当前位置:文档之家› 备战中考数学二次函数(大题培优 易错 难题)及答案

备战中考数学二次函数(大题培优 易错 难题)及答案

备战中考数学二次函数(大题培优 易错 难题)及答案
备战中考数学二次函数(大题培优 易错 难题)及答案

一、二次函数 真题与模拟题分类汇编(难题易错题)

1.某厂家生产一种新型电子产品,制造时每件的成本为40元,通过试销发现,销售量(y 万件)与销售单价(x 元)之间符合一次函数关系,其图象如图所示.

()1求y 与x 的函数关系式;

()2物价部门规定:这种电子产品销售单价不得超过每件80元,那么,当销售单价x 定为每件多少元时,厂家每月获得的利润()w 最大?最大利润是多少?

【答案】(1)2280y x =-+;(2)当销售单价x 定为每件80元时,厂家每月获得的利润()w 最大,最大利润是4800元. 【解析】 【分析】

()1根据函数图象经过点()40,200和点()60,160,利用待定系数法即可求出y 与x 的函数

关系式;

()2先根据利润=销售数量(?销售单价-成本),由试销期间销售单价不低于成本单价,

也不高于每千克80元,结合电子产品的成本价即可得出x 的取值范围,根据二次函数的增减性可得最值. 【详解】

解:()1设y 与x 的函数关系式为()0y kx b k =+≠, 函数图象经过点()40,200和点()60,160,

{

40200

60160k b k b +=∴+=,解得:{

2

280k b =-=,

y ∴与x 的函数关系式为2280y x =-+.

()2由题意得:()()224022802360112002(90)5000w x x x x x =--+=-+-=--+.

试销期间销售单价不低于成本单价,也不高于每千克80元,且电子产品的成本为每千克40元,

∴自变量x 的取值范围是4080x ≤≤.

20-<,

∴当90x <时,w 随x 的增大而增大,

80x ∴=时,w 有最大值, 当80x =时,4800w =,

答:当销售单价x 定为每件80元时,厂家每月获得的利润()w 最大,最大利润是4800元. 【点睛】

本题考查了一次函数和二次函数的应用,根据点的坐标利用待定系数法求出函数关系式是解题的关键,并注意最值的求法.

2.一座拱桥的轮廓是抛物线型(如图所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m.

(1)将抛物线放在所给的直角坐标系中(如图所示),其表达式是2y ax c =+的形式.请根据所给的数据求出a ,c 的值. (2)求支柱MN 的长度.

(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3m 的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.

【答案】(1)y=-350

x 2

+6;(2)5.5米;(3)一条行车道能并排行驶这样的三辆汽车. 【解析】

试题分析:(1)根据题目可知A .B ,C 的坐标,设出抛物线的解析式代入可求解. (2)设N 点的坐标为(5,y N )可求出支柱MN 的长度.

(3)设DN 是隔离带的宽,NG 是三辆车的宽度和.做GH 垂直AB 交抛物线于H 则可求解.

试题解析: (1) 根据题目条件,A 、B 、C 的坐标分别是(-10,0)、(0,6)、(10,0).

将B 、C 的坐标代入2

y ax c =+,得 6,

0100.c a c =??=+?

解得3

,650

a c =-

=. ∴抛物线的表达式是2

3650

y x =-+. (2) 可设N (5,N y ), 于是23

56 4.550

N y =-

?+=. 从而支柱MN 的长度是10-4.5=5.5米.

(3) 设DE 是隔离带的宽,EG 是三辆车的宽度和, 则G 点坐标是(7,0)(7=2÷2+2×3).

过G 点作GH 垂直AB 交抛物线于H ,则23176335050

H y =-

?+=+>. 根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.

3.如图①,在平面直角坐标系xOy 中,抛物线y=ax 2+bx+3经过点A(-1,0) 、B(3,0) 两点,且与y 轴交于点C

.

(1)求抛物线的表达式;

(2)如图②,用宽为4个单位长度的直尺垂直于x 轴,并沿x 轴左右平移,直尺的左右两边所在的直线与抛物线相交于P 、 Q 两点(点P 在点Q 的左侧),连接PQ ,在线段PQ 上方抛物线上有一动点D ,连接DP 、DQ. ①若点P 的横坐标为1

2

-

,求△DPQ 面积的最大值,并求此时点D 的坐标; ②直尺在平移过程中,△DPQ 面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.

【答案】(1)抛物线y=-x 2+2x+3;(2)①点D ( 31524

,);②△PQD 面积的最大值为8 【解析】

分析:(1)根据点A 、B 的坐标,利用待定系数法即可求出抛物线的表达式;

(2)(I )由点P 的横坐标可得出点P 、Q 的坐标,利用待定系数法可求出直线PQ 的表达式,过点D 作DE ∥y 轴交直线PQ 于点E ,设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐

标为(x,-x+5

4

),进而即可得出DE的长度,利用三角形的面积公式可得出S△DPQ=-

2x2+6x+7

2

,再利用二次函数的性质即可解决最值问题;

(II)假设存在,设点P的横坐标为t,则点Q的横坐标为4+t,进而可得出点P、Q的坐标,利用待定系数法可求出直线PQ的表达式,设点D的坐标为(x,-x2+2x+3),则点E 的坐标为(x,-2(t+1)x+t2+4t+3),进而即可得出DE的长度,利用三角形的面积公式可得出S△DPQ=-2x2+4(t+2)x-2t2-8t,再利用二次函数的性质即可解决最值问题.

详解:(1)将A(-1,0)、B(3,0)代入y=ax2+bx+3,得:

30

9330

a b

a b

-+

?

?

++

?

,解得:

1

2

a

b

-

?

?

?

∴抛物线的表达式为y=-x2+2x+3.

(2)(I)当点P的横坐标为-

1

2

时,点Q的横坐标为

7

2

∴此时点P的坐标为(-

1

2

7

4

),点Q的坐标为(

7

2

,-

9

4

).

设直线PQ的表达式为y=mx+n,

将P(-

1

2

7

4

)、Q(

7

2

,-

9

4

)代入y=mx+n,得:

17

24

79

24

m n

m n

?

-+

??

?

?+-

??

,解得:

1

5

4

m

n

-

?

?

?

??

∴直线PQ的表达式为y=-x+5

4

如图②,过点D作DE∥y轴交直线PQ于点E,

设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-x+

5

4

),

∴DE=-x2+2x+3-(-x+5

4

)=-x2+3x+

7

4

∴S△DPQ=1

2

DE?(x Q-x P)=-2x2+6x+

7

2

=-2(x-

3

2

)2+8.

∵-2<0,

∴当x=3

2时,△DPQ的面积取最大值,最大值为8,此时点D的坐标为(

3

2

15

4

).

(II)假设存在,设点P的横坐标为t,则点Q的横坐标为4+t,

∴点P的坐标为(t,-t2+2t+3),点Q的坐标为(4+t,-(4+t)2+2(4+t)+3),利用待定系数法易知,直线PQ的表达式为y=-2(t+1)x+t2+4t+3.

设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-2(t+1)x+t2+4t+3),∴DE=-x2+2x+3-[-2(t+1)x+t2+4t+3]=-x2+2(t+2)x-t2-4t,

∴S△DPQ=1

2

DE?(x Q-x P)=-2x2+4(t+2)x-2t2-8t=-2[x-(t+2)]2+8.

∵-2<0,

∴当x=t+2时,△DPQ的面积取最大值,最大值为8.

∴假设成立,即直尺在平移过程中,△DPQ面积有最大值,面积的最大值为8.

点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、三角形的面积以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)(I)利用三角形的面积公式找出S△DPQ=-

2x2+6x+7

2

;(II)利用三角形的面积公式找出S△DPQ=-2x2+4(t+2)x-2t2-8t.

4.对于某一函数给出如下定义:若存在实数m,当其自变量的值为m时,其函数值等于﹣m,则称﹣m为这个函数的反向值.在函数存在反向值时,该函数的最大反向值与最小反向值之差n称为这个函数的反向距离.特别地,当函数只有一个反向值时,其反向距离n为零.

