当前位置:文档之家› 等比数列知识点并附例题及解析

等比数列知识点并附例题及解析

等比数列知识点并附例题及解析
等比数列知识点并附例题及解析

等比数列知识点并附例题及解析

1、等比数列的定义:()()*1

2,n

n a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式:

()11110,0n n

n n a a a q q A B a q A B q

-==

=??≠?≠,首项:1a ;公比:q

推广:n m n m n n n m m a a a q q q a --=?=?=3、等比中项:

(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =

A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个( (2)数列{}n a 是等比数列211n n n a a a -+?=? 4、等比数列的前n 项和n S 公式:

(1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a q

S q

q

--=

=

-- 11''11n n n a a

q A A B A B A q q

=

-=-?=---(,,','A B A B 为常数)

5、等比数列的判定方法:

(1)用定义:对任意的n ,都有1

1(0){}n n n n n n

a a qa q q a a a ++==≠?或为常数,为等比数列

(2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠?为等比数列 (3)通项公式:()0{}n n n a A B A B a =??≠?为等比数列 6、等比数列的证明方法:

依据定义:若

()()*1

2,n

n a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=?为等比数列 7、等比数列的性质:

(2)对任何*,m n N ∈,在等比数列{}n a 中,有n m n m a a q -=。

(3)若*(,,,)m n s t m n s t N +=+∈,则n m s t a a a a ?=?。特别的,当2m n k +=时,得2n m k a a a ?= 注:12132n n n a a a a a a --?=?=???

(4)数列{}n a ,{}n b 为等比数列,则数列{}n

k

a ,{}n k a ?,{}k n a ,{}n n k a

b ??,{}

n n a b (k 为非零常数)均为等比数列。

(5)数列{}n a 为等比数列,每隔*()k k N ∈项取出一项23(,,,,)m m k m k m k a a a a +++???仍为等比数列

(6)如果{}n a 是各项均为正数的等比数列,则数列{log }a n a 是等差数列 (7)若{}n a 为等比数列,则数列n S ,2n n S S -,32,n n S S -???,成等比数列 (8)若{}n a 为等比数列,则数列12n a a a ??????,122n n n a a a ++??????,21223n n n a a a ++???????成等比数列

(9)①当1q >时,110{}0{}{n n a a a a ><,则为递增数列

,则为递减数列 ②当1q <0<时,110{}0{}{

n n a a a a ><,则为递减数列

,则为递增数列

③当1q =时,该数列为常数列(此时数列也为等差数列); ④当0q <时,该数列为摆动数列.

(10)在等比数列{}n a 中,当项数为*

2()n n N ∈时,1S S q

=奇偶

二 例题解析

【例1】 已知S n 是数列{a n }的前n 项和,S n =p n (p ∈R ,n ∈N*),那么数列{a n }.( )

A .是等比数列

B .当p ≠0时是等比数列 B .

C .当p ≠0,p ≠1时是等比数列

D .不是等比数列

【例2】 已知等比数列1,x 1,x 2,…,x 2n ,2,求x 1·x 2·x 3·…·x 2n .

【例3】 {a }(1)a =4a n 25等比数列中,已知,=-

,求通项公1

2

式;(2)已知a 3·a 4·a 5=8,求a 2a 3a 4a 5a 6的值.

【例4】 求数列的通项公式:

(1){a n }中,a 1=2,a n+1=3a n +2

(2){a n }中,a 1=2,a 2=5,且a n+2-3a n+1+2a n =0

三、 考点分析

考点一:等比数列定义的应用

1、数列{}n a 满足()1123

n n a a n -=-≥,14

3a =,则4a =_________.

2、在数列{}n a 中,若11a =,()1211n n a a n +=+≥,则该数列的通项

n a =______________. 考点二:等比中项的应用

1、已知等差数列{}n a 的公差为2,若1a ,3a ,4a 成等比数列,则2a =( )

A .4-

B .6-

C .8-

D .10-

2、若a 、b 、c 成等比数列,则函数2y ax bx c =++的图象与x 轴交点的个数为( ) A .0

B .1

C .2

D .不确定

3、已知数列{}n a 为等比数列,32a =,2420

3

a a +=,求{}n a 的通项公式. 考点三:等比数列及其前n 项和的基本运算 1、若公比为

23的等比数列的首项为98,末项为1

3

,则这个数列的项数是( ) A .3 B .4 C .5 D .6 2、已知等比数列{}n a 中,33a =,10384a =,则该数列的通项

n a =_________________.

3、若{}n a 为等比数列,且4652a a a =-,则公比q =________.

4、设1a ,2a ,3a ,4a 成等比数列,其公比为2,则

12

34

22a a a a ++的值为( )

A .1

4

B .

12 C .1

8

D .1 5、等比数列{a n }中,公比q=2

1

且a 2+a 4+…+a 100=30,则a 1+a 2+…

+a 100=______________.

考点四:等比数列及其前n 项和性质的应用

1、在等比数列{}n a 中,如果66a =,99a =,那么3a 为( )

A .4

B .32

C .16

9

D .2

2、如果1-,a ,b ,c ,9-成等比数列,那么( ) A .3b =,9ac =

B .3b =-,9ac =

C .3b =,9ac =-

D .3b =-,9ac =-

3、在等比数列{}n a 中,11a =,103a =,则23456789a a a a a a a a 等于( ) A .81

B

.C

D .243

4、在等比数列{}n a 中,()9100a a a a +=≠,1920a a b +=,则99100a a +等于

( ) A .98b a B .9

b a ?? ??? C .109

b a D .10

b a ?? ???

5、在等比数列{}n a 中,3a 和5a 是二次方程250x kx ++=的两个根,则246a a a 的值为( ) A .25

B

.C

.-

D

.±

6、若{}n a 是等比数列,且0n a >,若243546225a a a a a a ++=,那么35a a +的值等于

考点五:公式11,(1)

,(2)

n n n S n a S S n -=?=?-≥?的应用

1、若数列的前n 项和S n =a 1+a 2+…+a n ,满足条件log 2S n =n ,那么{a n }是( ) A.公比为2的等比数列 B.公比为

2

1

的等比数列 C.公差为2的等差数列 D.既不是等差数列也不是等比数列 2、等比数列前n 项和S n =2n -1,则前n 项的平方和为( )

A.(2n -1)2

B.31(2n -1)2

C.4n -1

D.3

1

(4n -1)

3、设等比数列{a n }的前n 项和为S n =3n +r ,那么r 的值为______________.

一、等差和等比数列比较:

二、等差数列的定义与性质

定义:1n n a a d +-=(d 为常数), 通项:()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ?=+ 前n 项和:()()

1112

2

n n a a n n n S na

d +-=

=+

性质:{}n a 是等差数列

(1)若m n p q +=+,则m n p q a a a a +=+;

(2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n ;

(3)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则

21

21

m m m m a S b T --=

(4){}n a 为等差数列2n S an bn ?=+(a b ,为常数,是关于n 的常数项为0的二次函数,可能有最大值或最小值) (5)项数为偶数n 2的等差数列{}

n a ,有

),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S

nd S S =-奇偶,

1

+=

n n

a a S S 偶

奇. (6)项数为奇数12-n 的等差数列{}

n a ,有

)()12(12为中间项n n n a a n S -=-, n a S S =-偶奇,

1

-=

n n S S 偶

奇.

