当前位置:文档之家› 多核处理器的产生原因及现状

多核处理器的产生原因及现状

多核处理器的产生原因及现状
多核处理器的产生原因及现状

多核处理器的产生原因及现状

计算机科学与技术杜立明 200926100406多内核(multicore chips)是指在一枚处理器芯片(chip)中集成两个或多个完整的计算引擎(内核)。多核技术的开发源于工程师们认识到,仅仅提高单核芯片(one chip)的速度会产生过多热量且无法带来相应的性能改善。

一、为什么要发展多核

为什么不能用单核的设计达到用户对处理器性能不断提高的要求呢?答案是功耗问题限制了单核处理器不断提高性能的发展途径。

作为计算机核心的处理器就是将输入的数字化的数据和信息,进行加工和处理,然后将结果输出。假定计算机的其他子系统不存在瓶颈的话,那么影响计算机性能高低的核心部件就是处理器。反映在指令上就是处理器执行指令的效率。

处理器性能 = 主频 x IPC

从上面的公式可以看出,衡量处理器性能的主要指标是每个时钟周期内可以执行的指令数(IPC: Instruction Per Clock)和处理器的主频。

因此,提高处理器性能就是两个途径:提高主频和提高每个时钟周期内执行的指令数(IPC)。处理器微架构的变化可以改变IPC,效率更高的微架构可以提高IPC从而提高处理器的性能。但是,对于同一代的架构,改良架构来提高IPC的幅度是非常有限的,所以在单核

处理器时代通过提高处理器的主频来提高性能就成了唯一的手段。

不幸的是,给处理器提高主频不是没有止境的,从下面的推导中可以看出,处理器的功耗和处理器内部的电流、电压的平方和主频成正比,而主频和电压成正比。

即:处理器功耗∝电流x 电压2x 主频

主频∝电压

则:处理器功耗∝主频3

如果通过提高主频来提高处理器的性能,就会使处理器的功耗以指数(三次方)而非线性(一次方)的速度急剧上升,很快就会触及所谓的“频率的墙”(frequency wall)。过快的能耗上升,使得业界的多数厂商寻找另外一个提高处理器性能的因子,提高IPC。

提高IPC可以通过提高指令执行的并行度来实现,而提高并行度有两种途径:一是提高处理器微架构的并行度;二是采用多核架构。

在采用同样的微架构的情况下,为了达到处理器IPC的目的,我们可以采用多核的方法,同时有效地控制功耗的急剧上升。

因为:处理器功耗∝电流x 电压2x 主频

IPC ∝电流

所以:处理器功耗∝ IPC

由单核处理器增加到双核处理器,如果主频不变的话,IPC理论上可以提高一倍,功耗理论上也就最多提高一倍,因为功耗的增加是线性的。而实际情况是,双核处理器性能达到单核处理器同等性能的时候,前者的主频可以更低,因此功耗的下降也是指数方(三次方)下降的。反映到产品中就是双核处理器的起跳主频可以比单核处理器

更低,性能更好。

由此可见,将来处理器发展的趋势是:为了达到更高的性能,在采用相同微架构的情况下,可以增加处理器的内核数量同时维持较低的主频。这样设计的效果是,更多的并行提高IPC,较低的主频有效地控制了功耗的上升。

二、多核处理器的出现是技术发展的必然

上世纪八九十年代以来,推动微处理器性能不断提高的因素主要有两个:半导体工艺技术的飞速进步和体系结构的不断发展。半导体工艺技术的每一次进步都为微处理器体系结构的研究提出了新的问题,开辟了新的领域;体系结构的进展又在半导体工艺技术发展的基础上进一步提高了微处理器的性能。这两个因素是相互影响,相互促进的。一般说来,工艺和电路技术的发展使得处理器性能提高约20倍,体系结构的发展使得处理器性能提高约4倍,编译技术的发展使得处理器性能提高约1.4倍。但这种规律性的东西却很难维持。多核的出现是技术发展和应用需求的必然产物。这主要基于以下事实:

1.晶体管时代即将到来

根据摩尔定律,微处理器的速度以及单片集成度每18个月就会翻一番。晶体管的制造工艺以惊人的速度在发展,45nm工艺的微处理器已经批量生产,芯片上集成的晶体管数目超过10亿个。因此,体系结构的研究又遇到新的问题:如何有效地利用数目众多的晶体管?多核通过在一个芯片上集成多个简单的处理器核充分利用这些晶体管资源,发挥其最大的能效。

2.门延迟逐渐缩短,而全局连线延迟却不断加长

随着VLSI工艺技术的发展,晶体管特征尺寸不断缩小,使得晶体管门延迟不断减少,但互连线延迟却不断变大。当芯片的制造工艺达到0.18微米甚至更小时,线延迟已经超过门延迟,成为限制电路性能提高的主要因素。在这种情况下,由于CMP(单芯片多处理器)的分布式结构中全局信号较少,与集中式结构的超标量处理器结构相比,在克服线延迟影响方面更具优势。

3.符合Pollack规则

按照Pollack规则,处理器性能的提升与其复杂性的平方根成正比。如果一个处理器的硬件逻辑提高一倍,至多能提高性能40%,而如果采用两个简单的处理器构成一个相同硬件规模的双核处理器,则可以获得70%~80%的性能提升。同时在面积上也同比缩小。

4.能耗不断增长

随着工艺技术的发展和芯片复杂性的增加,芯片的发热现象日益突出。多核处理器里单个核的速度较慢,处理器消耗较少的能量,产生较少的热量。同时,原来单核处理器里增加的晶体管可用于增加多

核处理器的核。在满足性能要求的基础上,多核处理器通过关闭

(或降频)内核等低功耗技术,可以有效地降低能耗。

5.设计成本的考虑

随着处理器结构复杂性的不断提高,和人力成本的不断攀升,设计成本随时间呈线性甚至超线性的增长。多核处理器通过处理器IP 等的复用,可以极大降低设计的成本。同时模块的验证成本也显著下降。

6.体系结构发展的必然

超标量(Superscalar)结构和超长指令字(VLIW)结构在高性能微处理器中被广泛采用。但是它们的发展都遇到了难以逾越的障碍。Superscalar结构使用多个功能部件同时执行多条指令,实现指令级的并行(Instruction-Level Parallelism,ILP)。但其控制逻辑复杂,实现困难,研究表明,Superscalar结构的ILP一般不超过8。VLIW结构使用多个相同功能部件执行一条超长的指令,但也有两大问题:编译技术支持和二进制兼容问题。

三、多核处理器与多线程处理器的比较

未来的主流应用需要处理器具备同时执行更多条指令的能力,但是从单一线程中已经不太可能提取更多的并行性,主要有以下两个方面的原因:一是不断增加的芯片面积提高了生产成本;二是设计和验证所花费的时间变得更长。

为此,研究人员提出了两种新型体系结构: 单芯片多处理器(CMP)与同时多线程处理器(Simultaneous Multithreading,SMT),这两种体系结构可以充分利用这些应用的指令级并行性和线程级并行性,从而显著提高了这些应用的性能。

