当前位置:文档之家› 特征根法求数列的递推公式

特征根法求数列的递推公式

特征根法求数列的递推公式
特征根法求数列的递推公式

特征根法求数列的递推公式

一、形如21(,n n n a pa qa p q ++=+是常数)的数列

形如112221,,(,n n n a m a m a pa qa p q ++===+是常数)的二阶递推数列都可用特征根法求得通项n a ,其特征方程为2x px q =+…①

若①有二异根,αβ,则可令1212(,n n n a c c c c αβ=+是待定常数) 若①有二重根αβ=,则可令1212()(,n n a c nc c c α=+是待定常数) 再利用1122,,a m a m ==可求得12,c c ,进而求得n a

例1 已知数列{}n a 满足*12212,3,32()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a 解:其特征方程为232x x =-,解得121,2x x ==,令1212n n n a c c =?+?,

由1122122243a c c a c c =+=??=+=?,得121

12

c c =???=??, 112n n a -∴=+

例2已知数列{}n a 满足*12211,2,44()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a

解:其特征方程为2

441x x =-,解得1212x x ==,令()1212n

n a c nc ??

=+ ???

由1122121()121(2)2

4

a c c a c c ?

=+?=????=+?=??,得1246c c =-??=?, 1322n n n a --∴=

二、形如1n n n Aa B

a Ca D

++=

+的数列

对于数列1n n n Aa B

a Ca D

++=

+,*1,(,,,a m n N A B C D =∈是常数且0,0C AD BC ≠-≠)

其特征方程为Ax B

x Cx D

+=

+,变形为2()0Cx D A x B +--=…②

若②有二异根,αβ,则可令11n n n n a a c a a αα

ββ

++--=?--(其中c 是待定常数),代入12,a a 的

值可求得c 值。

这样数列n n a a αβ??-??-??是首项为

11a a α

β--,公比为c 的等比数列,于是这样可求得n a 若②有二重根αβ=,则可令111

n n c a a αα

+=+--(其中c 是待定常数)

,代入12,a a 的值可求得c 值。

这样数列1n a α????-??是首项为

1

n a α-,公差为c 的等差数列,于是这样可求得n a 例3已知数列{}n a 满足1112

2,(2)21

n n n a a a n a --+==

≥+,求数列{}n a 的通项n a

解:其特征方程为221x x x +=+,化简得2220x -=,解得121,1x x ==-,令1111

11

n n

n n a a c a a ++--=?++ 由12,a =得245a =

,可得13

c =-, ∴数列11n n a a ??-??+??是以1111

13a a -=+为首项,以13-为公比的等比数列,1

111133n n n a a --??∴=?- ?+??,

3(1)3(1)

n n

n n

n

a --∴=+- 例4已知数列{}n a 满足*1121

2,()46

n n n a a a n N a +-==∈+,求数列{}n a 的通项n a 解:其特征方程为21

46

x x x -=

+,即24410x x ++=,解得1212x x ==-,令

1111

12

2

n n c a a +=

++

+

由12,a =得23

14

a =

,求得1c =, ∴数列112n a ????????+??是以112

152a =+

为首项,以1为公差的等差数列,123(1)11552

n n n a ∴=+-?=-+,

135106

n n a n -∴=-

(完整版)数列的递推公式教案

数列的递推公式教案 普兰店市第六中学陈娜 一、教学目标 1、知识与技能:了解数列递推公式定义,能根据数列递推公式求项,通过数列递推公式求数列的通项公式。 2、过程与方法:通过实例“观察、分析、类比、试验、归纳”得出递推公式概念,体会数列递推公式与通项公式的不同,探索研究过程中培养学生的观察归纳、猜想等能力。 3、情感态度与价值观:培养学生积极参与,大胆探索精神,体验探究乐趣,感受成功快乐,增强学习数学的兴趣,培养学生一切从实际出发,认识并感受数学的应用价值。 二、教学重点、难点和关键点 重点:数列的递推定义以及应用数列的递推公式求出通项公式。 难点:数列的递推公式求通项公式。 关键:同本节难点。 三、教学方法 通过创设问题的情境,在熟悉与未知的认知冲突中激发学生的探索欲望;引导学生通过自主探究和合作交流相结合的方式进行研究;引导学生积极思考,运用观察、试验、联想、类比、归纳、猜想等方法不断地提出问题、解决问题,再提出问题,解决问题……经历知识的发生和发展过程,并注意总结规律和知识的巩固与深化。 四、教学过程 环节1:新课引入 一老汉为感激梁山好汉除暴安良,带了些千里马要送给梁山好汉,见过宋江以后,宋江吧老汉带来的马匹的一半和另外一匹马作为回礼送给了他,老汉又去见卢俊义,把

