当前位置:文档之家› 熔化极气体保护电弧焊方法与设备使用要点

熔化极气体保护电弧焊方法与设备使用要点

熔化极气体保护电弧焊方法与设备使用要点
熔化极气体保护电弧焊方法与设备使用要点

任务五熔化极气体保护电弧焊方法与设备使用

---CO2部分

教学目标:了解二氧化碳气体保护焊的基本原理、工艺特点及应用范围;

能合理选用焊丝和控制冶金过程;

能合理制定焊接工艺;

掌握典型焊接接头半自动二氧化碳气体保护电弧焊操作技术;

了解二氧化碳气体保护电弧焊的新技术。

教学活动设计:1在实训室中进行讲练结合的现场教学;

2.利用多媒体课件、仿真等辅助教学;

教学重点:条电弧焊的原理、工艺特点

制定焊条电弧焊工艺;

掌握焊条电弧焊操作技术

教学难点:对工艺制定及操作的掌握

学习单元一认知CO2气体保护焊

一、CO2焊的实质

CO2气体保护电弧焊是利用CO2作为保护气体的熔化极电弧焊方法。这种方法以CO2气体作为保护介质,使电弧及熔池与周围空气隔离,防止空气中氧、氮、氢对熔滴

和熔池金属的有害作用,从而获得优良的机械保护性能。

二、CO2焊的特点

1.优点

1)焊接生产率高。由于焊接电流密度较大,电弧热量利用率较高,以及焊后不需清渣,因此提高了生产率。CO2焊的生产率比普通的焊条电弧焊高2~4倍。

2)焊接成本低。CO2气体来源广,价格便宜,而且电能消耗少,故使焊接成本降低。通常CO2焊的成本只有埋弧焊或焊条电弧焊的40%~50%。

3)焊接变形小。由于电弧加热集中,焊件受热面积小,同时CO2气流有较强的冷却作用,所以焊接变形小,特别适宜于薄板焊接。

4)焊接品质较高。对铁锈敏感性小,焊缝含氢量少,抗裂性能好。

5)适用范围广。可实现全位置焊接,并且对于薄板、中厚板甚至厚板都能焊接。

6)操作简便。焊后不需清渣,且是明弧,便于监控,有利于实现机械化和自动化焊接。

2.缺点

1)飞溅率较大,并且焊缝表面成形较差。金属飞溅是CO2焊中较为突出的问题,这是主要缺点。

2)很难用交流电源进行焊接,焊接设备比较复杂。

3)抗风能力差,给室外作业带来一定困难。

4)不能焊接容易氧化的有色金属。

CO2焊的缺点可以通过提高技术水准和改进焊接材料、焊接设备加以解决,而其优点却是其他焊接方法所不能比的。因此,可以认为CO2焊是一种高效率、低成本的节能焊接方法。

三、CO2焊的应用

CO2焊主要用于焊接低碳钢及低合金钢等黑色金属。对于不锈钢,由于焊缝金属有增碳现象,影响抗晶间腐蚀性能。所以只能用于对焊缝性能要求不高的不锈钢焊件。此外,CO2焊还可用于耐磨零件的堆焊、铸钢件的焊补以及电铆焊等方面。目前CO2焊已在汽车制造、机车和车辆制造、化工机械、农业机械、矿山机械等部门得到了广泛的应用。

学习单元二CO2焊的冶金特性和焊接材料

一、合金元素的氧化与脱氧

1.合金元素的氧化

CO2及其在高温分解出的氧,都具有很强的氧化性。随着温度的提高,氧化性增强。氧化反应的程度取决于合金元素在焊接区的浓度和它们对氧的亲和力。熔滴和熔池金属中Fe的浓度最大,Fe的氧化比较激烈。Si、Mn、C的浓度虽然较低,但它们与氧的亲和力比Fe大,所以也很激烈。

2.氧化反应的结果

反应生成的CO气体有两种情况:其一是在高温时反应生成的CO气体,由于CO气体体积急剧膨胀,在逸出液态金属过程中,往往会引起熔池或熔滴的爆破,发生金属的

溅损与飞溅。其二是在低温时反应生成的CO气体,由于液态金属呈现较大的粘度和较强的表面张力,产生的CO无法逸出,最终留在焊缝中形成气孔。

合金元素烧损、气孔和飞溅是CO2焊中三个主要的问题。它们都与CO2电弧的氧化性有关,因此必须在冶金上采取脱氧措施予以解决。但应指出,气孔、飞溅除和CO2气体的氧化性有关外,还和其它因素有关,这些问题以后还要讨论。

3.CO2焊的脱氧

加入到焊丝中的Si和Mn,在焊接过程中一部分直接被氧化和蒸发,一部分耗于FeO 的脱氧,剩余的部分则残剩留在焊缝中,起焊缝金属合金化作用,所以焊丝中加入的Si 和Mn,需要有足够的数量。但是焊丝中Si、Mn的含量过多也不行。Si含量过高会降低焊缝的抗热裂纹能力;Mn含量过高会使焊缝金属的冲击值下降。

此外,Si和Mn之间的比例还必须适当,否则不能很好地结合成硅酸盐浮出熔池,而会有一部分SiO2或者MnO夹杂物残留在焊缝中,使焊缝的塑性和冲击值下降。

根据试验,焊接低碳钢和低合金钢用的焊丝,一般w(Si)为1%左右。经过在电弧中和熔池中烧损和脱氧后,还可在焊缝金属中剩下约0.4%~0.5%。焊丝中w (Mn)一般为1%~2%左右。

二、CO2焊的气孔及防止

CO2焊时,由于熔池表面没有熔渣覆盖,CO2气流又有冷却作用,因而熔池凝固比较快。如果焊接材料或焊接工艺处理不当,可能会出现CO气孔、氮气孔和氩气孔。

1.CO气孔

在焊接熔池开始结晶或结晶过程中,熔池中的C与FeO反应生成的CO气体来不及逸

出,而形成CO气孔。这类气孔通常出现在焊缝的根部或近表面的部位,且多呈针尖状。

2.氮气孔

在电弧高温下,熔池金属对N2有很大的溶解度。但当熔池温度下降时,N2在液态金属中的溶解度便迅速减小,就会析出大量N2,若未能逸出熔池,便生成N2气孔。N2气孔常出现在焊缝近表面的部位,呈蜂窝状分布,严重时还会以细小气孔的形式广泛分布在焊缝金属之中。这种细小气孔往往在金相检验中才能被发现,或者在水压试验时被扩大成渗透性缺陷而表露出来。

3.氢气孔

氢气孔产生的主要原因是,熔池在高温时溶入了大量氢气,在结晶过程中又不能充分排出,留在焊缝金属中成为气孔。

三、CO2焊的飞溅及防止

1.飞溅产生的原因

飞溅是CO2焊最主要的缺点,严重时甚至要影响焊接过程的正常进行。产生飞溅的主要原因如下:

1)气体爆炸引起的飞溅。

2)由电弧斑点压力而引起的飞溅。

3)短路过渡时由于液态小桥爆断引起的飞溅。

4)当焊接参数选择不当时,也会引起飞溅。

2.减少金属飞溅的措施

(1)正确选择焊接参数

1)焊接电流与电弧电压。

2)焊丝伸出长度。

3)焊枪角度。

四、CO2焊的气体及焊丝

(一)CO2气体

1.CO2气体的性质

CO2气体是无色又无味和无毒气体。在常温下它的密度为1.98kg/m3,约为空气的1.5倍。在常温时很稳定,但在高温时发生分解,至5000K时几乎能全部分解。

气瓶的压力与环境温度有关,当温度为0~20℃时,瓶中压力为4.5~6.8×106Pa (40~60大气压),当环境温度在30℃以上时,瓶中压力急剧增加,可达7.4×106 Pa(73大气压)以上。所以气瓶不得放在火炉、暖气等热源附近,也不得放在烈日下爆晒,以防发生爆炸。

2.提高CO2气体纯度的措施

(1)洗瓶后应该用热空气吹干因为洗瓶后在钢瓶中往往残留较多的自由状态水。

(2)倒置排水液态的CO2可溶解质量分数约0.05%的水分,另外还有一部分自由态的水分沉积于钢瓶的底部。焊接使用前首先应去掉自由态水分。可将CO2钢瓶倒立静置1~2h,以便使瓶中自由状态的水沉积到瓶口部位,然后打开阀门放水2~3次,每次放水间隔30min,放水结束后,把钢瓶恢复放正。

(3)正置放气放水处理后,将气瓶正置2h,打开阀门放气2~3min,放掉一些气瓶上部的气体,因这部分气体通常含有较多的空气和水分,同时带走瓶阀中的空气。

(4)使用干燥器可在焊接供气的气路中串接过滤式干燥器。用以干燥含水较多的CO2气体。

(5)使用时注意瓶中的压力在

(二)焊丝

CO2焊焊丝既是填充金属又是电极,所以焊丝既要保证一定的化学成分和力学性能,又要保证具有良好的导电性和工艺性能。

1.对焊丝的要求

(1)脱氧剂

(2)C、S、P 焊丝的含碳量要低

(3)镀铜为防锈及提高导电性,焊丝表面最好镀铜

学习单元三CO2焊工艺

在CO2焊中,为了获得稳定的焊接过程,熔滴过渡通常有两种形式,即短路过渡和细滴过渡。短路过渡焊接在我国应用最为广泛。

一、短路过渡CO2焊工艺

1.短路过渡焊接的特点

短路过渡时,采用细焊丝、低电压和小电流。熔滴细小而过渡频率高,电弧非常稳

定,飞溅小,焊缝成形美观。主要用于焊接薄板及全位置焊接。焊接薄板时,生产率高、变形小,焊接操作容易掌握,对焊工技术水准要求不高。因而短路过渡的CO2焊易于在生产中得到推广应用。