从体系结构的角度看,SMT比CMP对处理器资源利用率要高,在克服线延迟影响方面更具优势。CMP相对SMT的最大优势还在于其模块化设计的简洁性。复制简单设计非常容易,指令调度也更加简单。同时SMT中多个线程对共享资源的争用也会影响其性能,而CMP对共享资源的争用要少得多,因此当应用的线程级并行性较高时,CMP性能一般要优于SMT。此外在设计上,更短的芯片连线使CMP比长导线集中式设计的SMT更容易提高芯片的运行频率,从而在一定程度上起到性能优化的效果。

总之,单芯片多处理器通过在一个芯片上集成多个微处理器核心来提高程序的并行性。每个微处理器核心实质上都是一个相对简单的单线程微处理器或者比较简单的多线程微处理器,这样多个微处理器核心就可以并行地执行程序代码,因而具有了较高的线程级并行性。由于CMP采用了相对简单的微处理器作为处理器核心,使得CMP具有高主频、设计和验证周期短、控制逻辑简单、扩展性好、易于实现、功耗低、通信延迟低等优点。此外,CMP还能充分利用不同应用的指令级并行和线程级并行,具有较高线程级并行性的应用如商业应用等可以很好地利用这种结构来提高性能。单芯片多处理器已经成为处理器体系结构发展的一个重要趋势。

四、多核处理器的发展现状

早在上世纪90年代末,就有众多业界人士呼吁用CMP(单芯片多处理器)技术来替代复杂性较高的单线程CPU。IBM、惠普、Sun等高端服务器厂商,更是相继推出了多核服务器CPU。不过,由于服务器价格高、应用面窄,并未引起大众广泛的注意。

2005年4月,英特尔推出简单封装双核的奔腾D和奔腾四至尊版840。AMD在之后也发布了双核皓龙(Opteron)和速龙(Athlon) 64 X2和处理器。但真正的“双核元年”,则被认为是2006年。这一年的7月23日,英特尔基于酷睿(Core)架构的处理器正式发布。2006年11月,又推出面向服务器、工作站和高端个人电脑的至强(Xeon)5300和酷睿双核和四核至尊版系列处理器。与上一代台式机处理器相比,酷睿2 双核处理器在性能方面提高40%,功耗反而降低40%。作为回应,7月24日,AMD也宣布对旗下的双核Athlon64 X2处理器进行大降价。由于功耗已成为用户在性能之外所考虑的首要因素,两大处理器巨头都在宣传多核处理器时,强调其“节能”效果。英特尔发布了功耗仅为50瓦的低电压版四核至强处理器。而AMD的“Barcelona”四核处理器的功耗没有超过95瓦。

2008年09月,英特尔终于按计划发布了集成6核的Xeon(至强)7400处理器。该处理器开发代号为“Dunnington”,是英特尔首颗基于x86架构的六核处理器,主要面向注重多线程运算的高端市场。英特尔表示,Xeon 7400在虚拟机和数据库应用方面进行了很多优化。

多核处理器的发展前景和存在问题综述

多核处理器的发展前景和存在问题综述 目录 1.概述 (2) 2.处理器的发展趋势 (2) 从单核到多核 (3) 同构多处理器与异构多处理器 (3) 多核处理器发展面临的挑战 (4) 多核与多线程技术 (4) 3.多核处理器的高速缓存一致性问题 (4) 增强一致性的基本方案 (5) 目录式Proximity-aware 协议 (5) 4.多核加速串行程序的主要方法 (8) 并行编译器 (8) 推测多线程 (9) 基于线程的预执行机制 (9) 5. 总结 (10) 参考文献 (11)

1. 概述 在过去的几十年时间里,处理器的性能一直按照莫尔定律在发展。提高处理器性能的基本方法就是不断提升主频。从初期的几十MHz到不久前IBM的Power 6达到了,设计人员甚至想过提升到7G~8GHz。不过,进入2002年以来,CPU 提升主频的困难越来越大,因为主频的提升带来了散热和功耗的大幅增加等问题。在几年前,英特尔和AMD都调整了研究方向,开始研究在同一CPU中放置多个执行内核。 说到底,出现多核处理器的最根本原因是人们对计算能力永无止境的追求。尽管这些年来,处理器从来没有停止过前进的脚步,但每一次性能的突破,换来的只是对更高性能的需求,特别是在油气勘探、气象预报、虚拟现实、人工智能等高度依赖于计算能力的场合,对性能的渴求更加迫切。 既然单处理器的发展已经到了瓶颈,而多核将会引领以后处理器发展的潮流,那么我们就看看多核处理器带给我们什么样的性能提升,多核处理器要全面应用到各个领域所需解决的问题。 多核的好处非常明显。首先,由于是多个执行内核可以同时进行运算,因此可以显著提升计算能力,而每个内核的主频可以比以前低,因而总体功耗增加不大。其次,与多CPU相比,多核处理器采用与单CPU相同的硬件架构,用户在提升计算能力的同时无需进行任何硬件上的改变,这对用户来说非常方便。 然而,多核处理器要发挥它的作用必须要解决许多问题,不像CPU的频率提升,无论如何你都可以从中受益,要从多核处理器中受益,首先在设计多核处理器时,要注意不同核心之间的通信与数据的一致性,另外,在软件层次上也需要对多核进行改进,以充分利用多核的性能。 本文结合了几篇最新的多核方面的论文和一些网上评论,从处理器的发展趋势,前景以及存在的挑战几个方面介绍了多核的相关问题。文章第二部分主要介绍处理器的发展趋势,第三部分主要阐述多核的一个关键问题高速缓存一致性已经如何通过预取来提高带宽,第四部分主要阐述多核在提高串行程序性能方面的作用。 2. 处理器的发展趋势

