当前位置:文档之家› 一类时间分数阶偏微分方程的同伦分析Sumudu变换解法

一类时间分数阶偏微分方程的同伦分析Sumudu变换解法

一类时间分数阶偏微分方程的同伦分析Sumudu变换解法
一类时间分数阶偏微分方程的同伦分析Sumudu变换解法

偏微分方程数值解法试题与答案

一.填空(1553=?分) 1.若步长趋于零时,差分方程的截断误差0→lm R ,则差分方程的解lm U 趋近于微分方 程的解lm u . 此结论_______(错或对); 2.一阶Sobolev 空间{} )(,,),()(21 Ω∈''=ΩL f f f y x f H y x 关于内积=1),( g f _____________________是Hilbert 空间; 3.对非线性(变系数)差分格式,常用 _______系数法讨论差分格式的_______稳定性; 4.写出3 x y =在区间]2,1[上的两个一阶广义导数:_________________________________, ________________________________________; 5.隐式差分格式关于初值是无条件稳定的. 此结论_______(错或对)。 二.(13分)设有椭圆型方程边值问题 用1.0=h 作正方形网格剖分 。 (1)用五点菱形差分格式将微分方程在内点离散化; (2)用截断误差为)(2 h O 的差分法将第三边界条件离散化; (3)整理后的差分方程组为 三.(12)给定初值问题 x u t u ??=?? , ()10,+=x x u 取时间步长1.0=τ,空间步长2.0=h 。试合理选用一阶偏心差分格式(最简显格式), 并以此格式求出解函数),(t x u 在2.0,2.0=-=t x 处的近似值。 1.所选用的差分格式是: 2.计算所求近似值: 四.(12分)试讨论差分方程 ()h a h a r u u r u u k l k l k l k l ττ + - = -+=++++11,111 1 逼近微分方程 0=??+??x u a t u 的截断误差阶R 。 思路一:将r 带入到原式,展开后可得格式是在点(l+1/2,k+1/2)展开的。 思路二:差分格式的用到的四个点刚好是矩形区域的四个顶点,可由此构造中心点的差分格 式。

(完整版)偏微分方程的MATLAB解法

引言 偏微分方程定解问题有着广泛的应用背景。人们用偏微分方程来描述、解释或者预见各种自然现象,并用于科学和工程技术的各个领域fll。然而,对于广大应用工作者来说,从偏微分方程模型出发,使用有限元法或有限差分法求解都要耗费很大的工作量,才能得到数值解。现在,MATLAB PDEToolbox已实现对于空间二维问题高速、准确的求解过程。 偏微分方程 如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。 常用的方法有变分法和有限差分法。变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。虽然物理现象本质不同,但是抽象地表示在数学上是同一个定解问题,如研究某个不规则形状的物体里的稳定温度分布问题,由于求解比较困难,可作相应的静电场或稳恒电流场实验研究,测定场中各处的电势,从而也解决了所研究的稳定温度场中的温度分布问题。 随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。从这个角度说,偏微分方程变成了数学的中心。

一、MATLAB方法简介及应用 1.1 MATLAB简介 MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 1.2 Matlab主要功能 数值分析 数值和符号计算 工程与科学绘图 控制系统的设计与仿真 数字图像处理 数字信号处理 通讯系统设计与仿真 财务与金融工程 1.3 优势特点 1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来; 2) 具有完备的图形处理功能,实现计算结果和编程的可视化; 3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握; 4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,

分数阶微分方程-课件

分数阶微分方程 第三讲分数阶微分方程基本理论 一、分数阶微分方程的出现背景及研究现状 1、出现背景 分数阶微积分是关于任意阶微分和积分的理论,它与整数阶微积分是统一的,是整数阶微积分的推广。 整数阶微积分作为描述经典物理及相关学科理论的解析数学工具已为人们普遍接受,很多问题的数学模型最终都可以归结为整数阶微分方程的定解问题,其无论在理论分析还是数值求解方面都已有较完善的理论。但当人们进入到复杂系统和复杂现象的研究时,经典整数阶微积分方程对这些系统的描述将遇到以下问题: (1)需要构造非线性方程,并引入一些人为的经验参数和与实际不符的假设条件; (2)因材料或外界条件的微小改变就需要构造新的模型; (3)这些非线性模型无论是理论求解还是数值求解都非常繁琐。 基于以上原因,人们迫切期待着有一种可用的数学工具和可依据的基本原理来对这些复杂系统进行建模。分数阶微积分方程非常适合于刻画具有记忆和遗传性质的材料和过程,其对复杂系统的描述具有建模简单、参数物理意义清楚、描述准确等优势,因而成为复杂力学与物理过程数学建模的重要工具之一。 2、研究现状 在近三个世纪里,对分数阶微积分理论的研究主要在数学的纯理论领域里进行,似乎它只对数学家们有用。然而在近几十年来,分数阶微分方程越来越多的被用来描述光学和热学系统、流变学及材料和力学系统、信号处理和系统识别、控制和机器人及其他应用领域中的问题。分数阶微积分理论也受到越来越多的国内外学者的广泛关注,特别是从实际问题抽象出来的分数阶微分方程成为很多数学工作者的研究热点。随着分数阶微分方程在越来越多的科学领域里出现,无论对分数阶微分方程的理论分析还是数值计算的研究都显得尤为迫切。然而由于分数阶微分是拟微分算子,它的保记忆性(非局部性)对现实问题进行了优美刻画的同时,也给我们的分析和计算造成很大困难。 在理论研究方面,几乎所有结果全都假定了满足李氏条件,而且证明方法也和经典微积分方程一样,换句话说,这些工作基本上可以说只是经典微积分方程理论的一个延拓。对分数阶微分方程的定性分析很少有系统性的结果,大多只是给出了一些非常特殊的方程的求解,且常用的求解方法都是具有局限性的。 在数值求解方面,现有分数阶方程数值算法还很不成熟,主要表现为: (1)在数值计算中一些挑战性难题仍未得到彻底解决,如长时间历程的计算和大空间域的计算等; (2)成熟的数值算法比较少,现在研究较多的算法主要集中在有限差分方法与有限单元法; (3)未形成成熟的数值计算软件,严重滞后于应用的需要。