现有的马匹全送给了他,卢俊义也把老汉送来的马匹的一半和另外一匹马作为回礼送给了老汉……… 一直送到108名好汉的最后一名段景住都是这样的,老汉下山回家时还剩下两匹马,问老汉上山时一共带了多少匹千里马? 通过这个小故事让学生感受到数学来源于生活同时又为生活所服务。同时也能引起学生的兴趣和好奇心。 环节2:引例探究 (1)1 2 4 8 16……… (2) 1 ()1cos ()1cos cos ()]1cos cos[cos ……. (3)0 1 4 7 10 13 ……. 通过设置问题的情境,让学生分析找出这些数列从第二项(或后几项)后一项与前一项的关系,从而引出数列的递推公式的定义,便于学生对于数列递推公式的理解、记忆和应用。 递推公式定义: 如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任意一项a n 与它的前一项a n-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。递推公式是数列一种的表示法,它包含两个部分,一是递推关系,一是初始条件,二者缺一不可. 环节3:应用举例及练习 例1:已知数列{a n }的第1项是1,以后的各项由公式 (n ≥2)给出,写出这个给出,写出这个数列的前5项. 解:据题意可知:a 1=1, 1 11n n a a -=+2111112,1a a =+=+=3211311,22a a =+=+=4312511,33a a =+=+=5413811.55a a =+ =+=

求递推数列通项的特征根法与不动点法

求递推数列通项的特征根法与不动点法 一、形如21(,n n n a pa qa p q ++=+是常数)的数列 形如112221,,(,n n n a m a m a pa qa p q ++===+是常数)的二阶递推数列都可用特征根法求得通项n a ,其特征方程为2x px q =+…① 若①有二异根,αβ,则可令1212(,n n n a c c c c αβ=+是待定常数) 若①有二重根αβ=,则可令1212()(,n n a c nc c c α=+是待定常数) 再利用1122,,a m a m ==可求得12,c c ,进而求得n a . 例1.已知数列{}n a 满足*12212,3,32()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a . 解:其特征方程为232x x =-,解得121,2x x ==,令1212n n n a c c =?+?, 由1122122243a c c a c c =+=??=+=?,得121 12 c c =???= ??, 112n n a -∴=+. 例2.已知数列{}n a 满足*12211,2,44()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a . 解:其特征方程为2 441x x =-,解得121 2x x ==,令()1212n n a c nc ?? =+ ??? , 由1122121()121(2)2 4 a c c a c c ? =+?=????=+?=??,得1246c c =-??=?, 1322n n n a --∴=. 二、形如2n n n Aa B a C a D ++= +的数列 对于数列2n n n Aa B a C a D ++= +,*1,(,,,a m n N A B C D =∈是常数且0,0C AD BC ≠-≠) 其特征方程为A x B x C x D += +,变形为2()0C x D A x B +--=…②

特征方程特征根法求解数列通项公式

特征方程特征根法求解数列通项公式 一:A(n+1)=pAn+q, p,q为常数. (1)通常设:A(n+1)-λ=p(An-λ), 则λ=q/(1-p). (2)此处如果用特征根法: 特征方程为:x=px+q,其根为x=q/(1-p) 注意:若用特征根法,λ的系数要是-1 例一:A(n+1)=2An+1 , 其中q=2,p=1,则 λ=1/(1-2)= -1那么 A(n+1)+1=2(An+1) 二:再来个有点意思的,三项之间的关系: A(n+2)=pA(n+1)+qAn,p,q为常数 (1)通常设:A(n+2)-mA(n+1)=k[pA(n+1)-mAn], 则m+k=p, mk=q (2)此处如果用特征根法: 特征方程是y×y=py+q(※) 注意: ①m n为(※)两根。 ②m n可以交换位置,但其结果或出现两种截然不同的数列形式,但同样都可以计算An,而且还会有意想不到的惊喜, ③m n交换位置后可以分别构造出两组An和A(n+1)的递推公式,这个时侯你会发现,这是一个关于An和A(n+1)的二元一次方程组,那么不就可以消去A(n+1),留下An,得了,An求出来了。 例二:A1=1,A2=1,A(n+2)= - 5A(n+1)+6An, 特征方程为:y×y= - 5y+6 那么,m=3,n=2,或者m=2,n=3 于是,A(n+2)-3A(n+1)=2[A(n+1)-3A] (1) A(n+2)-2A(n+1)=3[A(n+1)-2A] (2) 所以,A(n+1)-3A(n)= - 2 ^ n (3) A(n+1)-2A(n)= - 3 ^ (n-1) (4) you see 消元消去A(n+1),就是An勒 例三: 【斐波那挈数列通项公式的推导】斐波那契数列:0,1,1,2,3,5,8,13,21…… 如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式: F(0) = 0,F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3) 显然这是一个线性递推数列。 通项公式的推导方法一:利用特征方程 线性递推数列的特征方程为: X^2=X+1 解得 X1=(1+√5)/2, X2=(1-√5)/2. 则F(n)=C1*X1^n + C2*X2^n ∵F(1)=F(2)=1 ∴C1*X1 + C2*X2 C1*X1^2 + C2*X2^2