多核处理器的主要实现架构及其设计挑战

多核处理器的主要实现架构及其设计挑战 2008年03月01日 为得到更高的处理性能,曾经唯一的做法是提高单一处理器的频率,但当这一做法因为功耗和发热的非线性增长而变得难以为继时,集成多个处理器核心的器件便应运而生。谈到多核处理器,ARM的中国总裁谭军先生给出的定义是:“多核处理器是指在同一个核内具有多个处理器内核,它们可以通过内部的缓存来控制,有选择性的开/关。” 总体上,多核处理器架构分为同质架构和异质架构两大类。MIPS 科技公司产品营销总监P ete Del Vecchio认为:“当SoC 的功能被分解进彼此次之间通信非常有限的的多个子系统时,异质架构的多核系统最为适用。”他还表示:“同质架构的多核系统设计使分配到不同处理器的任务共享的数据可以自动保持一致。这种多核系统比较容易编程,可提供直接的机制,在不同处理器之间动态地迁移任务。” 各种应用于通用领域和嵌入式领域的多核处理器都可以归入到上面提到的这两种架构。TI 采用的是将DSP与CPU核心相结合的混合结构。TI通用DSP业务发展经理郑小龙表示:“DSP速度极快适于实时处理,CPU控制能力全面适合非实时处理,TI的混合结构多核处理器将二者的优点充分结合,构成一个极其高效的SoC。”MIPS的Pete Del Vecchio表示:“目前,MIPS主要致力于最大限度地提高单处理器的频率。”但他同时表示:“已有获得授权的厂商在利用各种MIPS 内核,不论是在异构还是同构多核实现方法方面均取得了巨大的成功。例如,Sigma Designs 开发的一款芯片采用两个MIPS内核,一个用来处理应用软件/OS,另一个用于系统安全。” Freescale的多核平台包含2到32个Power Architecture 的e500-mc Power内核,该平台在高端包含了一个基于互联的片上控制网络,它可以减少由于拥塞而带来的性能降低。ARM在2007年推出了当最多具备四核时性能可达8,000DMIPS 的Cortex-A9处理器。英特尔目前多核处理器采用的微架构是著名的酷睿微架构,酷睿微架构具备以下重要特性: 1. 英特尔宽区动态执行; 2. 英特尔智能内存访问; 3. 英特尔高级数字媒体增强; 4. 英特尔高级智能高速缓存; 5. 英特尔智能功率特性。 在实施多核处理器的过程中,在硬件和软件两方面业界都面临一系列挑战。TI的郑小龙认为:“挑战首先表现在系统配置方面,其次表现在软件协调开发方面。”ARM通过已经被业界证明成功的MPCore 技术看到了以下几大设计挑战:1. 预先整合的并且通过验证的可扩展多核处理技术;2. 整合的中断分配和处理器间的通信;3. 先进的Snoop控制单元,支持增强的缓存一致性。应对这些挑战,谭军表示:“ARM在Cortex-A9 MPCore中在以下几个方面进一步加强了MPCore 技术:1. 加速器一致性端口(ACP);2. 先进的总线接口单元;3. 具有中断虚拟的多核ARM TrustZone技术;4. 通用中断控制器(GIC)。

多核处理器

多核处理器 多核处理器是指在一枚处理器中集成两个或多个完整的计算引擎(内核)。多核技术的开发源于工程师们认识到,仅仅提高单核芯片的速度会产生过多热量且无法带来相应的性能改善,先前的处理器产品就是如此。他们认识到,在先前产品中以那种速率,处理器产生的热量很快会超过太阳表面。即便是没有热量问题,其性价比也令人难以接受,速度稍快的处理器价格要高很多。 最新新闻 中国发布全球首款全系统多核高精度导航定位芯片 全球首款全系统多核高精度导航定位系统级芯片,13日在第六届中国卫星[2.10% 资金研报]学术年会期间对外发布。专家表示,这意味着国产芯片不仅具备国际竞争力,还从“跟踪者”跃升为“引领者”。...详情 内容来自 中文名多核处理器 定义集成两个或多个完整的计算引擎 第一颗通用型微处理器4004 技术优势采用了线程级并行编程 目录 1技术发展 2发展历程 3技术优势 4技术瓶颈 5技术原理 6技术关键 ?核结构研究 ?程序执行模型 ?Cache设计 ?核间通信技术 ?总线设计 ?操作系统设计 ?低功耗设计 ?存储器墙 ?可靠性及安全性设计 7技术意义 8技术种类 9技术应用 10应用 11英特尔 1技术发展 256线程的CPU 256线程的CPU 英特尔工程师们开发了多核芯片,使之满足“横向扩展”(而非“纵向扩充”)方法,从而提高性能。该架构实现了“分治法”战略。通过划分任务,线程应用能够充分利用多个执行内核,并可在特定的时间内执行更多任务。多核处理器是单枚芯片(也称为“硅核”),能够直

接插入单一的处理器插槽中,但操作系统会利用所有相关的资源,将每个执行内核作为分立的逻辑处理器。通过在两个执行内核之间划分任务,多核处理器可在特定的时钟周期内执行更多任务。多核架构能够使软件更出色地运行,并创建一个促进未来的软件编写更趋完善的架构。尽管认真的软件厂商还在探索全新的软件并发处理模式,但是,随着向多核处理器的移植,现有软件无需被修改就可支持多核平台。操作系统专为充分利用多个处理器而设计,且无需修改就可运行。为了充分利用多核技术,应用开发人员需要在程序设计中融入更多思路,但设计流程与对称多处理(SMP)系统的设计流程相同,并且现有的单线程应用也将继续运行。得益于线程技术的应用在多核处理器上运行时将显示出卓越的性能可扩充性。此类软件包括多媒体应用(内容创建、,以及本地和数据流回放)、工程和其他技术计算应用以及诸如应用服务器和数据库等中间非标轴承https://www.doczj.com/doc/7510692871.html,层与后层服务器应用。多核技术能够使服务器并行处理任务,而在以前,这可能需要使用多个处理器,多核系统更易于扩充,并且能够在更纤巧的外形中融入更强大的处理性能,这种外形所用的功耗更低、计算功耗产生的热量更少。多核技术是处理器发展的必然。推动微处理器性能不断提高的因素主要有两个:半导体工艺技术的飞速进步和体系结构的不断发展。半导体工艺技术的每一次进步都为微处理器体系结构的研究提出了新的问题,开辟了新的领域;体系结构的进展又在半导体工艺技术发展的基础上进一步提高了微处理器的性能。这两个因素是相互影响,相互促进的。一般说来,工艺和电路技术的发展使得处理器性能提高约20倍,体系结构的发展使得处理器性能提高约4倍,编译技术的发展使得处理器性能提高约1.4倍。但是今天,这种规律性的东西却很难维持。多核的出现是技术发展和应用需求的必然产物。 2发展历程 1971年,英特尔推出的全球第一颗通用型微处理器4004,由2300个晶体管构成。当时,公司的联合创始人之一戈登摩尔(Gordon Moore),就提出后来被业界奉为信条的“摩尔定律”——每过18个月,芯片上可以集成的晶体管数目将增加一倍。 在一块芯片上集成的晶体管数目越多,意味着运算速度即主频就更快。今天英特尔的奔腾(Pentium)四至尊版840处理器,晶体管数量已经增加至2.5亿个,相比当年的4004增加了10万倍。其主频也从最初的740kHz(每秒钟可进行74万次运算),增长到现在的3.9GHz(每秒钟运算39亿次)以上。 当然,CPU主频的提高,或许在一定程度上也要归功于1975年进入这个领域的AMD公司的挑战。正是这样的“双雄会”,使得众多计算机用户有机会享受不断上演的“速度与激情”。一些仍不满足的发烧友甚至选择了自己超频,因为在玩很多游戏时,更快的速度可以带来额外的饕餮享受。 但到了2005年,当主频接近4GHz时,英特尔和AMD发现,速度也会遇到自己的极限:那就是单纯的主频提升,已经无法明显提升系统整体性能。 以英特尔发布的采用NetBurst架构的奔腾四CPU为例,它包括Willamette、Northwood和Prescott等三种采用不同核心的产品。利用冗长的运算流水线,即增加每个时钟周期同时执行的运算个数,就达到较高的主频。这三种处理器的最高频率,分别达到了2.0G、3.4G和3.8G。 按照当时的预测,奔腾四在该架构下,最终可以把主频提高到10GHz。但由于流水线过长,使得单位频率效能低下,加上由于缓存的增加和漏电流控制不利造成功耗大幅度增加,3.6GHz奔腾四芯片在性能上反而还不如早些时推出的3.4GHz产品。所以,Prescott产品系列只达到3.8G,就戛然而止。 英特尔上海公司一位工程师在接受记者采访时表示,Netburst微架构的好处在于方便提升频率,可以让产品的主频非常高。但性能提升并不明显,频率提高50%,性能提升可能微不

