冷库温度愈低,制冷系数愈小,因此为取得良好的经济效益,没有必要把冷库的温度定的超乎需要的低。 2.为什么压缩空气制冷循环不采用逆向卡诺循环 答:由于空气定温加热和定温放热不易实现,故不能按逆向卡诺循环运行。在压缩空气制冷循环中,用两个定压过程来代替逆向卡诺循环的两个定温过程。 3.压缩蒸气制冷循环采用节流阀来代替膨胀机,压缩空气制冷循环是否也可以采用这种方法为什么 答:压缩空气制冷循环不能采用节流阀来代替膨胀机。工质在节流阀中的过程是不可逆绝热过程,不可逆绝热节流熵增大,所以不但减少了制冷量也损失了可逆绝热膨胀可以带来的功量。而压缩蒸气制冷循环在膨胀过程中,因为工质的干度很小,所以能得到的膨胀功也极小。而增加一台膨胀机,既增加了系统的投资,又降低了系统工作的可靠性。因此,为了装置的简化及运行的可靠性等实际原因采用节流阀作绝热节流。 4.压缩空气制冷循环的制冷系数、循环压缩比、循环制冷量三者之间的关系如何 答: T (a (b ) 压缩空气制冷循环状态参数图

相关主题
文本预览
相关文档 最新文档