一阶线性偏微分方程

第七章 一阶线性偏微分方程 研究对象 一阶线性齐次偏微分方程 0),,,(),,,() ,,,(2122121211=??++??+??n n n n n x u x x x X x u x x x X x u x x x X 1基本概念 1) 一阶线性齐次偏微分方程 形如 0),,,(),,,(),,,(2122121211=??++??+??n n n n n x u x x x X x u x x x X x u x x x X (7.1) 的方程,称为一阶线性齐次偏微分方程,其中n x x x ,,,21 是自变量,u 是n x x x ,,,21 的未知函数,n X X X ,,,21 是域n R D ?内的已知函数,并设n X X X ,,,21 在域D 内不同时为零。 2) 一阶拟线性偏微分方程 形如 );,,,();,,,();,,,(21211211z x x x Z x z z x x x Y x z z x x x Y n n n n n =??++?? (7.2) 的方程,称为一阶拟线性偏微分方程,其中Z Y Y Y n ;,,,21 是1+n 个变元z x x x n ;,,,21 的已知函数。n Y Y Y ,,,21 在其定义域1+?'n R D 内不同时为零。 所谓“拟线性”是指方程仅对未知函数的各个一阶偏导数是线性的,以下总设n Y Y Y ,,,21 和Z 在域D '内连续可微。 3) 特征方程组 常微分方程组 n n X dx X dx X dx === 2211 (7.3) 称为一阶线性齐次偏微分方程(7.1)的特征方程组。 常微分方程组

Maab求解微分方程组及偏微分方程组

第四讲 Matlab 求解微分方程(组) 理论介绍:Matlab 求解微分方程(组)命令 求解实例:Matlab 求解微分方程(组)实例 实际应用问题通过数学建模所归纳得到的方程,绝大多数都是微分方程,真正能得到代数方程的机会很少.另一方面,能够求解的微分方程也是十分有限的,特别是高阶方程和偏微分方程(组).这就要求我们必须研究微分方程(组)的解法:解析解法和数值解法. 一.相关函数、命令及简介 1.在Matlab 中,用大写字母D 表示导数,Dy 表示y 关于自变量的一阶导数,D2y 表示y 关于自变量的二阶导数,依此类推.函数dsolve 用来解决常微分方程(组)的求解问题,调用格式为: X=dsolve(‘eqn1’,’eqn2’,…) 函数dsolve 用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解. 注意,系统缺省的自变量为t 2.函数dsolve 求解的是常微分方程的精确解法,也称为常微分方程的符号解.但是,有大量的常微分方程虽然从理论上讲,其解是存在的,但我们却无法求出其解析解,此时,我们需要寻求方程的数值解,在求常微分方程数值解方面,MATLAB 具有丰富的函数,我们将其统称为solver ,其一般格式为: [T,Y]=solver(odefun,tspan,y0) 说明:(1)solver 为命令ode45、ode23、ode113、ode15s 、ode23s 、ode23t 、ode23tb 、ode15i 之一. (2)odefun 是显示微分方程'(,)y f t y =在积分区间tspan 0[,]f t t =上从0t 到f t 用初始条件0y 求解. (3)如果要获得微分方程问题在其他指定时间点012,,,,f t t t t L 上的解,则令tspan 012[,,,]f t t t t =L (要求是单调的). (4)因为没有一种算法可以有效的解决所有的ODE 问题,为此,Matlab 提供了多种求解器solver ,对于不同的ODE 问题,采用不同的solver.

