当前位置:文档之家› 曲柄摇杆机构设计方法完整版

曲柄摇杆机构设计方法完整版

曲柄摇杆机构设计方法完整版
曲柄摇杆机构设计方法完整版

曲柄摇杆机构设计方法 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

曲柄摇杆机构设计方法作者姓名:XXXX

专业名称:机械工XXXX及自动化

指导教师:XXXX讲师

摘要

曲柄摇杆机构中构件的运动样式多样,可以实现给定运动规律或运动轨迹且承载能力高、耐磨顺,制造简单,已于获得较高的制造精度,因此曲柄摇杆机构在各种机械仪器中获得广泛的应用。

本文针对曲柄摇杆机构的行XXXX速度变化速度系数和给定点的轨迹设计曲柄摇杆机构,通过深入分析机构的行XXXX数度比k、摇杆摆动角ψ、最小传动角,极为夹角和摇杆摆动角等运动性能参数与结构尺寸间的关系。通过引入曲柄固定铰链点的位置角建立了曲柄摇杆和机架长度关于θ和?的显示函数关系,通过解析法、几何作图法、和实验法设计曲柄摇杆机构。在此基础上研究机构设计的可能附加要求极其相应的设计方法为曲柄摇杆设计提供各种可能选项并对曲柄摇杆的急回特性和死点情况进行说明。

关键词:曲柄摇杆机构行XXXX速度系数摇杆摆动设计方法

Abstract

The diversity of movement component in the crank rocker mechanism can achieve given amotion or motion trajectory and have the high bearing capacity, wear-resisting, simple manufacture,and higher manufacturing accuracy. therefore ,the crank rocker mechanism is widely used in various mechanical instrument.

In view of the crank rocker mechanism of velocity

fluctuation velocity coefficient and the design of crank

rocker mechanism by track point, Analysis the mechanism of

the stroke number ratio K , the rocker swing angle minimum transmission angle, extremely angle and rocker swing angle motion parameter and t he relationship between structure size deeply. Introduced the crank fixed hinge point position angle

of crank rocker and the frame length on and display function

is built, by the analytic method, the geometric drawing method, the design of crank rocker mechanism and experimental method. On the basis of the research on the design method of mechanism design may have additional requirements and other extremely corresponding , various possible options and the crank rocker quick return characteristics and the dead are described for crank and rocker design.

Key words: crank,rocker,travel speed,design

目录

II

1 绪论

18世纪下半叶的第一次工业革命促进机械工XXXX的迅速发展,机构学在原来机械力学的基础上发展成为一门独立的科学.早在19世纪连杆机构就已经广泛的运用最简单的就是四杆机构,也是出现最早的一种连杆机构。对连杆机构的研究起始于19世纪着名发明家瓦特,他改进的蒸汽机运用了四杆机构。

19世纪以来,以几何图解法为主导的德国机构学派对连杆机构的研究做出了巨大的贡献,其研究结果长期处于世界领先地位,二次世界大战后随着社会科学技术迅猛发展,尤其是电子计算机的普及很大推动了机构设计的研究进XXXX。平面四杆机构是平面多杆机构,空间多杆机构的基础,所以对平面四杆机构的设计研究有着很重要的意义。

平面连杆机构中构件的运动形式多样,可以实现给定运动规律或运动轨迹,平面连杆机构因承载能力高,耐磨顺,制造简便,已于获得较高的制造精度在机械机构中大量使用。如缝纫机的踏板机构(如图)送料机构(如图),牛头刨床的横向进给机构(如图),传送带送料机构(如图等。所以建立出一些简单、方便、实用的设计方法有利于连杆机构的设计。而一些相关的书籍里对曲柄摇杆机构的设计方法的设计及其优化并没有完整的提出,对于设计者查询相关信息时带来不变,也对学生系统学习曲柄摇杆机构带来不便。

在这种背景下,本课题主要研究的对象为平面四杆机构本中的曲柄摇杆机构,通过分析设计要求,使用合理的设计方法揭示其传力性能和运动性能与机构尺寸之间的关系,以期实现为工XXXX应用给出机构运动尺寸的设计,再利用多目标函数限定选择优化设计方案。

图缝纫机踏板机构

图送料机构图牛头刨床的横向进给机构

图传送带送料机构

2 平面四杆机构概述

平面四杆机构的基本型式

平面四杆机构最常见是铰链四杆机构如图所示,机构的固定构件4 称为机架,与机架用转动副相连接的构件1和3 称为连架杆,不与机架直接连接的构件2称为连杆。若组成转动副的二构件能做整周相对转动,则称该转动副为整转副,否则为摆动副。与机架组成整转副的连架杆称为曲柄,与机架组成摆动副的连架杆称为摇杆。

图 曲柄摇杆机构运动简图

因为其它平面四杆机构均可视为曲柄摇杆机构的派生机构, 所以曲柄摇杆机构是平面四杆机构中最基本的机构。以图 中的铰链四杆机构为例,如图示位置时是曲柄摇杆机构,当进行机构转置( 即让不同杆件做机架 )时,就会得 到不同类型的四杆机构 。

当构件1作为机架,铰链四杆机构为双曲柄机构 ;

当构件2作为机架,铰链四杆机构为另一曲柄摇杆机构 ;

当构件3作为机架,铰链四杆机构为双摇杆机构 ;

四杆机构的派生机构还有:曲柄滑块机构,曲柄摇块机构,转动导杆机构等。

平面四杆机构的基本特性

铰链四杆机构是否具有整转副,取决于个杆的长度。如图所示曲柄摇杆机构,杆1为曲柄,杆2为连杆,杆3为摇杆、杆4为机构各杆长度用1l 、2l 、3l 、4l 表示。因杆1为曲柄,故杆1与杆4的夹角?的变化00~0360当摇杆处于左右极限位置时,曲柄与连杆二次共线,故杆1与杆2的夹角β的变化范围也是化00~0360 ;杆3为摇杆,与他相邻的夹角ψ、?的变化范围小于0360.。显然,A 、B 为整转副。为了实现曲柄1整周转动,AB 杆必须顺利通过与连杆共线的两个位置1AB 和2AB 。

图铰链四杆机构

当杆1处于1AB 位置时,形成D AC 1?。根据三角形任意两边之和必大于第三边的定理可得。

4l ≤ (2l - 1l ) + 3l (2-1)

3l ≤ (2l -1l ) +4l (2-2)

1l + 4l ≤ 2l + 3l (2-3)

1l + 3l ≤ 2l + 4l (2-4)

当杆1处于2AB 位置时,形成D C A ''?。可以写出以下关系

1l +2l ≤ 3l + 4l

将上面的式子相加可得

从上面的式子可以得出结论:(1)铰链四杆机构具有整转副的条件是最短杆与最长杆长度之和小于或等于其余两杆长度之和。(2)整转副是由最短杆与其邻边组成的。

曲柄是连架杆,整转副处于机架上才能形成曲柄;应此,具有整转副的铰链四杆机构是否存在曲柄,还应跟据选择那一个杆为机架来判断:

(1)取最短杆为机架时,机架上有两个整转副,故得双曲柄机构

(2)取最短杆的邻边为机架时,机架上只有一个整转副,故得曲柄摇杆机构。

(3)取最短杆的对边为机架时,机架上没有整转副,故得双摇杆机构。

(4)如果铰链机构中的最短杆与最长杆长度之和大于其余两边长度之和,则该机构中不存在整转副,无论曲那个构件作为机架都只能得到双摇杆机构。

急回特性

如图 所示,主动曲柄AB 做等速回转,1AB D C 1, 2AB D C 2是图中该曲柄摇杆机构的两极限位置,CD 在D C 1, D C 2间作往复运

动,即摆角 为21DC C ∠=ψ。当B 点由1B 到2B 时,曲柄顺时针转过角1? ,C 顺时针转过ψ,设时间为1t ,C 点平均速度1ν;由B 2到B 1时, 曲柄顺时针转过角?2,C 逆时针转过ψ,设时间过t 2,C 点平均速度

v 2。1?=(0180+θ)>?2=(0180-θ ),t 1>t 2,ν1>ν2,θ是曲柄在两个极限位置时所夹锐角,称为极位夹角。显然在曲柄摇杆机构,当曲柄为主动件做匀速圆周运动时,摇杆由位置C 1D 摆回到位置C 2D ,其摆角任然是?。虽然摇杆来回摆动的摆角相同。但对应的曲柄转角不等,对应的时间也不等,从而反映了摇杆往复摆动的快慢不同。令摇杆自C 2D 摆至C 1D 为工作行XXXX ,这是摇杆的平均角数度是1ω=ψ/t 1;摇杆自C 2D 摆会至C 1D 是其空回行XXXX ,这是摇杆的平均角数度是2ω=ψ/t 2,显然1ω≤2ω,它表明摇杆具有急回特性。

图曲柄摇杆机构

用行XXXX 速度变化系数K 表示机构急回特性的XXXX 度 。

θ

θ??ψψ-+=====0021211212180180//t t t t v v K (2-5) 1

11800

+-=K K θ (2-6) 当θ=00时,K=1则机构没有急回特性。 死点位置

如图2. 4所示的曲柄摇杆机构如以3为原动件,而已曲柄1为从动件,则当摇杆摆到极限位置C 1D 和C 2D 时,连杆2与曲柄1共线,从动件的传动角γ=00。若不计个干的质量,则这是连杆加给曲柄的力将经过铰链中心A ,此力对点A 不产生力矩,因此不能使曲柄转动。机构的这种转动角为零的位置称为死点位置死点位置会是机构的从动件出现卡死或运动不确定现象。

图曲柄摇杆机构的死点位置

传动角和压力角

曲柄摇杆机ABCD 中,假设各杆是理想的二力杆,没有质量和摩擦阻力。AB 是主动件,BC 是连杆,CD 是从动件。分析从动件上力的输入点C 的 受力如图所示。压力角α的定义是该点的受力方向与运动方

向所加的锐角是压力角。由图中受力分析可知,C点的压力角为沿着BC杆的受力Pt与垂直于CD 杆的速度ν,c的夹锐角,即图中标注的α。

图曲柄摇杆机构压力角分析

对图中 C点的进行受力分析。CD 杆的绝对运动是做以D为中心,CD为半径的圆周运动,C点的绝对速度方向垂直于CD。C点受到二力杆BC的沿着BC方向的推力Pt,将力P分解为沿着CD的法向力Pn,垂直 CD的切向力Pt;Pn的作用只产生CD杆的压力,没有力方向上的位移,即不做功,Pt与C点绝对速度度方向一致,是有效分力,所以Pt 越大机构件的传动效率越高, Pt =Pα

cos,显然压力角α越小有效分力Pt 越大。为了方便测量引入传动角γ,它是压力角α的余角,即γ= 900 -α,Pt=Pα

cos=Pγ

cos,显然γ越大Pt 越大P n越小。机构的传力性能的情况常用传动角γ来限定,为了保证机构具有良好的传动性能,一般要求γ≥400 对于颚式破碎机、冲床等大功率机械,最小传动角应取大一些,可取γmin传动角γ的大小随机构运动位置变化而变化,所以对于短有时高载的机构应使工作行XXXX的传动角接近最大值γmax可节省动力。

3曲柄摇杆机构的设计

曲柄摇杆机构设计主要根据给定的运动条件(按照给定从动件的运动规律(位置、速度、加速度)和按照给定点的运动轨迹)确定确定运动简图的尺寸参数,通过解析法、几何作图法和实验法来进行曲柄摇杆机构的设计。

解析法设计曲柄摇杆机构

按行XXXX速比系数K设计曲柄摇杆机构时,基本要求是机构的行XXXX速比系数K 和摇杆摆角ψ,解机构的几何参量具有图所示的相对几何关系。

图曲柄摇杆机构

图中,点D是摇杆的固定铰链点,C

1,C

2

分别是摇杆动铰链点C 的

两个极限位置,角θ是机构的极位夹角,应按速比系数K 确定如下:

)1

/(

)1

(

1800+

-

?

=k

k

θ(3-1)(a)杆长表达式

图中,以C

1C

2

为弦、2θ为圆心角的圆1为型曲柄摇杆机构的曲柄固

定铰链点A 的轨迹圆,圆心位于点O,两圆的半径R 均为:

θψsin /2

sin 3l R = (3-2) 式中: 摇杆CD 的长度,CD l l =3 。

引入角参量OA C 1∠=ψ 用以表示曲柄固定铰链点A 在圆1 的位置,如图。则由图的几何关系,线段AC 1,AC 2和OD 的长度分别为:

1AC ==2sin 2ψR 32l θ?ψsin /2

sin 2sin ? 2AC =2R =+22sin θ?32l θθ?ψsin /)2

sin(.2sin + OD=θψcos 2cos 3R L -=3l θθψ

sin /)2sin(- 由于121l l AC -=,122l l AC +=,所以曲柄和连杆的长度1l 和2l 为:

1l =3l 2

cos /2cos .2sin θθ?ψ+ (3-3) 2l =3l 2

sin /2sin 2sin θθ?ψ+? (3-4) θ?sin /)(34x l l = (3-5) )cos().2

sin(2sin 2)2(sin 2sin )(22θ?θψ

ψθ?ψ?+---+=x (3-6) 图曲柄摇杆机构 (b )位置角?的取值范围

由于机构的放缩不影响机构的急回特性,所以上面的公式表示的机构长只取决于极位夹角θ、摇杆摆角ψ和参量角其中θ和 ψ按机构的使用要求确定,ψ的取值范围如图可知θψ?2180000--≤≤