多核处理器在计算方面的优势

面对飞速增长的流媒体信息和网络应用的全球化趋势,企业和消费者要求电脑处理器提供更多的便利,更明显的优势,采用多核处理器的x86服务器就是在这种背景下应运而生。目前,数据库、创作3D图像、同时运行多项任务、数学分析和网络服务等各种各样的应用,对计算性能的要求永无止境。如何在更好的性价比条件下,有效地满足现在与未来的需求,成为企业用户面临的必然选择。 双核处理器:计算技术发展的重要趋势 从技术层面来看,多核处理器,较之当前的单核处理器,能带来更多的性能和生产力优势,因而最终将成为一种广泛普及的计算模式。多核处理器还将在推动PC安全性和虚拟技术方面起到关键作用,虚拟技术的发展能够提供更好的保护、更高的资源使用率和更可观的商业运算市场价值。 向多核处理器的迈进是一个重要的技术发展趋势。双核处理器技术的引入是提高处理器性能另一个行之有效的方法。因为处理器实际性能是处理器在每个时钟周期内所能处理器指令数的总量,因此增加一个内核,处理器每个时钟周期内可执行的单元数将增加一倍。在这里我们必须强调一点的是,如果你想让系统达到最大性能,你必须充分利用两个内核中的所有可执行单元:即让所有执行单元都有活可干! 当这些处理器面世时,它们将会立即对企业和消费者带来极大的便利。多核处理器可以通过为工作负担较重的场合——尤其是那些已经在使用多线程应用的场合?D?D提供显着提升的性能,促进服务器/工作站业务环境的发展。根据现有的计划,我们可以看到,一些国际领先的处理器厂商计划在2005年中国推出第一个面向服务器和工作站市场的双核处理器。届时,企业计算的x86服务器市场将全面进入双核时代,从而拉开了多核服务器全新应用时代的帷幕;而这个时代帷幕一旦拉开,将把X86服务器的应用提升到一个前所未有的高度,使客户在举足之间轻松提升性能,更加有效地运行应用,提高工作负担较重的应用,例如数据采集、数学分析和Web服务,提高更高的生产效率。 双核服务器:企业服务器的必由之路 计算机处理器的设计在近20年来以一个常速在不断进化发展。计算机持续向大众市场发展和扩散和我们提出的要求都在不断推动着向更强大的处理器前进的趋势。市场对更高性能处理器的要求与对更成熟的软件应用程序的需求紧密相关。例如,如今全球盛行的电子邮件,在十年以前只是一项限制性很强而且价格昂贵的技术。如今,软件应用程序,从帮助大型企业更好地管理和保护他们的关键业务数据和网络到允许家用PC机编辑家庭录像、处理数字照片和将下载音乐烧制成CD,几乎无所不在。

多核处理器的优点和缺点

三、多核处理器的优点和缺点 从应用需求上去看,越来越多的用户在使用过程中都会涉及到多任务应用环境,日常应用中用到的非常典型的有两种应用模式。 一种应用模式是一个程序采用了线程级并行编程,那么这个程序在运行时可以把并行的线程同时交付给两个核心分别处理,因而程序运行速度得到极大提高。这类程序有的是为多路工作站或服务器设计的专业程序,例如专业图像处理程序、非线视频编缉程序、动画制作程序或科学计算程序等。对于这类程序,两个物理核心和两颗处理器基本上是等价的,所以,这些程序往往可以不作任何改动就直接运行在双核电脑上。 还有一些更常见的日常应用程序,例如、等,同样也是采用线程级并行编程,可以在运行时同时调用多个线程协同工作,所以在双核处理器上的运行速度也会得到较大提升。例如,打开浏览器上网。看似简单的一个操作,实际上浏览器进程会调用代码解析、播放、多媒体播放、、脚本解析等一系列线程,这些线程可以并行地被双核处理器处理,因而运行速度大大加快(实际上浏览器的运行还涉及到许多进程级的交互通信,这里不再详述)。由此可见,对于已经采用并行编程的软件,不管是专业软件,还是日常应用软件,在多核处理器上的运行速度都会大大提高。 日常应用中的另一种模式是同时运行多个程序。许多程序没有采用并行编程,例如一些文件压缩软件、部分游戏软件等等。对于这些单线程的程序,单独运行在多核处理器上与单独运行在同样参数的单核处理器上没有明显的差别。但是,由于日常使用的最最基本的程序——操作系统——是支持并行处理的,所以,当在多核处理器上同时运行多个单线程程序的时候,操作系统会把多个程序的指令分别发送给多个核心,从而使得同时完成多个程序的速度大大加快。 另外,虽然单一的单线程程序无法体现出多核处理器的优势,但是多核处理器依然为程序设计者提供了一个很好的平台,使得他们可以通过对原有的单线程序进行并行设计优化,以实现更好的程序运行效果。 上面介绍了多核心处理器在软件上面的应用,但游戏其实也是软件的一种,作为一种特殊的软件,对发展作出了较大的贡献。一些多线程游戏已经能够发挥出多核处理器的优势,对于单线程游戏,相信游戏厂商也将会改变编程策略,例如,一些游戏厂商正在对原来的一些单线程游戏进行优化,采用并行编程使得游戏运行得更快。有的游戏可以使用一个线程实现人物动画,而使用另一个线程来载入地图信息。或者使用一个线程来实现图像渲染中的矩阵运算,而使用另一个来实现更高的人工智能运算。如今,大量的支持多核心的游戏涌现出来,从而使得多核处理器的优势能得到进一步的发挥。 但布赖恩特直言不讳地指出,要想让多核完全发挥效力,需要硬件业和软件业更多革命性的更新。其中,可编程性是多核处理器面临的最大问题。一旦核心多过八个,就需要执行程序能够并行处理。尽管在并行计算上,人类已经探索了超过年,但编写、调试、优化并行处理程序的能力还非常弱。 易观国际分析师李也认为,“出于技术的挑战,双核甚至多核处理器被强加给了产业,而产业却并没有事先做好准备”。或许正是出于对这种失衡的担心,中国国家智能计算机中心主任孙凝辉告诉《财经》记者,“十年以后,多核这条道路可能就到头了”。在他看来,一味增加并行的处理单元是行不通的。并行计算机的发展历史表明,并行粒度超过以后,程序就很难写,能做到个以上的应用程