2.焊接工艺参数的选择

主要的焊接工艺参数有:焊丝直径、焊接电流、电弧电压、焊接速度、保护气体流量、焊丝伸出长度及电感值等。

(1)焊丝直径短路过渡焊接采用细焊丝,常用焊丝直径为0.6~1.6mm,随着焊丝直径的增大,飞溅颗粒相应增大。

(2)焊接电流焊接电流是重要的焊接参数,是决定焊缝厚度的主要因素。电流大小主要决定于送丝速度,

(3)电弧电压短路过渡的电弧电压一般在17~25V之间。因为短路过渡只有在较低的弧长情况下才能实现,所以电弧电压是一个非常关键的焊接参数,如果电弧电压选得过高(如大于29V),则无论其它参数如何选择,都不能得到稳定的短路过渡过程。

短路过渡时焊接电流均在200A以下,这时电弧电压均在较窄的范围(2~3V)内变动。电弧电压与焊接电流的关系可用下式来计算。

U = 0.04I+(16士2)

(4)焊接速度焊接速度对焊缝成形、接头的力学性能及气孔等缺陷的产生都有影响。在焊接电流和电弧电压一定的情况下,焊接速度加快时,焊缝厚度(S)、宽度(c)和余高(h)均减小,如图3-6所示。

(5)保护气体流量气体保护焊时,保护效果不好将发生气孔,甚至使焊缝成形变

坏。

(6)焊丝伸出长度短路过渡焊接时采用的焊丝都比较细,因此焊丝伸出长度对焊丝熔化速度的影响很大。

此外,伸出长度太大,电弧不稳,难以操作,同时飞溅较大,焊缝成形恶化,甚至破坏保护而产生气孔。相反,焊丝伸出长度过小时,会缩短喷嘴与焊件间的距离,飞溅金属容易堵塞喷嘴。同时,还妨碍观察电弧,影响焊工操作。

二、细滴过渡CO2焊工艺特点

1.特点

细滴过渡CO2焊的特点是电弧电压比较高,焊接电流比较大。此时电弧是持续的,不发生短路熄弧的现象。焊丝的熔化金属以细滴形式进行过渡,所以电弧穿透力强,母材熔深大。适合于进行中等厚度及大厚度焊件的焊接。

2.焊接参数选择

(1)电弧电压与焊接电流为了实现滴状过渡,电弧电压必须选取在34~45V范围内。焊接电流则根据焊丝直径来选择。对应于不同的焊丝直径,实现细滴过渡的焊接电流下限是不同的。

(2)焊接速度细滴过渡CO2焊的焊接速度较高。与同样直径焊丝的埋弧焊相比,焊接速度高0.5~1.0倍。常用的焊速为40~60m/h。

(3)保护气体流量应选用较大的气体流量来保证焊接区的保护效果。保护气流量通常比短路过渡的CO2焊提高1~2倍。常用的气流量范围为25~50L/min。.

三、CO2焊的焊接技术

1.焊前准备

CO2焊时,为了获得最好的焊接结果,除选择好焊接设备和焊接工艺参数外,还应做好焊前准备工作。

(1)坡口形状CO2焊时推荐使用的坡口形式见表3-6。细焊丝短路过渡的CO2焊主要焊接薄板或中厚板。一般开I形坡口;粗焊丝细滴过渡的CO2焊主要焊接中厚板及厚板,可以开较小的坡口。开坡口不仅为了熔透,而且要考虑到焊缝成形的形状及熔合比。

(2)坡口加工方法与清理加工坡口的方法主要有机械加工、气割和碳弧气刨等。

(3)定位焊定位焊是为了保证坡口尺寸,防止由于焊接所引起的变形。通常CO2焊与焊条电弧焊相比要求更坚固的定位焊缝。定位焊缝本身易生成气孔和夹渣,它们是随后进行CO2焊时产生气孔和夹渣的主要原因。所以必须认真地焊接定位焊缝。

焊接薄板时定位焊缝应该细而短,长度为3~l0mm,间距为30~50mm。它可以防止变形及焊道不规整。焊接中厚板时定位焊缝间距较大,达100~150mm,为增加定位焊的强度,应增大定位焊缝长度,一般为15~50mm。若为熔透焊缝时,点固处难以实现反面成形,应从反面进行点固。

2.引弧与收弧

(1)引弧工艺半自动CO2焊时,喷嘴与焊件间的距离不好控制。当焊丝以一定速度冲向焊件表面时,往往把焊枪顶起,结果使焊枪远离焊件,从而破坏了正常保护。所以,焊工应该注意保持焊枪到焊件的距离。

半自动CO2焊时习惯的引弧方式是焊丝端头与焊接处划擦的过程中按焊枪按钮,通常称为“划擦引弧”。

(2)收弧方法焊道收尾处往往出现凹陷,它被称为弧坑。CO2焊比一般焊条电弧焊用的焊接电流大,所以弧坑也大。弧坑处易产生火口裂纹及缩孔等缺陷。为此,应设法减小弧坑尺寸。目前主要应用的方法如下:

1)采用带有电流衰减装置的焊机时,

2)没有电流衰减装置时,

3)使用工艺板,也就是把弧坑引到工艺板上,焊完之后去掉它。

3.平焊的焊接技术

(1)单面焊双面成形技术从正面焊接,同时获得背面成形的焊道称为单面焊双面成形,常用于焊接薄板及厚板的打底焊道。

1)悬空焊接。无垫板的单面焊双面成形焊接时对焊工的技术水准要求较高,对坡口精度、装配质量和焊接参数也提出了严格要求。

坡口间隙对单面焊双面成形的影响很大。

2)加垫板的焊接。加垫板的单面焊双面成形比悬空焊接容易控制,而且对焊接参数的要求也不十分严格。垫板材料通常为纯铜板。为防止铜垫板与焊件焊到一起,最好采用水冷铜垫板。加垫板时单面焊双面成形的典型焊接参数见表3-9。

(2)对接焊缝的焊接技术薄板对接焊一般都采用短路过渡,中厚板大都采用细滴过渡。坡口形状可采用I形、Y形、单边V形、U形和X形等。通常CO2焊时的钝边较大而坡口角度较小,最小可达45°左右。

在坡口内焊接时,如果坡口角度较小,熔化金属容易流到电弧前面去,而引起未焊透,所以在焊接根部焊道时,应该采用右焊法和直线式移动。当坡口角度较大时,应采用左焊法和小幅摆动焊接根部焊道。

平焊对接焊缝的典型焊接参数见表3-10。

学习单元四CO2焊的其他方法

一、药芯焊丝CO2焊

药芯焊丝是将含有稳弧剂、造渣剂和合金粉等成分的粉末裹在金属外皮里面而构成的。药芯焊丝CO2焊的基本原理与普通CO2焊相同。焊接时,在电弧作用下熔化的药芯焊丝、母材金属和保护气体相互之间发生冶金作用,同时形成一层较薄的液态熔渣包覆熔滴并覆盖熔池,对熔化金属形成了又一层的保护。实质上这种焊接方法是一种气一渣联合保护的方法。

1.药芯焊丝CO2焊的特点

(1)优点

1)焊接生产率高。约为焊条电弧焊的3~5倍,为实芯焊丝CO2焊的1.5~2倍。

2)飞溅少,焊缝成形美观。采用气一渣联合保护,焊接工艺性能好,飞溅率为实芯焊丝的1/3左右,且飞溅颗粒细,容易清除。焊缝因有熔渣覆盖成形美观。

3)焊接适应性强。调整药芯成分,就可焊接不同钢种。不仅可以焊接各种结构钢,也可以焊接不锈钢等特殊材料。

4)抗气孔能力强。由于焊接熔池受到CO2气体和熔渣两方面的保护,所以抗气孔能力比实芯焊丝CO2焊强。

(2)缺点

1)焊丝制造比较复杂,成本高。

2)焊丝外表容易锈蚀,药粉容易吸潮,使用前需经250~300℃的烘干。

3)送丝困难,对送丝机构要求高。药芯焊丝与实芯焊丝相比,其刚性较差,焊丝体较软。送丝滚轮的压力不能太大,太大会使焊丝变形。通常需要用两对主动送丝滚轮,甚至用三对送丝滚轮的送丝机构。

二、CO2点焊

CO2点焊是在CO2气体保护下,利用焊丝和焊件间燃烧的高温电弧热量,将搭接接头上板的整个厚度和下板的局部厚度熔化,形成铆钉状的焊点,从而把两块钢板连接起来。也称为CO2电铆焊,见图3-12。

