当前位置:文档之家› 详解PH值对反渗透系统产水脱盐率的影响

详解PH值对反渗透系统产水脱盐率的影响

详解PH值对反渗透系统产水脱盐率的影响
详解PH值对反渗透系统产水脱盐率的影响

详解PH值对反渗透系统产水脱盐率的影响

进水PH值对反渗透膜的影响主要表现在脱盐率和产水TDS 上,自然界的水中都溶解有二氧化碳,其溶解于水中后会发生如下反应:

CO2+H2O HCO3-+H+CO32-+2H+

酸性条件下,H+增加,该反应往左进行,水中的二氧化碳主要以气体形式溶解在水中,碱性条件下,反应往右进行,二氧化碳主要以碳酸根离子的形式存在,中性条件下,即有气态二氧化碳,也会有碳酸氢根离子和碳酸根离子存在。PH值为4.4或更低时,以二氧化碳开式存在;PH值8.2时,不存在二氧化碳,全部为碳酸氢盐。在PH值为8.2至9.6时碳酸氢盐与碳酸盐溶液相互平衡。PH值为9.6时,不存在二氧化碳与碳酸氢盐,全部碱度为碳酸盐。

反渗透膜的特点是,对离子、颗粒物和有机物的去除率很高,但是对气体确几乎没有任何的脱除率,而离子中,对复杂离子,高价离子的去除率比单价离子的去除率高,因此,PH值低时,水中的二氧化碳能透过反渗透膜进入产水中,而碱性或中性条件下,水中的二氧化碳转换为碳酸氢根离子和碳酸根离子,而反渗透对这两种离子的去除率很高,因此出现了反渗透膜的去除率随

PH值的升高而升高,但PH值高于9.5之后,水中的氢氧根离子会显著增加,反渗透膜的脱盐率又会略微下降。

为了提高反渗透膜的脱盐率,可以适当的提高进水的PH值,但要注意防止PH值升高后结垢倾向的上升。例如在两级反渗透之间提高一级产水的PH值,可以有效的提高第二级反渗透的脱盐率。

技术资料由莱特莱德兰州反渗透系统公司提供

导致反渗透膜脱盐率过快下降的原因

导致反渗透膜脱盐率过快 下降的原因 Prepared on 24 November 2020

导致反渗透膜脱盐率过快下降的原因在脱盐水处理设备中,采用反渗透膜进行脱盐处理是目前最先进、最经济的技术。在反渗透设备日常运行中,经常发现反渗透纯水设备出现脱盐率过快下降的情况,那么纯水设备脱盐率过快下降的原因有哪些深圳市纯水一号水处理厂家给大家总结如下: 1、高压差导致脱盐率下降 压差升高同时往往伴随着脱盐率快速下降。在正常的流量下,压差的上升通常是由于膜元件水流量通道的隔网进入杂质,污染物质和水垢引起的,导致产水流量的下降。当超过设定的给水流量时,也会发生过大的压差,当启动时给水压力提升过快,发生水锤压差会很大,如果膜已经被污染,特别是微生物污染,压差也会增大。给水至浓水间的压差表示的是水力阻力,与给水的流速、温度有关,应该保持产水和浓水有一定的流速。出现高压差的可能性有:水垢、微生物污染、阻垢剂沉淀、过滤器过滤介质漏、给水/浓水密封损坏。 2、在线化学清洗不合理 超纯水设备在运行中是不可避免被污染。预处理和添加各种要种药剂只能将反渗透被污染的可能性降到最低,而不能彻底的杜绝。因此,长期运行的反渗透系统在经过一定时间的运行后,必须

要充分论证和确认是哪一种污染物。针对聚酰胺膜的特点,可以根据相应的污垢选取适当的清洗剂: a、盐酸(36%-38%),配制成%稀溶液,去除金属氧化物质。 b、氢氧化钠,配制成%的稀溶液,去除二氧化硅、微生物膜、有机物等,pH约为12。作用是对有机微生物粘膜的水解破坏而剥离,对于二氧化硅胶体垢,形成的硅酸钠为可溶性,从而除垢。 c、乙二胺四乙酸四钠,作为螯合剂广泛应用于工业清洗,1%水溶液,加入浓度%-1%。 d、十二烷基磺酸钠,属阴离子表面活性剂,目的是分散在溶液中的有机化合物,可使溶液的表面张力降低,引起正吸附,这样可使溶液表面溶质分子的的浓度大于溶液内部溶质分子的浓度。十二烷基磺酸钠是反渗透清洗是最主要的表面活性剂,加入浓度为%。 f、甲醛,甲醛对细菌、真菌、病毒、芽胞及原虫等皆有极强的杀灭力,加入浓度为%-35。 3、余氯的控制差 次氯酸钠作为杀菌剂,广泛应用于纯水设备预处理中。在反渗透系统中,为防止反渗透的微生物污染,对反渗透进水要进行氯化处理。用比色计测定余氯,控制余氯的质量浓度在砂过滤器进口处一般为L,不小于L,在反渗透前保安过滤器处应小于L。而聚酰胺

水的pH值调整及计算

水的pH值调整及计算 碳酸化合物的一级电离 [ H+][HCO3] CO2 = K1 推导公式为: CO2 [ H+] = K1 [HCO3] 已知25℃时,K1=4.45×10-7,Pk = 6.35 ,可以得出 pH = 6.35+Lg[HCO3] - Lg[CO2] 如果pH值大于8.3,产生二级电离 [HCO3] [ H+] = K2 [CO32-] 已知25℃时,K2=4.69×10-11,Pk = 10.329 ,可以得出pH = 10.329+Lg[HCO3]- Lg[CO32-] 1、原水中CO2二氧化碳的计算 CO2 = 注:式中pH(R) 为原水 的pH值 举例运算:如用户填入HCO3(以CaCO3计)为350mg/L(以CaCO3计),那么原水中的CO2二氧化碳含量计算为: CO2 =350÷(10 7.0-6.3)=350÷100.7=69.83 mg/L(以CO2计) 注:用户没有进行pH值的调整的需求,可直接根据公式计算输出结果。如果用户调整pH 值,则需重新计算。因为加入硫酸和盐酸后会改变HCO3、SO4、Cl 的离子含量,影响CO2含量。所以当用户需要调整pH值,则Feed CO2含量需重新计算。 原理如下:H2SO4+2HCO3- 2CO2+2H2O+SO42- HCl+HCO 3- CO 2 +H 2 O+Cl- 以盐酸为例: HCl+HCO 3- CO 2 +H 2 O+Cl- 36.5 61 44 18 35.5 每加1mg/L的盐酸(100%)产生1.205mg/L的CO2,同时减少1.37mg/L的HCO3(以CaCO3计)。 推导公式为: [HCO3] pH=6.35+Lg R = 6.35+Lg [CO2] CO2= [HCO3] ×10 6.3-pH 代入公式中 [HCO3]-1.37[HCL] HCO3(以CaCO3计)