三、等比数列的定义与性质

定义:

1

n n

a q a +=(q 为常数,0q ≠)

,通项:11n n a a q -=. 等比中项:x G y 、、成等比数列2G xy ?=

,或G =

前n 项和:()11(1)1(1)1n n na q S a q q q =??

=-?≠?

-?

(要注意q !)

性质:{}n a 是等比数列

(1)若m n p q +=+,则m n p q a a a a =··

(2)232n n n n n S S S S S --,,……仍为等比数列,公比为n q .

四、数列求和的常用方法:

1 、裂项分组法:

1111

122334*********()()()()122334111111

n n n n n n n ++++???+=-+-+-++-+=-=

++()、

1111

1,2,3,4,n 392781

1111

1234392781

+的前和是:(++++)+(+++)

2、 错位相减法:凡等差数列和等比数列对应项的乘积构成的数列求和时用此方法, 例

23n-2n-1n n S =x 3x 5x (2n-5)x (2n-3)x (2n-1)x (x 1)+++

+++≠

解:

23n-2n-1n n S =x 3x 5x (2n-5)x (2n-3)x (2n-1)x (x 1)++++++≠ ① 234

n-1n n+1n xS =x 3x 5x (2n-5)x (2n-3)x (2n-1)x (x 1)+++++≠ ②

① 减 ② 得:

()()()()23n-1n n+1

n 2n-1n+1

(1x)S =x 2x 2x 2x 2x 2n 1x 2x 1x x 2n 1x

1x

-+++

++---=+

---

从而求出n S 。

错位相减法的步骤:(1)将要求和的杂数列前后各写出三项,列出①式;(2)将①式左右两边都乘以公比q ,得到②式;(3)用①-②,错位相减;(4)化简计算。 3、倒序相加法:前两种方法不行时考虑倒序相加法 例:等差数列求和:

n 123n 2n 1n

n n n 1n 2321

S =a a a a a a S =a a a a a a ----+++

++++++

+++

两式相加可得:

()()()()()()

n 1n 2n 13n 23n 22n 11n 2S =a a a a a a a a a a a a ----++++++

++++++

即 :()1n 2n a a n S =+

所以

等比数列·例题解析

【例1】 已知S n 是数列{a n }的前n 项和,S n =p n (p ∈R ,n ∈N*),那么数列{a n }.

[ ]

A .是等比数列

B .当p ≠0时是等比数列

C .当p ≠0,p ≠1时是等比数列

D .不是等比数列

【例2】 已知等比数列1,x 1,x 2,…,x 2n ,2,求x 1·x 2·x 3·…·x 2n .

()1n n a a 2

n S +=

【例3】 {a }(1)a =4a n 25等比数列中,已知,=-

,求通项公1

2

式;(2)已知a 3·a 4·a 5=8,求a 2a 3a 4a 5a 6的值.

【例4】 已知a >0,b >0且a ≠b ,在a ,b 之间插入n 个正数x 1,x 2,…,x n ,使得a ,x 1,x 2,…,x n ,b 成等比数列,求

证…<

.x x x a b

n n 122

【例5】

设a 、b 、c 、d 成等比数列,求证:(b -c)2+(c -a)2+(d -b)2=(a -d)2.

【例6】 求数列的通项公式: (1){a n }中,a 1=2,a n+1=3a n +2

(2){a n }中,a 1=2,a 2=5,且a n+2-3a n+1+2a n =0

【例7】 a a a a (a a )a 2a (a a )a a a =0a a a a 1234122242

2

1342232

1234若实数、、、都不为零,且满足+-+++求证:、、成等比数列,且公比为.

【例8】若a、b、c成等差数列,且a+1、b、c与a、b、c+2都成等

比数列,求b的值.

【例9】已知等差数列{a n}的公差和等比数列{b n}的公比都是d,又知d≠1,且a4=b4,a10=b10:

(1)求a1与d的值;

(2)b16是不是{a n}中的项?

【例10】{a}b=(1

2

)b b b=

21

8

b b b=1

8

n n

a n

123

123

设是等差数列,,已知++,,求等差数列的通项.

【例11】三个数成等比数列,若第二个数加4就成等差数列,再把这个等差数列的第3项加32又成等比数列,求这三个数.

【例12】有四个数,其中前三个数成等差数列,后三个数成等比数列,

并且第一个数与第四个数的和是16,第二个数与第三个数

的和是12,求这四个数.

【例13】已知三个数成等差数列,其和为126;另外三个数成等比数

列,把两个数列的对应项依次相加,分别得到85,76,84.求

这两个数列.

【例14】已知在数列{a n}中,a1、a2、a3成等差数列,a2、a3、a4

成等比数列,a3、a4、a5的倒数成等差数列,证明:a1、a3、

a5成等比数列.

【例15】已知(b-c)log m x+(c-a)log m y+(a-b)log m z=0.

(1)设a,b,c依次成等差数列,且公差不为零,求证:x,y,z成等比数列.

(2)设正数x,y,z依次成等比数列,且公比不为1,求证:a,b,c成等差数列.

等比数列·例题解析

【例1】已知S n是数列{a n}的前n项和,S n=p n(p∈R,n∈N*),那么数列{a n}.

[ ] A.是等比数列

B .当p ≠0时是等比数列

C .当p ≠0,p ≠1时是等比数列

D .不是等比数列

分析 由S n =p n (n ∈N*),有a 1=S 1=p ,并且当n ≥2时, a n =S n -S n-1=p n -p n-1=(p -1)p n-1

故-,因此数列成等比数列≠-≠a =(p 1)p {a }p 0p 10

(p 1)p 2n n 1?--=-???

??

????--()()p p

p p p n 212 但满足此条件的实数p 是不存在的,故本题应选D .

说明 数列{a n }成等比数列的必要条件是a n ≠0(n ∈N*),还要注

意对任∈,≥,

都为同一常数是其定义规定的准确含义.n *n 2N a a n

n -1

【例2】 已知等比数列1,x 1,x 2,…,x 2n ,2,求x 1·x 2·x 3·…·x 2n . 解 ∵1,x 1,x 2,…,x 2n ,2成等比数列,公比q ∴2=1·q 2n+1

x 1x 2x 3...x 2n =q .q 2.q 3...q 2n =q 1+2+3+ (2)

=q

2n(1+2n)

2

==+q n n n ()212

【例3】 {a }(1)a =4a n 25等比数列中,已知,=-

,求通项公1

2

式;(2)已知a 3·a 4·a 5=8,求a 2a 3a 4a 5a 6的值.

解 (1)a =a q q =5252-∴-1

2

∴==-=∵·=··=a a q 4()()(2)a a a a a a a =8

n 2n 2n 2n 4

354234543

----121

2

∴a 4=2

又==∴a a a a a a a a a a =a =32

2635423456452

【例4】 已知a >0,b >0且a ≠b ,在a ,b 之间插入n 个正数x 1,x 2,…,x n ,使得a ,x 1,x 2,…,x n ,b 成等比数列,求

证…<

.x x x a b

n n 122

+ 证明 设这n +2个数所成数列的公比为q ,则b=aq n+1

∴∴……<

q b a

x x x aqaq aq aq

ab a b n n n n n n ++=

===+112212

2

【例5】 设a 、b 、c 、d 成等比数列,求证:(b -c)2+(c -a)2+(d -b)2=(a -d)2.