1.CO2点焊的特点

CO2点焊适用于薄板框架结构的焊接。在汽车制造、农业机械、化工机械等部门中有着广泛的应用。它与电阻点焊相比有以下优点:

1)不需要特殊的加压装置,焊接设备简单,电源功率较小,又是一种单面点焊的焊接方法,因此不受焊接场所的限制,使用方便、灵活。

2)对焊件表面质量要求不高。

3)对上下板之间的装配精度要求不严格。

4)不受焊点距离和板厚的限制,适用性强。

5)焊接品质好,焊点强度比电阻点焊高。

2.CO2点焊接头形式

在进行水平位置CO2点焊时,如果上下板厚度均在lmm以下,为提高抗剪强度,防止烧穿,点焊时应加垫板。若上板很厚(大于6mm),熔透上板所需的电流又不足时,可先将上板开一个锥孔,然后再施焊(即“塞焊”)。仰面位置CO2点焊时,为防止熔池金属下落,在焊接参数上应尽量采用大电流、低电压、短时间及大的气体流量。对于垂直位置CO2点焊,其焊接时间比仰焊时要更短。

三、CO2气电立焊

气电立焊是厚板立焊时,在接头两侧使用成形器具(固定式或移动式冷却块)保持熔池形状,强制焊缝成形的一种电弧焊,通常加CO2气体保护熔池。其优点是可不开坡口焊接厚板,生产率高,成本低。

MIG与MAG焊部分

教学目标:了解气体保护焊的原理,了解二氧化碳气体保护焊、熔化极氩弧焊及混合气体保护电弧焊的工艺特点及应用范围;

能合理选用焊丝和保护气体;

能合理制定不锈钢、铝合金等材料的焊接工艺;

掌握不锈钢、铝合金等材料的熔化极氩弧焊操作技术;

了解熔化极气体保护电弧焊的其他方法。

教学活动设计:1在实训室中进行讲练结合的现场教学;

2.利用多媒体课件、仿真等辅助教学

教学重点:能合理制定不锈钢、铝合金等材料的焊接工艺;

掌握不锈钢、铝合金等材料的熔化极氩弧焊操作技术;

教学难点:对工艺制定及操作的掌握

学习单元一认知熔化极惰性气体保护焊

一、MIG焊的基本原理

MIG焊是采用惰性气体作为保护气,使用焊丝作为熔化电极的一种电弧焊方法。这种方法通常用氩气、氦气或它们的混合气体作为保护气,连续送进的焊丝既作为电极又作为填充金属,在焊接过程中焊丝不断熔化并过渡到熔池中去而形成焊缝。在焊接结构生产中,特别是在高合金材料和有色金属及其合金材料的焊接生产中,MIG焊占有很重要的地位。

二、MIG焊的特点

由于MIG焊通常采用惰性气体作为保护气,与CO2电弧、焊条电弧焊或其它熔化极电弧焊相比,它具有如下一些特点:

1.焊接质量好

由于采用惰性气体作保护气体,保护效果好,焊接过程稳定,变形小,飞溅极少或根本无飞溅。焊接铝及铝合金时可采用直流反极性,具有良好的阴极破碎作用。

2.焊接生产率高

熔化极气体保护电弧焊方法与设备使用

任务五熔化极气体保护电弧焊方法与设备使用 ---CO2部分 教学目标:了解二氧化碳气体保护焊的基本原理、工艺特点及应用范围; 能合理选用焊丝和控制冶金过程; 能合理制定焊接工艺; 掌握典型焊接接头半自动二氧化碳气体保护电弧焊操作技术; 了解二氧化碳气体保护电弧焊的新技术。 教学活动设计:1在实训室中进行讲练结合的现场教学; 2.利用多媒体课件、仿真等辅助教学; 教学重点:条电弧焊的原理、工艺特点 制定焊条电弧焊工艺; 掌握焊条电弧焊操作技术 教学难点:对工艺制定及操作的掌握 学习单元一认知CO2气体保护焊 一、CO2焊的实质 CO2气体保护电弧焊是利用CO2作为保护气体的熔化极电弧焊方法。这种方法以CO2气体作为保护介质,使电弧及熔池与周围空气隔离,防止空气中氧、氮、氢对熔滴

和熔池金属的有害作用,从而获得优良的机械保护性能。 二、CO2焊的特点 1.优点 1)焊接生产率高。由于焊接电流密度较大,电弧热量利用率较高,以及焊后不需清渣,因此提高了生产率。CO2焊的生产率比普通的焊条电弧焊高2~4倍。 2)焊接成本低。CO2气体来源广,价格便宜,而且电能消耗少,故使焊接成本降低。通常CO2焊的成本只有埋弧焊或焊条电弧焊的40%~50%。 3)焊接变形小。由于电弧加热集中,焊件受热面积小,同时CO2气流有较强的冷却作用,所以焊接变形小,特别适宜于薄板焊接。 4)焊接品质较高。对铁锈敏感性小,焊缝含氢量少,抗裂性能好。 5)适用范围广。可实现全位置焊接,并且对于薄板、中厚板甚至厚板都能焊接。 6)操作简便。焊后不需清渣,且是明弧,便于监控,有利于实现机械化和自动化焊接。 2.缺点 1)飞溅率较大,并且焊缝表面成形较差。金属飞溅是CO2焊中较为突出的问题,这是主要缺点。 2)很难用交流电源进行焊接,焊接设备比较复杂。 3)抗风能力差,给室外作业带来一定困难。 4)不能焊接容易氧化的有色金属。

气体保护焊时焊接起弧收弧方法

审 核编 制 焊接时焊接起弧/收弧标准 二氧化碳气体保护焊焊机操作过程 开始提前送气引弧焊接停止焊接按下焊枪开关2~4秒高电压慢送丝规范电压松开焊枪开关 规范电流 滞后送气结束 2~4秒焊枪离开熔池 焊接时起弧的方法 1.起弧之前应该在焊丝端头与工件表面之间保持一定距离下按焊枪按纽 2.起弧之前剪断焊丝端头的熔滴,为下次起弧创造良好的条件 3.引弧方式采用“划擦起弧”,起弧后必须调整焊枪对准位置、焊枪角度和导电嘴-母材之间的距离 3.焊接接头处通常采用倒退焊法(图1),使焊道充分熔合,达到完全消除前一道弧坑的目的 4.对于环焊缝焊接时,起弧后快速移动(图2),得到较窄的焊道,为随后焊道接头创造条件 图 1图 2 焊接收弧的方法 1.有收弧的焊接 将收弧转换开关置于“有收弧”处,先后两次将焊接开关按下、松开进行焊接(图3),焊接结束时 焊枪在电弧停止4秒后离开 图 3 2.无收弧焊接 将收弧转换开关置于“无收弧”处,“开”“关”焊枪开关的同时,焊接电弧产生或停止进行焊接 (图4),焊接结束时焊枪在“关”焊枪4秒后离开 图 4

焊接接头部位的作业要求 参照小松公司《熔接基本作业书》熔接基本作业篇 之B2-08渗漏防止作业 基准参考 1.焊接接头部位重叠尺寸:10~20mm 接头部位重叠不充分容易产生焊 重叠尺寸 接缺陷 2.焊接结尾处与前 焊接结束端部重叠在前次焊缝的 焊接开始端部与前次焊接的 次焊接开始处的 开始端部 开始端部重叠,容易产生缺陷 接头重叠 3.焊接接头在拐 拐角部位焊缝连续,不在拐角、 应力集中,易开裂 角、应力集中处 应力集中处息弧,避免焊接接头 焊接接头部位 在此处的产生

第五章 熔化极惰性气体保护电弧焊

第五章熔化极惰性气体保护电弧焊 一、教学目的: 掌握MIG焊的特点及应用 了解MIG焊设备的组成 掌握MIG焊熔滴过渡的特点 理解亚射流过渡的意义 理解MIG焊保护气体的选用 掌握焊接工艺参数的选择 了解脉冲MIG焊,窄间隙MIG焊等其他MIG方法 二、教学重点: MIG焊的特点及应用 MIG焊熔滴过渡的特点——亚射流过渡 MIG焊接工艺参数的选择 三、教学难点: MIG焊熔滴过渡的特点——亚射流过渡 MIG焊保护气体的选用 四、参考学时数: 4~6学时 五、主要教学内容: 第一节 MIG焊的特点及应用 一、MIG焊的基本原理 MIG焊是才采用惰性气体作为保护气,使用焊丝作为熔化电极的一种电弧焊方法。 使用的保护气体通常为氩气或氦气或它们的混合气体作为保护气。 二、MIG焊的特点 1、焊接质量好 2、焊接生产率高 3、适用范围广 MIG焊的缺点在于无脱氧去氢作用,因此对母材及焊丝上的油、锈敏感;另外,MIG焊的抗风能力差,设备比较复杂。 三、MIG焊的应用 MIG焊适合焊接低碳钢、低合金钢、耐热钢、不锈钢、有色金属及其合金等多种材料。 第二节 MIG焊设备 一、组成及要求 1、焊接电源 MIG焊的时候,我们一般都是采用直流反接。