操作系统对多核处理器的支持方法

随着多核处理器的发展,对软件开发有非常大的影响,而且核心的瓶颈在软件上。软件开发在多核环境下的核心是多线程开发。这个多线程不仅代表了软件实现上多线程,要求在硬件上也采用多线程技术。可以说多核提供了可以大幅提升性能的机制,多核软件就是可以真正利用这一特点的策略。只有与多核硬件相适应的软件,才能真正地发挥多核的性能。多核对软件的要求包括对多核操作系统的要求和对应用软件的要求。 多核操作系统的关注点在于进程的分配和调度。进程的分配将进程分配到合理的物理核上,因为不同的核在共享性和历史运行情况都是不同的。有的物理核能够共享二级cache,而有的却是独立的。如果将有数据共享的进程分配给有共享二级cache的核上,将大大提升性能;反之,就有可能影响性能。进程调度会涉及到比较广泛的问题,比如负载均衡、实时性等。 面向多核体系结构的操作系统调度目前多核软件的一个热点,其中研究的热点主要有下面几方面:程序的并行研究;多进程的时间相关性研究;任务的分配与调度;缓存的错误共享;一致性访问研究;进程间通信;多处理器核内部资源竞争等等。这些探讨相互独立又相互依赖。考虑一个系统的性能时必须将其中的几点同时加以考虑,有时候对一些点的优化会造成另一些点的性能下降,需要用程序进行性能优化评测,所以合适的多核系统软件方案正在形成过程中。 任务的分配是多核时代提出的新概念。在单核时代,没有核的任务分配的问题,一共只有一个核的资源可被使用。而在多核体系下,有多个核可以被使用。如果系统中有几个进程需要分配,是将他们均匀地分配到各个处理器核,还是一起分配到一个处理器核,或是按照一定的算法进行分配。并且这个分配还受底层系统结构的影响,系统是SMP构架还是CMP构架,在CMP构架中会共享二级缓存的核的数量,这是影响分配算法的因子。任务分配结束后,需要考虑任务调度。对于不同的核,每个处理器核可以有自己独立的调度算法来执行不同的任务(实时任务或者交互性任务),也可以使用一致的调度算法。此外,还可以考虑一个进程上一个时间运行在一个核上,下一个时间片是选择继续运行在这个核上,还是进行线程迁移;怎样直接调度实时任务和普通任务;系统的核资源是否要进行负载均衡等等。任务调度是目前研究的热点之一。 在单核处理器中,常见的调度策略有先到先服务(FCFS),最短作业调度(SJF),优先级调度(Priority-scheduling algorithm),轮转法调度(round-robin RR),多级队列调度(multilevel queue-schedule algorithm)等。例如在Linux操作系统中对实时任务采取FCFS和RR两种调度,普通任务调度采取优先级调度。 对于多核处理器系统的调度,目前还没有明确的标准与规范。由于系统有多个处理器核可用,必须进行负载分配,有可能为每个处理器核提供单独的队列。在这种情况下,一个具有空队列的处理器就会空闲,而另一个处理器会很忙。所以如何处理好负载均衡问题是这种调度策略的关键问题所在。为了解决这种情况,可以考虑共同就绪队列,所有处理器公用一个就绪队列。但是这无疑对进程上下文切换、锁的转换增加了执行时间,降低了性能。另外一种想法就是选择一个处理器来为其他处理器调度,因而创建了主从结构。有的系统将主从结构作进一步扩

多核处理器架构及调试

多核处理器架构及调试 认识多核基本架构多核处理器在同一个芯片中植入了多个处理器引擎,这就可以提供更高的CPU性能、功能特性和分区能力。一般说来,多核有两种实现形式。第一,SMP(Symmetricmultiprocessing,对称多处理)。在这种情况下,开发人员面对的是单一的抽象化硬件平台,由SMP操作系统来决定具体由哪一个内核来运行哪个任务,其中每个内核都是相同的,而且在同一个操作系统的管理控制之下,共享同一个内存。第二,AMP(Asymmetricmultiprocessi 认识多核基本架构 多核处理器在同一个芯片中植入了多个处理器引擎,这就可以提供更高的CPU 性能、功能特性和分区能力。一般说来,多核有两种实现形式。 第一,SMP( Symmetric multiprocessing,对称多处理)。在这种情况下,开发人员面对的是单一的抽象化硬件平台,由SMP操作系统来决定具体由哪一个内核来运行哪个任务,其中每个内核都是相同的,而且在同一个操作系统的管理控制之下,共享同一个内存。 第二,AMP(Asymmetric multiprocessing,非对称多处理)。在这种情况下,各个处理器内核都运行着各自独立的操作系统。这种独立性意味着,其中各个处理器内核既可以是同构的,并且运行同样的操作系统,也可以是异构的并运行各自不同的操作系统。 多核环境显著增加了系统复杂度,因而在对操作系统和与多核相关的硬件进行调试的时候,就必须采用一整套更有效的工具。另外,尽管大家都认为多核就是指在同一个芯片中放入多个内核,但是在实际开发工作中所遇到的多处理问题,实际上不仅仅局限于在单一芯片中的多个内核。事实上,不论这些处理器内核是在同一个芯片之中,或者分布在同一个电路板中的多个芯片之中,甚至同一个系统中的多个电路板之中,开发人员都必须解决好多处理环境中的调试问题。相对于最近出现的单一芯片多核架构,有多个处理器芯片和多个处理器电路板组成的复杂系统已经存在很多年了。因此,多处理架构的调试问题其实早已存在,只是单一芯片内多核架构的普及将多处理系统调试问题更加尖锐地摆在了开发人员面前。 从这个意义上,多年前就开始从事多处理环境软件开发的厂商就积累了更丰富的经验,在应对多核软件开发方面站在了更为有利的地位。例如 Wind River 公司经典的实时操作系统VxWorks在多年前最初的设计思路就是基于多处理架构的,因此不论从运行环境还是开发调试工具任何一方面看,对于多核环境的适应能力都比其他工具要强得多。 认识多核调试难点