偏微分方程数值解法

一、 问题 用有限元方法求下面方程的数值解 2 u u u f t ?-?+=? in (]0,T Ω? 0u = on []0,T ?Ω? ()00,u x u = in Ω 二、 问题分析 第一步 利用Green 公式,求出方程的变分形式 变分形式为:求()()21 00,;u L T H ∈Ω,使得 ()())(2 ,,,,u v u v u v f v t ???+??+= ???? ()10v H ?∈Ω (*) 以及 ()00,u x u =. 第二步 对空间进行离散,得出半离散格式 对区域Ω进行剖分,构造节点基函数,得出有限元子空间:()12,,,h NG V span ???=???,则(*)的Galerkin 逼近为: []0,t T ?∈,求()()1 0,h h u t x V H ∈?Ω,使得 ()()()()() () )(2 ,,,,h h h h h h h d u t v u t v u t v f v dt +??+= h h v V ?∈ (**) 以及()0,0h h u u =,0,h u 为初始条件0u 在h V 中的逼近,设0,h u 为0u 在h V 中的插值. 则0t ?≥,有()()1 N G h i i i u t t ξ? == ∑,0,h u =01 N G i i i ξ?=∑,代人(**)即可得到一常微分方程组. 第三步 进一步对时间进行离散,得到全离散的逼近格式 对 du dt 用差分格式.为此把[]0,T 等分为n 个小区间[]1,i i t t -,其长度1i i T t t t n -?=-= ,n t T =. 这样把求i t 时刻的近似记为i h u ,0 h u 是0u 的近似.这里对(**)采用向后的欧拉格式,即 ()()() () )(2 11 11 1 ,,,,i i i i h h h h h h h i h u u v u v u v f v t ++++-+??+ = ? h h v V ?∈ (***) i=0,1,2…,n-1. 0 h u =0,h u 由于向后欧拉格式为隐式格式且含有非线性项,故相邻两时间步之间采用牛顿迭代,即:

一阶偏微分方程基本知识资料

一阶偏微分方程基本 知识

一阶偏微分方程基本知识 这一章我们来讨论一阶线性偏微分方程和一阶拟线性偏微分方程的解法,因为它们都可以化为常微分方程的首次积分问题,所以我们先来介绍常微分方程的首次积分。 1一阶常微分方程组的首次积分 1.1首次积分的定义 从第三章我们知道,n 阶常微分方程 ()()() 1,,'',',-=n n y y y x f y , ( 1.1) 在变换 ( ) 1'12,, ,,n n y y y y y y -=== ( 1.2) 之下,等价于下面的一阶微分方程组 ()()()1 112221212,,,,,,,,,,,,,,. n n n n n dy f x y y y dx dy f x y y y dx dy f x y y y dx ?=?? ?=???? ?=? ? ( 1.3) 在第三章中,已经介绍过方程组( 1.3)通解的概念和求法。但是除了常系数线性方程组外,求一般的( 1.3)的解是极其困难的。然而在某些情况下,可以使用所谓“可积组合”法求通积分,下面先通过例子说明“可积组合”法,然后介绍一阶常微分方程组“首次积分”的概念和性质,以及用首次积分方法来求解方程组( 1.3)的问题。先看几个例子。 例1 求解微分方程组

()()22221,1.dx dy y x x y x y x y dt dt =-+-=--+- ( 1.4) 解:将第一式的两端同乘x ,第二式的两端同乘y ,然后相加,得到 ()() 12222-++-=+y x y x dt dy y dt dx x , ()()()2222221 12 d x y x y x y dt +=-++-。 这个微分方程关于变量t 和()22x y +是可以分离,因此不难求得其解为 122 2221C e y x y x t =+-+, ( 1.5) 1C 为积分常数。( 1.5)叫做( 1.4)的首次积分。 注意首次积分( 1.5)的左端(),,V x y t 作为x ,y ,和t 的函数并不等于常数;从上面的推导可见,当(),()x x t y y t ==时微分方程组( 1.4)的解时,(),,V x y t 才等于常数1C ,这里的常数1C 应随解而异。因为式( 1.4)是一个二阶方程组,一个首次积分( 1.5)不足以确定它的解。为了确定( 1.4)的解,还需要找到另外一个首次积分。 将第一式两端同乘y ,第二式两端同乘x ,然后用第一式减去第二式,得到 22y x dt dy x dt dx y +=-, 即 () 22y x dt dx y dt dy x +-=-, 亦即 1arctan -=?? ? ?? dt x y d 。 积分得