在给定速度比系数K 和摇杆摆角ψ的情况下,杆长表达式(3)、

(4)(5)共包含4个杆长参量1l 、2l 、3l 、4l 及一个角参量ψ。在上述5个参量中,任意给定2个参量,即可由杆长表达式求出其余3个量,设计出符合给定要求的曲柄摇杆机构。分析式(3)(4)和(5)可知,2个参量的可行给定方式有3种(1)给定2个杆长;(2)给定一个杆长和一个杆长比;(3)给定一个杆长及A 点的位置角ψ其他的参量给定方式。

给定2个杆长,4个杆长给定2个,共有6个给定方式:(1l ,2l )(1l ,3l )(1l ,4l )(2l ,4l )(2l ,3l )(2l ,4l )和(3l ,4l ).各种给定方式下的求解方法。

(I)给定1l 和4l

式(4)比式(3)变形整理的:

?=(3l 2sin /2sin 2sin θθ?ψ+?)/(3l 2

sin /2sin 2sin θθ?ψ+?) =2θθ-)2

tan arctan(12l l (3-7) 把式(7)的角ψ及给定的1l 代入式子(3)可求出3l 再把ψ和3l 分别带入式子(4)和(5)有可以求的2l 和4l 。

(II)给定1l 和3l

式子(3)变形整理得:

θψθ?-=)2

sin /2cos arccos(231l l (3-8) 仿上即可以求的2l 和4l 。

(III)给定 1l 和 4l

式子(5)比(3)变形整理的:

θθψθψψθψθψ

ψ?-++-++=2sin 2sin )(2)2sin(2sin 22sin 2sin )(2)2(sin 2sin arccos 222142

221422l l l l (3-9) 仿上可以求的 2l 和 3l 。

(IV)给定2l 和3l

式子(4)变形整理的:

θψ

θ?-=)2sin /2sin arcsin(232l l

(3-10)

仿上可以求的 1l 和 4l 。

(V) 给定2l 和4l

式子(5)比上(4)变形整理的:

θθψθψψθψθψ

ψ?--+-++=2cos 2sin )(2)2sin(2sin 22cos 2sin )(2)2(sin 2sin arccos 222242

222422l l l l (3-11) 仿上可以求的1l 和3l 。

(VI)给定3l 和4l

式子(5)变形整理的

θθψψθθψψ?-+-++=)2

sin(2sin 2sin )()2(sin 2sin arccos 223422l l (3-12) 仿上可以求的1l 和2l 。

在4个杆长和6个杆长比中各给定一个量,共有24种给定方式。由于这种附加要求下的机构设计关键仍在于根据给定的杆长比确定角参量?,而相应的确定方法已在上节给出,所以此处不再赘述。 几何作图法

XXXX 数度变化系数设计曲柄摇杆

已知摇杆长度3l ,摆角?和行XXXX 速度变化系数K 设计如下:

(1)由给定的形成速度变化系数K 求出极位夹角θ。

(2)如图所示,任选固定铰链中心D 的位置,由摇杆长度3l 和摆角ψ,做出摇杆两个极限位置C 1D 和C 2D 。

(3)连接C 1和C 2 ,并作C 1M 垂直与C 1C 2。

(4)作θ-=∠02190N C C ,C 2N 与C 1M 相交于P 点,有图可见

θ=∠21PC C 。

(5)做三角形PC 1C 2的外接圆,在此圆周(弧C 1C 1和弧EF 除外)上任取一点A 做出曲柄的固定点连接AC 1和AC 2,因同一圆弧的圆周角,因为同一圆弧的圆周角相等,故∠C 1AC 2=∠C 1PC 2θ。

(6)因极限位置处曲柄和连杆共线,故AC 1=2l -1l ,AC 2=2l +1l ,从而得曲柄长度1l =(AC 2-AC 1)/2,连杆长度2l =(AC 2+AC 1)/2.有图得AD=4l 。

由于A 点是三角形C 1PC 2外接圆上任选的点,所以若仅按行XXXX 速度变化系数K 设计,可得无穷多的解。A 点位置不同,机构传动角大小不同。

图 曲柄摇杆机构

给定连杆3的长度3l =BC 极其两个位置B 1C 1和B 2C 2,要求确定连架杆

与机架组成的固定铰链中心A 和D 的位置,并求出其余三杆的长度1l 、2l 、4l .由于连杆3上的B 、C 两点的轨迹分别以A 、D 为圆心的圆弧,所以A 、D 必分别位于B 1B 2和C 1C 2的垂直线平分线上。涉及步骤如下:

(1)根据给定条件,绘出连杆3的两个位置B 1C 1和B 2C 2。

(2)分别连接B 1和B 2,C 1和C 2,并作B 1B 2、C 1C 2的垂直平分线b 12、c 12。

(3)由于A 和D 两点可分别在b 12和c 12两直线上任意选取,股有无穷

多个解。在实际设计时还可以考虑其他条件如:最小传动角、个杆尺寸所允许的范围或其他机构的要求。

按照给定点的运动轨迹设计曲柄摇杆机构

曲柄摇杆运动时其连杆作平面复杂运动,连杆上每一点都描出一条封闭曲线-连杆曲线。连杆曲线的形状随点在连杆上的位置和各杆相对尺寸的不同变化而不同,连杆曲线形状的多样性使他有可能用于描绘复杂的轨迹。

曲柄摇杆曲线是高阶曲线,所以设计四杆机构使其连杆上一点实现给定的任意的轨迹是十分复杂的。未为了便于设计,工XXXX上常常利用事先编好的连杆曲线图谱。从图谱中找出所需的曲线,便可直接查出该四杆机构的个尺寸参数。

在运用图谱设计可以按照以下步骤进行:首先,从图谱中查出形状与要求实现的轨迹相识的连杆曲线;再次,按照图上的文字说明得出所求四杆机构的比值;再次,用缩放仪求出图谱中的连杆曲线和所要求轨迹之间的相差的倍速,并由此确定所求的四杆机构各杆的真实值,最后,根据两岸曲线上的小圆圈与铰链B、C的对应位置,即可确定描绘轨迹之间的点在连杆上的位置。

曲柄摇杆机构设计方法的比较

(1)传统的几何作图法最大的特点是直观,概念清楚,几何作图法对机构的尺度在理论上和方法都起到了巨大的推动作用,但是缺点是精度低,作图复杂、繁琐,并且只能实现有限位置的尺度综合。因此该方法无法实现做出精确的运动轨迹,但是随着计算机的广泛的应用几何作图法会有新的发展。

(2)解析法是通过建立方XXXX通过方XXXX求解的一种方法来求解的方法。目前解析法被广泛应用,他以精确的计算出曲柄摇杆机构个杆的长度以及优化而大量运用。但是解析法建立方XXXX复杂、计算量大,函数约束比较复杂,容易出现计算错误而受到约束。

(3)根据给定点的运动轨迹设计四杆机构时候需要与图谱进行比对,然而图谱分析得出的杆件结果经常是一个范围,所以结果不是很准确,并且图谱的样式不同各个国家的设计标准有区别得到的图谱也有所差异不能被广泛的实用。

4 曲柄摇杆机构的特性运用

曲柄摇杆机构死点特性分析极其运用

摇杆主动时机构的死点情况

如图所示,曲柄摇杆机构的摇杆主动时,在一个运动循环内,

从动件曲柄总会与连杆共线两次( 拉直共线AB2C2D 或重叠共线AB

C1D ) ,此两个位置为机构的死点位置,这是无条件的,因此可以说1

当摇杆主动时,曲柄摇杆机构无条件地存在两个死点位置. 但是否还

有其他死点位置呢?