证法一 ∵a 、b 、c 、d 成等比数列

a b b c c d

== ∴b 2=ac ,c 2=bd ,ad =bc

∴左边=b 2-2bc +c 2+c 2-2ac +a 2+d 2-2bd +b 2 =2(b 2-ac)+2(c 2-bd)+(a 2-2bc +d 2) =a 2-2ad +d 2 =(a -d)2=右边

证毕.

证法二 ∵a 、b 、c 、d 成等比数列,设其公比为q ,则: b =aq ,c =aq 2,d=aq 3

∴左边=(aq -aq 2)2+(aq 2-a)2+(aq 3-aq)2 =a 2-2a 2q 3+a 2q 6 =(a -aq 3)2 =(a -d)2=右边 证毕.

说明 这是一个等比数列与代数式的恒等变形相综合的题目.证法一是抓住了求证式中右边没有b 、c 的特点,走的是利用等比的条件消去左边式中的b 、c 的路子.证法二则是把a 、b 、c 、d 统一化成等比数列的基本元素a 、q 去解决的.证法二稍微麻烦些,但它所用的统一成基本元素的方法,却较证法一的方法具有普遍性.

【例6】 求数列的通项公式:

(1){a n }中,a 1=2,a n+1=3a n +2

(2){a n }中,a 1=2,a 2=5,且a n+2-3a n+1+2a n =0 思路:转化为等比数列.

解 (1)a =3a 2a 1=3(a 1)n+1n n+1n +++?

∴{a n +1}是等比数列 ∴a n +1=3·3n-1 ∴a n =3n -1

(2)a 3a 2a =0a a =2(a a )n+2n+1n n+2n+1n+1n -+--?

∴{a n+1-a n }是等比数列,即 a n+1-a n =(a 2-a 1)·2n-1=3·2n-1

再注意到a 2-a 1=3,a 3-a 2=3·21,a 4-a 3=3·22,…,a n -a n-1=3·2n-2,这些等式相加,即可以得到

a =3[1222

]=3=3(21)n 2n-2

n 1+++…+·-21

21

1n ----

说明 解题的关键是发现一个等比数列,即化生疏为已知.(1)中发现{a n +1}是等比数列,(2)中发现{a n+1-a n }是等比数列,这也是通常说的化归思想的一种体现.

【例7】 a a a a (a a )a 2a (a a )a a a =0a a a a 1234122242

2

1342232

1234若实数、、、都不为零,且满足+-+++求证:、、成等比数列,且公比为.

证 ∵a 1、a 2、a 3、a 4均为不为零的实数

∴+-+++为实系数一元二次方程

等式+-+++说明上述方程有实数根.

(a a )x 2a (a a )x a a =0(a a )a 2a (a a )a a a =0a 12222213223212

22422134223

24

∴上述方程的判别式Δ≥0,即

[2a (a a )]4(a a )(a a )=4(a a a )0(a a a )0

213212222232

2213222132-+-++--≥∴-≤

又∵a 1、a 2、a 3为实数

∴-≥必有-即(a a a )0

a a a =0a =a a 2213222

132

213

因而a 1、a 2、a 3成等比数列

又∵a =2a 42()()()a a a a a a a a a a a a 1312

222131213

2

12++=++= ∴a 4即为等比数列a 1、a 2、a 3的公比.

【例8】 若a 、b 、c 成等差数列,且a +1、b 、c 与a 、b 、c +2都成等比数

列,求b 的值.

解 设a 、b 、c 分别为b -d 、b 、b +d ,由已知b -d +1、b 、b +d 与b -d 、b 、b +d +2都成等比数列,有

b =(b d 1)(b d)b =(b d)(b d 2)

22-++①-++②

?????

整理,得

b =b d b d

b =b d 2b 2d

222222

-++-+-????? ∴b +d=2b -2d 即b=3d 代入①,得

9d 2=(3d -d +1)(3d +d) 9d 2=(2d +1)·4d 解之,得d=4或d=0(舍) ∴b=12

【例9】 已知等差数列{a n }的公差和等比数列{b n }的公比都是d ,又知d ≠1,且a 4=b 4,a 10=b 10:

(1)求a 1与d 的值; (2)b 16是不是{a n }中的项? 思路:运用通项公式列方程

解 (1)a =b a =b 3d =a d

a 9d =a d a (1d )=3d a (1d )=9d

441010113

119

13

19

由++----????????

???????a ??==-=-==-d d 2=063+-舍或∴d d a d d 123133122

2

()

(2)∵b 16=b 1·d 15=-32b 1

且+·--∴a =a 3d =22=b b =b d =2b =22b =a =2

413441313113- ∴b 16=-32b 1=-32a 1,如果b 16是{a n }中的第k 项,则 -32a 1=a 1+(k -1)d ∴(k -1)d=-33a 1=33d

∴k=34即b 16是{a n }中的第34项.

【例10】 {a }b =(12)b b b =218

b b b =1

8

n n a n 123123设是等差数列,,已知++,

,求等差数列的通项.

解 设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d

∴·b =(12

)b b =(12)(12)=(12

)b n a 13a a +2d 2(a +d)2

2

1

111+-()n d

1

由,解得,解得,代入已知条件整理得+b b b =18b =18b =12b b b =18b b =14

b b =17

8123232

123131

3b b b 123218++=??

??????

?????? 解这个方程组,得

b =2b =

18b =1

8

b =21313,或, ∴a 1=-1,d=2或a 1=3,d=-2

∴当a 1=-1,d=2时,a n =a 1+(n -1)d=2n -3 当a 1=3,d=2时,a n =a 1+(n -1)d=5-2n

【例11】 三个数成等比数列,若第二个数加4就成等差数列,再把这个等

差数列的第3项加32又成等比数列,求这三个数.

解法一 按等比数列设三个数,设原数列为a ,aq ,aq 2 由已知:a ,aq +4,aq 2成等差数列 即:2(aq +4)=a +aq 2

a ,aq +4,aq 2+32成等比数列 即:(aq +4)2=a(aq 2+32)

?aq 2=4a +②

①,②两式联立解得:或-∴这三数为:,,或,,.

a =2q =3a =

29q =52618????

?

???-2910950

9

解法二 按等差数列设三个数,设原数列为b -d ,b -4,b +d

由已知:三个数成等比数列 即:(b -4)2=(b -d)(b +d)

?8b d =16

2-①

b -d ,b ,b +d +32成等比数列 即b 2=(b -d)(b +d +32)

?32b d 32d =0

2--②

①、②两式联立,解得:或∴三数为,,或,,.

b =269d =83b =10

d =82618?????

????

?-2910950

9

解法三 任意设三个未知数,设原数列为a 1,a 2,a 3 由已知:a 1,a 2,a 3成等比数列

得:①a =a a 2213

a 1,a 2+4,a 3成等差数列 得:2(a 2+4)=a 1+a 3

a 1,a 2+4,a 3+32成等比数列 得:(a 2+4)2=a 1(a 3+32)

①、②、③式联立,解得:或a =29a =109a =509a =2

a =6a =18123123

-

?

???

?

?

?

?????

?? 说明 将三个成等差数列的数设为a -d ,a ,a +d ;将三个成

等比数列的数设为,,或,,是一种常用技巧,可起到a aq aq (a aq)2a

q

简化计算过程的作用.

【例12】 有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数.

分析 本题有三种设未知数的方法

方法一 设前三个数为a -d ,a ,a +d ,则第四个数由已知条

件可推得:()a d a

+2

方法二 设后三个数为b ,bq ,bq 2,则第一个数由已知条件推得为2b -bq .