例如,图中的函数有4,﹣1两个反向值,其反向距离n等于5.

(1)分别判断函数y=﹣x+1,y=

1

x

-,y=x2有没有反向值?如果有,直接写出其反向距

离;

(2)对于函数y=x2﹣b2x,

①若其反向距离为零,求b的值;

②若﹣1≤b≤3,求其反向距离n的取值范围;

(3)若函数y=

2

2

3()

3()

x x x m

x x x m

?-≥

?

--<

?

请直接写出这个函数的反向距离的所有可能值,并写出

相应m的取值范围.

【答案】(1)y=?1

x

有反向值,反向距离为2;y=x2有反向值,反向距离是1;(2)

①b=±1;②0≤n≤8;(3)当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=4.

【解析】

【分析】

(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;

(2)①根据题意可以求得相应的b的值;

②根据题意和b的取值范围可以求得相应的n的取值范围;

(3)根据题目中的函数解析式和题意可以解答本题.

【详解】

(1)由题意可得,

当﹣m=﹣m+1时,该方程无解,故函数y=﹣x+1没有反向值,

当﹣m=

1

m

-时,m=±1,∴n=1﹣(﹣1)=2,故y=

1

x

-有反向值,反向距离为2,

当﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距离是1;

(2)①令﹣m=m2﹣b2m,

解得,m=0或m=b2﹣1,

∵反向距离为零,

∴|b2﹣1﹣0|=0,

解得,b=±1;

②令﹣m=m2﹣b2m,

解得,m=0或m=b2﹣1,

∴n=|b2﹣1﹣0|=|b2﹣1|,

∵﹣1≤b≤3,

∴0≤n≤8;

(3)∵y=

2

2

3()

3() x x x m

x x x m

?-≥

?

--<

?

∴当x≥m时,

﹣m=m2﹣3m,得m=0或m=2,∴n=2﹣0=2,

∴m>2或m≤﹣2;

当x<m时,

﹣m =﹣m 2﹣3m , 解得,m =0或m =﹣4, ∴n =0﹣(﹣4)=4, ∴﹣2<m ≤2,

由上可得,当m >2或m ≤﹣2时,n =2, 当﹣2<m ≤2时,n =4. 【点睛】

本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定义解答相关问题.

5.综合与探究

如图,抛物线2

6y ax bx =++经过点A(-2,0),B(4,0)两点,与y 轴交于点C ,点D 是抛物

线上一个动点,设点D 的横坐标为(14)m m <<.连接AC ,BC ,DB ,DC . (1)求抛物线的函数表达式; (2)△BCD 的面积等于△AOC 的面积的

3

4

时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.

【答案】(1)233

642

y x x =-++;(2)3;(3)1234(8,0),(0,0),(14,0),(14,0)M M M M -. 【解析】 【分析】

(1)利用待定系数法进行求解即可;

(2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F ,先求出S △OAC =6,再根据

S △BCD =

34S △AOC ,得到S △BCD =92

,然后求出BC 的解析式为3

62y x =-+,则可得点G 的坐

标为3(,6)2m m -+,由此可得2

334

DG m m =-+,再根据

S △BCD =S △CDG +S △BDG =1

2

DG BO ??,可得关于m 的方程,解方程即可求得答案;

(3)存在,如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图,以BD 为边时,有3种情况,由点D 的坐标可得点N 点纵坐标为±154,然后分点N 的纵坐标为154

和点N 的纵坐标为15

4

-

两种情况分别求解;以BD 为对角线时,有1种情况,此时N 1点与N 2点重合,根据平行四边形的对边平行且相等可求得BM 1=N 1D=4,继而求得OM 1= 8,由此即可求得答案. 【详解】

(1)抛物线2y ax bx c =++经过点A(-2,0),B(4,0), ∴4260

16460a b a b -+=??

++=?

解得3432a b ?=-????=??

∴抛物线的函数表达式为233

642

y x x =-

++; (2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F , ∵点A 的坐标为(-2,0),∴OA=2,

由0x =,得6y =,∴点C 的坐标为(0,6),∴OC=6, ∴S △OAC =11

26622

OA OC ??=??=, ∵S △BCD =

3

4S △AOC , ∴S △BCD =39

642

?=,

设直线BC 的函数表达式为y kx n =+,

由B ,C 两点的坐标得406k n n +=??=?,解得326

k n ?

=-

???=?,

∴直线BC 的函数表达式为3

62

y x =-+, ∴点G 的坐标为3

(,6)2

m m -+, ∴223333

6(6)34224

DG m m m m m =-

++--+=-+, ∵点B 的坐标为(4,0),∴OB=4,

∵S △BCD =S △CDG +S △BDG =

1111

()2222

DG CF DG BE DG CF BE DG BO ??+??=?+=??,

∴S △BCD =22133346242

m m m m -+?=-+(), ∴239

622

m m -

+=, 解得11m =(舍),23m =, ∴m 的值为3;

(3)存在,如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图, 以BD 为边时,有3种情况, ∵D 点坐标为15(3,

)4

,∴点N 点纵坐标为±15

4,

当点N 的纵坐标为15

4

时,如点N 2, 此时23315

6424x x -

++=,解得:121,3x x =-=(舍), ∴215

(1,

)4

N -,∴2(0,0)M ; 当点N 的纵坐标为15

4

-时,如点N 3,N 4, 此时23315

6424

x x -

++=-,解得:12114,114x x ==∴315(114,)4N +-

,415

(114,)4

N -, ∴3(14,0)M ,4(14,0)M -;

以BD 为对角线时,有1种情况,此时N 1点与N 2点重合,

∵115(1,

)4

N -,D(3,154),

∴N 1D=4, ∴BM 1=N 1D=4, ∴OM 1=OB+BM 1=8, ∴M 1(8,0),

综上,点M 的坐标为:1234(80)(00)(14(14M M M M -,,,,,,,.

【点睛】

本题考查的是二次函数的综合题,涉及了待定系数法、三角形的面积、解一元二次方程、平行四边形的性质等知识,运用了数形结合思想、分类讨论思想等数学思想,熟练掌握和灵活运用相关知识是解题的关键.

6.如图,已知抛物线2y ax bx c =++经过A (-3,0),B (1,0),C (0,3)三点,其顶点为D ,对称轴是直线l ,l 与x 轴交于点H .

(1)求该抛物线的解析式;

(2)若点P 是该抛物线对称轴l 上的一个动点,求△PBC 周长的最小值;

(3)如图(2),若E 是线段AD 上的一个动点( E 与A 、D 不重合),过E 点作平行于y 轴的直线交抛物线于点F ,交x 轴于点G ,设点E 的横坐标为m ,△ADF 的面积为S . ①求S 与m 的函数关系式;

②S 是否存在最大值?若存在,求出最大值及此时点E 的坐标; 若不存在,请说明理由.

【答案】(1)2

y x 2x 3=--+.

(2)3210. (3)①2S m 4m 3=---.

②当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2). 【解析】 【分析】

(1)根据函数图象经过的三点,用待定系数法确定二次函数的解析式即可.

(2)根据BC 是定值,得到当PB+PC 最小时,△PBC 的周长最小,根据点的坐标求得相应线段的长即可.

(3)设点E 的横坐标为m ,表示出E (m ,2m+6),F (m ,2m 2m 3--+),最后表示出EF 的长,从而表示出S 于m 的函数关系,然后求二次函数的最值即可. 【详解】

解:(1)∵抛物线2y ax bx c =++经过A (-3,0),B (1,0), ∴可设抛物线交点式为()()y a x 3x 1=+-.

又∵抛物线2y ax bx c =++经过C (0,3),∴a 1=-. ∴抛物线的解析式为:()()y x 3x 1=-+-,即2y x 2x 3=--+. (2)∵△PBC 的周长为:PB+PC+BC ,且BC 是定值. ∴当PB+PC 最小时,△PBC 的周长最小. ∵点A 、点B 关于对称轴I 对称, ∴连接AC 交l 于点P ,即点P 为所求的点.

∵AP=BP ,∴△PBC 的周长最小是:PB+PC+BC=AC+BC.