(完整版)已知数列递推公式求通项公式的几种方法

求数列通项公式的方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2 n n a 是以1222 a 1 1==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 11 3 222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22 n n a n =+-,进而求出数列{}n a 的通项公式。 二、累加法 例2 已知数列{}n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1 (1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2 n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+L ,即得数列{}n a 的通项公式。

数列的递推公式练习

数列的递推公式练习 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

课时作业5数列的递推公式(选学) 时间:45分钟满分:100分 课堂训练 1.在数列{a n}中,a1=,a n=(-1)n·2a n-1(n≥2),则a5=() A.- C.- 【答案】 B 【解析】由a n=(-1)n·2a n-1知a2=,a3=-2a2=-,a4=2a3=-,a5=-2a4=. 2.某数列第一项为1,并且对所有n≥2,n∈N,数列的前n项之积为 n2,则这个数列的通项公式是() A.a n=2n-1 B.a n=n2 C.a n=D.a n= 【答案】 C 【解析】∵a1·a2·a3·…·a n=n2,a1·a2·a3·…·a n-1=(n-1)2,∴两式相除,得a n=. 3.已知数列{a n}满足:a4n-3=1,a4n-1=0,a2n=a n,n∈N+,则a2009= ________,a2014=________. 【答案】10 【解析】考查数列的通项公式. ∵2009=4×503-3,∴a2009=1, ∵2014=2×1007,∴a2014=a1007,

又1007=4×252-1,∴a1007=a4×252-1=0. 4.已知数列{a n},a1=0,a n+1=,写出数列的前4项,并归纳出该数列的通项公式. 【解析】a1=0,a2==,a3===,a4===. 直接观察可以发现,把a3=写成a3=, 这样可知a n=(n≥2,n∈N+). 当n=1时,=0=a1, 所以a n=(n∈N+). 课后作业 一、选择题(每小题5分,共40分) 1.已知数列{a n}满足:a1=-,a n=1-(n≥2),则a4=() C.- 【答案】 C 【解析】∵a1=-,a n=1-(n≥2), ∴a2=1-=1-=5, a3=1-=1-=, a4=1-=1-=1-=-. 2.数列{a n}满足a1=,a n=-(n≥2,n∈N+),则a2013=() B.- C.3 D.-3 【答案】 A

浅谈特征根法在求递推数列通项中的运用

浅谈特征根法在求递推数列通项中的运用 高三数学组 徐朝生 以往浙江每年高考理科数学都会考数列,而且往往以压轴题出现,难度都比较大, 09年浙江高考理科没有考数列大题,文科考了等差数列,题目相对简单,但在全国其它省市中(如安徽、山东、广东、宁夏、海南、天津、江西等)经常考数列大题,题目有难有易,比如广东和江西的较难。而各种数列问题在很多情形下,就是对数列通项公式的求解。特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。如: (08年广东高考)设p 、q 为实数,α、β是方程x 2-px+q=0的两个实数根,数列{x n }满足x 1=p,x 2=p 2-q,x n =px n-1-qx n-2(n=3,4,5……) 1)…………… 2)求数列{x n }的通项公式。 3)若1=p ,4 1 = q ,求数列{x n }的前n 项的和s n (09年江西高考)各项均为正数的数列{}n a 中 都有的正整数且对满足q p n m q p n m b b a a ,,,,,11+=+==, = +++)1)(1(m n m n a a a a )1)(1(q p q p a a a a +++, 1)当时,求通项5 4 ,21== b a n a 。 像上述两道题,如果不能顺利求出数列的通项公式,就不能继续做后面的题,想得高分就难,对于那些有可能上重点大学的绩优学生来说重点大学之梦就可能是两个字——遗憾。本文就一、两种题型进行探讨,重点强调求解数列通项公式的方法之一——特征根法的运用,希望能对部分同学有帮助。 类型一、递推公式为n n n qa pa a +=++12(其中p ,q 均为非零常数)。

线性递推数列的特征方程

具有形如21n n n x ax bx ++=+ ①的递推公式的数列{}n x 叫做 线性递推数列 将①式两边同时加上1 n yx +-,即: 2111n n n n n x yx ax bx yx ++++-=+- 整理得: 211()()n n n n b x yx a y x x y a +++-=--- 令1n n n F x yx +=-为等比数列,则其公比q a y =-且满足b y y a =- 即满足:2y ay b =+ ② 设②式具有两个不相等的实数根r ,s ,则: 1n n n Y x rx +=- ③ 1n n n Z x sx +=- ④ 分别是公比为a r -,a s -的等比数列,并得: 121()()n n Y x rx a r -=-- 1 21()()n n Z x sx a s -=-- 且由③、④可得: ()n n n Y Z s r x -=- 又由韦达定理可得: r s a += rs b =- 于是有:

1121211121211121221 2122121()()()() () () n n n n n n n n n n n n n Y Z x rx a r x sx a s x s r s r x rx x x rx x sx s r s b r b C sx a r a s s r s r x rx x sx s r s b s b r r r C s ------------= =----= -------= -+---++++-== ⑤ 由以上推导可知,线性递推数列的通项公式⑤只与数列的第一、二项和方程 2y ay b =+的两根有关。也就是说,只需知道1x ,2x 和方程2y ay b =+的两根r ,s ,即可得出线性递推数列的通项公式。可见方程2y ay b =+包含了线性递推数列的重要信息,故将之称为线性递推数列的特征方程。 例:(斐波拉契数列)已知数列{}n x 满足: 121x x ==且21 (1,)n n n x x x n n N +++=+≥∈.求数列{}n x 的通项公式。 解:该数列属于线性递推数列,其特征方程为:21x x =+ 解之得:152r + =,152s - = 故可设数列的通项公式为 12151522n n n x C C ????+-=+ ? ? ? ????? 又1121515122x C C ????+-=+= ? ? ? ?????,222121515122x C C ????+-=+= ? ? ? ????? 解得:155C =,255C =-.故所求通项公式为: 51515522n n n x ?? ????+-??=- ? ? ? ????????? .

递推数列通项公式求法(教案)讲解学习

递推数列通项公式求 法(教案)

由递推数列求通项公式 马鞍中学 --- 李群花 一、课题:由递推数列求通项公式 二、教学目标 1、知识与技能: 会根据递推公式求出数列中的项,并能运用累加、累乘、待定系数等方法求数列的通项公式。 2、过程与方法: ①复习回顾所学过的通项公式的求法,对比递推公式与通项公式区别认识到由递推公式求通项公式的重要性,引出课题。 ②对比等差数列的推导总结出叠加法的试用题型。 ③学生分组讨论完成叠乘法及待定系数法的相关题型。 3、情感态度与价值观: ①通过对数列的递推公式的分析和探究,培养学生主动探索、勇于发现的求知精神; ②通过对数列递推公式问题的分析和探究,使学生养成细心观察、 认真分析、善于总结的良好思维习惯; ③通过互助合作、自主探究等课堂教学方式培养学生认真参与、积极交流的主体意识。 三、教学重点:根据数列的递推关系式求通项公式。 四、教学难点:解题过程中方法的正确选择。 五、教学课型,课时:复习课 1课时 六、教学手段:多媒体课件,黑板,粉笔 七、教学方法:激励——讨论——发现——归纳——总结 八、教学过程 (一)复习回顾:

1、通项公式的定义及其重要作用 2、学过的通项公式的几种求法 3、区别递推公式与通项公式,从而引入课题 (二)新知探究: 问题1: 在数列{a n }中 a 1=1,a n -a n-1=2n-1(n ≥ 2),求数列{a n } 的通项公式。 活动:通过分析发现形式类似等差数列,故想到用叠加法去求解。教师引导学生细致讲解整个解题过程。 总结:类型1:)(1n f a a n n =-+,利用叠加法(逐差相加法)求解。 问题2:例2在数列{a n }中 a 1=1, (n ≥ 2),求数列{a n } 的通项公式。 方法归纳:利用叠乘法求数列通项 活动:类比类型1推导过程,让学生分组讨论研究相关解题方案。 练习2设{a n }是首项为1的正项数列,且(n+1)a n 2+1 –na n 2 +a n+1a n =0, n n n a a 21 =-

数列求通项技巧递推公式求数列通项特征根法

求递推数列通项的特征根法 一、形如21(,n n n a pa qa p q ++=+是常数)的数列 形如112221,,(,n n n a m a m a pa qa p q ++===+是常数)的二阶递推数列都可用特征根法求得通项n a ,其特征方程为2x px q =+…① 若①有二异根,αβ,则可令1212(,n n n a c c c c αβ=+是待定常数) 若①有二重根αβ=,则可令1212()(,n n a c nc c c α=+是待定常数) 再利用1122,,a m a m ==可求得12,c c ,进而求得n a 例1 已知数列{}n a 满足*12212,3,32()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a 解:其特征方程为232x x =-,解得121,2x x ==,令1212n n n a c c =?+?, 由1122122243a c c a c c =+=??=+=?,得121 12 c c =???=??, 112n n a -∴=+ 例2已知数列{}n a 满足*12211,2,44()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a 解:其特征方程为2 441x x =-,解得1212x x == 由1122121()121(2)2 4 a c c a c c ? =+?=????=+?=??,得1246c c =-??=?, 1322n n n a --∴= 二、形如2n n n Aa B a Ca D ++= +的数列 对于数列2n n n Aa B a Ca D ++= +,*1,(,,,a m n N A B C D =∈是常数且0,0C AD BC ≠-≠) 其特征方程为Ax B x += ,变形为2()0Cx D A x B +--=…② 值可求得c 值。