方法三 设第一个数与第二个数分别为x ,y ,则第三、第四个数依次为12-y ,16-x .

由这三种设法可利用余下的条件列方程组解出相关的未知数,从而解出所求的四个数,

解法一 a d a a d 设前三个数为-,,+,则第四个数为.()a d a

+2

依题意,有-+

++a d =16a (a d)=12()a d a

+????

?2

解方程组得:或-a =4

d =4a =9d =6

1122?????

? 所求四个数为:0,4,8,16或15,9,3,1.

解法二 设后三个数为:b ,bq ,bq 2,则第一个数为:2b -bq

依题意有:-++2b bq bq =16

b bq =12

2???

解方程组得:或b =4q =2 b =9q =13

1122??????

??

所求四个数为:0,4,8,16或15,9,3,1.

解法三 设四个数依次为x ,y ,12-y ,16-x .

依题意有+-·--x (12y)=2y

y (16x)=(12y)2

???

解方程组得:或x =0y =4x =15

y =91122

?????

? 这四个数为0,4,8,16或15,9,3,1.

【例13】 已知三个数成等差数列,其和为126;另外三个数成等比数列,把两个数列的对应项依次相加,分别得到85,76,84.求这两个数列.

解 设成等差数列的三个数为b -d ,b ,b +d ,由已知,b -d +b +b +d=126 ∴b=42

这三个数可写成42-d ,42,42+d .

再设另三个数为a ,aq ,aq 2.由题设,得

a 42d =85ap 42=76

aq 42d =84

2

+-+++???

??

整理,得-①②+③

a d =43aq =34

aq d =42

2

???

?? 解这个方程组,得 a 1=17或a 2=68

当a=17时,q=2,d=-26

当时,,a =68q =

1

2

d =25 从而得到:成等比数列的三个数为17,34,68,此时成等差的三个数为68,42,16;或者成等比的三个数为68,34,17,此时成等差的三个数为17,42,67.

【例14】 已知在数列{a n }中,a 1、a 2、a 3成等差数列,a 2、a 3、a 4成等比数列,a 3、a 4、a 5的倒数成等差数列,证明:a 1、a 3、a 5成等比数列.

证明 由已知,有 2a 2=a 1+a 3

a =a a 3224

·②③

211435a a a =+

由③,得·由①,得代入②,得··a =2a a a +a a =

a +a 2a =a +a 243535

213

3

213235

35

a a a a + 整理,得a =

a (a +a )

a +a 351235

即 a 3(a 3+a 5)=a 5(a 1+a 3)

a a a =a a a a a =a a 323515353

2

15

++∴·

所以a 1、a 3、a 5成等比数列.

【例15】 已知(b -c)log m x +(c -a)log m y +(a -b)log m z=0.

(1)设a ,b ,c 依次成等差数列,且公差不为零,求证:x ,y ,z 成等比数列.

高中数学-等比数列练习题(含答案)

等比数列练习(含答案) 一、选择题 1.(广东卷文)已知等比数列}{n a 的公比为正数,且3a ·9a =22 5a ,2a =1,则1a = A. 2 1 B. 22 C. 2 D.2 【答案】B 【解析】设公比为q ,由已知得( )2 2 8 41112a q a q a q ?=,即2 2q =,又因为等比数列}{n a 的公比为 正数,所以q = 故212a a q = == ,选B 2、如果1,,,,9a b c --成等比数列,那么( ) A 、3,9b ac == B 、3,9b ac =-= C 、3,9b ac ==- D 、3,9b ac =-=- 3、若数列}{ n a 的通项公式是=+++-=1021),23()1(a a a n a n n Λ则 (A )15 (B )12 (C )-12 D )-15 答案:A 4.设{n a }为等差数列,公差d = -2,n S 为其前n 项和.若1011S S =,则1a =( ) A.18 B.20 C.22 D.24 答案:B 解析: 20 ,100,1111111110=∴+==∴=a d a a a S S Θ 5.(四川)已知等比数列()n a 中21a =,则其前3项的和3S 的取值范围是() A.(],1-∞- B.()(),01,-∞+∞U C.[)3,+∞ D.(][),13,-∞-+∞U 答案 D 6.(福建)设{a n }是公比为正数的等比数列,若n 1=7,a 5=16,则数列{a n }前7项的和为( ) A.63 B.64 C.127 D.128 答案 C 7.(重庆)在等比数列{a n }中,a 2=8,a 5=64,,则公比q 为( ) A .2 B .3 C .4 D .8 答案 A 8.若等比数列{a n }满足a n a n +1=16n ,则公比为 A .2 B .4 C .8 D .16 答案:B 9.数列{a n }的前n 项和为S n ,若a 1=1,a n +1 =3S n (n ≥1),则a 6= (A )3 × 44 (B )3 × 44+1 (C )44 (D )44+1 答案:A 解析:由a n +1 =3S n ,得a n =3S n -1(n ≥ 2),相减得a n +1-a n =3(S n -S n -1)= 3a n ,则a n +1=4a n (n ≥ 2),a 1=1,a 2=3,则a 6= a 2·44=3×44,选A . 10.(湖南) 在等比数列{}n a (n ∈N*)中,若11a =,41 8 a =,则该数列的前10项和为( ) A .4122- B .2122- C .10122- D .111 22 - 答案 B 11.(湖北)若互不相等的实数 成等差数列, 成等比数列,且 310a b c ++=,则a = A .4 B .2 C .-2 D .-4 答案 D 解析 由互不相等的实数,,a b c 成等差数列可设a =b -d ,c =b +d ,由310a b c ++=可得b =2,所以a =2-d ,c =2+d ,又,,c a b 成等比数列可得d =6,所以a =-4,选D 12.(浙江)已知{}n a 是等比数列,4 1 252= =a a ,,则13221++++n n a a a a a a Λ=( ) A.16(n --41) B.6(n --21) ,,a b c ,,c a b

数列求和方法和经典例题

数列求和方法和经典例题 求数列的前n 项和,一般有下列几种方法: 一、公式法 1、等差数列前n 项和公式 2、等比数列前n 项和公式 二、拆项分组求和法 某些数列,通过适当分组可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列求和公式求和,从而得出原数列的和。 三、裂项相消求和法 将数列中的每一项都分拆成几项的和、差的形式,使一些项相互拆消,只剩下有限的几项,裂项时可直接从通项入手,且要判断清楚消项后余下哪些项。 四、重新组合数列求和法 将原数列的各项重新组合,使它成为一个或n 个等差数列或等比数列后再求和 五、错位相减求和法 适用于一个等差数列和一个等比数列对应项相乘构成的数列求和 典型例题 一、拆项分组求和法 例1、求数列1111123,2482n n ??+ ???,,,,的前n 项和 例2、求和:222 221111n n x x x x x ??????++++++ ? ? ?????? ?