一阶偏微分方程基本知识

一阶偏微分方程基本知识 这一章我们来讨论一阶线性偏微分方程和一阶拟线性偏微分方程的解法,因为它们都可以化为常微分方程的首次积分问题,所以我们先来介绍常微分方程的首次积分。 1一阶常微分方程组的首次积分 1.1首次积分的定义 从第三章我们知道,n 阶常微分方程 ()()() 1,,'',',-=n n y y y x f y Λ, ( 1.1) 在变换 ()1'12,,,,n n y y y y y y -===L ( 1.2) 之下,等价于下面的一阶微分方程组 ()()()1 112221212,,,,,,,,,,,,,,. n n n n n dy f x y y y dx dy f x y y y dx dy f x y y y dx ?=?? ?=???? ?=??L L M M M M L ( 1.3) 在第三章中,已经介绍过方程组( 1.3)通解的概念和求法。但是除了常系数线性方程组外,求一般的( 1.3)的解是极其困难的。然而在某些情况下,可以使用所谓“可积组合”法求通积分,下面先通过例子说明“可积组合”法,然后介绍一阶常微分方程组“首次积分”的概念和性质,以及用首次积分方法来求解方程组( 1.3)的问题。先看几个例子。

例1 求解微分方程组 ()()22221,1.dx dy y x x y x y x y dt dt =-+-=--+- ( 1.4) 解:将第一式的两端同乘x ,第二式的两端同乘y ,然后相加,得到 ()() 12222-++-=+y x y x dt dy y dt dx x , ()()()2222221 12 d x y x y x y dt +=-++-。 这个微分方程关于变量t 和()22x y +是可以分离,因此不难求得其解为 122 2221C e y x y x t =+-+, ( 1.5) 1C 为积分常数。( 1.5)叫做( 1.4)的首次积分。 注意首次积分( 1.5)的左端(),,V x y t 作为x ,y ,和t 的函数并不等于常数;从上面的推导可见,当(),()x x t y y t ==时微分方程组( 1.4)的解时,(),,V x y t 才等于常数1C ,这里的常数1C 应随解而异。因为式( 1.4)是一个二阶方程组,一个首次积分( 1.5)不足以确定它的解。为了确定( 1.4)的解,还需要找到另外一个首次积分。 将第一式两端同乘y ,第二式两端同乘x ,然后用第一式减去第二式,得到 22y x dt dy x dt dx y +=-, 即 () 22y x dt dx y dt dy x +-=-, 亦即 1arctan -=?? ? ?? dt x y d 。 积分得

偏微分方程数值解法

“十二五”国家重点图书出版规划项目 信息与计算科学丛书 67 偏微分方程数值解法 陈艳萍鲁祖亮刘利斌编著

内 容 简 介 本书试图用较少的篇幅描述偏微分方程的几种数值方法. 主要内容包括:Sobolev空间初步, 椭圆边值问题的变分问题, 椭圆问题的有限差分方法, 抛物型方程的有限差分方法, 双曲型方程的有限差分方法, 椭圆型方程的有限元方法, 抛物及双曲方程的有限元方法, 椭圆型方程的混合有限元方法, 谱方法等. 本书内容丰富, 深入浅出, 尽可能地用简单的方法来描述一些理论结果, 并根据作者对有限差分、有限元、混合有限元、谱方法的理解和研究生教学要求, 全面、客观地评价各种数值计算方法,并列举一些数值计算的例子, 阐述许多新的学术观点. 本书可作为高等学校数学系高年级本科生和研究生的教材或参考书, 也可作为计算数学工作者和从事科学与工程计算的科研人员的参考书. 图书在版编目(CIP)数据 偏微分方程数值解法/陈艳萍, 鲁祖亮, 刘利斌编著. —北京:科学出版社, 2015.1 (信息与计算科学丛书67) ISBN 978-7-03-000000-0 Ⅰ. ①偏… Ⅱ. ①陈… ②鲁… ③刘… Ⅲ. ① Ⅳ.① 中国版本图书馆CIP数据核字(2014) 第000000号 责任编辑: 王丽平/责任校对: 彭涛 责任印制: 肖钦/封面设计: 陈敬 出版 北京东黄城根北街16号 邮政编码: 100717 https://www.doczj.com/doc/747501466.html, 印刷 科学出版社发行 各地新华书店经销 * 2015年1月第一版开本: 720×1000 1/16 2015年1月第一次印刷印张: 14 字数: 280 000 定价: 88.00元 (如有印装质量问题, 我社负责调换)

偏微分方程组解法

偏微分方程组解法 某厚度为10cm 平壁原温度为20C ?,现其两侧面分别维持在20C ?和120C ?,试求经过8秒后平壁温度分布,并分析温度分布随时间的变化直至温度分布稳定为止。 22x t a t ??=??τ 式中a 为导温系数,/s m c 2;2=a 。 解: 模型转化为标准形式: 2 21x t t a ??=??τ 初始条件为: ()200,=x t 边界条件为: ()120,0=τt ,()20,1.0=τt 函数: pdefun.m %偏微分方程(一维动态传热) function [c,f,s]=pdefun(x,t,u,dudx) c=1/2e-4;f=dudx;s=0; icbun.m %偏微分方程初始条件(一维动态传热) function u0=icbun(x) u0=20; bcfun.m %偏微分方程边界条件(一维动态传热) function [pl,ql,pr,qr]=bcfun(xl,ul,xr,ur,t) pl=ul-120;ql=0;pr=ur-20;qr=0; 命令: x=linspace(0,10,20)*1e-2; t=linspace(0,15,16); sol=pdepe(0,pdefun,icfun,bcfun,x,t); mesh(x,t,sol(:,:,1)) %温度与时间和空间位置的关系图 %画1、2、4、6、8、15s 时刻温度分布图