反渗透膜元件离子脱除率性能标准

评价反渗透膜元件离子脱除率性能标准 世韩反渗透膜结构有两类均质和非对称膜。目前主要用于醋酸纤维素膜材料和芳香聚酰胺类。它的组件是中空纤维类型、体积类型,板框式和管式。可用于化工单元操作,如分离、浓缩和提纯的主要用于制备纯水和水处理行业。UE8040-PF反渗透膜可以拦截大于0.0001微米材料,是一种最微妙的膜分离产品,它能有效地拦截所有溶解盐和有机分子量大于100,同时允许水分子通过。 世韩反渗透膜用于从水中脱除可溶性的盐份,当水分子快速透过反渗透水处理膜时,溶解性的盐份透过膜的速度十分缓慢。在自然渗透条件下,水分子经扩散透过半透性膜进入高浓度含盐量侧,以便膜两侧溶质强度达到平衡。为了克服或逆转这一自然渗透的趋势,对高浓度进水施加压力,就会产生纯净的透过液。 脱盐率是膜元件排斥可溶解性离子程度的一种量度,反渗透元件能够脱除许多种不同的离子,除了个别特殊情况外,反渗透对二价离子比一价离子的脱除率要高,因此,如果膜对NaCl表出现优异的脱除率的话,可以预见,膜将会对二价离子如铁、钙、镁和硫酸根有更好的脱除率。因此,NaCl被广泛地用于作为评价反渗透膜元件离子脱除率性能的标准物质。 膜对离子态杂质的脱除性能,膜也能除去或至少承受进水中其它的杂质,例如有机物、二氧化碳和气体,当用户评估反渗透元件时,也应该包括其脱除或承受这些非离子类杂质的能力。 盐份透过膜的传递速度是以质量体积浓度度量的,现有的仪表能测定出产水比电导值(即电导率),这一数值可以十分容易地换算成透过膜的渗透液中每升所含盐份的毫克数,用百分率表示,计算方法为:脱盐率V=÷原液浓度A×%。 反渗透膜元件的脱盐率已确定在其制造成型,脱盐率取决于RO反渗透膜元件表面密度的超薄层,致密层脱盐率越来越高,与此同时,水率越低。反渗透膜脱盐率不同的材料主要是由材料结构和分子量、离子和复杂的单价离子高脱盐率可超过99%,单价离子如钠、钾、氯离子脱盐率略低,但也可以超过98%(反渗透膜的使用时间越长,化学清洗,反渗透膜脱盐率越低)的有机物去除率分子量大于100也能导致98%,但低分子量有机物去除率的不到100人。

导致反渗透膜脱盐率过快下降的原因修订稿

导致反渗透膜脱盐率过快下降的原因 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

导致反渗透膜脱盐率过快下降的原因在脱盐水处理设备中,采用反渗透膜进行脱盐处理是目前最先进、最经济的技术。在反渗透设备日常运行中,经常发现反渗透纯水设备出现脱盐率过快下降的情况,那么纯水设备脱盐率过快下降的原因有哪些?深圳市纯水一号水处理厂家给大家总结如下: 1、高压差导致脱盐率下降 压差升高同时往往伴随着脱盐率快速下降。在正常的流量下,压差的上升通常是由于膜元件水流量通道的隔网进入杂质,污染物质和水垢引起的,导致产水流量的下降。当超过设定的给水流量时,也会发生过大的压差,当启动时给水压力提升过快,发生水锤压差会很大,如果膜已经被污染,特别是微生物污染,压差也会增大。给水至浓水间的压差表示的是水力阻力,与给水的流速、温度有关,应该保持产水和浓水有一定的流速。出现高压差的可能性有:水垢、微生物污染、阻垢剂沉淀、过滤器过滤介质漏、给水/浓水密封损坏。 2、在线化学清洗不合理 超纯水设备在运行中是不可避免被污染。预处理和添加各种要种药剂只能将反渗透被污染的可能性降到最低,而不能彻底的杜绝。因此,长期运行的反渗透系统在经过一定时间的运行后,必须要充分论证和确认是哪一种污染物。针对聚酰胺膜的特点,可以根据相应的污垢选取适当的清洗剂: a、盐酸(36%-38%),配制成%稀溶液,去除金属氧化物质。

b、氢氧化钠,配制成%的稀溶液,去除二氧化硅、微生物膜、有机物等,pH 约为12。作用是对有机微生物粘膜的水解破坏而剥离,对于二氧化硅胶体垢,形成的硅酸钠为可溶性,从而除垢。 c、乙二胺四乙酸四钠,作为螯合剂广泛应用于工业清洗,1%水溶液,加入浓度%-1%。 d、十二烷基磺酸钠,属阴离子表面活性剂,目的是分散在溶液中的有机化合物,可使溶液的表面张力降低,引起正吸附,这样可使溶液表面溶质分子的的浓度大于溶液内部溶质分子的浓度。十二烷基磺酸钠是反渗透清洗是最主要的表面活性剂,加入浓度为%。 f、甲醛,甲醛对细菌、真菌、病毒、芽胞及原虫等皆有极强的杀灭力,加入浓度为%-35。 3、余氯的控制差 次氯酸钠作为杀菌剂,广泛应用于纯水设备预处理中。在反渗透系统中,为防止反渗透的微生物污染,对反渗透进水要进行氯化处理。用比色计测定余氯,控制余氯的质量浓度在砂过滤器进口处一般为L,不小于L,在反渗透前保安过滤器处应小于L。而聚酰胺类膜的突出问题是防止其被氧化。进水余氯值和强氧化均对其造成不利的影响,必须严格控制。因而定期检测反渗透进水的余氯值极为重要。 以上信息由深圳市纯水一号水处理科技有限公司提供,希望对您有帮助,我们结合多年的生产实践经验,以优质的品质为基础,以市场需求为导向,深得国内外客户的认同和支持。