∵A (-3,0),B (1,0),C (0,3),∴2,10. ∴△PBC 的周长最小是:3210.

(3)①∵抛物线2

y x 2x 3=--+顶点D 的坐标为(﹣1,4),A (﹣3,0),

∴直线AD 的解析式为y=2x+6

∵点E 的横坐标为m ,∴E (m ,2m+6),F (m ,2m 2m 3--+) ∴()2

2

EF m 2m 32m 6m 4m 3=--+-+=---.

()

22DEF AEF 1111

S S S EF GH EF AG EF AH m 4m 32m 4m 3

2222

??=+=??+??=??=?---?=---.

∴S 与m 的函数关系式为2S m 4m 3=---. ②()2

2S m 4m 3m 21=---=-++,

∴当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2).

7.如图,抛物线y=ax 2+6x+c 交x 轴于A ,B 两点,交y 轴于点C .直线y=x ﹣5经过点B ,

C.

(1)求抛物线的解析式;

(2)过点A的直线交直线BC于点M.

①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;

②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.

【答案】(1)抛物线解析式为y=﹣x2+6x﹣5;(2)①P点的横坐标为4或

41

2

5-41 2;②点M的坐标为(

13

6

,﹣

17

6

)或(

23

6

,﹣

7

6

).

【解析】

分析:(1)利用一次函数解析式确定C(0,-5),B(5,0),然后利用待定系数法求抛物线解析式;

(2)①先解方程-x2+6x-5=0得A(1,0),再判断△OCB为等腰直角三角形得到

∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以2,接着根据平行四边形的性质得到2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到2PQ=4,设P(m,-m2+6m-5),则D(m,m-5),讨论:当P点在直线BC上方时,PD=-m2+6m-5-(m-5)=4;当P点在直线BC下方时,PD=m-5-(-m2+6m-5),然后分别解方程即可得到P点的横坐标;

②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,-2),

AC的解析式为y=5x-5,E点坐标为(1

2

,-

5

2

),利用两直线垂直的问题可设直线EM1的

解析式为y=-1

5

x+b,把E(

1

2

,-

5

2

)代入求出b得到直线EM1的解析式为y=-

1

5

x-

12

5

,则

解方程组

5

112

55 y x

y

x

-

?

?

?

--

??

得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x-5),根据中点坐标公式得到3=

13

+

6

2

x

,然后求出x即可得到M2的坐标,从而得到满足条件的点M的坐标.

详解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5),

当y=0时,x﹣5=0,解得x=5,则B(5,0),

把B(5,0),C(0,﹣5)代入y=ax2+6x+c得

25300

5

a c

c

++=

?

?

=-

?

,解得

1

5

a

b

=-

?

?

=-

?

∴抛物线解析式为y=﹣x2+6x﹣5;

(2)①解方程﹣x2+6x﹣5=0得x1=1,x2=5,则A(1,0),

∵B(5,0),C(0,﹣5),

∴△OCB为等腰直角三角形,

∴∠OBC=∠OCB=45°,

∵AM⊥BC,

∴△AMB为等腰直角三角形,

∴AM=2AB=2×4=22,

∵以点A,M,P,Q为顶点的四边形是平行四边形,AM∥PQ,

∴PQ=AM=22,PQ⊥BC,

作PD⊥x轴交直线BC于D,如图1,则∠PDQ=45°,

∴222=4,

设P(m,﹣m2+6m﹣5),则D(m,m﹣5),

当P点在直线BC上方时,

PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1,m2=4,

当P点在直线BC下方时,

PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=5+41

,m

2=

5-41

综上所述,P点的横坐标为4或

5+41

2

5-41

2

②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,

∵M1A=M1C,

∴∠ACM1=∠CAM1,

∴∠AM1B=2∠ACB,

∵△ANB为等腰直角三角形,

∴AH=BH=NH=2,

∴N(3,﹣2),

易得AC的解析式为y=5x﹣5,E点坐标为(

1

2

,﹣

5

2

设直线EM1的解析式为y=﹣

1

5

x+b,

把E(

1

2

,﹣

5

2

)代入得﹣

1

10

+b=﹣

5

2

,解得b=﹣

12

5

∴直线EM1的解析式为y=﹣1

5

x﹣

12

5

解方程组

5

112

55

y x

y x

=-

?

?

?

=--

??

13

6

17

6

x

y

?

=

??

?

?=-

??

,则M1(

13

6

,﹣

17

6

);

作直线BC上作点M1关于N点的对称点M2,如图2,则∠AM2C=∠AM1B=2∠ACB,

设M2(x,x﹣5),

∵3=13+62x

∴x=23

6,

∴M 2(236,﹣7

6

).

综上所述,点M 的坐标为(

136,﹣176)或(236,﹣7

6

). 点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、等腰直角的判定与性质和平行四边形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.

8.如图,已知抛物线2(0)y ax bx a =+≠过点A(3,-3) 和B(33,0),过点A 作直线AC//x 轴,交y 轴与点C . (1)求抛物线的解析式;

(2)在抛物线上取一点P ,过点P 作直线AC 的垂线,垂足为D ,连接OA ,使得以A ,D ,P 为顶点的三角形与△AOC 相似,求出对应点P 的坐标; (3)抛物线上是否存在点Q ,使得1

3

AOC AOQ S S ??=?若存在,求出点Q 的坐标;若不存在,请说明理由.

【答案】(1)213322

y x x =

-;(2)P 点坐标为(3

83,- 4

3);(3)Q 点坐标(30)或(315) 【解析】 【分析】

(1)把A 与B 坐标代入抛物线解析式求出a 与b 的值,即可确定出解析式;

(2)设P 坐标为2133

,22

x x x ??- ? ??

?

,表示出AD 与PD ,由相似分两种情况得比例求出x 的值,即可确定出P 坐标;

(3)存在,求出已知三角形AOC 边OA 上的高h ,过O 作OM ⊥OA ,截取OM=h,与y 轴交

于点N ,分别确定出M 与N 坐标,利用待定系数法求出直线MN 解析式,与抛物线解析式联立求出Q 坐标即可. 【详解】

(1

)把A 3)-

和点B 0)

代入抛物线得:33

270

a a ?+=-??+=??,

解得:12a =

,b =,

则抛物线解析式为212y x x =

-; (2)当P 在直线AD 上方时,

设P

坐标为21,2x x x ?? ? ???

,则有AD x =

2132PD x x =+, 当OCA ADP ??∽时,OC CA AD DP =

22

=

整理得:23186x -+=-

,即23240x -+=,

解得:x =

,即x =

或x =

此时(

3

P ,4)3-;

当OCA PDA ??∽时,OC CA PD AD =

=

296x x -+=-

2120x -+=,

解得:x =

x =

此时P 6);

当点()0,0P 时,也满足OCA PDA ??∽; 当P 在直线AD 下方时,同理可得:P

的坐标为(3

,10)3-,

综上,P

的坐标为,4)3-

或6)

或10)3-或()0,0;

(3)在Rt AOC ?中,3OC =

,AC =

根据勾股定理得:OA =

11

··

22

OC AC OA h

=,

3

2

h

∴=,

133

3

AOC AOQ

S S

??

==,

AOQ

∴?边OA上的高为

9

2

过O作OM OA

⊥,截取

9

2

OM=,过M作//

MN OA,交y轴于点N,如图所示:在Rt OMN

?中,29

ON OM

==,即()

0,9

N,

过M作MH x

⊥轴,

在Rt OMH

?中,

19

24

MH OM

==,393

24

OH OM

==,即

3

(

4

M,

9

)

4

设直线MN解析式为9

y kx

=+,

把M坐标代入得:

993

9

4

=+,即3

k=39

y x

=+,

联立得:

2

39

133

2

y x

y x x

?=-+

?

?

=-

?

?

解得:

33

x

y

?=

?

?

=

??

3

15

x

y

?=-

?

?

=

??

(33

Q0)或(23

-,15),

则抛物线上存在点Q,使得

1

3

AOC AOQ

S S

??

=,此时点Q的坐标为(330)或(23

-15).