plot(x,sol(2,:,1)) 1s时刻,(因为本题sol第一行为0时刻) hold on plot(x,sol(3,:,1)) plot(x,sol(5,:,1)) plot(x,sol(7,:,1)) plot(x,sol(9,:,1)) plot(x,sol(16,:,1)) 计算结果: %第8秒时温度分布 x sol(9,:,1) 经过8秒时的温度分布为: x/cm 0 0.5263 1.0526 1.5789 2.1053 2.6316 3.1579 t/C ?120.0000 112.5520 105.1653 97.8994 90.8100 83.9477 77.3562 x/cm 3.6842 4.2105 4.7368 5.2632 5.7895 6.3158 6.8421 t/C ?71.0714 65.1202 59.5200 54.2784 49.3930 44.8518 40.6338 x/cm 7.3684 7.8947 8.4211 8.9474 9.4737 10.0000 t/C ?36.7095 33.0419 29.5877 26.2982 23.1207 20.0000 或者求第8秒时,x=0,2,4,,6,8,10cm处的温度 [uout,duoutdx]=pdeval(0,x,sol(9,:,:),[0,2,4,6,8,10]*1e-2) 120.0000 92.2279 67.5007 47.5765 32.3511 20.0000

分数阶微分方程_课件

分数阶微分方程 一、 预备知识 1、 分数阶微积分经典定义回顾 作为分数阶微积分方程的基础,本书在第二章中对分数阶微积分的定义及性质做了系统的介绍,为了接下来讨论的需要,我们首先对其进行一个简要的回顾。 (1)分数阶微积分的主要思想 如上图所示,分数阶微积分的主要思想是推广经典的整数阶微积分,从而将微积分的概念延拓到整个实数轴,甚至是整个复平面。但由于延拓的方法多种多样,因而根据不同的需求人们给出了分数阶微积分的不同定义方式。然而这些定义方式不仅只能针对某些特定条件下的函数给出,而且只能满足人们的某些特定需求,迄今为止,人们仍然没能给出分数阶微积分的一个统一的定义, 这对分数阶微积分的研究与应用造成了一定的困难。 1、分数阶微分的定义 为了满足实际需要,下面我们试图从形式上对分数阶微积分给出一种统一的表达式。 分数阶微积分的主要思想是推广经典的累次微积分,所有推广方法的共同目标是以非整数参数p 取代经典微积分符号中的整数参数n ,实际上,任意的n 阶微分都可以看成是一列一阶微分的叠加: ()()n n n d f t d d d f t dt dt dt dt = (1) 由此,我们可以给出一种在很多实际应用中十分重要的分数阶微积分的推广方 式。首先,我们假设已有一种合适的推广方式来将一阶微分推广为α(01α≤≤) 阶微分,即d D dt α→是可实现的。那么类似地可得到(1)的推广式为: ()()n n D f t D D D f t αααα= (2) 这种推广方式最初是由..K S Miller 和.B Ross 提出来的,其中D α采用的是R L -分数阶微分定义,他们称之为序列分数阶微分。序列分数阶微分的其他形式可以通过将D α替换为G L -分数阶微分、Caputo 分数阶微分或其他任意形式

第一章 偏微分方程和一阶线性偏微分方程解

第一章 偏微分方程和一阶线性偏微分方程解 本章介绍典型的几个偏微分方程。给出了最简单的偏微分方程(一阶线性偏微分方程)解的特征线方法。 典型的偏微分方程:扩散方程t xx u ku =,t u k u =?;波动方程2tt xx u c u =,2tt u c u =?。这是本课程讨论的主要两类方程。 偏微分方程的各类边值条件也是本章讨论的一个重点。 §1.1 一维空间中的偏微分方程 例1 (刚性污染流的方程) 假设均匀直线管道中的水流含污染物质的线密度是(,)u x t (即x 处在时刻t 的污染物的密度) 。如果流速是c ,问题:(,)u x t 满足什么样的方程? 解 如图,在[,]x x x +?内的流体,经过时间t ?,一定处于[,]x c t x x c t +?+?+?。所含污染物应相同,即 (,)(,)x x x x c t x x c t u t d u t t d ξξξξ+?+?+?+?= +?? ? , 由此 (,)(,)u x t u x c t t t =+?+?, 从而, 0t x u cu +=。 【End 】 可见偏微分方程是一个至少为两元的函数及其偏导数所满足的方程。 例2 (扩散方程) 假设水流静止,在t ?时间内,流经x 处的污染物质(不计高阶无穷小)与该处浓度的方向导数(浓度变化)成正比,比例系数为k : ()x u dm t k dt ku dt x ?==?, 所以,在时间段12[,]t t 内,通过12[,]x x 的污染物为 2 1 2 1 [(,)(,)]t x x t k u x t u x t dt -?。 在时刻1t 和2t ,在12[,]x x 内的污染物分别为2 1 1(,)x x u x t dx ?和2 1 2(,)x x u x t dx ? ,由物质守恒定律 2 2 2 1 1 1 2 1 2 1 (,)(,)[(,)(,)]x x t x x x x t u x t dx u x t dx k u x t u x t dt -=-??? 由1t ,2t 的任意性,