水质管理——PH值的调整方法

水质管理——PH值的调整方法 调整PH的目的 养鱼先养水,这句话大家不陌生,但是怎么理解这句话的真正含义呢?我的理解是:养水是指养殖用水的内在质量。我们用来“养水”的办法很多,比如,建立健全的硝化系统,培养出优质硝化细菌,水中添加氧气,和各类营养成分,通过检测毒素和微量元素而达到控制水中各种物质的含量,我们也可以借助其他一些手段间接观测水的质量。比如pH值(KH GH NH3+NH4 NO2 NO3 )测量。 那我们测量pH值得目的是什么呢?为什么要测量ph值?如果pH值不合乎我们鱼类的最佳生存要求怎么办?是不是直接调节pH值或是加入一些物质调节就可以呢?下面我与大家一起思考。 在我们养鱼水中,如果pH值出现了波动,那肯定是水质出现了变化而带动了pH值发生了变化,如果此时直接调节pH值再标准也不能解决水质的问题,虽然pH值调到了正常,但是水中的硝酸盐或其他有毒物质不但不会减少的,相反有的会因为pH的变动而加速累计。 关于水质的好坏与pH值的测量,我引用一句话说明,可能不是很恰当,但愿能说明白问题,——“醉翁之意不在酒,而在于水体之中”。我们监测pH值的目的也不是在于单纯调节指数的高和低,,而是通过其指数的高低知道水质的变化情况,从而调整好水质,用调整好的水来改变pH值。所以现在很多鱼友测量pH值的目的,是为了调节pH值而调节pH值,是非常错误的,是不懂其养水的原理而为之。 尤其是调节跌酸水质,更不能单单的从pH值上下手,他需要一个有主有次综合的办法去调理水质,首先要弄明白在养殖水中跌酸的的根本原因是什么,再从根本上下手。看看是否因为硝化细菌数量增多,氧化作用下生成的硝酸过多,溶于水后产生H+使水质变酸,最终积累下硝酸盐水质老化的原因,还是因为其他什么原因。只有找到根本原因才能对症下药。 硝化系统引起的跌酸 在弄明白了跌酸的主要原因后,针对其做出动作,而不是一概而论的。 先谈谈主要的吧——硝化系统过强而引起的跌酸: 在治理本质的基础上(降低硝化作用)的同时,还要注意一些辅助手段,减少氨源,(换水)加强水体KH值,KH值不等于暂时硬度,他是形成暂时硬度的必要条件,它在水中的作用主要是缓冲PH值的变化,KH值之所以起到缓冲作用,是因为HCO3能发生可逆的水解平衡反映。 请看:HCO3-+H2O ---> H2CO3+OH- KH值与水的硬度更没有关系。 比如饲养密度,喂食量,以及适量的换水等等,从根本上调理水质达到各项指标,只要把水质慢慢的调理到我们所要的地步,pH值也会慢慢的到达我们预期的数值。(我说的这些,是

水的电离和溶液pH值计算

水的电离与溶液pH 值的计算 一、水的电离 水是极弱的电解质,发生微弱的(自偶)电离。 H 2O + H 2O →H 3O + + OH - 简写: H 2O → H + + OH - 实验测定:25℃ c (H +)=c (OH -)=17 10-?mol/L 100℃ c (H +)= c (OH -)= 1610-?mol/L 二、水的离子积(K w ) 实验测定:25℃ K w = c (H +)·c (OH -)=11410 -?(定值)(省去单位) 100℃ K w = c (H +)·c (OH -)=112 10 -? 影响因素: 1)温度:温度越高,K w 越大,水的电离度越大。 对于中性水,尽管K w 温度升高,电离度增大,但仍是中性水,[H +]=[OH -]. 2)溶液酸碱性:中性溶液,c (H +)=c (OH -)=17 10-?mol/L 酸性溶液:c (H +)> c (OH -),c (H +)>1?10-7mol/L c (OH -)<1?10-7mol/L 碱性溶液:c (H +)< c (OH -),c (H +)<1?10-7mol/L c (OH -)>1?10-7mol/L c (H +)越大,酸性越强;c (OH -)越大,碱性越强。 三、溶液pH 值的计算 1.pH 的计算公式: (1)c (H +)=C 酸α酸(弱酸) c (H +)= nC 酸 c (OH -)=C 碱α 碱(弱碱) c (OH -)= nC 碱 (2) K w = c (H +)c (OH -),c (H +)= )(OH K c w c (OH -)=) (+H Kw c (3) pH=-lgc (H +) pOH=-lgc (OH -) (4) pH + pOH = 14(25℃) 2.酸或碱溶液及稀释后的p H 值的计算(25℃) 1) 酸强碱溶液(单一溶液)p H 值的计算 例1.求0.1mol/L 的H 2SO 4的pH 值。 例2. 0.1mol/L 醋酸溶液中的c (OH -)?(25℃,已知该醋酸的电离度为1.32%)

反渗透常见故障及处理办法

反渗透常见故障及处理办法

反渗透系统常见故障排除 反渗透系统的故障通常至少出现下列情况之一: 标准化后产水量下降,通常需要提高运行压力来维持额定的产水量; 标准化后脱盐率降低,在反渗透系统中表现为产水电导率升高; 压降增加,在维持进水流量不变的情况下,进水与浓水间的压差增大; 下面将详细的讨论上述三种主要故障。 一、标准化后产水量下降 RO系统出现标准化后产水量降低,可根据下面三种情况寻找原因: RO系统的第一段产水量降低,则存在颗粒类污染物的沉积; RO系统的最后一段产水量降低,则存在结垢污染; RO系统的所有段的产水量都降低,则存在污堵; 根据上述症状,出现问题的位置,确定故障的起因,并采取相应的措施,依照“清洗导则”进行清洗等。另外反渗透系统出现产水量下降的同时还会伴随有脱盐率降低、升高等情况。 (1)标准化后产水量下降脱盐率降低 标准化后产水量下降脱盐率降低是最常见的系统故障,其可能的原因是: 一、胶体污堵 为了辨别胶体污堵,需要: 测定原水的SDI值; 分析SDI测试膜膜表面的截留物; 检查和分析第一段第一支膜元件端面上的沉积物; 二、金属氧化物污堵 金属氧化物污堵主要发生在第一段,通常的故障原因是: 进水中含铁和铝 进水中含H2S并有空气进入,产生硫化盐; 管道、压力容器等部件产生的腐蚀产物; 三、结垢 结垢是微溶或难溶盐类沉积在膜的表面,一般出现在预处理较差且回收率较高的苦咸水系统中,常常发生在RO系统的最后一段,然后逐渐向前一段扩