图曲柄摇杆机构

曲柄主动时机构有死点位置的条件

曲柄主动时,要使曲柄摇杆机构有死点位置,则必须使连杆b 与

从动件摇杆c 拉直共线或重叠共线,下面分拉直共线与重叠共线两种

情况来讨论。

(1)假设连杆b 与摇杆c可处于拉直共线位置。

则必有如图2a 所示?ABD 存在,则有a+d≥b+c,而对以AB 为曲

柄的曲柄摇杆机构而言,总有a+d≤b+c,故有a+d=b+c. 由于曲柄a为最短杆,故此时机架d 必为最长杆。

(2)假设连杆b 与摇杆c可处于重叠共线位置。

则必有如图2b (b >c) 或图2c(b

则有a+b-c≤d,即有a +b≥c+d,而对以AB为曲柄的曲柄摇杆机构而言,总有a+b≤ c+d,故有a+b=c+d.由于曲柄a为最短杆,故此时连杆b 必为最长杆。

对图2c,则有a + c- b≥d,即有a + c≥b+d。而对以AB为曲柄的曲柄摇杆机构而言,总有a+ c≤b+ d,故有a +c= b+ d 由于曲柄a 为最短杆,故此时摇杆c 必为最长杆。

综上所述,曲柄摇杆机构当满足最短杆与最长杆的长度之和等于

另外两杆长度之和时,即有死点位置存在.

基于MATLAB的曲柄摇杆机构优化设计方案.doc

得分课程作业 曲柄摇杆优化设计 姓名: XX 学号: XXXXX 班级: XXXXX XX大学机械与动力学院

目录 1摘要 2问题研究 2.1 问题重述 2.2 问题分析 3数学模型的建立 3.1 设计变量的确定 3.2 目标函数的建立 3.3 约束条件的确定 3.4 标准数学模型 4使用 MATLAB编程求 解 4.1 调用功能函数 4.2 首先编写目标函数 M 文件 4.3 编写非线性约束函数 M 文件 4.4 编写非线性约束函数 M 文件 4.5 运行结果 5结果分析 6结论推广 7过程反思 8个人小结 9参考文献

1. 1摘要 : 为分析机构能够满足给定的运动规律和运动空间的要求 , 运用 Matlab 优化工具箱进行多约束条件下的连杆机构预定轨迹优化设计的方法 , 从而得到最接近给定运动规律的杆长条件 , 使机构的运动分析直观、简单和精确,提高了曲柄摇杆机构的设计精度和效率。 2问题研究 2.1 问题重述 要求设计一曲柄摇杆机构,当曲柄由0 转到 0 +90°时,摇杆的输出角实现 如下给定的函数关系: 02 (0 )2 3 式中0 和0 分别为对应于摇杆在右极限位置时曲柄和摇杆的位置角,它们是机 架杆 l 4为原线逆时针度量的角度,见图 1。 45°,即: 要求在该区间的运动过程中的最小传动角不得小于 min [ ] 45 通常把曲柄的长度当成单位长度,即l 1 。另外,根据机构在机器中的许可=1 空间,可以适当预选机架杆的长度,现取l 4 。 =5 2.2 问题分析 设计时,可在给定最大和最小传动角的前提下,当曲柄从0转到0 90 时,要求摇杆的输出角最优地实现一个给定的运动规律f。这里假设要求: E f 2 3 2 0( 1) 图 1 曲柄摇杆机构简图 对于这样的设计问题,可以取机构的期望输出角f和实际输出角 E F的平方误差之和作为目标函数,使得它的值达到最小。 在图 1 所示的曲柄摇杆机构中, l1 、 l2 、 l3 、 l4 分别是曲柄、连杆、 AB BC 摇杆 CD和机架 AD的长度。这里规定0 为摇杆在右极限位置0 时的曲柄起始位置角,它们由 l1、 l 2、 l3和 l4确定。 3 数学模型的建立

曲柄摇杆机构设计方法汇编

XXX 曲柄摇杆机构设计方法作者姓名:XXXX 专业名称:机械工XXXX及自动化指导教师:XXXX讲师

摘要 曲柄摇杆机构中构件的运动样式多样,可以实现给定运动规律或运动轨迹且承载能力高、耐磨顺,制造简单,已于获得较高的制造精度,因此曲柄摇杆机构在各种机械仪器中获得广泛的应用。 本文针对曲柄摇杆机构的行XXXX速度变化速度系数和给定点的轨迹设计曲柄摇杆机构,通过深入分析机构的行XXXX数度比k、摇杆摆动角ψ、最小传动角,极为夹角和摇杆摆动角等运动性能参数与结构尺寸间的关系。通过引入曲柄固定铰链点的位置角建立了曲柄摇杆和机架长度关于θ和?的显示函数关系,通过解析法、几何作图法、和实验法设计曲柄摇杆机构。在此基础上研究机构设计的可能附加要求极其相应的设计方法为曲柄摇杆设计提供各种可能选项并对曲柄摇杆的急回特性和死点情况进行说明。 关键词:曲柄摇杆机构行XXXX速度系数摇杆摆动设计方法

Abstract The diversity of movement component in the crank rocker mechanism can achieve given amotion or motion trajectory and have the high bearing capacity, wear-resisting, simple manufacture,and higher manufacturing accuracy. therefore ,the crank rocker mechanism is widely used in various mechanical instrument. In view of the crank rocker mechanism of velocity fluctuation velocity coefficient and the design of crank rocker mechanism by track point, Analysis the mechanism of the stroke number ratio K ,the rocker swing angle minimum transmission angle, extremely angle and rocker swing angle motion parameter and t he relationship between structure size deeply. Introduced the crank fixed hinge point position angle of crank rocker and the frame length on and display function is built, by the analytic method, the geometric drawing method, the design of crank rocker mechanism and experimental method. On the basis of the research on the design method of mechanism design may have additional requirements and other extremely corresponding , various possible options and the crank rocker quick return characteristics and the dead are described for crank and rocker design. Key words: crank,rocker,travel speed,design