【点睛】

二次函数综合题,涉及的知识有:待定系数法求函数解析式,相似三角形的判定与性质,

点到直线的距离公式,熟练掌握待定系数法是解本题的关键.

9.如图,抛物线交轴于点,交轴于点,已知经过点的直线的表达式为.

(1)求抛物线的函数表达式及其顶点的坐标;

(2)如图①,点是线段上的一个动点,其中,作直线

轴,交直线于,交抛物线于,作∥轴,交直线于点,四边形为矩形.设矩形的周长为,写出与的函数关系式,并求为何值时周长最大;

(3)如图②,在抛物线的对称轴上是否存在点,使点构成的三角形是以为腰的等腰三角形.若存在,直接写出所有符合条件的点的坐标;若不存在,请说明理由.

图① 图②

【答案】(1)抛物线的表达式为y=-x2-2x+3,顶点C坐标为(-1,4);

(2)L=-4m2-12m=-4(m+)2+9;

当m=-时,最大值L=9;

(3)点Q的坐标为(-1,),(-1,-),(-1,3+),(-1,3-).【解析】

试题分析:(1)由直线经过A、B两点可求得这两点的坐标,然后代入二次函数解析式即可求出b、c的值,从而得到解析式,进而得到顶点的坐标;

(2)由题意可表示出D、E的坐标,从而得到DE的长,由已知条件可得DE=EF,从而可表示出矩形DEFG的周长L,利用二次函数的性质可求得最大值;

(3)分别以点A、点B为圆心,以AB长为半径画圆,圆与对称轴的交点即为所求的点.试题解析:(1)直线y=x+3与x轴相交于A(-3,0 ),与y轴相交于B(0,3)

抛物线y=-x2+bx+c经过A(-3,0 ),B(0,3),所以,

,

∴,

所以抛物线的表达式为y=-x2-2x+3,

∵y=-x2-2x+3=-(x+1)2+4,

所以,顶点坐标为C(-1,4).

(2)因为D在直线y=x+3上,∴D(m,m+3).

因为E在抛物线上,∴E(m,-m2-2m+3).

DE=-m2-2m+3-(m+3)=-m2-3m.

由题意可知,AO=BO,

∴∠DAP=∠ADP=∠EDF=∠EFD=45°,

∴DE=EF.

L=4DE=-4m2-12m.

L=-4m2-12m=-4(m+)2+9.

∵a=-4<0,

∴二次函数有最大值

当m=-时,最大值L=9.

(3)点Q的坐标为(-1,),(-1,-),(-1,3+),(-1,3-).考点:1、待定系数法;2、正方形的判定;3、二次函数的性质的应用;4、等腰三角形.

10.如图,直线y=﹣3x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c与直线y=c分别交y轴的正半轴于点C和第一象限的点P,连接PB,得△PCB≌△BOA(O为坐标原点).若抛物线与x轴正半轴交点为点F,设M是点C,F间抛物线上的一点(包括端点),其横坐标为m.

(1)直接写出点P的坐标和抛物线的解析式;

(2)当m为何值时,△MAB面积S取得最小值和最大值?请说明理由;

(3)求满足∠MPO=∠POA的点M的坐标.

【答案】(1)点P 的坐标为(3,4),抛物线的解析式为y=﹣x 2+3x+4;(2)当m=0

时,S 取最小值,最小值为

1

2

;当m=3时,S 取最大值,最大值为5.(3)满足∠MPO=∠POA 的点M 的坐标为(0,4)或(247,124

49

).

【解析】

【分析】(1)代入y=c 可求出点C 、P 的坐标,利用一次函数图象上点的坐标特征可求出点A 、B 的坐标,再由△PCB ≌△BOA 即可得出b 、c 的值,进而可得出点P 的坐标及抛物线的解析式;

(2)利用二次函数图象上点的坐标特征求出点F 的坐标,过点M 作ME ∥y 轴,交直线AB 于点E ,由点M 的横坐标可得出点M 、E 的坐标,进而可得出ME 的长度,再利用三角形的面积公式可找出S=﹣1

2

(m ﹣3)2+5,由m 的取值范围结合二次函数的性质即可求出S 的最大值及最小值;

(3)分两种情况考虑:①当点M 在线段OP 上方时,由CP ∥x 轴利用平行线的性质可得出:当点C 、M 重合时,∠MPO=∠POA ,由此可找出点M 的坐标;②当点M 在线段OP 下方时,在x 正半轴取点D ,连接DP ,使得DO=DP ,此时∠DPO=∠POA ,设点D 的坐标为(n ,0),则DO=n ,()()

22

304n -+-DO=DP 可求出n 的值,进而可得出点

D 的坐标,由点P 、D 的坐标利用待定系数法即可求出直线PD 的解析式,再联立直线PD 及抛物线的解析式成方程组,通过解方程组求出点M 的坐标.综上此题得解. 【详解】(1)当y=c 时,有c=﹣x 2+bx+c , 解得:x 1=0,x 2=b ,

∴点C 的坐标为(0,c ),点P 的坐标为(b ,c ), ∵直线y=﹣3x+3与x 轴、y 轴分别交于A 、B 两点, ∴点A 的坐标为(1,0),点B 的坐标为(0,3), ∴OB=3,OA=1,BC=c ﹣3,CP=b , ∵△PCB ≌△BOA , ∴BC=OA ,CP=OB , ∴b=3,c=4,

二次函数的最值问题(典型例题)

二次函数的最值问题 【例题精讲】 题面:当1≤x ≤2时,函数y =2x 24ax +a 2+2a +2有最小值2, 求a 的所有可能取值. 【拓展练习】 如图,在平面直角坐标系xOy 中,二次函数23y x bx c = ++的图象与x 轴交于A (1,0)、B (3,0)两点, 顶点为C . (1)求此二次函数解析式; (2)点D 为点C 关于x 轴的对称点,过点A 作直线l :3333 y x =+交BD 于点E ,过点B 作直线BK AD l K :在四边形ABKD 的内部是否存在点P ,使得它到四边形ABKD 四边的距离都相等,若存在,请求出点P 的坐标;若不存在,请说明理由; (3)在(2)的条件下,若M 、N 分别为直线AD 和直线l 上的两个动点,连结DN 、NM 、MK ,求DN NM MK ++和的最小值.

练习一 【例题精讲】 若函数y=4x24ax+a2+1(0≤x≤2)的最小值为3,求a的值. 【拓展练习】 题面:已知:y关于x的函数y=(k1)x22kx+k+2的图象与x轴有交点. (1)求k的取值范围; (2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k1)x12+2kx2+k+2= 4x1x2. ①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值. 练习二 金题精讲 题面:已知函数y=x2+2ax+a21在0≤x≤3范围内有最大值24,最小值3,求实数a的值. 【拓展练习】 题面:当k分别取1,1,2时,函数y=(k1)x2 4x+5k都有最大值吗请写出你的判断,并说明理由;若有,请求出最大值.