多核处理器1

多核处理器 摘要: 多核处理器也称为片上多处理器(chip multi-processor,CMP),或单芯片多处理器。自1996年美国斯坦福大学首次提出片上多处理器(CMP)思想和首个多核结构原型,到2001年mM推出第一个商用多核处理器POWER4,再到2005年Intel和AMD多核处理器的大规模应用,最后到现在多核成为市场主流,多核处理器经历了十几年的发展。在这个过程中,多核处理器的应用范围已覆盖了多媒体计算、嵌入式设备、个人计算机、商用服务器和高性能计算机等众多领域,多核技术及其相关研究也迅速发展,比如多核结构设计方法、片上互连技术、可重构技术、下一代众核技术等。然而,多核处理器的技术并未成熟,多核的潜力尚未完全挖掘,仍然存在许多待研究的问题。 二.什么是多核处理器 2.1什么是多核处理器 多核处理器是指在一枚处理器中集成两个或多个完整的计算引擎(内核)。多核技术的开发源于工程师们认识到,仅仅提高单核芯片的速度会产生过多热量且无法带来相应的性能改善,先前的处理器产品就是如此。他们认识到,在先前产品中以那种速率,处理器产生的热量很快会超过太阳表面。即便是没有热量问题,其性价比也令人难以接受,速度稍快的处理器价格要高很多。英特尔工程师们开发了多核芯片,使之满足横向扩展(而非纵向扩充)方法,从而提高性能。该架构实现了分治法战略。通过划分任务,线程应用能够充分利用多个执行内核,并可在特定的时间内执行更多任务。多核处理器是单枚芯片(也称为硅核),能够直接插入单一的处理器插槽中,但操作系统会利用所有相关的资源,将每个执行内核作为分立的逻辑处理器。通过在两个执行内核之间划分任务,多核处理器可在特定的时钟周期内执行更多任务。多核架构能够使软件更出色地运行,并创建一个促进未来的软件编写更趋完善的架构。尽管认真的软件厂商还在探索全新的软件并发处理模式,但是,随着向多核处理器的移植,现有软件无需被修改就可支持多核平台。操作系统专为充分利用多个处理器而设计,且无需修改就可运行。为了充分利用多核技术,应用开发人员需要在程序设计中融入更多思路,但设计流程与对称多处理(SMP)系统的设计流程相同,并且现有的单线程应用也将继续运行。得益于线程技术的应用在多核处理器上运行时将显示出卓越的性能可扩充性。此类软件包括多媒体应用(内容创建、编辑,以及本地和数据流回放)、工程和其他技术计算应用以及诸如应用服务器和数据库等中间层与后层服务器应用。多核技术能够使服务器并行处理任务,而在以前,这可能需要使用多个处理器,多核系统更易于扩充,并且能够在更纤巧的外形中融入更强大的处理性能,这种外形所用的功耗更低、计算功耗产生的热量更少。多核技术是处理器发展的必然。推动微处理器性能不断提高的因素主要有两个:半导体工艺技术的飞速进步和体系结构的不断发展。半导体工艺技术的每一次进步都为微处理器体系结构的研究提出了新的问题,开辟了新的领域;体系结构的进展又在半导体工艺技术发展的基础上进一步提高了微处理器的性能。这两个因素是相互影响,相互促进的。一般说来,工艺和电路技术的发展使得处理器性能提高约20倍,体系结构的发展使得处理器性能提高约4倍,编译技术的发展使得处理器性能提高约1.4倍。但是今天,这种规律性的东西却很难维

多核处理器的技术与双核处理器的区别

多核处理器的技术与双核处理器的区别 摘要:多核技术的开发源于工程师们认识到,仅仅提高单核芯片的速度会产生过多热量且无法带来相应的性能改善,先前的处理器产品就是如此。他们认识到,在先前产品中以那种速率,处理器产生的热量很快会超过太阳表面。即便是没有热量问题,其性价比也令人难以接受,速度稍快的处理器价格要高很多。主要有下面内容多核的技术发展、发展历程、技术优势、技术原理、技术关键、技术意义、技术应用以及多核处理器与双核处理器的区别。 技术发展 多核技术能够使服务器并行处理任务,而在以前,这可能需要使用多个处理器,多核系统更易于扩充,并且能够在更纤巧的外形中融入更强大的处理性能,这种外形所用的功耗更低、计算功耗产生的热量更少。多核技术是处理器发展的必然。推动微处理器性能不断提高的因素主要有两个:半导体工艺技术的飞速进步和体系结构的不断发展。半导体工艺技术的每一次进步都为微处理器体系结构的研究提出了新的问题,开辟了新的领域;体系结构的进展又在半导体工艺技术发展的基础上进一步提高了微处理器的性能。这两个因素是相互影响,相互促进的。一般说来,工艺和电路技术的发展使得处理器性能提高约20倍,体系结构的发展使得处理器性能提高约4倍,编译技术的发展使得处理器性能提高约1.4倍。但是今天,这种规律性的东西却很难维持。多核的出现是技术发展和应用需求的必然产物。 发展历程 1971年,英特尔推出的全球第一颗通用型微处理器4004,由2300个晶体管构成。当时,公司的联合创始人之一戈登摩尔(Gordon Moore),就提出后来被业界奉为信条的“摩尔定律”——每过18个月,芯片上可以集成的晶体管数目将增加一倍。 在一块芯片上集成的晶体管数目越多,意味着运算速度即主频就更快。今天英特尔的奔腾(Pentium)四至尊版840处理器,晶体管数量已经增加至2.5亿个,相比当年的4004增加了10万倍。其主频也从最初的740kHz(每秒钟可进行74万次运算),增长到现在的3GHz(每秒钟运算30亿次)以上。 当然,CPU主频的提高,或许在一定程度上也要归功于1975年进入这个领域的AMD公司的挑战。正是这样的“双雄会”,使得众多计算机用户有机会享受不断上演的“速度与激情”。一些仍不满足的发烧友甚至选择了自己超频,因为在玩很多游戏时,更快的速度可以带来额外的饕餮享受。 但到了2005年,当主频接近4GHz时,英特尔和AMD发现,速度也会遇到自己的极限:那就是单纯的主频提升,已经无法明显提升系统整体性能。 以英特尔发布的采用NetBurst架构的奔腾四CPU为例,它包括Willamette、Northwood 和Prescott等三种采用不同核心的产品。利用冗长的运算流水线,即增加每个时钟周期同时执行的运算个数,就达到较高的主频。这三种处理器的最高频率,分别达到了2.0G、3.4G 和3.8G。 按照当时的预测,奔腾四在该架构下,最终可以把主频提高到10GHz。但由于流水线过长,使得单位频率效能低下,加上由于缓存的增加和漏电流控制不利造成功耗大幅度增加,3.6GHz奔腾四芯片在性能上反而还不如早些时推出的3.4GHz产品。所以,Prescott产品系列只达到3.8G,就戛然而止。 英特尔上海公司一位工程师在接受记者采访时表示,Netburst微架构的好处在于方便提升频率,可以让产品的主频非常高。但性能提升并不明显,频率提高50%,性能提升可能

多核CPU面临的挑战与机遇

多核CPU面临的挑战与机遇 ——如何发挥多核CPU的性能 09计算机科学与技术一班 2009118231 樊如霞

多核CPU面临的挑战与机遇 ——如何发挥多核CPU的性能取代过去的单一中央处理器,计算机目前正在步入多核时代。尽管这项技术对我们而言并不是新鲜事物,但这是这种类型的体系架构首次大规模运用于商用个人电脑和服务器市场。这场变革将影响到每位计算机用户。多核技术的触角已经深入到服务器,笔记本电脑甚至游戏机控制台领域。从最终用户的角度来看,这种变革的影响是潜移默化的。程序设计者们发现要实现多核设计的性能也是一项充满挑战的艰巨任务,特别是现在还没有一劳永逸的办法和自动化技术能适应多核系统上运行的现行软件。 多核CPU就是基板上集成有多个单核CPU,早期PD双核需要北桥来控制分配任务,核心之间存在抢二级缓存的情况,后期酷睿自己集成了任务分配系统,再搭配操作系统就能真正同时开工,2个核心同时处理2“份”任务,速度快了,万一1个核心死机,起码另一个U还可以继续处理关机、关闭软件等任务。 与单核处理器相比,多核处理器在体系结构、软件、功耗和安全性设计等方面面临着巨大的挑战,但也蕴含着巨大的潜能。 CMP和SMT一样,致力于发掘计算的粗粒度并行性。CMP可以看做是随着大规模集成电路技术的发展,在芯片容量足够大时,就可以将大规模并行处理机结构中的SMP (对称多处理机)或DSM(分布共享处理机)节点集成到同一芯片内,各个处理器并行执行不同的线程或进程。在基于SMP结构的单芯片多处理机中,处理器之间通过片外Cache或者是片外的共享存储器来进行通信。而基于DSM结构的单芯片多处理器中,处理器间通过连接分布式存储器的片内高速交叉开关网络进行通信。 由于SMP和DSM已经是非常成熟的技术了,CMP结构设计比较容易,只是后端设计和芯片制造工艺的要求较高而已。正因为这样,CMP成为了最先被应用于商用CPU 的“未来”高性能处理器结构。 虽然多核能利用集成度提高带来的诸多好处,让芯片的性能成倍地增加,但很明显的是原来系统级的一些问题便引入到了处理器内部。