镜现象会造成膜元件的机械损坏。 ③膜表面磨损 这种情况常常是因为RO系统前端的元件受到水中结晶体或具有尖锐外缘的金属悬浮物的磨损造成的。 ④产水背压 任何时刻,产水压力高于进水或浓水压力0.3bar,复合膜就可能发生复合层间的剥离,从而损坏膜元件。 (2)标准化后脱盐率下降产水量升高 产生这种症状的原因有: ①膜氧化 当膜接触到水中的氧化性物质后,膜被氧化破坏,这是不可逆的化学损伤,一旦出现这种情况,只能更换所有膜元件。 ②泄漏 膜元件或中心管严重的机械损坏将导致进水或浓水渗入产水中,特别是当运行压力较高时,问题就越严重。 三、压降增加 进水与浓水间的压差称为压降;每一支含多支膜元件的压力容器压降上限为3.5bar,每一支玻璃钢外包皮膜元件的压降上限为1bar。当进水流量恒定时,压降的增加常常是由于元件进水网格流道内存在污染物或结垢物,一旦进水流道被堵塞,常常会伴有产水量的下降。 下面为引起压降增加的常见的原因: ①结垢 结垢常常会引起最后一段膜元件压降的增加,必须保证采取了控制结垢的适当措施,并采用合适的化学药剂清洗膜元件,同时保证不超过系统的设计回收率。 ②生物污堵 生物污堵常常会引起RO系统前端压降的显著增加,并会对进水水流

(完整版)循环水pH调节和加酸量问题

关于循环水pH调节和加酸量问题 加酸调pH是帮助循环水有效阻垢的辅助措施,当补充水为高硬、高碱水系(如北方地下水)和要求浓缩倍数高的循环水系统、药剂阻垢难以达到理想的效果时,目前普遍采用此处理方法,以保证水质的稳定。美国Nalco,Betz等世界知名水处理公司,过去和现在为中石化、化工部大化肥等厂提供的配方仍以加酸处理配方为主、其处理效果为各厂所认同。 贵厂加酸量可根据循环水每天碱度(CaCO3)测定值计算投加,方法有二,可任选其一。 循环冷却水调pH时加酸量的计算 循环冷却水用硫酸调pH时,其硫酸加入量有两种计算方法,可以选任一种方法计算投加。 (1)根据分析室测定循环水酚酞碱度时,盐酸标准溶液的耗量计算为系统硫酸投加量: 硫酸(98%)投加量=(V1C/2×100)×1000×98×(V/1000)×(100/98)=( V1CV/2) (kg)(6-2-1) 式中:V1—测定酚酞碱度时,盐酸标准溶液消耗的体积,ml; C—盐酸标准溶液的浓度,mol/L; V—冷却水系统容积,m3; 100—测定酚酞时取样体积,mL; 100/98—由100%换算为98%硫酸的系数;98-硫酸摩尔质量,g。 贵厂用30%盐酸时,则将公式 盐酸(30%)投加量

=(V1C/×100)×1000×36.5×(V/1000)×(100/30) =(1.22 V1CV)(kg) 贵厂保有水量按400 m3计,则加首次30%盐酸量为488V1C(kg) 例:系统容积V=8000 m3,测定酚酞碱度盐酸耗量V1=1.3 mL,盐酸标准溶液浓度C=0.05 mol/L,求硫酸(98%)加入量。 解:硫酸(98%)加入量(kg)=( V1CV/2)=1.3×0.05×8000/2=260 答:根据该系统酚酞碱度测定值,其硫酸(98%)加入量为260 kg。 说明: ⑴以酚酞碱度测定值作为加酸量的依据是较合理的。因此时酚酞由红色变无色,水的pH大约为8.3。当pH值﹤8.3时,水中只有HCO3-碱度存在,碳酸盐(如CaCO3)成垢趋势极微。 ⑵根据上述计算,现场实际加硫酸(98%)250 kg,pH值由8.65降至8.4,碱度由325 mg/L降至285 mg/L,硫酸实际加入量与计算量基本相符。但此硫酸加入量仅为系统首次加入量,未考虑飞溅、排污等损失的硫酸量。所以上述加酸量实际偏低,而排污等损失的酸量计算见本节第二例。 (2)循环冷却水系统的加酸量 循环冷却水加酸调pH值,是为提高浓缩倍数及阻垢的需要。根据酸碱中和原理,理论上加酸量等于碱度降低量。如果循环水加酸前后的碱度差△M,则: △M=M 前-M 后 M前为循环水调pH值前的碱度,M后为调pH值后的碱度,M前、M后可由现场实测或由“自然pH值与碱度计算”相关公式计算求得。如用98%硫酸调pH值,循环水单位用量为: A=49△M/(50×0.98×1000)=△M/1000 (6-2-2)

影响反渗透设备脱盐率的因素分析

影响反渗透设备脱盐率的因素分析 反渗透设备是通过设备内的反渗透膜来对原水中的杂质和细 菌进行过滤的,将这些截留在膜的一侧,最后随着废水一起排出。反渗透设备出水水质的好坏很大部分是由反渗透膜决定的。反渗透膜的水通量和脱盐率是反渗透过程中关键的运行参数,这两个参数将受到压力、温度、回收率、给水含盐量、给水PH值因素的影响。 1、进水压力 进水压力本身并不会影响盐透过量,但是进水压力升高使得驱动反渗透的净压力升高,使得产水量加大,同时盐透过量几乎不变,增加的产水量稀释了透过膜的盐分,降低了透盐率,提高脱盐率。当进水压力超过一定值时,由于过高的回收率,加大了浓差极化,又会导致盐透过量增加,抵消了增加的产水量,使得脱盐率不再增加。 2.、进水温度 温度对反渗透的运行压力、脱盐率、压降影响最为明显。温度上升,渗透性能增加,在一定水通量下要求的净推动力减少,因此实际运行压力降低。同时溶质透过速率也随温度的升高而增加,盐透过量增加,直接表现为产品水电导率升高。 温度对反渗透各段的压降也有一定的影响,温度升高,水的粘度降低,压降减少,对于反渗透膜的通道由于污堵而使湍流程度增强的装置,粘度对压降的影响更为明显。 反渗透膜产水电导对进水水温的变化十分敏感,随着水温的增加,水通量也线性的增加,进水水温每升高1℃,产水通量就增加2.5%~3.0%;其原因在于透过膜的水分子粘度下降、扩散性能增强。进水水温的升高同样会导致透盐率的增加和脱盐率的下降,这主要是因为盐分透过膜的扩散速度会因温度的提高而加快。