偏微分方程数值解法答案

1. 课本2p 有证明 2. 课本812,p p 有说明 3. 课本1520,p p 有说明 4. Rit2法,设n u 是u 的n 维子空间,12,...n ???是n u 的一组基底,n u 中的任一元素n u 可 表为1n n i i i u c ?==∑ ,则,11 11()(,)(,)(,)(,)22j n n n n n n i j i j j i j j J u a u u f u a c c c f ???=== -=-∑∑是12,...n c c c 的二次函数,(,)(,)i j j i a a ????=,令 () 0n j J u c ?=?,从而得到12,...n c c c 满足1 (,)(,),1,2...n i j i j i a c f j n ???===∑,通过解线性方程组,求的i c ,代入1 n n i i i u c ?==∑, 从而得到近似解n u 的过程称为Rit2法 简而言之,Rit2法:为得到偏微分方程的有穷维解,构造了一个近似解,1 n n i i i u c ?== ∑, 利用,11 11()(,)(,)(,)(,)22j n n n n n n i j i j j i j j J u a u u f u a c c c f ???===-=-∑∑确定i c ,求得近似解n u 的过程 Galerkin 法:为求得1 n n i i i u c ? == ∑形式的近似解,在系数i c 使n u 关于n V u ∈,满足(,)(,) n a u V f V =,对任 意 n V u ∈或(取 ,1j V j n ?=≤≤) 1 (,)(,),1,2...n i j i j i a c f j n ???===∑的情况下确定i c ,从而得到近似解1 n n i i i u c ?==∑的过程称 Galerkin 法为 Rit2-Galerkin 法方程: 1 (,)(,)n i j i j i a c f ???==∑ 5. 有限元法:将偏微分方程转化为变分形式,选定单元的形状,对求解域作剖分,进而构 造基函数或单元形状函数,形成有限元空间,将偏微分方程转化成了有限元方程,利用 有效的有限元方程的解法,给出偏微分方程近似解的过程称为有限元法。 6. 解:对求解区间进行网格剖分,节点01......i n a x x x x b =<<<<=得到相邻节点1,i i x x -

(整理)一阶线性偏微分方程.

第七章 一阶线性偏微分方程 例7-1 求方程组 ()()()yz B A Cdz xz A C Bdy yz C B Adx -=-=- 通积分,其中C B A ,,为互不 相等的常数。 解 由第一个等式可得 xyz ydy A C B xyz xdx C B A -=-, 即有 0=---ydy A C B xdx C B A , 两边积分得方程组的一个首次积分 122,C y A C B x C B A z y x Φ=---= ),(。 由第二个等式可得 xyz zdz B A C xyz ydy A C B -=-, 即有 0=---zdz B A C ydy A C B , 两边积分得方程组的另一个首次积分 222,C z B A C y A C B z y x Ψ=---= ),(。 由于,雅可比矩阵 ? ???? ?????------=????? ???? ????ψ??ψ??ψ ??Φ??Φ ??Φ ?=?ψΦ?z B A C y A C B y A C B x C B A y y x z y x z y x 002),,(),( 的秩为2,这两个首次积分相互独立,于是原方程组的通积分为 122C y A C B x C B A =--- 222C z B A C y A C B =--- 。

评注:借助于方程组的首次积分求解方程组的方法称为首次积分法。要得到通积分需要求得n 个独立的首次积分,n 为组成方程组的方程个数。用雅可比矩阵的秩来验证首次积分的独立性。 例7-2 求方程组 () () ???????-+--=-+-=11d 222 2y x y x dt dy y x x y dt x 的通解。 解 由原方程组可得 )1)((2222-++-=+y x y x dt dy y dt dx x 即 dt y x y x y x d )1)((2)(2 2 2 2 2 2 -++-=+ 这个方程关于变量t 和2 2 y x +是可以分离的,因此易求得它的通积分为 122 2221),,(C e y x y x t y x t =+-+=Φ 这是原方程组的一个首次积分。 再次利用方程组,得到 )(22y x dt dx y dt dy x +-=-, 即有 1arctan -=?? ? ?? x y dt d 由此得到原方程组的另一个首次积分 2arctan ),,(C t x y t y x =+=ψ 。 由于,雅可比矩阵为 ()( ) ???? ? ?????? ?++-++=????????? ????ψ??ψ ??Φ??Φ ?=?ψΦ?2222 222 222 2222),(),(y x x y x y e y x y e y x x y x y x y x t t ,