从多核到众核处理器

从多核到众核处理器 此文由客座作者Zheng Li所写,欢迎大家follow他的twitter: https://www.doczj.com/doc/7510692871.html,/biglizheng 其实“多核”这个词已经流行很多年了,世界上第一款商用的非嵌入式多核处理器是2002年IBM推出的POWER4。当然,多核这个词汇的流行主要归功与AMD和Intel的广告,Intel 与AMD的真假四核之争,以及如今的电脑芯片市场上全是多核处理器的事实。接下来,学术界的研究人员开始讨论未来成百上千核的处理器了。有一个与多核匹配的词叫片上网络(Networks on Chip),讲的是多核里的网络式互连结构,甚至有人预测未来将互连网集成到片上这种概念了。当然,这样的名词是很吸引眼球的,不过什么东西都得从实际出发,这篇文章也就简单地分析了为什么有多核这个事情,以及多核系统的挑战。 为什么有多核处理器? 事先需要提及的是,一个常见误区就是多核和众核处理器的发展来源于应用和市场驱动。实际上,应用和市场希望单核处理器的寿命越来越长,而物理限制是多核以及未来众核处理器出现和发展的动力。之后我们来谈论一下,首先,为什么有多核处理器?从Intel 80286 到Intel Pentium 4大概二十多年的时间都是单核处理器的天下,为什么最近几年单核处理器却销声匿迹了?是什么导致了多核时代的到来? 这里需要知道一个经验定律和三个限制,他们是多核处理器的最本质缘由。这个定理就是摩尔定律。Gordon Moore博士是Intel的创始人之一。早在他参与创建Intel之前的1965年,他就提出,在至少十年内,每个芯片上集成的晶体管数(集成度)会每两年翻一番。后来,大家把这个周期缩短到十八个月。这个指数规律的发展速度是令人难以置信的,大家都听过那个国王按几何级数赏赐大臣谷粒,从而使得国库被掏空的传说。而摩尔定律讲得就是现实中晶体管数量几何级数倍增的故事,更令人难以置信的是这个速度保持到今天已经快五十年了。人类历史上应该还没有任何技术是指数发展这么久的。题外话一句,若干年前,互联网骨干网带宽曾经这么指数了几年,曾有人将其总结为一个定律忽悠一堆人研究光纤通讯,后来发现带宽没法按照指数定律涨了,许多搞光电的人也就找不到工作了。扯远了点,整个 IT产业之所以风光了这么多年,摩尔定律是本质的因素。 当无数的硅公硅婆和软件民工们将晶体管数目的增长转换为计算机等IT产品的性能时,摩尔定律也就有了两个推论,每十八个月,计算机等 IT 产品的性能会翻一番;相同性能的计算机等 IT 产品,每十八个月价钱会降一半。后面这个推论很可怕的一件事情,他说,如果你IT产品像菜市场的商贩一年年复一年的卖同样的东西,那么你IT产品的价钱会指数下降。从某种意义上来说摩尔定律逼迫着所有的IT企业不断的按指数规律提高产品的性能,并且创新出新的产品。但不幸的是,这种从晶体管数转换为性能增长的过程日趋困难。 时至今日,集成度还在以摩尔定律的速度增长,但是性能的增长遇到了三个物理规律的限制。第一是功耗,第二是互连线延时,第三是设计复杂度。

[多核不问真假] 多核处理器_1

[多核不问真假] 多核处理器_1 多核不问真假多核处理器多核不问真假多核处理器自从多核处理器渐成趋势之后,市场上关于多核处理器的真假辩论甚嚣尘上。争论的中心集中在两大多核巨头和身上。对它的44系统特别得意,号称是真四核,并说处理器不是真四核。想要撬开四核处理器的散热外壳,以对照是否用一个硅片实现了四个核的封装。 无法像那样设计多核,有它自身的原因,它的处理器没有内置内存控制器,加上处理器之间的交流还需要通过芯片组实现,因而对来说,在一个硅片上实现四个核封装是费力不讨好的事情。自己也说,在制造上,以目前的工艺看,似乎"假"四核更有成本优势。 自然有不好启齿的地方,它无法面对自己处理器架构设计稍微落后的窘境,当然它对的那种做法更是愤愤然。如果不是鼓捣处理器降价,两家厂商都会过得快乐得多。这个世界上,只有和的处理器占据桌面运算的绝大部分份额,其实两家稍微商量商量,来一个价格协议就太平许多。 问题是,用户会在意多核的真假吗。 真假多核孰优孰劣。 如果这么在意真假多核的争论,恐怕就要考虑它的幕后支持者的做法了,的四核版本5按照的逻辑就是假的。再由此推而广

之,那么,多路处理器系统就会有问题,它们都是分离的实现方式,因而不能是真的。 这样一来就乱套了。难道真假多核真的有很大的差异吗。不会,以我们经常用到的测试软件来看,的"假"四核一样可以提供4倍单核的性能,难道真四核能够超过这个数值吗。在通过递归调用完成渲染的,的"真"多核也并不见得高多少,性能提升的比率同样受到任务安排以及操作系统的影响,双核性能提升永远不会超过1.87倍,这是目前的极限,与都一样。 再说,按照的理论,的双卡并行就不能算"真",只能算个"假"并行,一定要把多个核弄在一块才行这样的"真四核"也有自己的困难。一个硅片上实现四个核集成将带来成品率下降的威胁,芯片面积会变大,成本也就高,还不灵活。至少可以根据需要组合成为四核,或者做成双核,这并不会对整个系统有很大的影响。两者在设计上的差异,只能说明走了不一样的路,而并不意味着两条路有高下之分。 真假在于市场能不能在一个硅片上实现四个核的集成,不是体系结构上的难题,也不会对性能有多大的影响,最多是数据传输得快一些,而是成本问题。何况,现在处理器每个核的缓存达到了2,全部做到一个硅片里面去,成本压力太大了,有可能导致处理器价格大幅度提高。试问用户会因为些许的好处而冒付出大笔支出的风险吗。