二次函数培优专项练习

学习必备 欢迎下载 1个单位,所得到的图象对应的二次函数关系式是 2)1(2-+=x y 则原二次函数的解析式为 2.二次函数的图象顶点坐标为(2,1),形状开品与 抛物线y= - 2x 2 相同,这个函数解析式为________。 3.如果函数1)3(2 32 ++-=+-kx x k y k k 是二次函数, 则k 的值是______ 4.已知点11()x y ,,22()x y ,均在抛物线2 1y x =-上,下列说法中正确的是( ) A .若12y y =,则12x x = B .若12x x =-,则12y y =- C .若120x x <<,则12y y > D .若120x x <<,则12y y > 5. 抛物线 c bx x y ++=2 图像向右平移2个单位再向下平移3个单位,所得图像的解析式为 322--=x x y ,则b 、c 的值为 A . b=2, c=2 B. b=2,c=0 C . b= -2,c=-1 D. b= -3, c=2 ★6.抛物线5)43()1(2 2+--++=x m m x m y 以Y 轴为对称轴则。M = 7.二次函数52 -+=a ax y 的图象顶点在Y 轴负半轴上。且函数值有最小值,则m 的取值范围是 8.函数245 (5)21a a y a x x ++=-+-, 当a =_______时, 它是一次函数; 当a =_______时, 它是二次函数. 9.抛物线2 )13(-=x y 当x 时,Y 随X 的增大而增 大 10.抛物线42 ++=ax x y 的顶点在X 轴上,则a 值为 ★11.已知二次函数2 )3(2--=x y ,当X 取1x 和2x 时函数值相等,当X 取1x +2x 时函数值为 12.若二次函数k ax y +=2 ,当X 取X1和X2(21x x ≠) 时函数值相等,则当X 取X1+X2时,函数值为 13.若函数2)3(-=x a y 过(2.9)点,则当X =4 时函数值Y = ★14.若函数k h x y ---=2 )(的顶点在第二象限则, h 0 ,k 0 15.已知二次函数当x=2时Y 有最大值是1.且过(3.0)点求解析式? 16.将121222--=x x y 变为n m x a y +-=2)(的 形式,则n m ?=_____。 ★17. 已知抛物线在X 轴上截得的线段长为6.且顶点 的顶点到x 轴的距离是3, 那么c 的值等于( ) (A )8 (B )14 (C )8或14 (D )-8或-14 19.二次函数y=x 2 -(12-k)x+12,当x>1时,y 随着x 的增大而增大,当x<1时,y 随着x 的增大而减小,则k 的值应取( ) (A )12 (B )11 (C )10 (D )9 20.若0 B.1a < C.1a ≥ D.1a ≤ 30.抛物线y= (k 2-2)x 2 +m-4kx 的对称轴是直线x=2,且它的最低点在直线y= - 2 1 +2上,求函数解析式。 31.已知二次函数图象与x 轴交点(2,0)(-1,0)与y 轴交点是(0,-1)求解析式及顶点坐标。 32.y= ax 2 +bx+c 图象与x 轴交于A 、B 与y 轴交于C ,OA=2,OB=1 ,OC=1,求函数解析式 32.抛物线562 -+-=x x y 与x 轴交点为A ,B ,(A 在B 左侧)顶点为C.与Y 轴交于点D (1)求△ABC 的面积。 (2)若在抛物线上有一点M ,使△ABM 的面积是△ABC 的面积的2倍。求M 点坐标(得分点的把握) (3)在该抛物线的对称轴上是否存在点Q ,使得 △QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由. 4)在抛物线上是否存在一点P ,使四边形PBAC 是等腰 梯形,若存在,求出P 点的坐标;若不存在,请说明理由

人教【数学】数学 二次函数的专项 培优练习题及详细答案

一、二次函数真题与模拟题分类汇编(难题易错题) 1.已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y 轴交直线AC于点D. (1)求抛物线的解析式; (2)求点P在运动的过程中线段PD长度的最大值; (3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由. 【答案】(1)y=x2﹣4x+3;(2)9 4 ;(3)点P(1,0)或(2,﹣1);(4)M(2,﹣ 3). 【解析】 试题分析:(1)把点A、B的坐标代入抛物线解析式,解方程组得到b、c的值,即可得解; (2)求出点C的坐标,再利用待定系数法求出直线AC的解析式,再根据抛物线解析式设出点P的坐标,然后表示出PD的长度,再根据二次函数的最值问题解答; (3)①∠APD是直角时,点P与点B重合,②求出抛物线顶点坐标,然后判断出点P为在抛物线顶点时,∠PAD是直角,分别写出点P的坐标即可; (4)根据抛物线的对称性可知MA=MB,再根据三角形的任意两边之差小于第三边可知点M为直线CB与对称轴交点时,|MA﹣MC|最大,然后利用待定系数法求出直线BC的解析式,再求解即可. 试题解析:解:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0), ∴ 930 10 b c b c ++= ? ? ++= ? ,解得 4 3 b c =- ? ? = ? ,∴抛物线解析式为y=x2﹣4x+3; (2)令x=0,则y=3,∴点C(0,3),则直线AC的解析式为y=﹣x+3,设点P(x,x2﹣4x+3).∵PD∥y轴,∴点D(x,﹣x+3),∴PD=(﹣x+3)﹣(x2﹣4x+3)=﹣x2+3x=﹣ (x﹣3 2 )2+ 9 4 .∵a=﹣1<0,∴当x= 3 2 时,线段PD的长度有最大值 9 4 ;

二次函数培优经典题

112O x y 培优训练五(二次函数1) 1、如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是( ) A .m =n ,k >h B .m =n ,k <h C .m >n ,k =h D .m <n ,k =h 2、已知二次函数y =ax 2+bx +c 的图象如图所示,它与x 轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b ﹣2a =0;②abc <0;③a ﹣2b +4c <0;④8a +c >0.其中正确的有( ) A . 3个 B . 2个 C . 1个 D . 0个 3、如图,二次函数2y ax bx c =++的图像与y 轴正半轴相交,其顶点坐标 为(1,12 ),下列结论:①0ac <;②0a b +=; ③244ac b a -=;④0a b c ++<.其中正确结论的个数是 A . 1 B . 2 C . 3 D . 4 4、若二次函数c x x y +-=62的图象经过A (-1,y 1)、B (2,y 2)、C (23+,y 3)三点,则关于y 1、y 2、y 3大小关系正确的是 A .y 1>y 2>y 3 B .y 1>y 3>y 2 C .y 2>y 1>y 3 D .y 3>y 1>y 2 5、如图,一次函数)0(1≠+=k n kx y 与二次函数 )0(22≠++=a c bx ax y 的图象相交于A (1-,5)、B (9,2)两点,则关 于x 的不等式c bx ax n kx ++≥+2 的解集为 A 、91≤≤-x B 、91<≤-x C 、91≤<-x D 、1-≤x 或9≥x 6.如图,已知:直线3+-=x y 交x 轴于点A ,交y 轴于点B ,抛物线y=ax 2+bx+c 经过A 、

二次函数对称轴经典问题

高中数学二次函数对称轴典型问题练习题 二次函数在闭区间上一定存在最大值和最小值,此类问题与区间和对称轴有关,一般分为三类: ①定区间,定轴; ②定区间,动轴, ③动区间,动轴.要认真分析对称轴与区间的关系,合理地进行分类讨论,特别要注意二次项系数是否为0. 第一类问题 二次函数中的动轴定区间 例一已知函数2 142+-+-=a ax x y 在区间[0,1]上的最大值是2,求实数a 的值。 〖解答〗.3 106,310,2)1(,]1,0[,2,12/;,20,32,2)2 (,20,120;6,2)0(,]1,0[,0,02 ,2,42)2(max max max 22或综上上单调递增函数在即时当故舍去矛盾与或得有即时当得有上单调递减函数在即时当对称轴为-==∴==∴>>≤≤-===≤≤≤≤-===<<=+-+--=a a f y a a a a a f y a a a f y a a a x a a a x y 第二类问题 二次函数中的定轴动区间 例二 函数f (x )=142-+-x x 在区间[t ,t +1](t ∈R)上的最大值记为g (t ). (1)求g (t )的解析式;(2)求g (t )的最大值 (1)对区间[t ,t +1](t ∈R)与对称轴x =2的位置关系进行讨论: ①当t +1<2,即t <1时,函数f (x )在区间[t ,t +1]上递增,

此时g (t )=f (t +1)=-t 2+2t +2; ②当t ≤2≤t +1,即1≤t ≤2时,函数f (x )在区间[t ,t +1]上先增后减, 此时g (t )=f (2)=3; 例三 已知f (x )=)(2)34(2R a a x x a ∈+--a ∈R),求f (x )在[0,1]上的最大 值 ()()()()()()2222[1]4122(1)3(12)241(2) 3. t f x t t g t f t t t t t t g t t t t t g t >?-++? ③当时,函数在区间,+上递减,此时==-+-,综上,=利用图象解得的最大值是()()()[]()()()()[]()()max max 4430342.30,140.34430341()43003430,10.12a a f x x f x f x f a a a a x a f x f x f a ????≠≠ <><-????若-=,则=,所以=-+由于在上是减函数,所以==若-,即,分两种情况讨论:ⅰ若-,即,因为对称轴=,所以在上是减函数,所以=【】=解析()()()()()[]max max 41()4300343112043231221124<<<0.243330,12a a x a a a f x f a a f x f a a f x ><>-<≤≤-????????-?ⅱ若-,即,因为对称轴= ,故又分两种情况讨论: ①当,即时,==-;②当,即时,==综上所述,在上的最大值是关