半自动焊时,使用的焊丝比较细,一般小于2.5mm; 自动焊时,使用的焊丝直径常大于3mm。 2、送丝机构 MIG焊的送死机构和CO2焊相似,分为推丝式、拉丝式和推拉丝式。如果焊丝比较细的话,一般选用拉丝式和推拉丝式比较好。 3、焊枪 焊枪分为半自动焊枪和自动焊枪,有水冷和气冷两种形式。 4、控制系统 控制系统的主要作用是:引弧前预先送气,焊接停止时,延迟停气;送死控制和速度调节;控制主回路的通断等。 5、供气、供水系统 供水系统主要用来冷却焊枪,防止焊枪烧损。 二、典型控制电路 (一)焊机的组成及作用 (二)各主要部分的工作原理 1、ZPG2-500型弧焊整流器 2、SS-2型半自动送丝机构 3、Q-1型半自动焊枪 (三)焊机控制电路的工作过程 第三节 MIG焊工艺 一、熔滴过渡特点 MIG焊采用一种介于短路过渡和射流过渡之间的一种特殊形式,称为亚射流过渡。 亚射流过渡的特点有: 1)短路时间很短,短路电流对熔池的冲击力很小,过程稳定,焊缝成形美观。 2)焊接时,焊丝的熔化系数随电弧的缩短而增大,从而使亚射流过渡可采用等速送丝配以恒流外特性电源进行焊接,弧长由熔化系数的变化实现自身调节。 3)由于亚射流过渡时,电弧电压、焊接电流基本保持不变,所以焊缝熔宽和熔深比较均匀。同时,电弧下潜熔池之中,热利用率高,加速焊丝的熔化,对熔池的底部加热也加强了,从而改善了焊缝根部熔化状态,有利于提高焊缝的质量。 4)由于采用的弧长较短,可提高气体保护效果,降低焊缝产生气孔和裂纹的倾向。 二、保护气体 MIG焊常用的保护气体有 1、氩气(Ar) 氩气是一种惰性气体,焊接时电弧燃烧稳定,电弧力大,但焊缝容易形成“指状”焊缝。 2、氦气(He) 氦气的作用类似与氩气,但氦气的电离电压搞,热导率高,因此电弧具有更大的功率。但氦气的密度比空气小,容易出现保护不良,而且提炼氦气成本较高,因此应用不多。 3、Ar+He、Ar+N2 采用Ar+He混合气体作为MIG焊的保护气体,兼具两种气体的优点,电弧功率大、温度高、熔深大的特点。

二氧化碳气体保护焊焊接工艺

二氧化碳气体保护焊焊接工艺 适用围:本工艺适用于钢结构制作与安装二氧化碳气体保护焊焊接工艺。工艺规定了一般低碳钢、普通低合金钢的二氧化碳气体保护焊的基本要求。凡各工程的工艺中无特殊要求的结构件的二氧化碳气体保护焊均应按本工艺规定执行。 第一节材料要求 1.1 钢材及焊接材料应按施工图的要求选用,其性能和质量必须符合国家标准和行业标准的规定,并应具有质量证明书或检验报告。如果用其它钢材和焊材代换时,须经设计单位同意,并按相应工艺文件施焊。 1.2 焊丝焊丝成份应与母材成份相近,主要考虑碳当量含量,它应具有良好的焊接工艺性能。焊丝含C量一般要求<0.11%。其表面一般有镀铜等防锈措施。目前我国常用的CO2气体保护焊焊丝是H08Mn2SiA,其化学成分见GB1300-77。它适用于焊接低碳钢和抗拉强度为500MPa级的低合金结构钢。H08Mn2SiA焊丝熔敷金属的机械性能详见GB8110-87《二氧化碳气体保护焊用焊丝》。 1.3CO2气体纯度不低于99.5%,含水量和含氧量不超过0.1%,气路系统中应设置干燥器和预热装置。当压力低于10个大气压时,不得继续使用。 1.4焊件坡口形式的选择 要考虑在施焊和坡口加工可能的条件下,尽量减小焊接变形,节省焊材,提高劳动生产率,降低成本。一般主要根据板厚选择(见《气焊、手工电弧焊及气体保护焊焊缝坡口的基本形式与尺寸》GB985-88)。 1.5 不同板厚的钢板对接接头的两板厚度差(δ-δ1)不超过表5.1规定时,则焊缝坡口的基本形式与尺寸按较厚板的尺寸数据来选择;否则应在厚板上作出如表中图示的单面a)或双面削薄b),其削薄长度L≥3(δ-δ1)。

熔化极气体保护焊

熔化极气体保护焊 一、CO2电弧焊的特点和应用 CO2电 ,以CO2气体作保护气体,依靠焊丝与焊件之间的电弧来熔化金属的气体保护焊的方法称CO2焊。这种焊接法都采用焊丝自动送丝,敷化金属量大,生产效率高,质量稳定。因此,在国内外获得广泛应用,与其它电弧焊相比有以下特点:1、生产效率高CO2电弧焊穿透力强,熔深大、而且焊丝熔化率高,所以熔敷速度快、生产效率可比手工电弧焊高3倍。 2、焊接成本低CO2焊的成本只有埋弧焊与手工电弧焊成本的40%-50%。 3、消耗能量低CO2电弧焊和药皮焊条相比3mm厚钢板对接焊缝,每米焊缝的用电降低30%,25mm 钢板对接焊缝时用电降低60% 。 4、适用范围宽不论何种位置都可以进行焊接,薄板可焊到1mm,最厚几乎不受限制(采用多层焊)。而且焊接速度快、变形小。 5、抗锈能力强焊缝含氢量低抗裂性能强。 6、焊后不需清渣,引弧操作便于监视和控制,有利于实现焊接过程机械化和自动化。我国在CO2焊接设备、焊接材料、焊接工艺方面已取得了很大的成就。CO2电弧焊接在我国的造船、机车、汽车制造、石油化工、工程机械、农业机械中获得广泛应用。 二、焊机的型号和连接方法 1、我公司CO2焊机型号(见文字说明表) 2、面板上的旋钮作用与调节方法,(见说明书) 3、连接方法水、电、气、焊枪(见说明书) 4、焊枪的构造及软管、导电嘴、喷嘴。 5、焊机可能发生的故障及排除方法(见说明书) 三、焊接材料1、CO2保护气体CO2有固态、液态、气态三种状态。瓶装液态CO2是CO2焊接的主要保护气源。液态CO2是无色液体,其密度随温度变化而变化。当温度低于-11℃时密度比水大,当温度高于-11℃时则密度比水小。由于CO2由液态变为气态的沸点很低为-78℃,所以工业焊接用CO2都是液态。在常温下能自己气化。CO2气瓶漆成黑色标有“CO2”黄色字样。2、焊丝CO2气体保护焊对焊丝化学成分的要求:(1)焊丝必须含有足够数量的脱氧元素以减少焊缝金属中的含氧量和防止产生气体。(2)焊丝的含碳量要低,通常要求<0.11%,这样可减少气孔和飞溅。(3)保证焊缝金属具有满意的机械性能和抗裂性能。目前生产中应用最广的焊丝为H08Mn2SiA焊丝,该焊丝有较好的工艺性能、机械性能及抗热裂纹能力,适用于焊接低碳钢、屈服极限<500Mpa的低合金钢和经焊后热处理抗拉强度<1200Mpa的低合金高强钢。焊丝表面的清洁程度影响到焊缝金属中含氢量。焊接重要结构应采用机械、化学或加热办法清除焊丝表面的水分和污染物。3、药芯焊丝(1)由于药芯成分改变了纯CO2电弧的物理化学性质,因而飞溅小且飞溅颗粒容易清除,又因熔池表面盖有熔渣,焊缝成形类似手工弧焊。焊缝较实芯焊丝电弧焊美观。(2)与手工焊相比由于CO2电弧耐热效率高加上电流密度比手工弧焊大,生产效率可为手工弧焊的3—5倍。(3)调整药芯成分就可焊不同的钢种,而不象冶炼实芯丝那样复杂。(4)由于熔池受到CO2气体和熔渣二方面的保护,所以抗气孔能力比实芯焊丝能力强。 四、焊接规范选择1、短路过渡焊接CO2电弧焊中短路过渡应用最广泛,主要用于薄板及全位置焊接,规范参数为电弧电压焊接电流、焊接速度、焊接回路电感、气体流量及焊丝伸出长度等。 熔化极惰性气体保护焊 熔化极惰性气体保护焊又称MIG(Metal Inertia Gas )焊,它是利用氩气或富氩气体作为保