如何解决多核处理器兼容问题

如何解决多核处理器兼容问题 欢迎来到,本文为大家介绍如何设置网络使电脑启动更快,欢迎大家阅读。 随着科学技术的发展,双核处理器在我们生活中应用已经极为平常,双核处理器(Dual Core Processor)是指在一个处理器上集成两个运算核心从而提高计算能力。 你可以打开任务管理器,点击性能,就可以查看CPU的工作状态。 虽然在大多数情况下,双核工作是我们的最佳选择。然而,在有些时候,双核处理器也有其弊端。例如,一些比较老的程序,用双核处理器中运行就会出现卡机等异常。 在Windows7中,你可以配置多个核心的处理器在应用程序运行的时候只使用一个,或几个核心。 下面我将告诉你们具体的步骤:

CTRL+Alt+Delete打开任务管理器,选择应用程序选项,左键点击想要设置的应用程序--右键--转到进程,你就会进入进程选项界面。 产看CPU运行状态 然后右键,选择设置相关性。 这样你就可以看到控制CPU核心运行的控制,你可以根据你的需要设置适合你自己的方式。 看一看影响 你可以打开微软自带的磁盘碎片整理程序,然后到任务管理的性能选项,点击下面的资源监视器选项。 你可以清楚的看到CPU各个核心的运行情况,根据自己的需要配置并查看之间的不同表现。 创建快捷方式 如果发现运行的应用程序在一个特定的处理器核心的工作比较

快,而你又经常使用这一程序,你可以设置快捷键进行操控,下面我们以启动磁盘碎片整理程序为例,希望能对大家有点帮助。 win 7系统桌面 启动磁盘碎片整理程序,只想它只在CPU0运行,可以用下列命令创建一个快捷方式: C:WindowsSystem32cmd.exe /C start /affinity 1 dfrgui.exe 如果你想磁盘碎片整理程序只在CPU1运行,那么可以用下列命令创建一个快捷方式: C:WindowsSystem32cmd.exe /C start /affinity 2 dfrgui.exe 如果你想磁盘碎片整理程序在两个核心都运行,你则可以用下面的命令创建一个快捷方式: C:WindowsSystem32cmd.exe /C start /affinity 3 dfrgui.exe

多核处理器的产生原因及现状

多核处理器的产生原因及现状 计算机科学与技术杜立明 200926100406多内核(multicore chips)是指在一枚处理器芯片(chip)中集成两个或多个完整的计算引擎(内核)。多核技术的开发源于工程师们认识到,仅仅提高单核芯片(one chip)的速度会产生过多热量且无法带来相应的性能改善。 一、为什么要发展多核 为什么不能用单核的设计达到用户对处理器性能不断提高的要求呢?答案是功耗问题限制了单核处理器不断提高性能的发展途径。 作为计算机核心的处理器就是将输入的数字化的数据和信息,进行加工和处理,然后将结果输出。假定计算机的其他子系统不存在瓶颈的话,那么影响计算机性能高低的核心部件就是处理器。反映在指令上就是处理器执行指令的效率。 处理器性能 = 主频 x IPC 从上面的公式可以看出,衡量处理器性能的主要指标是每个时钟周期内可以执行的指令数(IPC: Instruction Per Clock)和处理器的主频。 因此,提高处理器性能就是两个途径:提高主频和提高每个时钟周期内执行的指令数(IPC)。处理器微架构的变化可以改变IPC,效率更高的微架构可以提高IPC从而提高处理器的性能。但是,对于同一代的架构,改良架构来提高IPC的幅度是非常有限的,所以在单核

处理器时代通过提高处理器的主频来提高性能就成了唯一的手段。

不幸的是,给处理器提高主频不是没有止境的,从下面的推导中可以看出,处理器的功耗和处理器内部的电流、电压的平方和主频成正比,而主频和电压成正比。 即:处理器功耗∝电流x 电压2x 主频 主频∝电压 则:处理器功耗∝主频3 如果通过提高主频来提高处理器的性能,就会使处理器的功耗以指数(三次方)而非线性(一次方)的速度急剧上升,很快就会触及所谓的“频率的墙”(frequency wall)。过快的能耗上升,使得业界的多数厂商寻找另外一个提高处理器性能的因子,提高IPC。 提高IPC可以通过提高指令执行的并行度来实现,而提高并行度有两种途径:一是提高处理器微架构的并行度;二是采用多核架构。 在采用同样的微架构的情况下,为了达到处理器IPC的目的,我们可以采用多核的方法,同时有效地控制功耗的急剧上升。 因为:处理器功耗∝电流x 电压2x 主频 IPC ∝电流 所以:处理器功耗∝ IPC 由单核处理器增加到双核处理器,如果主频不变的话,IPC理论上可以提高一倍,功耗理论上也就最多提高一倍,因为功耗的增加是线性的。而实际情况是,双核处理器性能达到单核处理器同等性能的时候,前者的主频可以更低,因此功耗的下降也是指数方(三次方)下降的。反映到产品中就是双核处理器的起跳主频可以比单核处理器

浅议多核处理器技术

浅议多核处理器技术 00748712 荣振 摘要:多核处理器以其高性能、低功耗优势正逐步取代传统的单处理器成为市场的主流。随着应用需求的扩大和技术的不断进步,多核必将展示出其强大的性能优势。但目前多核处理器技术还面临着诸多挑战,本文主要介绍了多核处理器发展的关键技术并对多核处理器技术的发展趋势进行简要分析。 关键词:多核;同构异构;片上通信;I/O结构;低功耗 1多核处理器介绍 多核处理器也称为片上多处理器(chip multi-processor,CMP),或单芯片多处理器。自1996 年美国斯坦福大学首次提出片上多处理器(CMP)思想和首个多核结构原型,到2001 年IBM推出第一个商用多核处理器POWER4,再到2005 年Intel和AMD多核处理器的大规模应用,最后到现在多核成为市场主流,多核处理器经历了十几年的发展。在这个过程中,多核处理器的应用范围已覆盖了多媒体计算、嵌入式设备、个人计算机、商用服务器和高性能计算机等众多领域,多核技术及其相关研究也迅速发展。 多核处理器将多个完全功能的核心集成在同一个芯片内,整个芯片作为一个统一的结构对外提供服务,输出性能。多核处理器首先通过集成多个单线程处理核心或者集成多个同时多线程处理核心,使得整个处理器可同时执行的线程数或任务数是单处理器的数倍,这极大地提升了处理器的并行性能。其次,多个核集成在片内,极大地缩短了核间的互连线,核间通信延迟变低,提高了通信效率,数据传输带宽也得到提高。再者,多核结构有效共享资源,片上资源的利用率得到了提高,功耗也随着器件的减少得到了降低。最后,多核结构简单,易于优化设计,扩展性强。这些优势最终推动了多核的发展并逐渐取代单处理器成为主流。 2 多核发展的关键技术 多核处理器结构不仅有性能潜力大、集成度高、并行度高、结构简单和设计验证方便等诸多优势,而且它还能继承传统单处理器研究中的某些成果,例如同时多线程、宽发射指令、降压低功耗技术等。但多核处理器毕竟是一种新的结构,在多核结构设计和应用开发中出现了以前未曾遇到的新问题,这些问题给多核处理器的未来提出了挑战。

相关主题
文本预览
相关文档 最新文档