偏微分方程数值解法试题与答案

x 1 ?若步长趋于零时,差分方程的截断误差 R m 0,则差分方程的解 U i m 趋近于微分方 程的解U m ?此结论 ________ (错或对); 1 2.一 阶 Sobolev 空间 H ( ) f (x,y) f , f x , f y L ?() 关于内积(f,g )1 _____________________________________ 是Hilbert 空间; 3 ?对非线性(变系数)差分格式,常用 ____________ 系数法讨论差分格式的 ________ 稳定性; 4?写出y x 3在区间[1,2]上的两个一阶广义导数: ______________________________________ _____ ____ ______________ _ ____ ________ ; 5 ?隐式差分格式关于初值是无条件稳定的 ?此结论 ________ (错或对)。 (13分)设有椭圆型方程边值问题 0.1作正方形网格剖分 。 (1) 用五点菱形差分格式将微分方程在内点离散化; (2) 用截断误差为 O (h 2)的差分法将第三边界条件离散化; (3) 整理后的差分方程组为 U C 三.(12)给定初值问题 u x,0 x 1 取时间步长 0.1,空间步长h 0.2。试合理选用一阶偏心差分格式(最简显格式) 2 u ~2 x 2 u ~2 y 0 x 0.3 0.2 x 0.3 2y 1, — u n 2x y 0.2

并以此格式求出解函数u(x,t)在x 0.2,t 0.2处的近似值。 x

1.所选用的差分格式是: 2 .计算所求近似值: 1 a k 1 四.(12分)试讨论差分方程 u l 1 k k k 1 u | r u | 1 u | , r h a 1 h 逼近微分方程 u a u 0 t x 的截断误差阶R 。 思路一:将r 带入到原式,展开后可得格式是在点( l+1/2,k+1/2 )展开的。 思路二:差分格式的用到的四个点刚好是矩形区域的四个顶点,可由此构造中心点的差分格 式。 2 —2 ,考虑 Du Fort-Frankel 格式 X 试论证该格式是否总满足稳定性的 Von-Neumann 条件? 六. (12分)(1 )由Green 第一公式推导 Green 第二公式: (2) 对双调和方程边值问题 n 2 选择函数集合(空间)为: 推导相应的双线性泛函和线性泛函: A (u,v ) F (v ) 相应的虚功问题为: 极小位能问题为 七. ( 12分)设有常微分方程边值问题 y y f (x ) , a x b y a 1, y b 1 五.(12分) 对抛物型方程 U |k1 U |k 2 |k 1 (U |k1 U |k1) U |k 1 ) 2 (u)vdxdy G (u) u vdxdy :[v v u ]ds n f (x,y) (x,y) g 1(x , y), g 2(x, y) (x,y),

一维偏微分方程的pdepe(matlab)函数 解法

本文根据matlab帮助进行加工,根据matlab帮助上的例子,帮助更好的理解一维偏微分方程的pdepe函数解法,主要加工在于程序的注释上。 Examples Example 1.This example illustrates the straightforward formulation, computation, and plotting of the solution of a single PDE. This equation holds on an interval for times . The PDE satisfies the initial condition and boundary conditions It is convenient to use subfunctions to place all the functions required by pdepe in a single function. function pdex1 m = 0; x = linspace(0,1,20); %linspace(x1,x2,N)linspace是Matlab中的一个指令,用于产生x1,x2之间的N点行矢量。 %其中x1、x2、N分别为起始值、终止值、元素个数。若缺省N,默认点数为100 t = linspace(0,2,5); sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t);

% Extract the first solution component as u. u = sol(:,:,1); % A surface plot is often a good way to study a solution. surf(x,t,u) title('Numerical solution computed with 20 mesh points.') xlabel('Distance x') ylabel('Time t') % A solution profile can also be illuminating. figure plot(x,u(end,:)) title('Solution at t = 2') xlabel('Distance x') ylabel('u(x,2)') % -------------------------------------------------------------- function [c,f,s] = pdex1pde(x,t,u,DuDx) c = pi^2; f = DuDx; s = 0; % -------------------------------------------------------------- function u0 = pdex1ic(x) u0 = sin(pi*x); % -------------------------------------------------------------- function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t) pl = ul; ql = 0; pr = pi * exp(-t); qr = 1;

偏微分方程的数值解法

《偏微分方程数值解法》试题 (专业:凝聚态物理学号:2013201260 姓名:鄢建军) 1.考虑定解问题 (1)用迎风格式(P、45)求解 1,0 (,0) 0,0 t x u u x u x x += ? ? ≤ ? ? =? ?> ? ? 。 利用迎风格式编写Fortran程序语言,运行结果如下: Fig 1、迎风格式求解结果 (2)用Beam-Warming格式(P、51)求解。 利用Beam—Warming格式编写Fortran程序语言,运行结果如下 :