熔化极气体保护焊焊接气体怎么选

熔化极气体保护焊焊接气体怎么选? 一、碳钢及普通低合金钢CO2/MAG焊的气体选择 1、常用的100%CO2气体属于活性气体,在电弧高温的作用下,分解为CO+O,在熔滴和熔池两个反应区中,由焊丝H08Mn2SiA进行脱氧反应,形成氧化物渣(MnO+SiO2)浮出熔池。所以CO2焊接容易获得无气孔和缺陷的焊缝并保证了焊接接头具有良好的机械性能。 CO2气体焊接所形成的熔滴一般为短路过渡和颗粒过渡,有飞溅,所以不适合脉冲焊接。采用波形控制的CO2焊机或选用二元/三元混合气体(MAG)会降低短路过渡的飞溅率。 2、二元混合气体 a、70%Ar+30%CO2(C-30) 适合于短路过渡下的全位置焊接,如山东电建二公司(大亚湾壳牌工地)ASTM(美)A335 P11管道TIG打底焊+MAG填充盖面焊工艺,合格率100%。 b、80%Ar+20%CO2(C-20) 最常用的典型混合气体,适合于碳钢、低合金钢材料的短路过渡、喷射过渡及脉冲过渡条件下的焊接,电弧稳定,熔池易于控制,焊缝成形美观,生产效率高,可用于高速焊。 c、Ar+5~10%CO2 随着CO2含量的降低,焊丝中合金元素过渡系数提高,但熔池的表面张力增加,焊缝表面的润湿性降低,焊道呈“驼峰”状。适合于低合金钢焊丝的喷射过渡及脉冲过渡,适合于平焊及平角焊。 d、Ar+2~5%O2 氩气中加入微量的氧可提高电弧的稳定性,明显降低熔滴和熔池的表面张力,熔池液态金属流动性得到改善,增强了焊缝表面的润湿性,减少咬边缺陷。适合于碳钢及低合金钢焊丝的喷射过渡及脉冲过渡,适合于平焊及平角焊。 3、三元混合气体:

a、Ar+5~10%CO2+1~3%O2 此类三元混合气体集中了Ar、CO2、O2三种气体各自的优点,电弧更加稳定,焊缝熔深、熔宽适中,成形美观。焊接各种厚度的碳钢、低合金钢、不锈钢,不论哪种过渡形式都具有多方面的适应性,称为“万能”混合气体。 b、Ar+10~20%CO2+5%O2 适合于碳钢及低合金钢焊丝的喷射过渡及脉冲过渡。 二、不锈钢MIG焊的气体选择 用纯氩只能适合TIG焊接不锈钢,而不能适用于MIG焊接不锈钢。因为纯氩气体下熔化极气体保护焊时,不锈钢的熔滴和熔池的表面张力较大,熔池液态金属流动性很差,焊缝表面无法铺展润湿,焊道成形较差。应该使用下列几种混合气体: 1、Ar+1~2%O2 加入1-2%氧,不锈钢的熔滴和熔池的表面张力降低,熔池液态金属流动性增强,提高了焊缝表面的铺展润湿性,焊缝熔深、熔宽适中,焊道成形美观。 2、Ar+2~5%CO2 加入2-5%CO2,担心有增碳倾向,试验证明CO2≤5%,焊缝含碳量≤0.03%,仍在超低碳的水准以下。电弧的稳定性好,氧化性减弱,合金元素烧损少,无增碳倾向,适合于不锈钢焊丝的短路过渡、喷射过渡及脉冲过渡。 3、Ar + 25%CO2 适合于不锈钢管道的TIG打底焊(纯氩保护、背后充氩)+MAG填充盖面焊的组合工艺,全位置焊接,短路过渡,焊缝平整美观。 4、Ar+5%CO2+2%O2 三元混合气体优点更加突出,电弧集中性强,焊缝单面焊双面成型好,适合于技术要求较高的不锈钢焊接。 5、Ar+He+CO2 加入氦气可增加焊缝的熔深,提高焊接速度,减少焊件的变形量。 6、Ar+CO2+ N2 欧美开发的新工艺,加入氮气可增加焊缝的熔深和熔宽。 7、Ar+He(25%) 适合焊接镍合金实心焊丝(镍625)MIG焊接。 上述分析是采用实心焊丝时的气体选择及应用,当选用药芯碳钢、药芯合金钢及药芯不锈钢焊丝时,请采用100%CO2气体或80%Ar+20%CO2混合气体。 三、全数字CO2/MAG焊接电源的应用 为了满足广大客户对焊接产品质量的要求,CO2/MAG电焊机的性能及功能要具备较高的科技含量。以前,大量应用的是晶闸管整流弧焊电源以及模拟信号逆变电源,其已难以满足

二氧化碳气体保护焊的焊接方法及工艺)

二氧化碳气体保护焊的焊接方法及工艺 一、基本原理 CO2气体保护焊是以可熔化的金属焊丝作电极,并有CO2气体 作保护的电弧焊。是焊接黑色金属的重要焊接方法之一。 二、工艺特点 1.CO2焊穿透能力强,焊接电流密度大(100-300A/m2),变形小,生产效率 比焊条电弧焊高1-3倍 2.CO2气体便宜,焊前对工件的清理可以从简,其焊接成本只有焊条电弧焊 的40%-50% 3.焊缝抗锈能力强,含氢量低,冷裂纹倾向小。 4. 焊接过程中金属飞溅较多,特别是当工艺参数调节不匹配时,尤为严重。 5. 不能焊接易氧化的金属材料,抗风能力差,野外作业时或漏天作业时, 需要有防风措施。 6..焊接弧光强,注意弧光辐射。 三、冶金特点 CO2焊焊接过程在冶金方面主要表现在: 1.CO2气体是一种氧化性气体,在高温下分解,具有强烈的氧化作用,把合金元素烧损或造成气孔和飞溅等。解决CO2氧化性的措施是脱氧,具体做法是在焊丝中加入一定量脱氧剂。实践表明采用Si-Mn脱氧效果最好,所以目前广泛采用H 08Mn2SiA H10Mn2Si等焊丝。 四、材料 1.保护气体CO2 用于焊接的CO2气体,其纯度要求≥99.5%,通常CO2是以液态装入钢瓶中,容量为40L的标准钢瓶可灌入25Kg的液态CO2, 25Kg的液态CO2约占钢瓶容积的80%,其余20%左右的空间充满气化的CO2。气瓶压力表上所指的压力就是这部分饱和压力。该压力大小与环境温度有关,所以正确估算瓶内CO2气体储量是采用称钢瓶质量的方法。(备注:1Kg的液态CO2可汽化509LCO2气体) CO2气瓶外表漆黑色并写有黄色字样、售CO2气体含水量较高,焊接时候容易产生气孔等缺陷, 在现场减少水分的措施为: 1)将气瓶倒立静置1-2小时,然后开启阀门,把沉积在瓶口部的水排出,可放2 -3次,每次间隔30分钟,放后将气瓶放正。 2)倒置放水后的气瓶,使用前先打开阀门放掉瓶上面纯度较低的气体,然后在套

熔化极活性气体保护焊

熔化极活性气体保护焊(Metal Active Gas Arc Welding )(MAG焊) 熔化极活性气体保护焊一般采用在氩气中加入少量的氧化性气体(CO2、O2或其他混合气体)的混合气体作为保护气体进行焊接的一种熔化极气体保护焊方法。 1、熔化极活性气体保护焊的原理及特点 原理与熔化极氩弧焊相同。 特点:除了具有一般气体保护焊的特点外,与纯氩弧焊、纯CO2焊相比还具有以下特点: (1)与纯氩气保护焊相比 ①熔池、熔滴温度比纯氩弧焊高,电流密度大,因此熔深大,焊缝厚度大,焊丝熔化速度快,熔敷效率高,有利于提高焊接生产率。 ②具有一定氧化性,克服了纯氩保护时表面张力大、液态金属粘稠、易咬边及斑点漂移等问题。同时改善了焊缝成形,由纯氩的指状(蘑菇)熔深成形改变为深圆弧状成形,接头的力学性能好。 ③ CO2气体较便宜,降低了焊接成本低,但CO2的加入提高了产生喷射过渡的临界电流,引起熔滴和熔池金属的氧化及合金元素的烧损 (2)与纯CO2气体保护焊相比 ①电弧温度高,易形成喷射过渡,故电弧稳定性好,飞溅少,

熔敷系数高,节省焊材,生产效率高。 ②由于大部分为惰性的氩气,熔池保护效果好,焊缝金属不易形成气孔,力学性能高。 ③焊缝成形好,焊缝平缓,波纹细密,均匀美观,成本较CO2焊高。 2、熔化极活性气体保护焊常用混合气体及应用 (1)Ar+O2 Ar+O2可用于碳钢、低合金钢、不锈钢等高合金钢和高强钢的焊接。 焊接不锈钢等高合金钢和高强钢时,O2含量控制在(1%~5%);焊接碳钢、低合金钢时,O2含量可达20%。 为什么加入O2: ①克服阴极斑点漂移,降低射流过渡的临界电流值,有利于熔滴的细化; ②焊接不锈钢时,加入微量的O2对接头的抗腐蚀性无显著影响;当O2超过2%时,焊缝表面氧化严重,接头质量下降。③因为焊缝金属的冲击韧性不取决于保护气体的氧化性,而取决于焊缝金属的含氧量,加入适量的O2,虽然气体的氧化性提高,但焊缝金属中的含氧量和杂质减少,因此焊缝金属的冲击韧性有所提高; (2)Ar+CO2 Ar+ CO2既有Ar的优点(电弧稳定、飞溅少、容易获得