【数学】数学二次函数的专项培优易错试卷练习题(含答案)及答案

一、二次函数 真题与模拟题分类汇编(难题易错题) 1.如图,在平面直角坐标系xOy 中,A 、B 为x 轴上两点,C 、D 为y 轴上的两点,经 过点A 、C 、B 的抛物线的一部分C 1与经过点A 、D 、B 的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封 闭曲线称为“蛋线”.已知点C 的坐标为(0, ),点M 是抛物线C 2: 2y mx 2mx 3m =--(m <0)的顶点. (1)求A 、B 两点的坐标; (2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由; (3)当△BDM 为直角三角形时,求m 的值. 【答案】(1)A ( ,0)、B (3,0). (2)存在.S △PBC 最大值为2716 (3)2 m 2 =-或1m =-时,△BDM 为直角三角形. 【解析】 【分析】 (1)在2 y mx 2mx 3m =--中令y=0,即可得到A 、B 两点的坐标. (2)先用待定系数法得到抛物线C 1的解析式,由S △PBC = S △POC + S △BOP –S △BOC 得到△PBC 面积的表达式,根据二次函数最值原理求出最大值. (3)先表示出DM 2,BD 2,MB 2,再分两种情况:①∠BMD=90°时;②∠BDM=90°时,讨论即可求得m 的值. 【详解】 解:(1)令y=0,则2mx 2mx 3m 0--=, ∵m <0,∴2x 2x 30--=,解得:1x 1=-,2x 3=. ∴A ( ,0)、B (3,0). (2)存在.理由如下: ∵设抛物线C 1的表达式为()()y a x 1x 3=+-(a 0≠),

二次函数最值知识点总结典型例题及习题

必修一二次函数在闭区间上的最值 一、 知识要点: 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况. 设f x ax bx c a ()()=++≠2 0,求f x ()在x m n ∈[],上的最大值与最小值。 分析:将f x ()配方,得顶点为--?? ???b a ac b a 2442,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值: (1)当[] -∈b a m n 2,时,f x ()的最小值是f b a ac b a f x -?? ???=-2442,()的最大值是f m f n ()()、中的较大者。 (2)当[]-?b a m n 2,时 若-

二次函数专题培优(含答案)

二次函数专题复习 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2 变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2 沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2 变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,.

二次函数典型例题——最大值问题

二次函数典型例题——最大面积 1、如图所示,在平面直角坐标系中,Rt△OBC 的两条直角边分别落在x 轴、y 轴上,且 OB=1,OC=3,将△OBC 绕原点O 顺时针旋转90°得到△OAE ,将△OBC 沿y 轴翻折得到△ODC ,AE 与CD 交于点 F. (1)若抛物线过点 A 、B、C, 求此抛物线的解析式; (2)求△OAE 与△ODC 重叠的部分四边形ODFE 的面积; (3)点M 是第三象限内抛物线上的一动点,点M 在何处时△AMC 的面积最大?最大面积 是多少?求出此时点M 的坐标. 解:(1)∵OB=1 ,OC=3 ∴C(0,-3),B(1,0) ∵△OBC 绕原点顺时针旋转90°得到△ OAE ∴A(-3,0) 所以抛物线过点A(-3 ,0),C(0,-3),B(1,0) 设抛物线的解析式 为 y 2 ax bx c(a 0) ,可得 a+b+c 0a1 c -3解得b2 9a-3b c 0c-3 ∴过点A,B,C 的抛物线的解析式为y x2 2x-3 (2)∵△OBC 绕原点顺时针旋转90°得到△ OAE ,△OBC 沿y 轴翻折得到△COD ∴ E(0,-1),D(-1,0) 1 可求出直线AE 的解析式为y 1x 1 3直线DC 的解析式为y 3x 3 ∵点F为AE、DC 交点 ∴F(-3,-3) 44

3 S 四边形 ODFE =S △AOE -S △ADF = 4 3)连接 OM ,设 M 点的坐标为 (m ,n ) 2 2、在平面直角坐标系 xOy 中,抛物线 y mx 2 (m 2)x 2 过点 (2, 4) ,且与 x 轴交于 A 、 B 两点(点 A 在点 B 左侧),与 y 轴交于点 C.点 D 的坐标为 (2,0) ,连接 CA ,CB ,CD. (1)求证: ACO BCD ; (2) P 是第一象限内抛物线上的一个动点,连接 DP 交 BC 于点 E. ①当 △BDE 是等腰三角形时,直接写出点 E 的坐标; ②连接 CP ,当△ CDP 的面积最大时,求点 E 的坐标. ∵点 M 在抛物线上,∴ n 2 m 2m ∴ S AMC S AMO S OMC S AOC = 12OA m = 32(m 2 11 OC n OA OC 2 2 3m) 3(m 因为 0 m 3 ,所以当 m 所以当点 M 3 的坐标为 ( , 2 3 9 3 (m n) (m n 3) 2 2 2 3 2 27 2) 8 3 时, 2 15 - ) 时, 4 n 15 ,△AMA ' 的面积有最大值 4 △ AMA '的面积有最大值

二次函数培优专题训练

二次函数培优专题训练 一、实际应用专题 例题1某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大? 例题2 小华的爸爸在国际商贸城开专卖店专销某种品牌的计算器,进价12元∕只,售价20元∕只.为了促销,专卖店决定凡是买10只以上的,每多买一只,售价就降低0.10元(例如:某人买20只计算器,于是每只降价0.10×(20-10)=1元,就可以按19元∕只的价格购买),但是最低价为16元∕只.(1)顾客一次至少买多少只,才能以最低价购买? (2)写出当一次购买x只时(x>10),利润y(元)与购买量x(只)之间的函数关系式. (3)星期天,小华来到专卖店勤工俭学,上午做成了两笔生意,一是向顾客甲卖了46只,二是向顾客乙卖了50只,记账时小华发现卖50只反而比卖46只赚的钱少.为了使每次卖得越多赚钱越多,在其他促销条件不变的情况下,最低价16元∕只至少要提高到多少?为什么? 例题3(2010?恩施州)恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售. (1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式. (2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用) (3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?

实际问题与二次函数典型l例题

1. 某商品的售价为每件60 元,进价为每件40元,每星期可卖出300件,该商场一星期卖这种商品的利润为元。 2、我班某同学的父母开了一个小服装店,出售一种进价为40元的服装,现每件60元,每星期可卖出300件. 该同学对父母的服装店很感兴趣,因此,他对市场作了如下的调查: 如调整价格,每降价1元,每星期可多卖出20件. 请问同学们,该如何定价,才能使一星期获得的利润最大? 3、某种商品每件的进价为30元,在某段时间内若以每件x元出售(按部门规定,单价不超过每件70元),可以卖出(100- x)件,应如何定价才能使利润最大? 4、某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱。 (1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式; (2)求该批发商平均每天的销售利润ω(元)与销售价x(元/箱)之间的函数关系式; (3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少? 5、某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查,在进价不变的情况下,若每千克涨价1元,销量将减少10千克 (1)该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,能使商场获利最多? 6、某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到赢利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系). (1)由已知图象上的三点坐标,求累积利润s(万元)与销售时Array间t(月)之间的函数关系式; (2)求截止到几月累积利润可达到30万元; (3)求第8个月公司所获利润是多少万元?

九年级二次函数培优竞赛试题及答案

九年级二次函数培优竞赛试题及答案 1.在如图的直角坐标系中,已知点A(2,0)、B(0,-4),将线段AB绕点A按逆时针方向旋转90°至AC. (1)求点C的坐标; (2)若抛物线y=-1 4 x2+ax+4经过点C. ①求抛物线的解析式; ②在抛物线上是否存在点P(点C除外)使△ABP是以AB为直角边的等腰直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.