曲柄连杆机构课程设计

工程软件训练 目录 目录 (1) 第1章绪论 (3) 第2章活塞组的设计 (4) 2.1 活塞的设计 (4) 2.1.1 活塞的材料 (4) 2.1.2 活塞头部的设计 (4) 2.1.3 活塞裙部的设计 (5) 2.2 活塞销的设计 (5) 2.2.1 活塞销的结构 (5) 第3章连杆组的设计 (6) 3.1 连杆的设计 (6) 3.1.1 连杆材料的选用 (6) 3.1.2 连杆长度的确定 (6) 3.1.3 连杆小头的结构设计 (6) 3.1.4 连杆杆身的结构设计 (6) 3.1.5 连杆大头的结构设计 (6) 3.2 连杆螺栓的设计 (7) 第4章曲轴的设计 (8) 4.1 曲轴的结构型式和材料的选择 (8) 4.1.1 曲轴的结构型式 (8) 4.1.2 曲轴的材料 (8) 4.2 曲轴的主要尺寸的确定和结构细节设计 (8) 4.2.1 曲柄销的直径和长度 (8) 4.2.2 主轴颈的直径和长度 (9) 4.2.3 曲柄 (9) 4.2.4 平衡重 (9) 4.2.5 油孔的位置和尺寸 (10) 4.2.6 曲轴两端的结构 (10) 1

工程软件训练 第5章曲柄连杆机构的创建 (11) 5.1 活塞的创建 (11) 5.2 连杆的创建 (11) 5.3 曲轴的创建 (11) 第六章曲柄连杆机构静力学分析 (13) 6.1 活塞的静力分析 (13) 6.2 连杆的静力分析 (13) 2

工程软件训练 第1章绪论 曲柄连杆机构是发动机的传递运动和动力的机构,通过它把活塞的往复直线运动转变为曲轴的旋转运动而输出动力。因此,曲柄连杆机构是发动机中主要的受力部件,其工作可靠性就决定了发动机工作的可靠性。随着发动机强化指标的不断提高,机构的工作条件更加复杂。在多种周期性变化载荷的作用下,如何在设计过程中保证机构具有足够的疲劳强度和刚度及良好的动静态力学特性成为曲柄连杆机构设计的关键性问题[1]。 通过设计,确定发动机曲柄连杆机构的总体结构和零部件结构,包括必要的结构尺寸确定、运动学和动力学分析、材料的选取等,以满足实际生产的需要。 在传统的设计模式中,为了满足设计的需要须进行大量的数值计算,同时为了满足产品的使用性能,须进行强度、刚度、稳定性及可靠性等方面的设计和校核计算,同时要满足校核计算,还需要对曲柄连杆机构进行动力学分析。 为了真实全面地了解机构在实际运行工况下的力学特性,本文采用了多体动力学仿真技术,针对机构进行了实时的,高精度的动力学响应分析与计算,因此本研究所采用的高效、实时分析技术对提高分析精度,提高设计水平具有重要意义,而且可以更直观清晰地了解曲柄连杆机构在运行过程中的受力状态,便于进行精确计算,对进一步研究发动机的平衡与振动、发动机增压的改造等均有较为实用的应用价值。 本文以捷达EA113汽油机的相关参数作为参考,对四缸汽油机的曲柄连杆机构的主要零部件进行了结构设计计算,并对曲柄连杆机构进行了有关运动学和动力学的理论分析与计算机仿真分析。 3

基于某MATLAB的曲柄摇杆机构优化设计

课程作业 曲柄摇杆优化设计 :XX 学号:XXXXX 班级:XXXXX XX大学机械与动力学院

目录 1摘要 2问题研究 2.1问题重述 2.2问题分析 3数学模型的建立 3.1设计变量的确定 3.2目标函数的建立 3.3约束条件的确定 3.4标准数学模型 4使用MATLAB编程求解 4.1调用功能函数 4.2首先编写目标函数 M 文件 4.3编写非线性约束函数 M 文件 4.4编写非线性约束函数 M 文件 confun.m 4.5运行结果 5结果分析 6结论推广 7过程反思 8个人小结 9参考文献

要求摇杆的输出角最优地实现一个给定的运动规律()f ?。这里假设要求: ()()2 0023E f φ?φ??π ==+ - (1) 图1曲柄摇杆机构简图

对于这样的设计问题,可以取机构的期望输出角()E f φ?=和实际输出角 ()F φ?=的平方误差之和作为目标函数,使得它的值达到最小。 在图 1 所示的曲柄摇杆机构中,1l 、2l 、3l 、 4l 分别是曲柄AB 、连杆BC 、摇杆CD 和机架AD 的长度。这里规定0?为摇杆在右极限位置0φ时的曲柄起始位置角,它们由1l 、2l 、3l 和4l 确定。 3 数学模型的建立 3.1 设计变量的确定 决定机构尺寸的各杆长度1l 、2l 、3l 和4l ,以及当摇杆按已知运动规律开始 运行时,曲柄所处的位置角0?应列为设计变量,所有设计变量有: [][] 1 2 3 4 512 340T T x x x x x x l l l l ?== (2) 考虑到机构的杆长按比例变化时,不会改变其运动规律,通常设定曲柄长度 1l =1.0,在这里可给定4l =5.0,其他杆长则按比例取为1l 的倍数。若取曲柄的初 始位置角为极位角,则?及相应的摇杆l 位置角φ均为杆长的函数,其关系式为: ()()()()2222212432301242125arccos 2101l l l l l l l l l l ?????++-+-+==????++???????? (3) ()()222221243230343125arccos 210l l l l l l l l l φ???? +--+--==???????????? (4) 因此,只有2l 、3l 为独立变量,则设计变量为[][]1223T T x x x l l ==。 3.2 目标函数的建立 目标函数可根据已知-的运动规律与机构实际运动规律之间的偏差最小为指标来建立,即: ()()2 1 min m Ei i i f x φφ==-→∑(5) 式中,Ei φ-期望输出角; m-输出角的等分数; i φ-实际输出角,由图 1 可知:

基于MATLAB的曲柄摇杆机构优化设计

课程作业 曲柄摇杆优化设计 姓名:XX 学号:XXXXX 班级:XXXXX XX大学机械与动力学院

目录 1摘要 2问题研究 2.1问题重述 2.2问题分析 3数学模型的建立 3.1设计变量的确定 3.2目标函数的建立 3.3约束条件的确定 3.4标准数学模型 4使用MATLAB编程求解 4.1调用功能函数 4.2首先编写目标函数M 文件 4.3编写非线性约束函数M 文件 4.4编写非线性约束函数M 文件confun.m 4.5运行结果 5结果分析 6结论推广 7过程反思 8个人小结 9参考文献

1. 1 摘要: 为分析机构能够满足给定的运动规律和运动空间的要求,运用Matlab 2 2.1 0(32 π ψψ+ =式中0?和0ψ得小于45=≥][min γγ空间,可以适当预选机架杆的长度,现取l 4 =5。 2.2 问题分析 设计时,可在给定最大和最小传动角的前提下,当曲柄从0?转到090??+时,要求摇杆的输出角最优地实现一个给定的运动规律()f ?。这里假设要求: ()()2 0023E f φ?φ??π ==+ - (1)