常见焊接方法及代号

代号焊接方法 1 电弧焊 11 无气体保护电弧焊 111 手弧焊 112 重力焊 113 光焊丝电弧焊 114 药芯焊丝电弧焊 115 涂层焊丝电弧焊 116 熔化极电弧点焊 118 躺焊 12 埋弧焊 121 丝极埋弧焊 122 带极埋弧焊 13 熔化极气体保护电弧焊 131 MIG焊:熔化极惰性气体保护焊(含熔化极Ar弧焊) 135 MAG焊:熔化极非惰性气体保护焊(含CO2保护焊) 136 非惰性气体保护药芯焊丝电弧焊 137 非惰性气体保护熔化极电弧点焊 14 非熔化极气体保护电弧焊 141 TIG焊:钨极惰性气体保护焊(含钨极Ar弧焊) 142 TIG点焊 149 原子氢焊 15 等离子弧焊 151 大电流等离子弧焊 152 微束等离子弧焊 153 等离子弧粉末堆焊(喷焊) 154 等离子弧填丝堆焊(冷、热丝) 155 等离子弧MIG焊 156 等离子弧点焊 18 其它电弧焊方法 181 碳弧焊 185 旋弧焊 2 电阻焊 21 点焊 22 缝焊 221 搭接缝焊 223 加带缝焊 23 凸焊 24 闪光焊 25 电阻对焊

29 其它电阻焊方法 291 高频电阻焊 3 气焊 31 氧-燃气焊 311 氧-乙炔焊 312 氧-丙烷焊 313 氢-氧焊 32 空气-燃气焊 321 空气-乙炔焊 322 空气-丙烷焊 33 氧-乙炔喷焊(堆焊) 4 压焊 41 超声波焊 42 摩擦焊 43 锻焊 44 高机械能焊 441 爆炸焊 45 扩散焊 47 气压焊 48 冷压焊 7 其它焊接方法 71 铝热焊 72 电渣焊 73 气电立焊 74 感应焊 75 光束焊 751 激光焊 752 弧光光束焊 753 红外线焊 76 电子束焊 77 储能焊 78 螺柱焊 781 螺柱电弧焊 782 螺柱电阻焊 9 硬钎焊、软钎焊、钎接焊91 硬钎焊 911 红外线硬钎焊 912 火焰硬钎焊 913 炉中硬钎焊 914 浸沾硬钎焊

二氧化碳气体保护焊工艺

二氧化碳气体保护焊工艺 1.准备工作 1.1 焊丝 a.焊丝的选择 b.焊丝的质量 焊丝表面必须光滑平整,不应有毛刺、划痕、锈蚀和氧化皮等,也不应有对焊接性能或焊接设备操作性能具有不良影响的杂质。焊丝的镀铜层要均匀牢固,用缠绕法检查镀铜层的结合力时,应不出现鳞与剥落现象。焊丝的挺度应使焊丝均匀连续送进。 1.2 二氧化碳气体 a.纯度 二氧化碳的纯度不应低于99.5﹪(体积法),其含水量不超过0.005﹪(重量法)。b.使用 焊接前应放出一部分气体,检查其是否潮湿。气瓶中的压力降到1Mpa时,应停止用气。 1.3电焊机 焊接机在使用前应能电检验,其各电气开关、指示灯应灵活、好用。送丝机构尖送丝连续、均匀,并根据要焊的零部件选择适当的焊接电流及电压。 2.工艺流程 2.1工件尽可能平放,各需要焊接的工件应用专用焊接夹具定位。 2.2先点焊成形,经检验点焊成形的零部件符合图纸要求后,再焊接。 2.3尽可能采用平焊。如采用立焊,施焊方向应为自上而下。但修补咬边时,可由下而上。管材结构的立焊可以由上而下,也可以由下而上。 2.4焊接电流应根据工件厚度、焊接位置选择。 2.5根部焊道的最小尺寸应足以防止产生裂纹。 2.6金属过渡方式和焊接速度都应使每道焊缝将附近母材与熔敷金属完全熔合,且不得有溢流,气孔和咬边等现象。 3.焊缝要求 3.1角焊缝:母材厚并小于6.4mm,最大焊缝尺寸为母材厚度;母材厚度大于6. 4mm时,应较母材厚度小1.6mm,或按图纸要求。 3.2钻焊:钻焊最小孔径应大于开孔件厚度加8mm。 3.3.对接头焊接:对接头和角接头焊接,根部间隙最大为2-3mm。 3.4对接和角接,焊缝条高不得超过3.3mm,并缓和过渡到母材面的平面。 4.焊缝表面要求 除角接接头外侧焊缝外,焊缝或单个焊道的凸度不得超过该焊缝或焊道实际表面宽度值的7﹪+1.5mm,同时去除焊渣。 5.检查 5.1焊口的清理 零部件的焊口及附近表面应清理干净,无毛刺、熔渣、油、锈等杂物。

熔化极气体保护电弧焊熔滴过渡实验报告_200

实验8 熔化极气体保护电弧焊熔滴过渡 一、实验目的 通过实验对熔化极气体保护电弧焊接过程熔滴过渡现象有更直观的认识,对几种典型的熔滴过渡的形成条件及其对焊缝成形和焊接飞溅的影响有更深入的了解。 二、实验原理 熔化极气体保护电弧焊方法中,惰性气体保护焊和二氧化碳气体保护焊占有重要地位。在熔化极电弧焊焊接过程中,焊丝端部金属受热熔化形成熔滴,并在多种力的联合作用下向熔池过渡。熔滴过渡状态是指焊条熔化后滴入熔池的状态。对熔滴过渡产生影响的因素包括保护气体的种类和成分,焊接电流和电压,焊条的成分和直径等。熔滴过渡主要形式有:粒状熔滴过渡、短路熔滴过渡、旋转熔滴、射流过渡、球状体过渡。 三、实验数据及分析 1.CO2气体保护焊 工艺参数:焊接速度5mm/s。 实验数据见表1。

表1.实验原始数据

在实验中,短路过渡时弧长较短,爆炸声均匀密集并且较小;随着电弧电压增加,弧长增长,此时短路较小,爆炸声开始变得不规则,飞溅明显增加;当电弧电压进一步增大时,可以达到无短路过程。相反,随着电弧电压的降低,弧长会变短,并且出现较强的爆破声,进而可能引起焊丝与熔池的固体短路。当电弧电压较高时,焊丝端部熔化后不能接触到熔池形成短路,熔滴长大,电弧力的作用使熔滴产生大滴排斥过渡。 熔滴过渡过程图像见图1。 图1. 熔滴过渡过程图像焊接电流与电压波形分别见图2、图3。

图2.电流波形 图3.电压波形 2.MIG焊 工艺参数:焊接速度15mm/s 实验数据见表2。 表2.实验原始数据 当电弧弧长较大且焊接电流较小时,呈现大滴状过渡,随着焊接电流的增加,熔滴变小,当电流增加到临界电流值,焊丝端部电弧阳极斑点从熔滴底部瞬时扩展到缩颈根部,熔滴过渡转变为喷射过渡,其时电弧呈钟罩形,焊丝端部为铅笔尖状。 熔滴过渡过程图像见图4。

电弧焊工艺及原理

电弧焊

电弧焊技术的发展历程 1801年,迪威发现了电弧放电现象 19世纪中叶,提出利用电弧熔化金属进行材料连接的思想 1885年俄国人发明了碳弧焊 1891年俄国人提出金属电极代替碳电极 1907年瑞典人发明了焊条 1912年瑞典人开发出保护性能良好的厚涂层焊条 1920年,英国的全焊接船下水 1930年,开发了埋弧焊 1930年以后,气体保护钨电极电弧 1945年前后,电弧放电的阴极点具有去除氧化膜的作用 出现了GMA (Gas Metal Arc )

介绍几种常用的电弧焊方法 电弧焊是目前应用最广的焊接技术。 它分渣保护电弧焊和气体保护电弧焊两类。它 包括焊条电弧焊、埋弧自动焊、钨极气体保护焊、 熔化极气体保护焊和等离子弧焊等。 焊接电弧是一种人工制造下的小能量放电现象,它是在焊接电源支持下,在两个电极之间产生电弧放电。为了满足弧焊工艺的要求,它必须保证:一、引弧容易;二、电弧稳定;三、具有足够宽的焊接规范调节范围。

按照国家标准, 焊条分成许多种类。焊 接不同材料有不同的焊 条,焊接不同的位置也 有不同的焊条。现在仅 国产焊条就有300多种 。 焊条电弧焊是用手工操纵焊条进行焊接的电弧焊方法。焊接时,焊条末端和工件之间燃烧电弧使焊条药皮、焊芯和工件熔化,焊芯形成细小金属颗粒过渡和工件表面熔化金属熔合形成熔池。药皮熔化产生气体和熔渣使熔池和空气隔绝并发生一系列冶金反应,保证焊缝的性能。熔池液态金属冷却结晶生成焊缝。 1)焊条电弧焊是一种最常见的渣保护电弧焊 (Shielded Metal Arc Welding -SMAW)