3、进水pH值 各种膜组件都有一个允许的pH值范围,进水pH值对产水量几乎没有影响;但是即使在允许范围内,PH值对脱盐率也有较大影响,一方面pH值对产品水的电导率也有一定的影响,这是因为反渗透膜本身大都带有一些活性基团,pH值可以影响膜表面的电场进而影响到离子的迁移,pH值对进水中杂质的形态有直接影响,如对可离解的有机物,其截留率随pH值的降低而下降;另一方面由于水中溶解的CO2受pH值影响较大,pH值低时以气态CO2形式存在,容易透过反渗透膜,所以pH低时脱盐率也较低,随pH升高,气态CO2转化为HCO3-和CO32-离子,脱盐率也逐渐上升,pH在7.5~8.5 之间时,脱盐率达到最高。 4、进水盐浓度 渗透压是水中所含盐分或有机物浓度的函数,含盐量越高渗透压也增加,进水压力不变的情况下,净压力将减小,产水量降低。透盐率正比于反渗透膜正反两侧盐浓度差,进水含盐量越高,浓度差也越大,透盐率上升,从而导致脱盐率下降。对同一系统来说,给水含盐量不同,其运行压力和产品水电导率也有差别,给水含盐量每增加l00ppm,进水压力需增加约0.007MPa,同时由于浓度的增加,产品水电导率也相应的增加。

世韩反渗透膜脱盐率及脱除性能说明

世韩反渗透膜脱盐率及脱除性能说明 世韩反渗透膜结构有两类均质和非对称膜。目前主要用于醋酸纤维素膜材料和芳香聚酰胺类。它的组件是中空纤维类型、体积类型,板框式和管式。可用于化工单元操作,如分离、浓缩和提纯的主要用于制备纯水和水处理行业。UE8040-PF反渗透膜可以拦截大于0.0001微米材料,是一种最微妙的膜分离产品,它能有效地拦截所有溶解盐和有机分子量大于100,同时允许水分子通过。 世韩反渗透膜用于从水中脱除可溶性的盐份,当水分子快速透过反渗透水处理膜时,溶解性的盐份透过膜的速度十分缓慢。在自然渗透条件下,水分子经扩散透过半透性膜进入高浓度含盐量侧,以便膜两侧溶质强度达到平衡。为了克服或逆转这一自然渗透的趋势,对高浓度进水施加压力,就会产生纯净的透过液。 脱盐率是膜元件排斥可溶解性离子程度的一种量度,反渗透元件能够脱除许多种不同的离子,除了个别特殊情况外,反渗透对二价离子比一价离子的脱除率要高,因此,如果膜对NaCl表出现优异的脱除率的话,可以预见,膜将会对二价离子如铁、钙、镁和硫酸根有更好的脱除率。因此,NaCl被广泛地用于作为评价反渗透膜元件离子脱除率性能的标准物质。 膜对离子态杂质的脱除性能,膜也能除去或至少承受进水中其它的杂质,例如有机物、二氧化碳和气体,当用户评估反渗透元件时,也应该包括其脱除或承受这些非离子类杂质的能力。 盐份透过膜的传递速度是以质量体积浓度度量的,现有的仪表能测定出产水比电导值(即电导率),这一数值可以十分容易地换算成透过膜的渗透液中每升所含盐份的毫克数,用百分率表示,计算方法为:脱盐率V=÷原液浓度A×%。 反渗透膜元件的脱盐率已确定在其制造成型,脱盐率取决于RO反渗透膜元件表面密度的超薄层,致密层脱盐率越来越高,与此同时,水率越低。反渗透膜脱盐率不同的材料主要是由材料结构和分子量、离子和复杂的单价离子高脱盐率可超过99%,单价离子如钠、钾、氯离子脱盐率略低,但也可以超过98%(反渗透膜的使用时间越长,化学清洗,反渗透膜脱盐率越低)的有机物去除率分子量大于100也能导致98%,但低分子量有机物去除率的不到100人。

RO膜元件的脱盐率

RO膜元件的脱盐率在其制造成形时就已确定,脱盐率的高低取决于膜元件表面超薄脱盐层的致密度,脱盐层越致密脱盐率越高,同时产水量越低。反渗透对不同物质的脱除率主要由物质的结构和分子量决定,对高价离子及复杂单价离子的脱除率可以超过99%,对单价离子如:钠离子、钾离子、氯离子的脱除率稍低,但也超过了98%;对分子量大于100的有机物脱除率也可达到 98%,但对分子量小于100的有机物脱除率较低。 透水率=单位时间内渗透的水量,L/H÷单位膜面积,M2 脱盐率=(反渗透处理进水中的含盐量,MG/L-反渗透处理出水中的含盐量,MG/L)÷反渗透处理进水中的含盐量,MG/L 回收率--指膜系统中给水转化成为产水或透过液的百分比。膜系统的回收率在设计时就已经确定,是基于预设的进水水质而定的。 回收率=(产水流量/进水流量)×100% RO膜脱盐率衰减系数依据是什么? 膜件在使用过程中,其脱盐率会有所降低,即盐透过率会上升,同样由于受到给水水质、污染指数SDI 值、设计水通量、运行维护水平、膜元件材质等多种因素的影响,因此膜元件厂家无法给出盐透过率增加的速度,只能假设出一个数据供设计者参考。 例如: 醋酸纤维膜元件,每年盐透过率增加为17-33%,复合膜每年盐透过率增加为3-17%。如果设计者选用最低脱盐率为99.6%(即盐透过率为0.4%)的CPA3膜元件,设定的每年盐透过率增加10%,那么一年后盐透过率增加值=盐透过率×每年盐透过增加百分数。即1年后盐透过率增加值=0.4%×10%=0.04%,可折算为1年后盐透过率=0.4%+0.04%=0.44%,即一年后CPA3膜元件的最低脱盐率为99.56%。有些人玩玩会认为脱盐率每年衰减10%,即最低脱盐率99.6%的CPA3膜元件,1年后脱盐率为89.6%,2年后79.6%,这种算法是不正确的。