图1 曲柄摇杆机构简图 对于这样的设计问题,可以取机构的期望输出角()E f φ?=和实际输出角 ()F φ?=的平方误差之和作为目标函数,使得它的值达到最小。 在图 1 所示的曲柄摇杆机构中,1l 、2l 、3l 、 4l 分别是曲柄AB 、连杆BC 、摇杆CD 和机架AD 的长度。这里规定0?为摇杆在右极限位置0φ时的曲柄起始位置角,它们由1l 、2l 、3l 和4l 确定。 3 数学模型的建立 3.1 设计变量的确定 决定机构尺寸的各杆长度1l 、2l 、3l 和4l ,以及当摇杆按已知运动规律开始 运行时,曲柄所处的位置角0?应列为设计变量,所有设计变量有: [][] 1 2 3 4 512 340T T x x x x x x l l l l ?== (2) 考虑到机构的杆长按比例变化时,不会改变其运动规律,通常设定曲柄长度 1l =1.0,在这里可给定4l =5.0,其他杆长则按比例取为1l 的倍数。若取曲柄的初 始位置角为极位角,则?及相应的摇杆l 位置角φ均为杆长的函数,其关系式为: ()()()()2222212432301242125arccos 2101l l l l l l l l l l ?????++-+-+==????++???????? (3)

曲柄连杆机构课程设计

曲柄连杆机构课程 设计

目录 目录 (1) 第1章绪论 (3) 第2章活塞组的设计 (4) 2.1 活塞的设计 (4) 2.1.1 活塞的材料 (4) 2.1.2 活塞头部的设计 (4) 2.1.3 活塞裙部的设计 (5) 2.2 活塞销的设计 (5) 2.2.1 活塞销的结构 (5) 第3章连杆组的设计 (6) 3.1 连杆的设计 (6) 3.1.1 连杆材料的选用 (6) 3.1.2 连杆长度的确定 (6) 3.1.3 连杆小头的结构设计 (6) 3.1.4 连杆杆身的结构设计 (6) 3.1.5 连杆大头的结构设计 (6) 3.2 连杆螺栓的设计 (7) 第4章曲轴的设计 (8) 4.1 曲轴的结构型式和材料的选择 (8) 4.1.1 曲轴的结构型式 (8) 4.1.2 曲轴的材料 (8)

4.2 曲轴的主要尺寸的确定和结构细节设计 (8) 4.2.1 曲柄销的直径和长度 (8) 4.2.2 主轴颈的直径和长度 (9) 4.2.3 曲柄 (9) 4.2.4 平衡重 (9) 4.2.5 油孔的位置和尺寸 (10) 4.2.6 曲轴两端的结构 (10) 第5章曲柄连杆机构的创立 (11) 5.1 活塞的创立 (11) 5.2 连杆的创立 (11) 5.3 曲轴的创立 (11) 第六章曲柄连杆机构静力学分析 (13) 6.1 活塞的静力分析 (13) 6.2 连杆的静力分析 (13)

第1章绪论 曲柄连杆机构是发动机的传递运动和动力的机构,经过它把活塞的往复直线运动转变为曲轴的旋转运动而输出动力。因此,曲柄连杆机构是发动机中主要的受力部件,其工作可靠性就决定了发动机工作的可靠性。随着发动机强化指标的不断提高,机构的工作条件更加复杂。在多种周期性变化载荷的作用下,如何在设计过程中保证机构具有足够的疲劳强度和刚度及良好的动静态力学特性成为曲柄连杆机构设计的关键性问题[1]。 经过设计,确定发动机曲柄连杆机构的总体结构和零部件结构,包括必要的结构尺寸确定、运动学和动力学分析、材料的选取等,以

基于MATLAB的曲柄摇杆机构的机械优化设计

基于MATLAB的曲柄摇杆机构的机械优化设计 以曲柄摇杆机构为例,建立了运动分析数学模型。以曲柄摇杆机构对应位置实际输出值与期望函数值的平方偏差之和的最小值作为实际目标进行优化。应用MATLAB软件进行了优化设计和仿真分析,为机构优化设计提供了一种高效、直观的仿真手段,提高了对平面四连杆机构的分析设计能力。 标签:MATLAB;曲柄摇杆机构;优化设计 前言 平面四连杆机构虽然结构简单,但能有效地实现给定的运动规律或运动轨迹,很好地完成预定的动作,因而在工程实践中得到了广泛应用[1]。传统的设计方法主要是图解法或分析法,对连杆机构设计,无论设计精度还是设计效率都相对低下,不能满足现代机械高速高精度的要求。随着计算机技术的不断发展,为机构运用运动仿真实现优化设计提供了有效的手段。 MATLAB是一套功能强大的科学计算软件[2],被广泛应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。其具有强大的数值计算能力和高效的工具箱函数,高效求解复杂庞大的实际工程问题,并可以根据需要,实现计算结果的可视化效果。 首先构建四连杆机构的数学模型,再利用MATLAB 软件强大的数值计算能力和高效的工具箱函数,以某规定期望函数的平面四连杆机构(机构运动简图如图1 所示)为例进行优化设计并进行了仿真计算,实现了机构运动仿真的可视化。 1 曲柄摇杆机构的数学模型 1.1 设计变量 机构的基本变量为各杆杆长及曲柄转角,根据曲柄摇杆机构各杆长度间的关系,独立的杆长变量有三个,分别为L2,L3,L4取杆长L1=1。故曲柄摇杆机构的设计变量可以表示为: 1.2 目标函数 1.3 约束条件 该机构的约束条件有两个方面:一是最小传动角约束条件[3];二是保证四杆机构满足曲柄存在的条件。 (1)最小传动角约束

汽车曲柄连杆机构设计

摘要 本文以捷达EA113汽油机的相关参数作为参考,对四缸汽油机的曲柄连杆机构的主要零部件进行了结构设计计算,并对曲柄连杆机构进行了有关运动学和动力学的理论分析与计算机仿真分析。 首先,以运动学和动力学的理论知识为依据,对曲柄连杆机构的运动规律以及在运动中的受力等问题进行详尽的分析,并得到了精确的分析结果。其次分别对活塞组、连杆组以及曲轴进行详细的结构设计,并进行了结构强度和刚度的校核。再次,应用三维CAD软件:Pro/Engineer建立了曲柄连杆机构各零部件的几何模型,在此工作的基础上,利用Pro/E软件的装配功能,将曲柄连杆机构的各组成零件装配成活塞组件、连杆组件和曲轴组件,然后利用Pro/E软件的机构分析模块(Pro/Mechanism),建立曲柄连杆机构的多刚体动力学模型,进行运动学分析和动力学分析模拟,研究了在不考虑外力作用并使曲轴保持匀速转动的情况下,活塞和连杆的运动规律以及曲柄连杆机构的运动包络。仿真结果的分析表明,仿真结果与发动机的实际工作状况基本一致,文章介绍的仿真方法为曲柄连杆机构的选型、优化设计提供了一种新思路。 关键词:发动机;曲柄连杆机构;受力分析;仿真建模;运动分析;Pro/E