(第45讲)特征方程法求递推数列的通项公式

特征方程法求解递推关系中的数列通项 一、(一阶线性递推式)设已知数列}{n a 的项满足d ca a b a n n +==+11,,其中,1,0≠≠c c 求这个数列的通项公式。 采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程,d cx x +=称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述. 定理1:设上述递推关系式的特征方程的根为0x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当,其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n -==-. 证明:因为,1,0≠c 由特征方程得.10c d x -= 作换元,0x a b n n -=则.)(110011 n n n n n n cb x a c c cd ca c d d ca x a b =-=--=--+=-=-- 当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b 当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕) 下面列举两例,说明定理1的应用. 例1.已知数列}{n a 满足:,4,N ,23 1 11=∈--=+a n a a n n 求.n a 解:作方程.2 3 ,2310-=--=x x x 则 当41=a 时,.211 23,1101=+=≠a b x a 数列}{n b 是以3 1 -为公比的等比数列.于是 .N ,)3 1 (2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n 例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数

人教新课标版数学高二B版必修5素材 预习学案 2.1.2数列的递推公式(选学)

预习导航 1.体会递推公式是数列的一种表示方法. 2.理解递推公式的概念及含义,能够根据递推公式写出数列的前几项. 3.掌握由一些简单的递推公式求数列的通项公式. 1.数列的递推公式 如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任一项a n 与它的前一项1n a (或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式. 名师点拨:(1)与所有的数列不一定都有通项公式一样,并不是所有的数列都有递推公式. (2)递推公式也是给出数列的一种重要方法.事实上,递推公式与通项公式一样,都是关于n 的恒等式,我们可用符合要求的正整数依次去替换n ,从而可以求出数列的各项. 【做一做1】 数列2,4,6,8,10,…的递推公式是( ) A .a n =a n -1+2(n ≥2) B .a n =2a n -1(n ≥2) C .a n =a n -1+2,a 1=2(n ≥2) D .a n =2a n -1,a 1=2(n ≥2) 答案:C 2.通项公式与递推公式的区别与联系 区别 联系 通项公式 项a n 是序号n 的函数式a n =f (n ) 都是给出数列的方法,可 求出数列中任意一项 递推公式 已知a 1(或前几项)及相邻项(或相邻几项) 间的关系式 但并不是所有的数列都有递推公式.例如\r(2)精确到1,0.1,0.01,0.001,…的不足近似值排列成一列数:1,1.4,1.41,1.414,…就没有递推公式. 【做一做2-1】 已知在数列{a n }中,a 1=2,a n =a n -1+2(n ≥2),则{a n }的通项公式是 ( ) A .3n B .2n C .n D .n 2 答案:B 【做一做2-2】 在数列{a n }中,a 1=1,a 2=2,且a n +1-a n =1+(-1)n (n ≥2),则a 10=________. 解析:由题意,知a 10-a 9=1+(-1)9,a 9-a 8=1+(-1)8,a 8-a 7=1+(-1)7,…,a 3

特征方程法求解递推关系中的数列通项

特征方程法求解递推关系中的数列通项 曾建国 当()f x x =时,x 的取值称为不动点,不动点是我们在竞赛中解决递推式的基本方法。 典型例子:1n n n aa b a ca d ++= + 令 ax b x cx d +=+,即2 ()0cx d a x b +--= ,令此方程的两个根为12,x x , (1)若12x x =,则有11111n n p a x a x +=+-- (其中2c p a d =+) (2)若12x x ≠,则有111122 n n n n a x a x q a x a x ++--=-- (其中12a cx q a cx -=-) 例题1:设23 ()27 x f x x -+=-, (1)求函数()y f x =的不动点; (2)对(1)中的二个不动点,()a b a b <,求使()()f x a x a k f x b x b --=--恒成立的常数k 的值; (3)对由111,()n n a a f a -==(2)n ≥定义的数列{}n a ,求其通项公式n a 解析:(1)设函数()f x 的不动点为0x ,则00023 27 x x x -+= - 解得012x =-或03x = (2)由231111 ()1272222238248(3)83327 x x x x x x x x x x -++---++ -= ==?-++----- 可知使()()f x a x a k f x b x b --=--恒成立的常数18k =。 (3)由(2)可知1111122383 n n n n a a a a --++=?--, 所以 123n n a a ??+????-????是以34-为首项,18为公比的等比数列。即 11312()348n n n a a -+=-?-?11 911()482311()48 n n n a ---=+ 例2.已知数列}{n a 满足性质:对于14 N,,23 n n n a n a a ++∈= + 且,31=a 求}{n a 的通项公式. 解:依定理作特征方程,3 24 ++= x x x 变形得,04222=-+x x 其根为.2,121-==λλ 故特征方程有两个相异的根,则有114 1 12342311 142446510 52223 n n n n n n n n n n n n n n a a a a a a a a a a a a a a +++--++---+-====-+++++++++ 即1111 1252n n n n a a a a ++--=-++ 又1 113122325 a a --==++ ∴数列12n n a a ??-??+?? 是以25为首项,15-为公比的等比数列 1121()255 n n n a a --=-+ 1 141()1 (5)455,N.212(5)1()55 n n n n n a n ---+--==∈+---