例3、求数列2211,12,122,,1222,n -+++++++的前n 项和 例4、求数列5,55,555,5555,的前n 项和 二、裂项相消求和法 例5、求和:()()11113352121n S n n =+++??-+ 例6、求数列1111,, ,,,12123123n +++++++的前n 项和 例7、求和:()11113242n S n n =+++??+

例8、数列{} n a 的通项公式n a =,求数列的前n 项和 三、重新组合数列求和法 例9、求2222222212345699100-+-+-++- 四、错位相减求和法 例10、求数列123,,,,,2482n n 的前n 项和 例11、求和:()23230n n S x x x nx x =++++≠

等比数列求和教案

课题:等比数列的前n项和(一课时) 教材:浙江省职业学校文化课教材《数学》下册 (人民教育出版社) 一、教材分析 ●教学内容 《等比数列的前n项和》是中职数学人教版(基础模块)(下)第六章《数列》第四节的内容。是数列这一章中的一个重要内容, 就知识的应用价值上看,它是从大量数学问题和现实问题中抽象出来的一个模型,在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等,另外公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养.就内容的人文价值来看,等比数列的前n项和公式的探究与推导需要学生观察、归纳、猜想、证明,这有助于培养学生的创新思维和探索精神,同时也是培养学生应用意识和数学能力的良好载体. 二、学情分析 ●知识基础:前几节课学生已学习了等差数列求和,等比数列的定义及通项公式等内容,这为过渡到本节的学习起着铺垫作用. ●认知水平与能力:高二学生具有自主探究的能力,能在教师的引导下独立、合作地解决一些问题,但从学生的思维特点看,很容易把本节内容与等差数列前n项和公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有所不同,这对学生 q 这一特殊情况,学生也往往容易忽略,尤的思维是一个突破,另外,对于1 其是在后面使用的过程中容易出错. 三、目标分析 依据教学大纲的教学要求,渗透新课标理念,并结合以上学情分析,我制定了如下教学目标: 1.教学目标

●知识与技能目标 理解用错位相减法推导等比数列前n项和公式的过程,掌握公式的特点,并在此基础上能初步应用公式解决与之有关的问题. ●过程与方法目标 通过对公式的研究过程,提高学生的建模意识及探究问题、培养学生观察、 分析的能力和协作、竞争意识。 ●情感、态度与价值目标 通过学生自主对公式的探索,激发学生的求知欲,鼓励学生大胆尝试、勇于 探索、敢于创新,磨练思维品质,培养学生主动探索的求知精神和团结协作精神, 感受数学的美。 2.教学重点、难点 ●重点:等比数列前n项和公式的推导及公式的简单应用. ●难点:错位相减法的生成和等比数列前n项和公式的运用. 突破难点的手段:“抓两点,破难点”,即一抓学生情感和思维的兴奋点, 激发他们的兴趣,鼓励学生大胆猜想、积极探索,并及时给予肯定;二抓知识的 切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给予 适当的提示和指导. 四、教学模式与教法、学法 根据学生的认知特点,本着学生为主体教师为主导的原则采用多元教学法,让学生至于情景中。学生动手操作实践分组讨论探究,而教师重在启发,引导。基于教学平台和数学软件让学生可观,可感,可交流的环境中轻松的学习。 五、教学过程

(完整版)等比数列的概念与性质练习题

等比数列的概念与性质练习题 1.已知等比数列}{n a 的公比为正数,且3a ·9a =22 5a ,2a =1,则1a = A. 2 1 B. 22 C. 2 D.2 2. 如果1,,,,9a b c --成等比数列,那么( ) A 、3,9b ac == B 、3,9b ac =-= C 、3,9b ac ==- D 、3,9b ac =-=- 3、若数列}{n a 的通项公式是1210(1)(32),n n a n a a a =--+++=L 则 (A )15 (B )12 (C )-12 D )-15 4.在等比数列{a n }中,a 2=8,a 5=64,,则公比q 为( ) A .2 B .3 C .4 D .8 5..若等比数列{a n }满足a n a n +1=16n ,则公比为 A .2 B .4 C .8 D .16 6.若互不相等的实数,,a b c 成等差数列,,,c a b 成等比数列,且310a b c ++=,则a = A .4 B .2 C .-2 D .-4 7.公比为32等比数列{}n a 的各项都是正数,且31116a a =,则162log a =( ) A.4 B.5 C.6 D.7 8.在等比数列{}n a 中,5,6144117=+=?a a a a ,则 =10 20 a a ( ) A. 32 B.23 C. 32或23 D. -32或-23 9.等比数列{}n a 中,已知121264a a a =,则46a a 的值为( ) A .16 B .24 C .48 D .128 10.实数12345,,,,a a a a a 依次成等比数列,其中1a =2,5a =8,则3a 的值为( ) A. -4 B.4 C. ±4 D. 5 11.等比数列 {}n a 的各项均为正数,且5647a a a a +=18,则3132310log log log a a a +++L = A .12 B .10 C .8 D .2+3log 5 12. 设函数()()() * 2 ,311N n x n x x f ∈≤≤-+-=的最小值为n a ,最大值为n b ,则2n n n n c b a b =-是( ) A.公差不为零的等差数列 B.公比不为1的等比数列 C.常数列 D.既不是等差数列也不是等比数列 13. 三个数c b a ,,成等比数列,且0,>=++m m c b a ,则b 的取值范围是( ) A. ??????3, 0m B. ??????--3,m m C . ??? ??3,0m D. [)?? ? ???-3,00,m m 14.已知等差数列}{n a 的公差0≠d ,且931,,a a a 成等比数列,则 10 429 31a a a a a a ++++的值为 . 15.已知1, a 1, a 2, 4成等差数列,1, b 1, b 2, b 3, 4成等比数列,则 =+2 2 1b a a ______.

等比数列例题解析

等比数列·例题解析 【例1】已知S n是数列{a n}的前n项和,S n=p n(p∈R,n∈N*),那么数列{a n}. [ ] A.是等比数列 B.当p≠0时是等比数列 C.当p≠0,p≠1时是等比数列 D.不是等比数列 分析由S n=p n(n∈N*),有a1=S1=p,并且当n≥2时, a n=S n-S n-1=p n-p n-1=(p-1)p n-1 但满足此条件的实数p是不存在的,故本题应选D. 说明数列{a n}成等比数列的必要条件是a n≠0(n∈N*),还要注 【例2】已知等比数列1,x1,x2,…,x2n,2,求x1·x2·x3·…·x2n.解∵1,x1,x2,…,x2n,2成等比数列,公比q ∴2=1·q2n+1 x1x2x3...x2n=q.q2.q3...q2n=q1+2+3+ (2) 式;(2)已知a3·a4·a5=8,求a2a3a4a5a6的值. ∴a4=2 【例4】已知a>0,b>0且a≠b,在a,b之间插入n个正数x1,x2,…,x n,使得a,x1,x2,…,x n,b成等比数列,求 证明设这n+2个数所成数列的公比为q,则b=aq n+1 【例5】设a、b、c、d成等比数列,求证:(b-c)2+(c-a)2+(d-b)2=(a-d)2. 证法一∵a、b、c、d成等比数列 ∴b2=ac,c2=bd,ad=bc