ABSTRACT This article refers to by the Jeeta EA113 gasoline engine’s related parameter achievement, it has carried on the structural design compution for main parts of the crank link mechanism in the gasoline engine with four cylinders, and has carried on theoretical analysis and simulation analysis in computer in kinematics and dynamics for the crank link mechanism. First, motion laws and stress in movement about the crank link mechanism are analyzed in detail and the precise analysis results are obtained. Next separately to the piston group, the linkage as well as the crank carries on the detailed structural design, and has carried on the structural strength and the rigidity examination. Once more, applys three-dimensional CAD software Pro/Engineer establishing the geometry models of all kinds of parts in the crank link mechanism, then useing the Pro/E software assembling function assembles the components of crank link into the piston module, the connecting rod module and the crank module, then using Pro/E software mechanism analysis module (Pro/Mechanism), establishes the multi-rigid dynamics model of the crank link, and carries on the kinematics analysis and the dynamics analysis simulation, and it studies the piston and the connecting rod movement rule as well as crank link motion gear movement envelopment. The analysis of simulation results shows that those simulation results are meet to true working state of engine. It also shows that the simulation method introduced here can offer a new efficient and convenient way for the mechanism choosing and optimized design of crank-connecting rod mechanism in engine. Key words: Engine;Crankshaft-Connecting Rod Mechanism;Analysis of Force;Modeling of Simulation;Movement Analysis;Pro/E

基于MATLAB的曲柄摇杆机构优化设计说明

课程作业 曲柄摇杆优化设计

姓名:XX 学号:XXXXX 班级:XXXXX XX大学机械与动力学院

目录 1摘要 2问题研究 2.1问题重述 2.2问题分析 3数学模型的建立 3.1设计变量的确定 3.2目标函数的建立 3.3约束条件的确定 3.4标准数学模型 4使用MATLAB编程求解 4.1调用功能函数 4.2首先编写目标函数M 文件 4.3编写非线性约束函数M 文件 4.4编写非线性约束函数M 文件confun.m 4.5运行结果 5结果分析 6结论推广 7过程反思 8个人小结 9参考文献

1 摘要: 为分析机构能够满足给定的运动规律和运动空间的要求,运用Matlab 2 2.1 0(32 π ψψ+ =式中0?和0ψ得小于45=≥][min γγ1可空间,可以适当预选机架杆的长度,现取l 4 =5。 2.2 问题分析 设计时,可在给定最大和最小传动角的前提下,当曲柄从0?转到090??+时,要求摇杆的输出角最优地实现一个给定的运动规律()f ?。这里假设要求: ()()2 0023E f φ?φ??π ==+ - (1)

图1 曲柄摇杆机构简图 对于这样的设计问题,可以取机构的期望输出角()E f φ?=和实际输出角 ()F φ?=的平方误差之和作为目标函数,使得它的值达到最小。 在图 1 所示的曲柄摇杆机构中,1l 、2l 、3l 、 4l 分别是曲柄AB 、连杆BC 、摇杆CD 和机架AD 的长度。这里规定0?为摇杆在右极限位置0φ时的曲柄起始位置角,它们由1l 、2l 、3l 和4l 确定。 3 数学模型的建立 3.1 设计变量的确定 决定机构尺寸的各杆长度1l 、2l 、3l 和4l ,以及当摇杆按已知运动规律开 始运行时,曲柄所处的位置角0?应列为设计变量,所有设计变量有: [][] 1 2 3 4 512 340T T x x x x x x l l l l ?== (2) 考虑到机构的杆长按比例变化时,不会改变其运动规律,通常设定曲柄长度1l =1.0,在这里可给定4l =5.0,其他杆长则按比例取为1l 的倍数。若取曲柄的初始位置角为极位角,则?及相应的摇杆l 位置角φ均为杆长的函数,其关系式为:

125cc摩托车风冷发动机曲柄连杆机构设计

毕业设计 125cc 摩托车风冷发动 机曲柄连杆机构设计 学生姓名: 学号: 系 部: 专 业: 指导教师: 二〇一四年六月六日 颜人帅 102012237 机械工程系 机械电子工程 刘嘉

诚信声明 本人郑重声明:本论文及其研究工作是本人在指导教师的指导下独立完成的,在完成论文时所利用的一切资料均已在参考文献中列出。 本人签名:年月日

毕业设计任务书 设计题目:125cc摩托车风冷发动机的曲柄连杆机构设计 系部:机械工程系专业:机械电子工程学号:102012237 学生:颜人帅指导教师(含职称):刘嘉(讲师)专业负责人:张焕梅1.设计的主要任务及目标 (1)根据某款125cc摩托车的技术指标完成对相应发动机曲柄连杆机构的设计;(2)完成零部件的建模及运动仿真。 2.设计的基本要求和内容 (1)完成对摩托车发动机曲柄连杆机构的设计并撰写设计说明书一份; (2)完成仿真模型一份; (3)完成零件图及装配图一份。 3.主要参考文献 《机械设计》高等教育出版社 《发动机设计》机械工业出版社 《汽车设计》清华大学出版社 4.进度安排 设计(论文)各阶段名称起止日期 1 开题准备2013.12.15-2014.3.01 2 完成曲柄连杆机构的设计2014.3.01-2014.4.15 3 完成软件建模仿真2014.4.16-2014.5.30 4 完成说明书撰写2014.6.01-2014.6.10 5 提交设计,答辩2014.6.11-2014.6.20

125cc摩托车风冷发动机曲柄连杆机构设计 摘要:本文以铃木GP125摩托车发动机的相关参数作为参考,对125cc摩托车风冷发动机的曲柄连杆机构的主要零部件进行了结构设计计算,并对曲柄连杆机构进行了有关运动学和动力学的理论校核分析与计算机仿真分析。 本文分别对活塞组、连杆组以及曲轴进行详细的结构设计,并进行了结构强度和刚度的校核。再次,应用三维CAD软件:Pro/Engineer建立了曲柄连杆机构各零部件零件图与几何模型,装配成功后进行运动仿真。 通过设计建模,校核以及运动仿真,得出的结论基本符合设计思路与理论值。完成了设计方案上的要求。 关键词:曲柄连杆机构,受力分析,仿真建模,运动分析 Design of air engine crank connecting rod mechanism of motorcycle Abstract:Based on the related parameters Suzuki GP 125 motorcycle engin as a reference, The main components of air-cooled engine 125cc motorcycle crank linkage structural design calculations carried out, and carried out on the crank linkage theory about kinematics and dynamics analysis and computer simulation analysis check. This paper analysis the structural design on piston, connecting rod and crankshaft group, and the structural strength and rigidity check. Application of 3D CAD software: Pro/Engineer established the spare parts diagram and geometric model of the crank and connecting rod mechanism again, After the success of the assembly motion simulation and finite element simulation model. Through the design modeling,Check and movement simulation,Conclusion basic conform to the design thought and the theoretical https://www.doczj.com/doc/7510246537.html,pleted the design requirements. Through the design modeling, check and motion simulation, conclusion basic conform to the design thought and the theoretical value. Completed the design requirements. Key word: Crank Mechanism,Stress Analysis,Simulation Modeling,Motion Analysis