九类常见递推数列求通项公式方法

递推数列通项求解方法 类型一:1n n a pa q += +(1p ≠) 思路1(递推法):()123()n n n n a pa q p pa q q p p pa q q q ---??=+=++=+++=?? ......121(1n p a q p p -=++++ (2) 1 1)11n n q q p a p p p --??+=+?+ ? --?? 。 思路2(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1 q p μ= -,数列 {}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1 111n n q q a a p p p -??+ =+ ?--??,即1111n n q q a a p p p -??=++ ? --?? 。 例1 已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式。 解:方法1(递推法): ()123232(23)3222333n n n n a a a a ---??=+=++=+++=?? (1) 22 3(122n -=++++ (2) 11 332 )12232112n n n --+??+=+?+=- ? --? ?。 方法2(构造法):设()12n n a a μμ++=+,即3μ=,∴数列{}3n a +是以134 a +=为首项、2为公比的等比数列,则113422n n n a -++=?=,即1 23n n a +=-。

1n n +思路1(递推法): 123(1)(2)(1)(3)(2)(1)n n n n a a f n a f n f n a f n f n f n ---=+-=+-+-=+-+-+-= …1 11 ()n i a f n -==+∑。 思路2(叠加法):1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、 23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得1 11 ()n n i a a f n -=-= ∑ ,即 1 11 ()n n i a a f n -==+ ∑ 。 例2 已知11a =,1n n a a n -=+,求n a 。 解:方法1(递推法):123(1)(2)(1)n n n n a a n a n n a n n n ---=+=+-+=+-+-+= ......1[23a =+++ (1) (1)(2)(1)]2 n i n n n n n n =++-+-+= = ∑ 。 方法2(叠加法):1n n a a n --=,依次类推有:121n n a a n ---=-、232n n a a n ---=-、…、 212a a -=,将各式叠加并整理得12 n n i a a n =-= ∑ ,12 1 (1)2 n n n i i n n a a n n ==+=+ = = ∑ ∑ 。

数列的递推公式练习

课时作业5 数列的递推公式(选学) 时间:45分钟 满分:100分 课堂训练 1.在数列{a n }中,a 1=1 3,a n =(-1)n ·2a n -1(n ≥2),则a 5=( ) A .-16 3 C .-83 【答案】 B 【解析】 由a n =(-1)n ·2a n -1知a 2=23,a 3=-2a 2=-4 3,a 4=2a 3 =-83,a 5=-2a 4=163. 2.某数列第一项为1,并且对所有n ≥2,n ∈N ,数列的前n 项之积为n 2,则这个数列的通项公式是( ) A .a n =2n -1 B .a n =n 2 C .a n =n 2 n -12 D .a n =n +12 n 2 【答案】 C 【解析】 ∵a 1·a 2·a 3·…·a n =n 2,a 1·a 2·a 3·…·a n -1=(n -1)2,∴两式相除,得a n =n 2 n -12 . 3.已知数列{a n }满足:a 4n -3=1,a 4n -1=0,a 2n =a n ,n ∈N +,则a 2 009=________,a 2 014=________. 【答案】 1 0 【解析】 考查数列的通项公式.

∵2 009=4×503-3,∴a 2 009=1, ∵2 014=2×1 007,∴a 2 014=a 1 007, 又1 007=4×252-1,∴a 1 007=a 4×252-1=0. 4.已知数列{a n },a 1=0,a n +1=1+a n 3-a n ,写出数列的前4项,并归 纳出该数列的通项公式. 【解析】 a 1=0,a 2=1+a 13-a 1=13,a 3=1+a 23-a 2=1+13 3-13=1 2,a 4=1+a 33-a 3 =1+12 3-12 =3 5. 直接观察可以发现,把a 3=12写成a 3=2 4, 这样可知a n =n -1 n +1(n ≥2,n ∈N +). 当n =1时,1-1 1+1=0=a 1, 所以a n =n -1 n +1 (n ∈N +). 课后作业 一、选择题(每小题5分,共40分) 1.已知数列{a n }满足:a 1=-14,a n =1-1 a n -1(n ≥2),则a 4=( ) C .-14 【答案】 C