Fig 2、 Beam —Warming 格式求解结果 (3) 比较两种方法结果的异同。 将两种格式运行的结果绘制在一起,要求时间步长与空间步长在两种格式中都相同,运行结果如下图所示: Fig 3、 迎风格式与Beam-Warming 格式求解结果比较 从两种格式的运行结果来瞧,都存在边缘的误差现象,相比而言,Beam-Warming 格式的运行结果差一些。但就是理论上分析,迎风格式的截断误差为()h οτ+,而Beam-Warming 格式的截断误差为22()h h οττ++。稳定性上来分析,迎风格式的稳定性较好,要求1(/)a h λλτ≤=,Beam-Warming 格式的稳定性条件为2(/)a h λλτ≤=。 2. 考虑定解问题212 1110,04(,0)sin ,0(0,)(,)0u u a x l t t u x x x l l u t u l t π???-=<

偏微分方程数值解法

《偏微分方程数值解法》 课程设计 题目: 六点对称差分格式解热传导方程的初边 值问题 姓名: 王晓霜 学院: 理学院 专业: 信息与计算科学 班级: 0911012 学号: 091101218 指导老师:翟方曼 2012年12月14

日 一、题目 用六点对称差分格式计算如下热传导方程的初边值问题 222122,01,01(,0),01 (0,),(1,),01x t t u u x t t x u x e x u t e u t e t +???=<<<≤?????=≤≤??==≤≤??? 已知其精确解为 2(,)x t u x t e += 二、理论 1.考虑的问题 考虑一维模型热传导方程 (1.1) )(22x f x u a t u +??=??,T t ≤<0 其中a 为常数。)(x f 是给定的连续函数。(1.1)的定解问题分两类: 第一,初值问题(Cauch y 问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: (1.2) ()()x x u ?=0,, ∞<<∞-x 第二,初边值问题(也称混合问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: ()13.1 ()()x x u ?=0,, l x l <<- 及边值条件 ()23.1 ()()0,,0==t l u t u , T t ≤≤0 假定()x f 和()x ?在相应的区域光滑,并且于()0,0,()0,l 两点满足相容条件,则上述问题有唯一的充分光滑的解。 现在考虑边值问题(1.1),(1.3)的差分逼近 取 N l h = 为空间步长,M T =τ为时间步长,其中N ,M 是自然数,

matlab偏微分方程组求解

MATLAB学习(序列1)偏微分方程组的求解 ode23 解非刚性微分方程,低精度,使用Runge-Kutta法的二三阶算法。 ode45 解非刚性微分方程,中等精度,使用Runge-Kutta法的四五阶算法。 ode113 解非刚性微分方程,变精度变阶次Adams-Bashforth-Moulton PECE算法。 ode23t 解中等刚性微分方程,使用自由内插法的梯形法则。 ode15s 解刚性微分方程,使用可变阶次的数值微分(NDFs)算法。 ode23s 解刚性微分方程,低阶方法,使用修正的Rosenbrock公式。 ode23tb 解刚性微分方程,低阶方法,使用TR-BDF2方法,即Runger-Kutta公式的第一级采用梯形法则,第二级采用Gear法。 [t,YY]=solver('F',tspan,Yo 解算ODE初值问题的最简调用格式。 solver指上面的指令。 tspan=[0,30]; %时域t的范围 y0=[1;0]; %y(1)y(2的初始值 [tt,yy]=ode45(@DyDt,tspan,y0; plot(tt,yy(:,1,title('x(t' function ydot=DyDt(t,y ydot=[y(2; 2*(1-y(1^2*y(2-y(1] 刚性方程:刚性是指其Jacobian矩阵的特征值相差十分悬殊。在解的性态上表现为,其中一些解变化缓慢,另一些变化快,且相差较悬殊,这类方程常常称为刚性方程,又称为Stiff方程。 刚性方程和非刚性方程对解法中步长选择的要求不同。 刚性方程一般不适合由ode45这类函数求解,而应该采用ode15s等。 如果不能分辨是否是刚性方程,先试用ode45,再用ode15s。 [t,YY,Te,Ye,Ie] = solver('F',tspan,Yo,options,p1,p2,… 解算ODE初值问题的最完整调用格式。 为了能够解出方程,要用指令odeset确定求解的条件和要求。在MATLAB中,求解方程组的指令都有默认的求解的条件和要求(由结构数组options表示),但可以用odeset修改或重新建立,也可以用odeget去获取已有的“优化选项”的信息。指令odeset和odeget用法介绍如下: 语句格式如下: options=odeset(‘name1’,value1,’name2’,value2,…

相关主题
文本预览
相关文档 最新文档