曲柄摇杆机构设计方法毕业设计论文

曲柄摇杆机构设计方法

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

曲柄摇杆机构设计方法完整版

曲柄摇杆机构设计方法 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

曲柄摇杆机构设计方法作者姓名:XXXX 专业名称:机械工XXXX及自动化 指导教师:XXXX讲师

摘要 曲柄摇杆机构中构件的运动样式多样,可以实现给定运动规律或运动轨迹且承载能力高、耐磨顺,制造简单,已于获得较高的制造精度,因此曲柄摇杆机构在各种机械仪器中获得广泛的应用。 本文针对曲柄摇杆机构的行XXXX速度变化速度系数和给定点的轨迹设计曲柄摇杆机构,通过深入分析机构的行XXXX数度比k、摇杆摆动角ψ、最小传动角,极为夹角和摇杆摆动角等运动性能参数与结构尺寸间的关系。通过引入曲柄固定铰链点的位置角建立了曲柄摇杆和机架长度关于θ和?的显示函数关系,通过解析法、几何作图法、和实验法设计曲柄摇杆机构。在此基础上研究机构设计的可能附加要求极其相应的设计方法为曲柄摇杆设计提供各种可能选项并对曲柄摇杆的急回特性和死点情况进行说明。 关键词:曲柄摇杆机构行XXXX速度系数摇杆摆动设计方法

Abstract The diversity of movement component in the crank rocker mechanism can achieve given amotion or motion trajectory and have the high bearing capacity, wear-resisting, simple manufacture,and higher manufacturing accuracy. therefore ,the crank rocker mechanism is widely used in various mechanical instrument. In view of the crank rocker mechanism of velocity fluctuation velocity coefficient and the design of crank rocker mechanism by track point, Analysis the mechanism of the stroke number ratio K , the rocker swing angle minimum transmission angle, extremely angle and rocker swing angle motion parameter and t he relationship between structure size deeply. Introduced the crank fixed hinge point position angle of crank rocker and the frame length on and display function is built, by the analytic method, the geometric drawing method, the design of crank rocker mechanism and experimental method. On the basis of the research on the design method of mechanism design may have additional requirements and other extremely corresponding , various possible options and the crank rocker quick return characteristics and the dead are described for crank and rocker design. Key words: crank,rocker,travel speed,design 目录

曲柄摇杆机构实验指导书模板

PJC-CⅡ曲柄摇杆机构实验 一、概述: 在现代《机械原理》教学中, 越来越注重对学生进行理论与实践相结合的教学方式, 注重培养学生的动手能力和创新意识, 注重培养学生对现代虚拟设计和现代测试手段的灵活运用能力。 该实验系统主要用于《机械原理》课程结束后的综合性实验, 实验内容涵盖: 平面机构运动分析和结构设计, 机械动转及速度波动调节, 机构平衡等章节, 它是《机械原理》课程教学中一个必不可少的重要教学环节。其应用目的是: 1.利用计算机对平面机构动态参数进行采集、处理, 作出实测的动态参数曲线, 并经过算机对该平面机构的运动进行数模仿真, 作出相应的动态参数曲线, 从而实现理论与实际的紧密结合。 2.利用计算机对平面机构结构参数进行优化设计, 然后, 经过计算机对该平面机构的运动进行仿真和测试分析, 从而实现计算机辅助设计与计算机仿真和测试分析有效的结合, 培养学生的创新意识。 3.利用计算机的人机交换性, 使学生可在软件界面说明文件的指导下, 独立自主地进行实验, 培养学生的动手能力。 二、实验项目: 1. 平面机构的调整设计及组装: 经过该实验平台组装并调整曲柄滑块机构和曲柄导杆滑块机构, 使学生掌握平面机构结构组装和运动调节。

2.曲柄运动实测: 经过角位移传感器和PCI8310卡采集和处理曲柄的角位移, 并输入计算机显示出实测的曲柄角速度图和角加速度线图; 经过数模仿真, 作出曲柄角速度线图和角加速度线图。经过分析比较, 使学生了解机构结构对曲柄的真实运动规律和速度波动的影响。 3. 曲柄速度波动调节: 在有飞轮和无飞轮的情况下, 对曲柄的运动进行实测和仿真。经过分析比较, 使学生了解飞轮对曲柄的速度波动的影响。 4. 摇杆运动实测和仿真: 经过位移传感器和PCI8310卡采集和处理滑块的位移, 并输入计算机, 显示出实测的滑块速度线图和加速度线图; 经过数模仿真, 作出滑块相对曲柄转角和速度线图, 加速度线图, 经过分析比较, 使学生了解机构结构对滑块的真实运动规律和急回特性的影响。

曲柄摇杆机构设计方法的毕业论文设计说明

曲柄摇杆机构设计方法作者:XXXX 专业名称:机械工XXXX及自动化指导教师:XXXX讲师

摘要 曲柄摇杆机构中构件的运动样式多样,可以实现给定运动规律或运动轨迹且承载能力高、耐磨顺,制造简单,已于获得较高的制造精度,因此曲柄摇杆机构在各种机械仪器中获得广泛的应用。 本文针对曲柄摇杆机构的行XXXX速度变化速度系数和给定点的轨迹设计曲柄摇杆机构,通过深入分析机构的行XXXX数度比k、摇杆摆动角ψ、最小传动角,极为夹角和摇杆摆动角等运动性能参数与结构尺寸间的关系。通过引入曲柄固定铰链点的位置角建立了曲柄摇杆和机架长度关于θ和?的显示函数关系,通过解析法、几何作图法、和实验法设计曲柄摇杆机构。在此基础上研究机构设计的可能附加要求极其相应的设计方法为曲柄摇杆设计提供各种可能选项并对曲柄摇杆的急回特性和死点情况进行说明。 关键词:曲柄摇杆机构行XXXX速度系数摇杆摆动设计方法

Abstract The diversity of movement component in the crank rocker mechanism can achieve given amotion or motion trajectory and have the high bearing capacity, wear-resisting, simple manufacture,and higher manufacturing accuracy. therefore ,the crank rocker mechanism is widely used in various mechanical instrument. In view of the crank rocker mechanism of velocity fluctuation velocity coefficient and the design of crank rocker mechanism by track point, Analysis the mechanism of the stroke number ratio K , the rocker swing angle minimum transmission angle, extremely angle and rocker swing angle motion parameter and t he relationship between structure size deeply. Introduced the crank fixed hinge point position angle of crank rocker and the frame length on and display function is built, by the analytic method, the geometric drawing method, the design of crank rocker mechanism and experimental method. On the basis of the research on the design method of mechanism design may have additional requirements and other extremely corresponding , various possible options and the crank rocker quick return characteristics and the dead are described for crank and rocker design. Key words: crank,rocker,travel speed,design

相关主题
文本预览
相关文档 最新文档