人教版数学-竞赛专题求递推数列通项的特征根法

专题 求递推数列通项的特征根法 一、形如21(,n n n a pa qa p q ++=+是常数)的数列 形如112221,,(,n n n a m a m a pa qa p q ++===+是常数)的二阶递推数列都可用特征根法求得通项n a ,其特征方程为2x px q =+…① 若①有二异根,αβ,则可令1212(,n n n a c c c c αβ=+是待定常数) 若①有二重根αβ=,则可令1212()(,n n a c nc c c α=+是待定常数) 再利用1122,,a m a m ==可求得12,c c ,进而求得n a 例1 已知数列{}n a 满足*12212,3,32()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a 解:其特征方程为232x x =-,解得121,2x x ==,令1212n n n a c c =?+?, 由1122122243a c c a c c =+=??=+=?,得12112 c c =???=??, 112n n a -∴=+ 例2已知数列{}n a 满足*12211,2,44()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a 解:其特征方程为2441x x =-,解得1212x x ==,令()1212n n a c nc ??=+ ??? , 由1122121()121(2)24a c c a c c ?=+?=????=+?=??,得1246c c =-??=?, 1322n n n a --∴= 二、形如2n n n Aa B a Ca D ++=+的数列 对于数列2n n n Aa B a Ca D ++= +,*1,(,,,a m n N A B C D =∈是常数且0,0C AD BC ≠-≠) 其特征方程为Ax B x Cx D +=+,变形为2()0Cx D A x B +--=…②

几类常见递推数列的解题方法

叠加、 叠乘、迭代递推、代数转化 ——几类常见递推数列的教学随笔 已知数列的递推关系式求数列的通项公式的方法大约分为两类:一类是根据前几项的特点归纳猜想出a n 的表达式,然后用数学归纳法证明;另一类是将已知递推关系,用代数法、迭代法、换元法,或是转化为基本数列(等差或等比)的方法求通项.第一类方法要求学生有一定的观察能力以及足够的结构经验,才能顺利完成,对学生要求高.第二类方法有一定的规律性,只需遵循其特有规律方可顺利求解.在教学中,我针对一些数列特有的规律总结了一些求递推数列的通项公式的解题方法. 一、叠加相消. 类型一:形如a 1+n =a n + f (n ), 其中f (n ) 为关于n 的多项式或指数形式(a n )或可裂项成差的分式形式.——可移项后叠加相消. 例1:已知数列{a n },a 1=0,n ∈N +,a 1+n =a n +(2n -1),求通项公式a n . 解:∵a 1+n =a n +(2n -1) ∴a 1+n =a n +(2n -1) ∴a 2-a 1 =1 、a 3-a 2=3 、…… a n -a 1-n =2n -3 ∴a n = a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a 1-n )=0+1+3+5+…+(2n -3) = 2 1 [1+(2n -3)]( n -1)=( n -1)2 n ∈N + 练习1:⑴.已知数列{a n },a 1=1, n ∈N +,a 1+n =a n +3 n , 求通项公式a n . ⑵.已知数列{a n }满足a 1=3,)1(2 1 +=-+n n a a n n ,n ∈N +,求a n . 二、叠乘相约. 类型二:形如)(1n f a a n n =+.其中f (n ) =p p c mn b mn )()(++ (p ≠0,m ≠0,b –c = km ,k ∈Z )或 n n a a 1+=kn (k ≠0)或n n a a 1+= km n ( k ≠ 0, 0<m 且m ≠ 1). 例2:已知数列{a n }, a 1=1,a n >0,( n +1) a 1+n 2 -n a n 2+a 1+n a n =0,求a n . 解:∵( n +1) a 1+n 2 -n a n 2+a 1+n a n =0 ∴ [(n +1) a 1+n -na n ](a 1+n +a n )= 0 ∵ a n >0 ∴ a 1+n +a n >0 ∴ (n +1) a 1+n -na n =0 ∴1 1+=+n n a a n n ∴n n n n n n n a a a a a a a a a a n n n n n n n 112 12 31 2111 23 22 11 =???--?--?-=?????=----- 练习2:⑴已知数列{a n }满足S n = 2 n a n ( n ∈N * ), S n 是{ a n }的前n 项和,a 2=1,求a n .

常见递推数列通项公式求法(教案)

问题 1:已知数列{a } , a 1 = 1 , a n +1 = n + 2 ,求{a n }的通项公式。 2 常见递推数列通项公式的求法 一、课题:常见递推数列通项公式的求法 二、教学目标 (1)会根据递推公式求出数列中的项,并能运用叠加法、叠乘法、待定系数 法求数列的通项公式。 (2) 根据等差数列通项公式的推导总结出叠加法的基本题型,引导学生分 组合作并讨论完成叠乘法及待定系数法的基本题型。 (3)通过互助合作、自主探究培养学生细心观察、认真分析、善于总结的良 好思维习惯,以及积极交流的主体意识。 三、教学重点:根据数列的递推关系式求通项公式。 四、教学难点:解题过程中方法的正确选择。 五、教学课时: 1 课时 六、教学手段:黑板,粉笔 七、教学方法: 激励——讨论——发现——归纳——总结 八、教学过程 (一)复习回顾: 1、通项公式的定义及其重要作用 2、区别递推公式与通项公式,从而引入课题 (二)新知探究: a n 变式: 已知数列 {a n } , a 1 = 1 , a n +1 = a n + 2n ,求{a n }的通项公式。 活动 1:通过分析发现形式类似等差数列,故想到用叠加法去求解。教师引导学 生细致讲解整个解题过程。 解:由条件知: a n +1 - a = 2n n 分别令 n = 1,2,3,? ? ? ? ??,(n - 1) ,代入上式得 (n - 1) 个 等式叠加之, 即 (a 2 - a 1 ) + (a 3 - a 2 ) + (a 4 - a 3 ) + ? ? ? ? ? ? +(a n - a n -1 ) = 2 + 2 ? 2 + 2 ? 3 + 2 ? (n - 2) + 2 ? (n - 1) 所以 a - a = (n - 1)[2 + 2 ? (n - 1)] n 1 a = 1,∴ a = n 2 - n + 1 1 n