∴左边=b2-2bc+c2+c2-2ac+a2+d2-2bd+b2 =2(b2-ac)+2(c2-bd)+(a2-2bc+d2) =a2-2ad+d2 =(a-d)2=右边 证毕. 证法二∵a、b、c、d成等比数列,设其公比为q,则: b=aq,c=aq2,d=aq3 ∴左边=(aq-aq2)2+(aq2-a)2+(aq3-aq)2 =a2-2a2q3+a2q6 =(a-aq3)2 =(a-d)2=右边 证毕. 说明这是一个等比数列与代数式的恒等变形相综合的题目.证法一是抓住了求证式中右边没有b、c的特点,走的是利用等比的条件消去左边式中的b、c的路子.证法二则是把a、b、c、d统一化成等比数列的基本元素a、q去解决的.证法二稍微麻烦些,但它所用的统一成基本元素的方法,却较证法一的方法具有普遍性. 【例6】求数列的通项公式: (1){a n}中,a1=2,a n+1=3a n+2 (2){a n}中,a1=2,a2=5,且a n+2-3a n+1+2a n=0 思路:转化为等比数列. ∴{a n+1}是等比数列 ∴a n+1=3·3n-1∴a n=3n-1 ∴{a n+1-a n}是等比数列,即 a n+1-a n=(a2-a1)·2n-1=3·2n-1 再注意到a2-a1=3,a3-a2=3·21,a4-a3=3·22,…,a n-a n-1=3·2n-2,

精品高考数列经典大题

精品高考数列经典大题 2020-12-12 【关键字】条件、满足 1.等比数列{}n a 的各项均为正数,4352,,4a a a 成等差数列,且2322a a =. (1)求数列{}n a 的通项公式; (2)设()()25 2123n n n b a n n += ++,求数列{}n b 的前n 项和n S . 2.已知数列{}n a 满足:11a =,且对任意∈n N *都有 n a ++ += . (Ⅰ)求2a ,3a 的值; (Ⅱ)求数列{}n a 的通项公式; n n a a ++∈n N *). 3.已知数列}{n a 满足且01=a *)(),1(2 1 21N n n n S S n n ∈++=+ (1)求23,,a a :并证明12,(*);n n a a n n N +=+∈ (2)设*),(1N n a a b n n n ∈-=+求证:121+=+n n b b ; (3)求数列*)}({N n a n ∈的通项公式。 4.设b>0,数列}{n a 满足b a =1,)2(1 11 ≥-+= --n n a nba a n n n .(1)求数列}{n a 的通项公 式;(2)证明:对于一切正整数n ,121+≤+n n b a . 5: 已知数列{}n a 是等差数列,() *+∈-=N n a a c n n n 21 2 (1)判断数列{}n c 是否是等差数列,并说明理由;(2)如果 ()为常数k k a a a a a a 13143,130********-=+++=+++ ,试写出数列{}n c 的 通项公式;(3)在(2)的条件下,若数列{}n c 得前n 项和为n S ,问是否存在这样的实数k ,使n S 当且仅当12=n 时取得最大值。若存在,求出k 的取值范围;

数列求和公式证明

1)1^2+2^2+3^2+......+n^2=n(n+1)(2n+1)/6从左边推到右边 数学归纳法可以证 也可以如下做比较有技巧性 n^2=n(n+1)-n 1^2+2^2+3^2+......+n^2 =1*2-1+2*3-2+....+n(n+1)-n =1*2+2*3+...+n(n+1)-(1+2+...+n) 由于n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]/3 所以1*2+2*3+...+n(n+1) =[1*2*3-0+2*3*4-1*2*3+....+n(n+1)(n+2)-(n-1)n(n+1)]/3 [前后消项] =[n(n+1)(n+2)]/3 所以1^2+2^2+3^2+......+n^2 =[n(n+1)(n+2)]/3-[n(n+1)]/2 =n(n+1)[(n+2)/3-1/2] =n(n+1)[(2n+1)/6] =n(n+1)(2n+1)/6 2)1×2+2×3+3×4+...+n×(n+1)=? 设n为奇数, 1*2+2*3+3*4+...+n(n+1)= =(1*2+2*3)+(3*4+4*5)+...+n(n+1) =2(2^2+4^2+6^2+...(n-1)^2)+n(n+1) =8(1^2+2^2+3^2+...+[(n-1)/2]^2)+n(n+1) =8*[(n-1)/2][(n+1)/2]n/6+n(n+1) =n(n+1)(n+2)/3 设n为偶数, 请你自己证明一下! 所以, 1*2+2*3+3*4+...+n(n+1)=n(n+1)(n+2)/3 设an=n×(n+1)=n^2+n Sn=1×2+2×3+3×4+...+n×(n+1) =(1^2+2^2+3^2+……+n^2)+(1+2+3+……+n) =n(n+1)(2n+1)/6+n(n+1)/2 =n(n+1)(n+2)/3

(完整版)等比数列测试题含答案

§2.4等比数列练习 1、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比. 2、在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则G 称为a 与b 的等比中项.若2G ab =,则称G 为a 与b 的等比中项. 3、若等比数列{}n a 的首项是1a ,公比是q ,则11n n a a q -=. 4、通项公式的变形:①n m n m a a q -=;②()11n n a a q --=;③1 1n n a q a -=;④n m n m a q a -=. 5、若{}n a 是等比数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a ?=?;若{}n a 是等比数列,且2n p q =+(n 、p 、*q ∈N ),则2 n p q a a a =?. 一.选择题:1.下列各组数能组成等比数列的是( ) A. 111,,369 B. lg3,lg9,lg 27 C. 6,8,10 D. 3,- 2.等比数列{}n a 中,32a =,864a =,那么它的公比q =( ) A. 4 B. 2 D. 12 3.已知{}n a 是等比数列,n a >0,又知243546225a a a a a a ++=g g g ,那么35a a +=( ) A. 5 B. 10 C. 15 D. 20 4.等比数列{}n a 中,11a =,1q q ≠公比为且,若12345m a a a a a a =g g g g ,则m 为( ) A. 9 B. 10 C. 11 D. 12 5. “2 b a c =”是“a 、b 、c 成等比数列”的( )条件 A. 充分不必要 B. 必要不充分 C. 充要 D. 既不充分也不必要 6.若{}n a 是等差数列,公差0d ≠,236,,a a a 成等比数列,则公比为( ) A.1 B. 2 C. 3 D. 4 二.填空题: 7.等比数列中,首项为 98,末项为13,公比为23 ,则项数n 等于 . 8.在等比数列中,n a >0,且21n n n a a a ++=+,则该数列的公比q 等于 . 9.在等比数列{}n a 中,n a >0,()n N +∈且3698a a a =,则 22242628210log log log log log a a a a a ++++= . 10.若{}n a 是等比数列,下列数列中是等比数列的所有代号为是 . ① {}2n a ② {}2n a ③ 1n a ?????? ④ {} lg n a 三.解答题 11.等比数列{}n a 中,已知12324a a +=,3436a a +=,求56a a +. 12.已知四个数,前三个数成等比数列,和为19,后三个数成等差数列,和为12,求此四个数.

数列综合练习题以及答案解析

数列综合练习题 一.选择题(共23小题) 1.已知函数f(x)=,若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是() A.[,4)B.(,4)C.(2,4) D.(1,4) 2.已知{a n}是递增数列,且对任意n∈N*都有a n=n2+λn恒成立,则实数λ的取值范围是()A.(﹣,+∞)B.(0,+∞)C.[﹣2,+∞)D.(﹣3,+∞) 3.已知函数f(x)是R上的单调增函数且为奇函数,数列{a n}是等差数列,a11>0,则f(a9)+f(a11)+f(a13)的值() A.恒为正数B.恒为负数C.恒为0 D.可正可负 4.等比数列{a n}中,a4=2,a7=5,则数列{lga n}的前10项和等于() A.2 B.lg50 C.10 D.5 5.右边所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律,a所表示的数是() A.2 B.4 C.6 D.8 6.已知正项等比数列{a n}满足:a7=a6+2a5,若存在两项a m,a n,使得=4a1,则+的最小值为() A.B.C.D. 7.已知,把数列{a n}的各项排列成如图的三角形状,记A(m,n)表示第m行的第n个数,则A(10,12)=() A.B.C.D.