熔化极气体保护焊接工艺

气体保护焊操作规程 一.概述: 1.基本原理 熔化极气体保护焊是以可以熔化的金属焊丝作电极,并由气体做保护的电弧焊。利用焊丝和母材之间的电弧来熔化焊丝和母材,形成熔池,融化的焊丝作为填充金属进入熔池与木材融合,冷凝后即为焊缝金属。通过喷嘴向焊接区喷出保护气体,使处于高温的熔化焊丝,熔池及其附近的母材可以免受周围空气的有害作用。焊丝是连续的,由送丝轮不断地送进焊接区。操作方式主要是半自动焊和自动焊两种。 焊丝有实心和药芯两类,前者一般含有脱氧用的和焊缝金属所需要的合金元素;后者的药芯成分及作用与焊条的药皮相似。 2.分类 电流密度大,因而提高了敷熔速度。 b.可获得含氧量较焊条电弧焊低的焊缝金属。 c.在相同条件下,熔深比手工电弧焊大。 d.焊接厚板时,可以用较低的焊接电弧和较快的焊接速度,其焊接变形小。 e.烟雾少,可以减轻对通风的要求。 2)缺点(与手工电弧焊相比) a.规范不合适时,飞溅较大,表面成形差。 b.弧光较强。 c.焊接设备复杂,环境要求较高。 d.半自动焊枪比手工电弧焊铅重,不轻便,操作灵活性较差。对于狭小空间的接头,焊枪不易接近。 4.使用范围 1)适焊的材料。MIG焊既可以焊接黑色金属又可以焊接有色金属,但从焊丝供应及制造成本考虑主要用于铝,铜,钛及其合金,以及不锈钢,耐热钢的焊接。MAG和CO2焊主要用于焊接碳钢,低合金高强度钢。 2)焊接位置 可以进行全位置焊接,其中以平焊位置和横焊位置焊接效率最高。 3)可焊厚度原则上开破口多层焊的厚度是无限的,它仅受经济因素限制。 二,保护气体 采用保护气体的目的,是防止熔融焊缝金属被周围气氛污染和损害。保护气体应满足如下要求: 1.对焊接区起到良好的保护作用。 2.作为电弧的气体介质,应有利于引弧和保护电弧稳定燃烧。 3.有利于提高对焊件的加热效率,改善焊缝成形。 4.在焊接时,能促使获得所希望的熔滴过渡特性,减小金属飞溅。

CO2气体保护焊接(MAG—C焊)工艺简介

CO2气体保护焊接(MAG—C焊)工艺简介 1.定义 CO2气体保护焊接是采用纯度在99.8%(体积法)以上的CO2气体作为保护气体的一种熔化极气体保护电弧焊方法。可采用短路过渡、喷射过渡和脉冲喷射过渡进行焊接,可用于点焊、立焊、横焊和仰焊以及全位置焊等。尤其适用于碳钢、合金钢和不锈钢等黑色金属材料的焊接。 2.发展动态 二氧化碳气体保护焊是50年代发展起来的一种新的焊接技术。半个世纪来,它已发展成为一种重要的熔焊方法。广泛应用于汽车工业,工程机械制造业,造船业,机车制造业,电梯制造业,锅炉压力容器制造业,各种金属结构和金属加工机械的生产。二氧化碳气体保护焊焊接质量好,成本低,操作简便,取代大部分手工电弧焊和埋弧焊,已成定局。且二氧化碳气体保护焊装在机器手或机器人上很容易实现数控焊接,将成为二十一世纪初的主要焊接方法。目前二氧化碳气体保护焊,使用的保护气体,分CO2和CO2+Ar两种。使用的焊丝主要是锰硅合金焊丝,超低碳合金焊丝及药芯焊丝。焊丝主要规格有: 0.5 0.8 0.9 1.0 1.2 1.6 2.0 2.5 3.0 4.0等。 3.特点 3.1焊接成本低,CO2气体是酿造厂和化工厂的副产品,来源广、价格低,其成本只有埋弧焊和手工电弧焊的40~50%。 3.2生产率高,CO2电弧的穿透力强,熔深大而且焊丝的熔化率高,熔敷速度快,其生产率是手工电弧焊的1~4倍。 3.3适用范围广,薄板、中厚板甚至厚板都能焊接,薄板焊接时变形小,并能进行全位置施焊。 3.4抗锈能力强,焊缝含氢量低,抗裂性好。 3.5焊后不需清渣。 3.6由于是明弧,焊接过程中便于监视和控制。 4.CO2焊接材料 4.1 CO2气体 4.1.1CO2气体的性质 纯CO2气体是无色,略带有酸味的气体。密度为本1.97kg/m3,比空气重。在常温下把CO2气体加压至5~7Mpa时变为液体。常温下液态CO2比较轻。在0℃,0.1Mpa时,1kg 的液态CO2可产生509L的CO2气体。 4.1.2瓶装CO2气体 采用40L标准钢瓶,可灌入25kg液态的CO2,约占钢瓶的80%,基余20%的空间充满了CO2气体。在0℃时饱和气压为3.63Mpa;20℃时饱和气压为5.72Mpa;30℃时饱和气压为7.48 Mpa,因此,CO2气瓶要防止烈日暴晒或靠近热源,以免发生爆炸。 4.1.3 CO2气体纯度对焊接质量的影响

CO2气体保护焊焊接参数

二氧化碳焊接工艺--焊接工艺指导书(CO2焊) 一、基本原理 CO2气体保护焊是以可熔化的金属焊丝作电极,并有CO2气体作保护的电弧焊。是焊接黑色金属的重要焊接方法之一。 二、工艺特点 1. CO2焊穿透能力强,焊接电流密度大(100-300A/m2),变形小,生产效率比焊条电弧焊高1-3倍 2. CO2气体便宜,焊前对工件的清理可以从简,其焊接成本只有焊条电弧焊的40%-50% 3. 焊缝抗锈能力强,含氢量低,冷裂纹倾向小。 4. 焊接过程中金属飞溅较多,特别是当工艺参数调节不匹配时,尤为严重。 5. 不能焊接易氧化的金属材料,抗风能力差,野外作业时或漏天作业时,需要有防风措施。 6. 焊接弧光强,注意弧光辐射。 三、冶金特点 CO2焊焊接过程在冶金方面主要表现在: 1. CO2气体是一种氧化性气体,在高温下分解,具有强烈的氧化作用,把合金元素烧损或造成气孔和飞溅等。解决CO2氧化性的措施是脱氧,具体做法是在焊丝中加入一定量脱氧剂。实践表明采用Si-Mn脱氧效果最好,所以目前广泛采用H08Mn2SiA/H10Mn2Si等焊丝。 四、焊接材料 1. 保护气体CO2 用于焊接的CO2气体,其纯度要求≥99.5%,通常CO2是以液态装入钢瓶中,容量为40L的标准钢瓶可灌入25Kg的液态CO2,25Kg的液态CO2约占钢瓶容积的80%,其余20%左右的空间充满气化的CO2。气瓶压力表上所指的压力就是这部分饱和压力。该压力大小与环境温度有关,所以正确估算瓶内CO2气体储量是采用称钢瓶质量的方法。(备注:1Kg的液态CO2可汽化509LCO2气体) 2. CO2气瓶外表漆黑色并写有黄色字样 3. 市售CO2气体含水量较高,焊接时候容易产生气孔等缺陷,在现场减少水分的措施为: 1) 将气瓶倒立静置1-2小时,然后开启阀门,把沉积在瓶口部的水排出,可放2-3次,每次间隔30分钟,放后将气瓶放正。 2) 倒置放水后的气瓶,使用前先打开阀门放掉瓶上面纯度较低的气体,然后在套上输气管。 3) 在气路中设置高压干燥器和低压干燥器,另外在气路中设置气体预热装置,防止CO2气中水分在减压器内结冰而堵塞气路。 2. 焊接材料(焊丝) 1.)焊丝要有足够的脱氧元素 2.)含碳量Wc≤0.11%,可减少飞溅和气孔。

二氧化碳气体保护焊的焊接方法和常见的问题

1.焊接工艺 a.焊接方法可分为:平焊、仰焊、立焊 平焊分为:左向焊法、右向焊法 左向焊法的优点:焊缝熔深大,能看清焊缝,不易焊偏 左向焊法的缺点:不能看到熔池。 右向焊法的优点:能看清熔池,便于焊缝的成形与控制。 右向焊法的缺点:焊缝熔深浅,易焊偏。 立焊分为:下向焊和上向焊 总结:平焊适应于全范围的电流焊接,而仰焊和立焊只适应于小电流焊接,焊丝杆伸出导电嘴的长度为焊丝直径的10-15倍,焊接角度为45度。 2.MIG、MAG、CO 2的区别 MIG:又称为熔化极氩弧焊,用纯氩气作为气源,主要用于焊接有色金属,如铝、不锈钢、铜等,如果对焊缝质量要求很高,请选用药芯焊丝。 MAG:又称为富氩弧即Ar80%+CO 220%的混合气体焊接,主要用于焊接碳钢、不锈钢等多种母材,此焊接工艺,可降低飞溅,焊缝成形美观,适用于薄板和中厚板,但是焊缝熔深有点欠缺。 CO 2:即纯CO 2气体保护焊接,焊接时飞溅相对于MIG、MAG焊接飞溅稍大,但熔深大,适用于大电流焊接。注:我们购买的二氧化碳气体基本上是从造酒厂灌装而来,只要打开气体减压阀,闻一下即可,辨别真假二氧化碳气体。二氧化碳是无毒气体。 3.焊接的三大过渡状态 o短路过渡:即小电流焊接时,电弧发出稳定的“ Zi… Zi…”声,声音很连续,此时焊缝成形美观,飞溅少,适用于薄板焊接。 o滴状过渡:中电流焊接,电流范围一般在180~270A之间,此时飞溅稍大,电弧有断续的声音,在焊接工艺中我们称此段为“飞溅区”,此飞溅区,在焊接工艺中,至今还没有办法解决。 o射流过渡:又称亚射流过渡,此时飞溅极小,电流大,声音发出“ Si..Si…”声,焊缝成形美观,从以上几点我们在焊接时应着重选择短路过渡及射流过渡焊接,但在要求不高的场合也可用滴状过渡焊接。