水的PH值

水的PH值 PH值得定义是水中氢离子浓度的负对数。通俗讲,PH值时表示水中酸碱性强弱的一项指标。 对于纯水,用精密仪器仍可测出它有微弱的导电能力,即可电离很小浓度的H+和OH-,在22℃时,测的纯水中氢离子浓度和氢氧根离子浓度都是10-7mol/L。水溶液中氢离子浓度和氢氧根离子浓度的乘积为一常数,叫做水的离子积,其值为10-14.水溶液中氢离子增加,氢氧根离子就减少,氢离子大于氢氧根离子时,叫酸性溶液。氢离子等于氢氧根离子时,叫中性溶液。当氢离子小于氢氧根离子时,叫碱性溶液。为了方便,常用PH值来表示溶液的酸碱度。 在纯水中,PH小于7时为酸性溶液,大于7为碱性溶液,等于7为中性溶液。由于不同温度下水的电离作用不一样,因而同一水样在不同温度下测得的PH值时不同的,所以规定25℃为测定温度值,通常用PH值测量仪都没有温度补偿装置。 锅炉水PH值偏高是什么原因 在汽包炉中,又是炉水的PH值显著上升到超过PO43-浓度所对应的PH理论值。测定的碱度中,酚酞碱度大于甲基橙碱度。很明显,炉水中存在着大量的游离NaOH。游离NaOH的来源之一是补给水,来源之二是凝结水,当炉水中游离NaOH过高时,应查明原因,使制水系统尽量减少漏钠。如凝汽器泄露,应及早堵漏。采取措施后,若PH值仍过高时,可向炉水中添加磷酸氢二钠来调节水的PH值。 PH值不符合标准,对锅炉的危害 炉水的PH值应不低于9.0,这是因为:(1)当PH值低时,金属表面的保护膜遭到破坏,水对金属的腐蚀加剧;(2)当炉水的PH值相当高是,磷酸根与钙离子才能生成容易排出的水渣;(3)PH值高,才能抑制炉水中硅酸盐的水解,使炉水中硅酸盐维持在最低水平,这样可减少蒸汽中硅酸盐溶解携带量。 3-浓度在规定范围时,如但锅炉水中的PH值也不能太高,因为当卤水中PO 4 炉水的PH值仍很高,这表明炉水中游离的NaOH较多,容易引起碱性腐蚀和应力腐蚀。这可能使炉水产生泡沫而影响蒸气品质。对于铆接和胀接锅炉。碱度过高还会引起苛性脆化。因此,需对炉水的碱度进行监督。 炉水磷酸盐含量不合格,是什么原因造成?如何处理? 如发现炉水磷酸盐浓度不合格,可能是以下原因引起的: (1)由于磷酸盐的加入量过大或不足引起的,有时也因加药设备管路的堵塞,或是加药设备不完善造成的。处理此类故障时,首先要检查好加药设备,疏通管道,调整好磷酸盐的加量。当磷酸根过高时,应注意对蒸气质量的监督,并加大锅炉排污量。(2)有时,由于给水硬度较高,消耗了部分磷酸盐而引起磷酸根不足,此时,首先要消除或降低给谁的硬度,以使磷酸盐的消耗不致过多,在增加药量以提高锅炉水的磷酸根浓度。(3)磷酸三钠纯度不够,含Na2CO3量过多,应加强药品纯度化验和监督。(4)注意观察该炉运行中是否存在磷酸盐暂时消失现象,如有在机组启动和停运时较为明显,磷酸盐的加入量应适当控制,否则,等机组运行正常后会使磷酸根含量升高。

反渗透脱盐率下降的原因

反渗透脱盐率下降的原因 在使用纯净水设备时,有时候会遇到反渗透脱盐率下降的现象,如何通过有效的操作尽快找到解决方法呢,下面生源就此问题进行剖析,文章从反渗透膜处理水领域和优点着手,以及反渗透操作注意事项和反渗透运行异常分析,科学分析,从实战角度提出解决方案。一、反渗透水处理技术的优势 反渗透是采用膜分离的水处理技术,自上世纪五十年代至今,反渗透水处理技术的发展使之在所有水的淡化方式中占领先地位,因其除在苦咸水、海水淡化中使用外,还广泛用于纯水制备、废水处理及饮水、饮料和化工产品的浓缩、回收工艺等多种领域。反渗透水处理技术基本上属于物理方法,它借助物理化学过程,在诸多方面有传统的水处理方法所没有的下述优点:不用大量的化学药剂和酸、碱再生处理,无环境污染,对水质的使用范围广泛,仅用压力作为推动力,能耗比较低,设备占地面积小,运行维护的工作量少等原来除盐设备无法比拟的优点。目前反渗透对高参数锅炉补给水处理,更具有常规的离子交换处理方式难以比拟的优异特性。其脱除水中二氧化硅的效果可达99.5%,有效地避免了高参数发电机组随压力升高对二氧化硅选择性携带所引 起的硅垢,避免了天然水中硅对离子交换树脂所带来的再生

困难,运行周期短的影响。脱除水中胶体及有机物的去除率可达95%,避免了有机物分解所形成的有机酸对汽轮机尾部的酸性腐蚀。反渗透水处理系统可连续产水,无运行中停止再生等操作,侯马晋田热电化学水处理就是利用其著多优点,将深井水经反渗透后,一级除盐加混床处理出水作为锅炉补给水。二、反渗透运行现状 水处理制水用反渗透为一级两段四二排列的两套反渗透处理设备。单套出水量为36吨/套,回收率为75%。锅炉补给水原设计水源为地下水,水质较好,有机物和硅酸盐的含量相对较低,2#反渗透脱盐率一直维持在98.5%以上,产品水电导在10us/cm以下。1#反渗透明显低于2#保持在97%左右。出水电导率保持在15us/cm左右,脱盐率在97%左右。2003年4月下旬,由于反渗透膜初期预处理各项指标曾不同程度的出现过不合格,膜厂家派技术人员来公司进行了首次在线清洗,且清洗后各项运行指标都能达到运行前的状况。分析原因为反渗透阻垢剂加药泵出口无校验柱致使反渗透运行初期无法准确确定阻垢剂加药量,药量偏小而结碳酸盐垢。但两套同时正常运行后仍然是2# 反渗透出水电导率明显低于1#反渗透。三、反渗透故障的发生与检测2006年10月6日,正常启动2#反渗透,检查各段压力正常,冲洗2#反渗透约半个小时,产品水电导率35us/cm,无下降迹象。投运,关闭浓水电磁阀,调整浓水于正常0.6MPa