8.设等差数列{a n}满足=1,公差d∈(﹣1,0),若当且仅当n=9时,数列{a n}的前n项和S n取得最大值,则首项a1的取值范围是() A.(π,)B.[π,]C.[,]D.(,) 9.定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f (a n)},仍是等比数列,则称f(x)为“等比函数”.现有定义在(﹣∞),0)∪(0,+∞)上的如下函数: ①f(x)=3x,②f(x)=,③f(x)=x3,④f(x)=log2|x|, 则其中是“等比函数”的f(x)的序号为() A.①②③④B.①④C.①②④D.②③ 10.已知数列{a n}(n∈N*)是各项均为正数且公比不等于1的等比数列,对于函数y=f(x),若数列{lnf(a n)}为等差数列,则称函数f(x)为“保比差数列函数”.现有定义在(0,+∞)上的三个函数:①f(x)=;②f(x)=e x;③f(x)=;④f(x)=2x,则为“保比差数列函数”的是() A.③④B.①②④C.①③④D.①③ 11.已知数列{a n}满足a1=1,a n+1=,则a n=() A.B.3n﹣2 C.D.n﹣2 12.已知数列{a n}满足a1=2,a n+1﹣a n=a n+1a n,那么a31等于() A.﹣B.﹣C.﹣D.﹣ 13.如果数列{a n}是等比数列,那么() A.数列{}是等比数列B.数列{2an}是等比数列 C.数列{lga n}是等比数列D.数列{na n}是等比数列 14.在数列{a n}中,a n+1=a n+2,且a1=1,则=()A.B.C.D. 15.等差数列的前n项,前2n项,前3n项的和分别为A,B,C,则() A.A+C=2B B.B2=AC C.3(B﹣A)=C D.A2+B2=A(B+C) 16.已知数列{a n}的通项为a n=(﹣1)n(4n﹣3),则数列{a n}的前50项和T50=()

高一数学《数列》经典练习题-附答案

强力推荐人教版数学高中必修5习题 第二章 数列 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33 B .72 C .84 D .189 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2 -2x +m )(x 2 -2x +n )=0的四个根组成一个首项为4 1 的等差数列,则 |m -n |等于( ). A .1 B . 4 3 C . 2 1 D . 8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ). A .4 005 B .4 006 C .4 007 D .4 008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4 B .-6 C .-8 D . -10 8.设S n 是等差数列{a n }的前n 项和,若35a a =9 5 ,则59S S =( ). A .1 B .-1 C .2 D . 2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则2 1 2b a a 的值是( ). A . 2 1 B .- 2 1 C .- 21或2 1 D . 4 1 10.在等差数列{a n }中,a n ≠0,a n -1-2 n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ). A .38 B .20 C .10 D .9

(完整版)等比数列经典例题范文

1.(2009安徽卷文)已知为等差数列,,则等 于 A. -1 B. 1 C. 3 D.7 【解析】∵即∴同理可得∴公差∴.选B 。 【答案】B 2.(2009年广东卷文)已知等比数列的公比为正数,且·=2,=1,则= A. B. C. D.2 【答案】B 【解析】设公比为,由已知得,即,又因为等比数列的公 比为正数,所以,故,选B 3.(2009江西卷文)公差不为零的等差数列的前项和为.若是的等比中项, , 则等于 A. 18 B. 24 C. 60 D. 90 【答案】C 【解 析】由得得,再由 得 则,所以,.故选C 4.(2009湖南卷文)设是等差数列的前n 项和,已知,,则等于( ) A .13 B .35 C .49 D . 63 【解析】故选C. 135105a a a ++=33105a =335a =433a =432d a a =-=-204(204)1a a d =+-?=}{n a 3a 9a 2 5a 2a 1a 2 1 222q ( )2 2 8 41112a q a q a q ?=2 2q =}{n a q = 212a a q = == {}n a n n S 4a 37a a 与832S =10S 2 437a a a =2111(3)(2)(6)a d a d a d +=++1230a d +=8156 8322 S a d =+ =1278a d +=12,3d a ==-10190 10602 S a d =+ =n S {}n a 23a =611a =7S 172677()7()7(311) 49.222 a a a a S +++= ===

等比数列经典例题透析

等比数列经典例题透析 类型一:等比数列的通项公式 例1.等比数列{}n a 中,1964a a ?=, 3720a a +=,求11a . 思路点拨:由等比数列的通项公式,通过已知条件可列出关于1a 和q 的二元方程组,解出1a 和q ,可得11a ;或注意到下标1937+=+,可以利用性质可求出 3a 、7a ,再求11a . 总结升华: ①列方程(组)求解是等比数列的基本方法,同时利用性质可以减少计算量; ②解题过程中具体求解时,要设法降次消元,常常整体代入以达降次目的,故较多变形要用除法(除式不为零). 举一反三: 【变式1】{a n }为等比数列,a 1=3,a 9=768,求a 6。 【变式2】{a n }为等比数列,a n >0,且a 1a 89=16,求a 44a 45a 46的值。 【变式3】已知等比数列{}n a ,若1237a a a ++=,1238a a a =,求n a 。 类型二:等比数列的前n 项和公式 例2.设等比数列{a n }的前n 项和为S n ,若S 3+S 6=2S 9,求数列的公比q. 解析:若q=1,则有S 3=3a 1,S 6=6a 1,S 9=9a 1. 因a 1≠0,得S 3+S 6≠2S 9,显然q=1与题设矛盾,故q ≠1. 由3692S S S +=得,369111(1)(1)2(1) 111a q a q a q q q q ---+=---, 整理得q 3(2q 6-q 3-1)=0, 由q ≠0,得2q 6-q 3-1=0,从而(2q 3+1)(q 3-1)=0, 因q 3 ≠1,故3 1 2 q =-,所以342q =-。 举一反三: 【变式1】求等比数列11 1,,,39 的前6项和。 【变式2】已知:{a n }为等比数列,a 1a 2a 3=27,S 3=13,求S 5. 【变式3】在等比数列{}n a 中,166n a a +=,21128n a a -?=,126n S =,求n 和 类型三:等比数列的性质 例3. 等比数列{}n a 中,若569a a ?=,求3132310log log ...log a a a +++. 举一反三: 【变式1】正项等比数列{}n a 中,若a 1·a 100=100; 则lga 1+lga 2+……+lga 100=_____________.