备战2020数学高考三大类递推数列通项公式的求法

三大类递推数列通项公式的求法 湖北省竹溪县第一高级中学徐鸿 一、一阶线性递推数列求通项问题 一阶线性递推数列主要有如下几种形式: 1. 这类递推数列可通过累加法而求得其通项公式(数列{f(n)}可求前n项和). 当为常数时,通过累加法可求得等差数列的通项公式.而当为等差数列时, 则为二阶等差数列,其通项公式应当为形式,注意与等差数列求和公式一般形式的区别,后者是,其常数项一定为0. 2. 这类递推数列可通过累乘法而求得其通项公式(数列{g(n)}可求前n项积). 当为常数时,用累乘法可求得等比数列的通项公式. 3.; 这类数列通常可转化为,或消去常数转化为二阶递推式 . 例1已知数列中,,求的通项公式. 解析:解法一:转化为型递推数列. ∵∴又,故数列{}是首项为2,公比为2的等比数列.∴,即. 解法二:转化为型递推数列. ∵=2x n-1+1(n≥2) ①∴=2x n+1 ② ②-①,得(n≥2),故{}是首项为x 2-x 1 =2, 公比为2的等比数列,即,再用累加法得.解法三:用迭代法. 当然,此题也可用归纳猜想法求之,但要用数学归纳法证明.

例2已知函数的反函数为 求数列的通项公式. 解析:由已知得,则. 令=,则.比较系数,得. 即有.∴数列{}是以为首项,为 公比的等比数列,∴,故. 评析:此题亦可采用归纳猜想得出通项公式,而后用数学归纳法证明之. (4) 若取倒数,得,令,从而转化为(1)型而求之. (5); 这类数列可变换成,令,则转化为(1)型一阶线性递推公式. 例3设数列求数列的通项公式.解析:∵,两边同除以,得.令,则有.于是,得,∴数列是以首项为,公比为的等比数列,故,即,从而.例4设求数列的通项公式. 解析:设用代入,可解出.

特征方程推导数列

递推数列特征方程的来源与应用 递推是中学数学中一个非常重要的概念和方法,递推数列问题能力要求高,内在联系密切,蕴含着不少精妙的数学思想和数学方法。新教材将数列放在高一讲授,并明确给出“递推公式”的概念:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个公式来表示,那么这个公式叫做数列的递推公式。有通项公式的数列只是少数,研究递推数列公式给出数列的方法可使我们研究数列的范围大大扩展。新大纲关于递推数列规定的教学目标是“了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项”,但从近几年来高考试题中常以递推数列或与其相关的问题作为能力型试题来看,这一目标是否恰当似乎值得探讨,笔者以为“根据递推公式写出数列的前几项”无论从思想方法还是从培养能力上来看,都不那么重要,重要的是学会如何去发现数列的递推关系,学会如何将递推关系转化为数列的通项公式的方法。本文以线性递推数列通项求法为例,谈谈这方面的认识。 关于一阶线性递推数列:),1(,11≠+==+c d ca a b a n n 其通项公式的求法一般采用如下的参数法[1],将递推数列转化为等比数列: 设t c ca a t a c t a n n n n )1(),(11-+=+=+++则 , 令d t c =-)1(,即1 -=c d t ,当1≠c 时可得 )1 (11-+=-++c d a c c d a n n 知数列??????-+ 1c d a n 是以c 为公比的等比数列, 11)1 (1--+=-+∴n n c c d a c d a 将b a =1代入并整理,得 ()1 1---+=-c d c b d bc a n n n 对于二阶线性递推数列,许多文章都采用特征方程法[2]: 设递推公式为,11-++=n n n qa pa a 其特征方程为02 2=--+=q px x q px x 即, 1、 若方程有两相异根A 、B ,则n n n B c A c a 21+= 2、 若方程有两等根,B A =则n n A nc c a )(21+= 其中1c 、2c 可由初始条件确定。 很明显,如果将以上结论作为此类问题的统一解法直接呈现出来,学生是难以接受

相关主题
文本预览
相关文档 最新文档