2.如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=-x2+bx+c 经过A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E,抛物线顶点为D. (1)求抛物线的解析式; (2)在第三象限内,F为抛物线上一点,以A、E、F为顶点的三角形面积为3,求点F的坐标; (3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t秒,当t为何值时,以P、B、C为顶点的三角形是直角三角形?直接写出所有符合条件的t值.

1.【解析】 试题分析:(1)过点C作CD垂直于x轴,由线段AB绕点A按逆时针方向旋转90°至AC,根据旋转的旋转得到AB=AC,且∠BAC为直角,可得∠OAB与∠CAD 互余,由∠AOB为直角,可得∠OAB与∠ABO互余,根据同角的余角相等可得一对角相等,再加上一对直角相等,利用ASA可证明三角形ACD与三角形AOB全等,根据全等三角形的对应边相等可得AD=OB,CD=OA,由A和B的坐标及位置特点求出OA及OB的长,可得出OD及CD的长,根据C在第四象限得出C的坐标; (2)①由已知的抛物线经过点C,把第一问求出C的坐标代入抛物线解析式,列出关于a的方程,求出方程的解得到a的值,确定出抛物线的解析式; ②假设存在点P使△ABP是以AB为直角边的等腰直角三角形,分三种情况考虑: (i)A为直角顶点,过A作AP 1垂直于AB,且AP 1 =AB,过P 1 作P 1 M垂直于x轴, 如图所示,根据一对对顶角相等,一对直角相等,AB=AP 1 ,利用AAS可证明三角 形AP 1M与三角形ACD全等,得出AP 1 与P 1 M的长,再由P 1 为第二象限的点,得出 此时P 1 的坐标,代入抛物线解析式中检验满足;(ii)当B为直角顶点,过B作 BP 2垂直于BA,且BP 2 =BA,过P 2 作P 2 N垂直于y轴,如图所示,同理证明三角形 BP 2N与三角形AOB全等,得出P 2 N与BN的长,由P 2 为第三象限的点,写出P 2 的 坐标,代入抛物线解析式中检验满足;(iii)当B为直角顶点,过B作BP 3 垂直 于BA,且BP 3=BA,如图所示,过P 3 作P 3 H垂直于y轴,同理可证明三角形P 3 BH 全等于三角形AOB,可得出P 3H与BH的长,由P 3 为第四象限的点,写出P 3 的坐 标,代入抛物线解析式检验,不满足,综上,得到所有满足题意的P的坐标.试题解析:(1)过C作CD⊥x轴,垂足为D, ∵BA⊥AC,∴∠OAB+∠CAD=90°, 又∠AOB=90°,∴∠OAB+∠OBA=90°, ∴∠CAD=∠OBA,又AB=AC,∠AOB=∠ADC=90°, ∴△AOB≌△CDA,又A(1,0),B(0,﹣2), ∴OA=CD=1,OB=AD=2, ∴OD=OA+AD=3,又C为第四象限的点, ∴C的坐标为(3,﹣1); (2)①∵抛物线y=﹣1 2 x2+ax+2经过点C,且C(3,﹣1), ∴把C的坐标代入得:﹣1=﹣9 2 +3a+2,解得:a= 1 2 , 则抛物线的解析式为y=﹣1 2 x2+ 1 2 x+2; ②存在点P,△ABP是以AB为直角边的等腰直角三角形,(i)若以AB为直角边,点A为直角顶点,

中考数学 二次函数培优专题

二次函数培优专题 基础训练 1.已知抛物线9)2(2 ++-=x a x y 的顶点在坐标轴上,则a 的值为__________. 2.已知抛物线c bx x y ++=2与y 轴交于点A ,与x 轴正半轴交于B ,C 两点,且BC =2,ABC S ?=3,则b =____________. 3.已知二次函数c bx ax y ++=2的图象如图所示. (1)这个二次函数的解析式是y =_________; (2)当x =________时,3=y ; (3)根据图象回答,当x _______时,0>y . 4.已知二次函数的图象经过原点及点(21- ,4 1-),且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为_______________. 5.二次函数c bx ax y ++=2 与一次函数c ax y +=在同一坐标系中的图象大致是( ) A B C D 6.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数c bx x y ++=2 的图象过点(1,0)……求证:这个二次函数的图象关于直线2=x 对称,根据现有信息,题中的二次函数图象不具有的性质是( ) A .过点(3,0) B .顶点是(2,-2) C .在x 轴上截得的线段长度是2 D .与y 轴的交点是(0,3) 7.如图,抛物线c bx ax y ++=2 与两坐标轴的交点分别是A ,B ,E ,且△ABE 是等腰直角三角形,AE =BE ,则下列关系式不能总成立的是( )

A .0=b B . 2 c S ABE =? C .1-=ac D .0=+c a 第7题图 第8题图 8.如图,某中学的校门是一抛物线形水泥建筑物,大门的地面宽度为8米,两侧距地面4米处高各有一个挂校名横匾用的铁环,两铁环的水平距离为6米,则校门的高为(精确到0.1米,水泥建筑物厚度忽略不计)( ) A .9.2米 B .9.1米 C .9米 D .5.1米 9.如图,是某防空部队进行射击训练时在平面直角坐标系中的示意图. 在地面O ,A 两个观测点测得空中固定目标C 的仰角分别为α和β,OA =1千米,tan α= 28 9, tan β=83,位于O 点正上方35 千米D 点处的直 升机向目标C 发射防空导弹,该导弹运行到达距地面最大高度3千米时,相应的水平距离为4千米(即图中 E 点). (1)若导弹运行为一抛物线,求抛物线的解析式; (2)说明按(1)中轨道运行的导弹能否击中目标的理由. 10.如图,已知△ABC 为正三角形,D ,E 分别是边AC 、BC 上的点(不在顶点),∠BDE =60°. (1)求证:△DEC ∽△BDA ; (2)若正三角形ABC 的边长为6,并设DC =x ,BE =y ,试求出y 与x 的函数关系式,并求BE 最短时,△BDE 的面积. 11.如图,在平面直角坐标系中,OB ⊥OA 且OB =2OA ,点A 的坐标是(-1,2) . C E D B A

初三《二次函数》经典习题汇编(易错题、难题)

《 二次函数 》经典习题汇编 模块一:二次函数的相关概念 1.(2014山东东营,9)若函数21(2)12 y mx m x m =++++的图象与x 轴只有一个交点,那么m 的值为( ) A .0 B .0或2 C .2或-2 D .0,2或-2 2.(2015江苏宿迁,16)当x m =或x n =(m n ≠)时,代数式223x x -+的值相等,则x m n =+时,代数 式223x x -+的值为 。 3.(2013江苏南通,18)已知22x m n =++和2x m n =+时,多项式2 46x x ++的值相等,且20m n -+≠,则当3(1)x m n =++时,多项式246x x ++的值等于________。 模块二:二次函数的顶点问题 1.(2015湖南益阳,8改编)若抛物线2()(1)y x m m =+++的顶点在第一象限,则m 的取值范围为________。 2.(2013吉林,6)如图,在平面直角坐标系中,抛物线所表示的函数解析式为22()y x h k =--+,则下列结论正确的是( ) A .0h >,0k > B .0h <,0k > C .0h <,0k < D .0h >,0k < 模块三:二次函数的对称轴问题 1.(2014福建三明,10)已知二次函数2 2y x bx c =-++,当1x >时,y 的值随x 值的增大而减小,则实数b 的取值范围是( ) A .1b ≥- B .1b ≤- C .1b ≥ D .1b ≤ 2.(2013贵州贵阳,15)已知二次函数222y x mx =++,当2x >时,y 随x 的增大而增大,则实数m 的取值范围是________。 3.(2015江苏常州,7)已知二次函数2(1)1y x m x =+-+,当1x >时,y 随x 的增大而增大,而m 的取值范围是( ) A .1m =- B .3m = C .1m ≤- D .1m ≥- 模块四:二次函数的图象共存问题 1.在同一直角坐标系中,函数y mx m =+和222y mx x =-++(m 是常数,且0m ≠)的图象可能是( )