反渗透膜技术指标的相关分析

反渗透膜技术指标的相关分析 1、脱盐率和透盐率 脱盐率――通过反渗透膜从系统进水中去除可溶性杂质浓度的百分比。 透盐率――进水中可溶性杂质透过膜的百分比。 脱盐率=(1-产水含盐量/进水含盐量)×100% 透盐率=100%-脱盐率 反渗透膜元件的脱盐率在其制造成形时就已确定,脱盐率的高低取决于反渗透膜元件表面超薄脱盐层的致密度,脱盐层越致密脱盐率越高,同时产水量越低。反渗透对不同物质的脱除率主要由物质的结构和分子量决定,海德能反渗透膜元件对高价离子及复杂单价离子的脱除率可以超过99%,对单价离子如:钠离子、钾离子、氯离子的脱除率稍低,但也超过了98%;对分子量大于100的有机物脱除率也可达到98% 2、产水量(水通量) 产水量(水通量)――指反渗透系统的产能,即单位时间内透过膜水量,通常用吨/小时或加仑/天来表示。 渗透流率――渗透流率也是表示反渗透膜元件产水量的重要指标。指单位膜面积上透过液的流率,通常用加仑每平方英尺每天(GFD)表示。过高的渗透流率将导致垂直于膜表面的水流速加快,加剧膜污染。 3、回收率 回收率--指膜系统中给水转化成为产水或透过液的百分比。膜系统的回收率在设计时就已经确定,是基于预设的进水水质而定的。回收率通常希望最大化以便提高经济效益,但是应该以膜系统内不会因盐类等杂质的过饱和发生沉淀为它的极限值。 回收率=(产水流量/进水流量)×100%

反渗透的影响因素 反渗透膜的水通量和脱盐率是反渗透过程中关键的运行参数,这两个参数将受到压力、温度、回收率、给水含盐量、给水PH值因素的影响。 1、进水压力 进水压力本身并不会影响盐透过量,但是进水压力升高使得驱动反渗透的净压力升高,使得产水量加大,同时盐透过量几乎不变,增加的产水量稀释了透过膜的盐分,降低了透盐率,提高脱盐率。当进水压力超过一定值时,由于过高的回收率,加大了浓差极化,又会导致盐透过量增加,抵消了增加的产水量,使得脱盐率不再增加。 2.、进水温度 温度对反渗透的运行压力、脱盐率、压降影响最为明显。温度上升,渗透性能增加,在一定水通量下要求的净推动力减少,因此实际运行压力降低。同时溶质透过速率也随温度的升高而增加,盐透过量增加,直接表现为产品水电导率升高。 温度对反渗透各段的压降也有一定的影响,温度升高,水的粘度降低,压降减少,对于反渗透膜的通道由于污堵而使湍流程度增强的装置,粘度对压降的影响更为明显。 反渗透膜产水电导对进水水温的变化十分敏感,随着水温的增加,水通量也线性的增加,进水水温每升高1℃,产水通量就增加2.5%~3.0%;其原因在于透过膜的水分子粘度下降、扩散性能增强。进水水温的升高同样会导致透盐率的增加和脱盐率的下降,这主要是因为盐分透过膜的扩散速度会因温度的提高而加快。 3、进水pH值 各种膜组件都有一个允许的pH值范围,进水pH值对产水量几乎没有影响;但是即使在允许范围内,PH值对脱盐率也有较大影响,一方面pH值对产品水的电导率也有一定的影响,这是因为反渗透膜本身大都带有一些活性基团,pH值可以影响膜表面的电场进而影响到离子的迁移,pH值对进水中杂质的形态有直接影响,如对可离解的有机物,其截留率随pH值的降低而下降;另一方面由于水中溶解的CO2受pH值影响较大,pH值低时以气

导致反渗透膜系统脱盐率整体过低的原因

反渗透膜系统为什么脱盐率整体过低? 来源:秦泰盛实业 反渗透膜系统为什么脱盐率整体过低?以下是一个实际应用案例,为您分析潜在因素: 反渗透项目设计: 有一个200m3/h的反渗透项目,分成两套装置,每套装置的产水量为100m3/h,设计采用美国海德能CPA3低压高脱盐率反渗透膜,设计回收率 75%,每套装置采用108支美国海德能8040的CPA3膜元件,(12:6)×6排列,给水含盐量 1000mg/L,温度为25℃,按照公司的设计软件的设计计算,在初始投运时,其系统脱盐率应该在98%以上,运行压力应该不高于1.06MPa(10.6bar)。 系统实际运行情况: 系统实际运行时,运行压力与设计压力吻合,但系统脱盐率不到90%,工 程公司经过与技术人员的多次讨论与原因分析,并且在现场对每一支压力容器的产水电导率进行了测试,测试结果表明,装置第一段12支压力容器的产水电导率基本一致,装置第二段6支压力容器的产水电导率基本一致,并且第一段压力容器的产水电导率均低于第二段压力容器的产水电导率,符合反渗透产水的一般规律,从而排除了某些压力容器内存在密封圈泄漏的可能性。 由于现场条件有限,不能进行水质全分析,只有电导率表和pH试纸,在测量给水电导率和pH值后发现,电导率值基本与设计水质相符,用pH试纸测出的pH值大约为7~8,从而排除了水质大幅度变化的可能性。经过反复调查发现,工程公司只是对来水进行简单的预处理后送入反渗透系统,而甲方所提供的来水实际上已经在另一个车间进行了石灰软化处理,处理后也没有对水进行pH值的调节就送到了反渗透的净化车间,由于工程公司没有在给水系统中设计安装pH 表,同时pH 试纸又已经失效,因而没有能够发现pH值已经很高的事实。根据