焊工(非熔化极气体保护焊+熔化极气体保护焊)高级 理论知识试卷

职业技能鉴定国家题库 焊工(非熔化极气体保护焊+熔化极气体保护焊)高级 理论知识试卷 注 意 事 项 1、本试卷依据2009年颁布的《焊工》国家职业标准命制, 考试时间:120分钟。 2、请在试卷标封处填写姓名、准考证号和所在单位的名称。 3、请仔细阅读答题要求,在规定位置填写答案。 一、单项选择题(第1题~第80题。选择一个正确的答案,将相应的字母填入题内的括号中。每题1分,满分80分。) 1.有关道德与法律下面说法不正确的是( )。 A 、道德与法律产生的社会条件不同 B 、道德与法律的表现形式不同 C 、道德与法律的推行力量不同 D 、道德与法律的制裁方式相同 2.中华民族传统美德倡导( )的人道主义精神。 A 、仁爱 B 、关怀 C 、亲善 D 、友好 3.( )是社会道德要求在职业行为和职业关系中的具体体现。 A 、人际关系 B 、生产关系 C 、经济关系 D 、职业道德 4.下列( )是职业道德的特点的重要组成部分。 A 、社会主义企业建设 B 、社会主义道德标准 C 、社会主义道德体系 D 、社会主义道德规范 5.职业道德内容很丰富,但是不包括( )。 A 、职业道德守则 B 、职业道德行为规范 C 、职业道德品质 D 、职业道德特点 6.( )是企业在市场经济中赖以生存的重要依据。 A 、信誉 B 、质量 C 、服务 D 、制度 7.装配图的尺寸标注与零件图不同,在装配图中( )是不需标注。 A 、零件全部尺寸 B 、相对位置尺寸 C 、安装尺寸 D 、设计中经计算的尺寸 8.符号Cl -表示( )。 A 、一个氯原子 B 、一个氯分子 C 、带有一个单位负电荷的氯离子 D 、氯元素 9.酸和碱作用生成盐和水的反应称为( )。 A 、分解反应 B 、中和反应 C 、分解反应 D 、还原反应 10.物质单位体积所具有的质量称为( )。 A 、密度 B 、熔点 C 、导热性 D 、耐蚀性 11.与一般低碳钢相比,16Mn 的屈服点提高了40%~50%,是由于向其中加入了少量的( )元素。 A 、锰 B 、镍 C 、铬 D 、铌 12.在立方体的8个顶点和六个面的中心各有一个原子的晶格类型是( )。 A 、面心立方晶格 B 、体心立方晶格 C 、密排六方晶格 D 、以上都不是 13.在铁碳平衡状态图中,表示共析点的是( )。 A 、E 点 B 、S 点 C 、C 点 D 、D 点 14.将金属加热到一定温度,并保持一定时间,然后以一定的冷却速度冷却到室温的过程称为( )。 A 、淬火 B 、调质处理 C 、退火 D 、热处理 15.回火可以使钢在保持一定硬度的基础上提高钢的( )。 A 、耐腐蚀性 B 、强度 C 、韧性 D 、耐磨性 16.调质处理是指某些合金钢在正火后再进行( )的连续热处理工艺。 A 、低温回火 B 、中温回火 C 、高温回火 D 、扩散退火 17.电弧焊是利用气体导电时产生的( )作为热源。 A 、电流热 B 、电弧热 C 、电阻热 D 、压力 18.压焊是一种将被焊金属接触部分( )至塑性状态或局部熔化状态,然后施加一定的压力,以使 金属原子间结合而形成牢固的焊接接头。 A 、不加热 B 、加压 C 、加热 D 、挤压 19.利用某些熔点低于母材熔点的金属材料作钎料,将焊件和钎料加热到高于钎料熔点,但低于母材 熔点的温度,利用液态钎料润湿母材,填充接头间隙并与母材( )实现连接焊件的方法,叫做钎焊。 A 、相互连接 B 、相互扩散 C 、熔化 D 、接触 20.焊缝补充符号“○”是表示( )符号。 A 、圆形焊缝 B 、点状焊缝 C 、周围焊缝 D 、孔 21.焊接结构刚性越大,板厚越大,引起的焊接变形( )。 A 、越大 B 、越小 C 、不变 D 、不确定 22.火焰矫正法矫正焊接变形时,加热温度最低不得低于( )。 A 、300℃ B 、200℃ C 、400℃ D 、350℃ 23.在焊接过程中,焊缝和热影响区金属冷却到固相线附近的高温区时产生的裂纹属于( )。 A 、冷裂纹 B 、热裂纹 C 、再热裂纹 D 、延迟裂纹 24.超声波是指频率超过( )的机械波。 A 、20000Hz B 、2000Hz C 、10000Hz D 、30000Hz 25.焊接工艺规程一般包括( )、接头编号、焊接材料汇总表和接头焊接工艺卡。 A 、焊工代号 B 、封面 C 、焊接地点 D 、焊接时间 26.按焊条熔化后的熔渣特性分类,焊条可分为( )和碱性焊条。 A 、碳钢焊条 B 、低合金焊条 C 、酸性焊条 D 、不锈钢焊条 27.不锈钢焊条型号E308L-15中,短划“—”后面的“15”表示( )。 A 、碱性药皮,直流反接 B 、碱性药皮,平焊,直流反接 C 、碱性药皮,全位置焊接,直流反接 D 、钛钙型药皮,交流或直流正、反接 28.牌号H08Mn2Si 中“H ”表示( )。 A 、焊条 B 、焊芯 C 、焊剂 D 、焊丝 考 生 答 题 不 准 超 过 此 线

3气体保护焊的焊接方式与常见焊接方法

气体保护焊的焊接方式与常见 教案三 焊接方法

教学过程设计流程图 课前探索 气体保护焊的焊接方式 分析任务 观看视频,引出任务 课堂实施 平焊 立焊 仰焊 图片、视频配合讲解; 强调方式、特点、应用 场合 常见的焊接方法(难点) 云班课布置预习任务,学生在线测试 创设任务 1.点焊(定位焊) 2.连续点焊 3.连续焊 4.塞孔焊 5.对接焊 6.搭接焊 图片、视频配合讲解; 强调方式、特点、应用 场合 在线测试(收集数据,根据学习情况调整教学进程、策略)

教师结合焊接方式内容,讲解VR 设备的使用, 并演示焊接过程 平焊、立焊、仰焊的模拟练习 强调VR 焊接中显示参数的含义 强调VR 设备具备 的评价功能。 课后作业 总结点评 模拟任务 培训组长—正确操作气体保护焊机,进行立焊连续焊作业 其他学生继续进行VR 练习 自我评价 同学互评 组长点评 执行任务 分组练习—正确操作气体保护焊机,进行立焊连续焊作业

教学设计方案 学习任 务名称 气体保护焊的焊接方式与常见焊接方法课时 4 专业汽车运用与维修专业课程名称《汽车钣金技术》课程类型理实一体化 课程 一、学情分析 教学 对象 17汽车运用与维修专业奔驰班(二年级)学生 前期知识与技能掌握 通过前期的学习,学生能够掌握影响气体保护焊连续焊焊接效果的因素,能够认知气体保护焊焊机的结构。 能够独立的安装焊丝,并能利用VR虚拟器准确控制电极与板件之间的距离以及焊枪角度(焊接姿势)、焊枪的移动速度。 学生学习特点分析 在前期的教学过程中发现:他们想尝试各种各样的焊接方式、方法,迫切希望能够进行真实焊接; 他们乐于探究,热爱实践,喜欢新鲜事物; 由于天气原因,焊接时学生不愿穿戴防护用品,没有安全防护意识,缺乏奋斗精神。 二、教材分析 所用 教材 全国职业教育行业规划教材《汽车钣金维修》,仁超主编,华东师范大学出版社三、教学目标 知识目标能够辨别气体保护焊的焊接方式; 能够区分气体保护焊的常见焊接方法。 技能 目标 能够正确操作气体保护焊机,进行立焊连续焊作业。 素质目标树立车身修复岗位安全操作意识; 培养学生具备车身修复工作中必备的吃苦、奋斗精神;培养学生分析问题、解决问题和团队合作的能力。 四、教学重点难点 重点技能点:正确操作气体保护焊机,进行立焊连续焊作业。难点知识点:分气体保护焊的常见焊接方法。

相关主题
文本预览
相关文档 最新文档