二次函数培优100题突破

初三数学培优卷:二次函数考点分析培优 ★★★二次函数的图像抛物线的时候应抓住以下五点: 开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. ★★二次函数y=ax 2 +bx+c (a ,b ,c 是常数,a ≠0) 一般式:y=ax 2 +bx+c ,三个点 顶点式:y=a (x -h )2 +k ,顶点坐标对称轴 顶点坐标(-2b a ,244ac b a -). 顶点坐标(h ,k ) ★★★a b c 作用分析 │a │的大小决定了开口的宽窄,│a │越大,开口越小,│a │越小,开口越大, a , b 的符号共同决定了对称轴的位置,当b=0时,对称轴 x=0,即对称轴为y 轴,当a ,b 同号时,对称轴x=-2b a <0,即对称轴在y 轴左侧,当a ,b?异号时,对称轴x=-2b a >0, 即对称轴在y c?的符号决定了抛物线与y 轴交点的位置,c=0时,抛物线经过原点,c>0时,与y 轴交于正半轴;c<0时,与y?轴交于负半轴,以上a ,b ,c 的符号与图像的位置是共同作用的,也可以互相推出. 交点式:y=a(x- x 1)(x- x 2),(有交点的情况) 与x 轴的两个交点坐标x 1,x 2 对称轴为2 2 1x x h += 1 个单位,所得到的图象对应的二次函数关系式是 2)1(2-+=x y 则原二次函数的解析式为 2.二次函数的图象顶点坐标为(2,1),形状开品与抛物 线y= - 2x 2 相同,这个函数解析式为________。 3.如果函数1)3(232 ++-=+-kx x k y k k 是二次函数,则k 的值是______ 4.(08绍兴)已知点11()x y ,,22()x y ,均在抛物线 21y x =-上,下列说法中正确的是( ) A .若12y y =,则12x x = B .若12x x =-,则12y y =- C .若120x x <<,则12y y > D .若120x x <<,则12y y > 5.(兰州10) 抛物线c bx x y ++=2 图像向右平移2个单位再向下平移3个单位,所得图像的解析式为 322--=x x y ,则b 、c 的值为 A . b=2, c=2 B. b=2,c=0 C . b= -2,c=-1 D. b= -3, c=2 ★6.抛物线5)43()1(22+--++=x m m x m y 以Y 轴为对称轴则。M = 7.二次函数52-+=a ax y 的图象顶点在Y 轴负半轴上。且函数值有最小值,则m 的取值范围是 8.函数245 (5)21a a y a x x ++=-+-, 当a =_______时, 它是一次函数; 当a =_______时, 它是二次函数. 9.抛物线2 )13(-=x y 当x 时,Y 随X 的增大而增大 10.抛物线42 ++=ax x y 的顶点在X 轴上,则a 值为 ★11.已知二次函数2 )3(2--=x y ,当X 取1x 和2x 时函数值相等,当X 取1x +2x 时函数值为 12.若二次函数k ax y +=2 ,当X 取X1和X2(21x x ≠)时函数值相等,则当X 取X1+X2时,函数值为

二次函数典型例题

二次函数典型例题 一、已知二次函数y=ax2+bx+c的图象与x轴交于点(-2,0)、(x1,0),且10;③ 4a+c<0;正确的有几个? 解1: 两根之积为负,c/a<0,C>0,a<0 对对称轴为负,-b/2a<0,a,b同号都为负 两根之和为负,-b/a>-1,a<b<0 把(-2,0)代入 0=4a-2b+c,2b=4a+c<0 x=1时,a+b+c>0,6a+3c>0,即2a+c>0,都正确 解2 1. 函数y=f(x)通过(-2,0), f(-2)=4a-2b+c=0 2. 函数与x轴交于-2, x1 两点,与y正半轴相交,且交点x=0在-2,1之间,所以开口向下,a<0 又对称轴x=-b/2a 在(-2+1)/2和(-2+2)/2之间所以-1/2<-b/2a<0 即a0 2a+2b+2c>0 和上式联立得 2a+c>0 4. 由于函数与y轴交于正半轴且在(0,2) 下方,f(0)=c<2 c=2b-4a<2 即2a-b+1>0 由以上可知正确结论个数四个 追问2a+2b+2c>0和 c=2b-4a怎么得出? 回答由f(1)=a+b+c>0 不等式两边同乘以2 得 2a+2b+2c>0 由f(-2)=4a-2b+c=0 得 c=2b-4a 2a+2b+2c>0和4a-2b+c=0 两式相加即可得出 2a+c>0 二、二次函数y=ax2+bx+c的图象与x轴交于点(1,0)且a<b<c.那么①abc>0;②b2-4ac<0;③a+b+c=0;④2a-b<0;⑤2a+c<0.这五个式子中,一定正确的是③④⑤(填序号). 解析根据图象与x轴交于点(1,0)且a<b<c,首先确定a<0,c>

二次函数培优经典题

培优训练五(二次函数1) 1、如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是( ) A .m =n ,k >h B .m =n ,k <h C .m >n ,k =h D .m <n ,k =h 2、已知二次函数y =ax 2+bx +c 的图象如图所示,它与x 轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b ﹣2a =0;②abc <0;③a ﹣2b +4c <0;④8a +c >0.其中正确的有 ( ) 3、如图,二次函数2y ax bx c =++的图像与y 轴正半轴相交,其顶点坐标 为(1,12),下列结论:①0ac <;②0a b +=; ③244ac b a -=; ④0a b c ++<.其中正确结论的个数是 A . 1 B . 2 C . 3 D . 4 4、若二次函数c x x y +-=62的图象经过A (-1,y 1)、B (2,y 2)、C (23+,y 3)三点,则关于y 1、y 2、y 3大小关系正确的是 A .y 1>y 2>y 3 B .y 1>y 3>y 2 C .y 2>y 1>y 3 D .y 3>y 1>y 2 5、如图,一次函数)0(1≠+=k n kx y 与二次函数 )0(22≠++=a c bx ax y 的图象相交于A (1-,5)、B (9,2)两点,则关 于x 的不等式c bx ax n kx ++≥+2 的解集为 A 、 91≤≤-x B 、91<≤-x C 、91≤<-x D 、1-≤x 或9≥x 6.如图,已知:直线3+-=x y 交x 轴于点A ,交y 轴于点B ,抛物线y=ax 2+bx+c 经过A 、

二次函数的实际应用(典型例题分类)

二次函数与实际问题 1、理论应用(基本性质的考查:解析式、图象、性质等) 2、实际应用(求最值、最大利润、最大面积等) 解决此类问题的基本思路是: (1)理解问题; (2)分析问题中的变量和常量以及它们之间的关系; (3)用数学的方式表示它们之间的关系; (4)做函数求解; (5)检验结果的合理性,拓展等. 例一:如图在长200米,宽80米的矩形广场内修建等宽的十字形道路,绿地面积y(㎡)与路宽x(m)之间的关系并求出绿地面积的最大值 @ 变式练习1:如图,用50m长的护栏全部用于建造 一块靠墙的长方形花园,写出长方形花园的面积 y(㎡)与它与墙平行的边的长x(m)之间的函数 关系式当x为多长时,花园面积最大 ·

例二:某商店经营T恤衫,已知成批购进时单价是元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多 设销售单价为x元,(0<x≤元,那么 (1)销售量可以表示为____________________; (2)销售额可以表示为____________________; (3)@ (4)所获利润可以表示为__________________; (5)当销售单价是________元时,可以获得最大利润,最大利润是__________。 ~ 变式练习2:某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子. (1)问题中有哪些变量其中自变量是_______,因变量是___________. (2)假设增种棵橙子树,那么果园里共有_________棵橙子树,这时平均每棵树结 _________个橙子. (3)如果橙子的总产量为y个,请你写出x与y之间的关系式_______________.(4)果园里种_____棵橙子树橙子的总产量最多,最多是________________。 (

相关主题
文本预览
相关文档 最新文档