水的电离及pH的计算

水的电离及pH的计算 1、常温下,某溶液中由水电离出的c(H+)和c(OH-)的乘积是1×10-20,该溶液的pH是______________。 2、常温下,等体积的①pH=0的H2SO4溶液、②0.05 mol·L-1的Ba(OH)2溶液发生电离的水的物质的量之比是__________。 3、已知NaHSO4在水中的电离方程式为:NaHSO4===Na++H++SO2-4。某温度下,向pH =6的蒸馏水中加入NaHSO4晶体,保持温度不变,测得溶液的pH为2,对于该溶液,水电离出来的c(H+)=_________mol·L-1,该温度下加入等体积pH=______的NaOH溶液可使反应后的溶液恰好呈中性。 4、常温时,纯水中由水电离的c(H+)=a,pH=1的盐酸中由水电离的c(H+)=b,0.2 mol·L-1的盐酸与0.1 mol·L-1的氢氧化钠溶液等体积混合后,由水电离的c(H+)=c,则a、b、c的关系是_________。 5、按要求回答下列各题: (1)在25 ℃时,某溶液中由水电离出的c(H+)=1×10-12mol·L-1,则该溶液的pH为________。 (2)已知在100 ℃的温度下,水的离子积K W=1×10-12,该温度下,将pH=10的苛性钠溶液a L与pH=1的稀硫酸b L混合(假设混合后溶液体积的微小变化忽略不计),试通过计算填写以下不同情况时两种溶液的体积比。 ①若所得混合液为中性,则a∶b=________; ②若所得混合液的pH=2,则a∶b=________。 6、现有常温下的六份溶液: ①0.01 mol/L CH3COOH溶液;②0.01 mol/L HCl溶液;③pH=12的氨水;④pH=12的NaOH溶液;⑤0.01 mol/L CH3COOH溶液与pH=12的氨水等体积混合后所得溶液;⑥ 0.01 mol/L HCl溶液与pH=12的NaOH溶液等体积混合所得溶液。 (1)其中水的电离程度最大的是________(选填序号,下同),水的电离程度相同的是________; (2)若将②、③混合后所得溶液pH=7,则消耗溶液的体积:②________③(选填“>”、“<”或“=”); 7、在不同温度下的水溶液中c(H+)=10x mol·L-1,c(OH-)=10y mol·L-1,x与y的关系如图 所示。请回答下列问题: (1)曲线Ⅰ代表的温度下,水的离子积为________,曲线Ⅰ 所代表的温度________(填“高于”、“低于”或“等于”) 曲线Ⅱ所代表的温度。你判断的依据是 _________________________________________。 (2)曲线Ⅰ所代表的温度下,0.01 mol·L-1的NaOH溶液的pH为________。

一种提升反渗透膜脱盐率技术

一种反渗透膜脱盐率恢复的技术方法 技术领域 本实用新型涉及反渗透膜的运营维护技术领域,尤其涉及一种反渗透膜脱盐率恢复领域。 背景技术 反渗透系统即利用反渗透膜的特性来除去水中绝大部分可溶性盐分、胶体、有机物及微生物,已广泛用于水处理脱盐。反渗透膜元件在长时间运行过程中,膜表面会受到碳酸钙沉淀、硫酸钙沉淀、微生物、金属氧化物、硅沉积物等污染物形成的结垢沉积物,这些结构沉积物使反渗透膜性能下降,反渗透膜脱盐率下降,影响产品水水质。 实用新型内容 针对上述反渗透膜性能下降,反渗透膜脱盐率下降问题,本实用新型的目的是提供一种反渗透膜脱盐率恢复的方法,提高产品水水质。 为了实现上述目的,本实用新型提供如下技术方法: 一种反渗透膜脱盐率恢复的技术方法,此方法的实施步骤包括: (1)、了解反渗透设备运行状况:包括前段工艺流程、投运行时间、段间压差、高压泵出口压力、高压泵电机电流、膜元件结垢状况、清洗装置状况等; (2)、根据设备运行状况针对性出方案,对方案进行评估;依据确定的方案进行反渗透膜脱盐率恢复工作; (3)、配置pH为11~12的化学清洗溶液1,将化学清洗溶液1加热到40℃,并保持此温度;对反渗透膜进行循环清洗;先进行小流量5m3/h/支膜壳循环清洗20分钟;然后进行中等流量10m3/h/支膜壳循环清洗20分钟;然后再进行大流量15m3/h/支膜壳循环清洗20分钟,最后再进行小流量5m3/h/支膜壳循环清洗150分钟; (4)、使用反渗透产水对完成步骤(3)的反渗透膜进行低压大流量冲洗10分钟; (5)、配置pH为2~3的化学清洗溶液2,对反渗透膜进行中等流量10m3/h/支膜壳循环清洗100分钟; (6)、使用反渗透产水对完成步骤(5)的反渗透膜进行低压大流量冲洗10分钟。 本实用新型的有益效果如下: 1、本实用新型的反渗透膜脱盐率恢复的技术方法能够可快速有效的解决反渗透膜元件 脱盐率下降的污染问题,快速有效的进行了膜元件的维护;避免了膜元件离线清洗或者膜元件更换,能够有效保证反渗透稳定运行,保证产品水水质; 2、本实用新型的反渗透膜脱盐率恢复的技术方法可以避免反渗透膜元件因脱盐率下降

水处理PH调节工操作规程

PH调节工操作规程 1、接班检查古灰贮存量和各池液位及碱水、酸水总沟格栅拦堵塞情况,每班至少清理一次,若堵塞情况严重可适当增加清理次数。 2、调节酸水、碱水以恒定的酸碱比输送到吹脱池,将水量控制在吹脱池的4/5,以便于进行曝气。 3、调节石灰水流量,控制老线中和池PH为5-8,一沉池为7-10,新线中和池为5-8,一沉池为7-10,当报警装置铃响时,看仪表显示值偏高或偏低,来决定关小或开大阀门,使PH值在允许范围内波动。 4、检查酸碱泵出水管压力和各泵运转情况,各泵每班至少清理一次,视情况增加清理次数。 5、将化好的石灰打入石灰贮桶约2/3处,开压缩空气进行搅拌,取石灰水样于100mL量筒中,静置半小时,沉降比为20%,则石灰浓度为5%左右,如沉降比高于20%,则往石灰贮桶中加水稀释,若沉降比低于20%,则往石灰贮桶中投加生石灰。直至沉降比为20%为止。 二00八年一月拟制:唐丽娟审核:徐金祥批准:吴玉芳

生化操作规程 1、吹脱池按工艺要求控制进水流量,并做好记录。 2、吹脱池曝气阀门控制气水比为10﹕1。 3、每小时用PH计检查中和池、一沉池和PH值,发现PH异常及时与PH调节工联系。 4、发现一沉池的PH超标,按应急方案处理。 5、根据进水的流量,按要求调节药剂的流量,如水量为0.06m/S,则药剂流量为1500转/秒。 6、每小时用PH计检测按触氧化池的DO值,并做好记录。 7、每小时检查加药池、二沉池、反应池的加药量,并检测二沉池的PH值和出水DO值,并做好记录。 8、每两小时检查罗茨风机的运转情况,油位控制在1/2-2/3,电流控制90KW风机小于164A,75KW风机小于139.7A,表压控制为0.06-0.07Mpa,并做好记录。 附:PH计、溶氧仪的使用方法。 (一)PH计: 1、打开保护盖,并将电极拉出(注:请轻轻拉出电极,以免拉断连线)。 2、用蒸馏水清洗电极并揩干。 3、将电极置于待测溶液中,稍搅动后静止放置至显示值稳定,即为该溶液的PH值。

相关主题
文本预览
相关文档 最新文档