等比数列的前n项和例题详细解法

等比数列的前n项和例题详细解法?例题解析 【例1】设等比数列的首项为a(a>0),公比为q(q>0),前n项和为80,其中 最大的一项为54,又它的前2n项和为6560,求a和q. 解:由S n=80,S2n=6560,故q≠1 ∵a>0,q>1,等比数列为递增数列,故前n项中最大项为an. ∴a n=aq n-1=54 ④ 将③代入①化简得a=q-1 ⑤ 由⑤,⑥联立方程组解得a=2,q=3 证∵Sn=a1+a1q+a1q2+...+a1q n-1 S2n=S n+(a1q n+a1q n+1+...+a1q2n-1)

=S n+q n(a1+a1q+...+a1q n-1)=S n+q n S n=S n(1+q n) 类似地,可得S3n=S n(1+q n+q2n) 说明本题直接运用前n项和公式去解,也很容易.上边的解法,灵活地处理了S2n、S3n与S n的关系.介绍它的用意在于让读者体会利用结合律、提取公因式等方法将某些解析式变形经常是解决数学问题的关键,并且变得好,则解法巧. 【例2】一个有穷的等比数列的首项为1,项数为偶数,其奇数项的和为85,偶数项的和为170,求这个数列的公比和项数. 分析设等比数列为{a n},公比为q,取其奇数项或偶数项所成的数列仍然是等比数列,公比为q2,首项分别为a1,a1q. 解设项数为2n(n∈N*),因为a1=1,由已知可得q≠1. 即公比为2,项数为8. 说明运用等比数列前n项和公式进行运算、推理时,对公比q要分情况讨论.有关等比数列的问题所列出的方程(组)往往有高次与指数方程,可采用两式相除的方法达到降次的目的.

等比数列性质及其应用知识点总结与典型例题(经典版)

等比数列知识点总结与典型例题 1、等比数列的定义:()()*1 2,n n a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式: ()11110,0n n n n a a a q q A B a q A B q -== =??≠?≠,首项:1a ;公比:q 推广:n m n m n n n m m a a a q q q a --=?=?=3、等比中项: (1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个( (2)数列{}n a 是等比数列211n n n a a a -+?=? 4、等比数列的前n 项和n S 公式: (1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a q S q q --= = -- 11''11n n n a a q A A B A B A q q = -=-?=---(,,','A B A B 为常数) 5、等比数列的判定方法: (1)用定义:对任意的n ,都有1 1(0){}n n n n n n a a qa q q a a a ++==≠?或 为常数,为等比数列 (2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠?为等比数列 (3)通项公式:()0{}n n n a A B A B a =??≠?为等比数列 6、等比数列的证明方法: 依据定义:若 ()()*1 2,n n a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=?为等比数列 7、等比数列的性质: (2)对任何*,m n N ∈,在等比数列{}n a 中,有n m n m a a q -=。 (3)若* (,,,) m n s t m n s t N +=+∈,则n m s t a a a a ?=?。特别的,当2m n k +=时,得2n m k a a a ?= 注:12132n n n a a a a a a --?=?=??? 等差和等比数列比较:

等比数列的求和公式

等比数列的求和公式 一、 基本概念和公式 等比数列的求和公式: q q a n --1)1(1 (1≠q ) q q a a n --11(1≠q ) n S = 或 n S = 1na (q = 1) 即如果q 是否等于1不确定则需 要对q=1或1≠q 推导性质:如果等差数列由奇数项,则S 奇-S 偶=a 中 ;如果等差数列由奇数项,则S 偶-S 奇= d n 2 。 二、 例题精选: 例1:已知数列{n a }满足:43,911=+=+n n a a a ,求该数列的通项n a 。 例2:在等比数列{n a }中,36,463==S S ,则公比q = 。 - 例3:(1)等比数列{n a }中,91,762==S S ,则4S = ; (2)若126,128,66121===+-n n n S a a a a ,则n= 。

例4:正项的等比数列{n a }的前n 项和为80,其中数值最大的项为54,前2n 项的和为6560,求数列的首项1a 和公比q 。 例5:已知数列{n a }的前n 项和n S =1-n a ,(a 是不为0的常数),那么数列{n a }是? 例6:设等比数列{n a }的前n 项和为n S ,若9632S S S =+,求数列的公比q 。 例7:求和:)()3()2()1(32n a a a a n ----+-+-+-。 例8:在 n 1和n+1之间插入n 个正数,使这n+2个数成等比数列,求插入的n 个数的积。 例9:对于数列{n a },若----------,,,,,123121n n a a a a a a a 是首项为1,公比为31的等比数列,求:(1) n a ;(2) n a a a a +---+++321。

等比数列经典例题

等比数列经典例题 例1一个等比数列的第3项与第4项分别是12与18,求它的第1项与第2项. 答:这个数列的第1项与第2项分别是 . 8316 与 例2.三数成等比数列,若将第三个数减去32,则成等差数列,若再将这等差数列的第二个数减去4,则又成等比数列,求原来三个数。 2,,aq aq a :解:设原来的三个数是 431= -+n n c c

问:如何用a 1和q 表示第n 项a n 1.叠乘法(累乘法) a 2/a 1=q a 3/a 2=q a 4/a 3=q … a n /a n-1=q 这n-1个式子相乘得a n /a 1=q n-1 所以 a n =a 1q n-1 2.不完全归纳法 a 2=a 1q a 3=a 2q=a 1q 2 a 4=a 3q=a 1q 3 … a n =a 1q n-1 1. 在等比数列{a n }中,已知 a 2=2,a 4a 6=256,则 a 8 等于(128) 2. 等比数列{a n }中,a 5=3,则 a 2·a 8 等于(9) 3. 将 20,50,100 这三个数加上相同的常数,使它们成为等比数列, 则其公比是__ 5/3__. 4. 已知等比数列 a n /a 1 {a n }的公比 q = -1 3,则a 1+a 3+a 5+a 7a 2+a 4+a 6+a 8 = (-3) 5. 在等比数列{a n }中,若 a n >0,a 2a 4+2a 3a 5+a 4a 6=25. 求 a 3+

a 5 的值. 6. 在各项都为正数的等比数列{a n }中,a 1=3,前三项的和为 21, 则 a 3+a 4+a 5=( 84 ) 7. 在等比数列{a n }中,若 a 2·a 8=36,a 3+a 7=15,则公比 q 值 的可能个数为( 4 ) 8. 已知数列{a n }为等差数列,S n 为其前 n 项和,且 a 2=3,4S 2=S 4. (1)求数列{a n }的通项公式; (2)求证数列{2an }是等比数列; (3)求使得 S n +2>2S n 的成立的 n 的集合. 解:(1)设数列{a n }的首项为a 1,公差为d , 由题意得:??? ?? a 1+d =3 4×(2a 1+d )=4a 1+6d , 解得a 1=1,d =2,∴a n =2n -1. (2)依题意得,12 2n n a a -=22n - 1 2 2n -3=4, ∴数列{2n a }为首项为2,公比为4的等比数列, (3)由a 1=1,d =2,a n =2n -1,得S n =n 2,∴S n +2>2S n ?(n +2)2>2n 2?(n -2)2<8,∴n =1,2,3,4,故n 的集合为:{1,2,3,4}.

数列解答题专练(含答案版)

数列高考真题汇编 1.已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列. (1)求数列{a n }的通项公式; (2)令b n =(-1)n -14n a n a n +1 ,求数列{b n }的前n 项和T n . 解析 (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2, S 4=4a 1+4×32×2=4a 1+12,(3分) 由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1. 所以a n =2n -1.(5分) (2)b n =(-1)n -14n a n a n +1=(-1)n -14n (2n -1)(2n +1) =(-1)n -1? ?? ??12n -1+12n +1.(6分) 当n 为偶数时, T n =? ????1+13-? ????13+15+…+? ????12n -3+12n -1-? ?? ??12n -1+12n +1=1-12n +1=2n 2n +1 . 当n 为奇数时, T n =? ????1+13-? ????13+15+…-? ????12n -3+12n -1+? ?? ??12n -1+12n +1=1+12n +1=2n +22n +1 .(10分) 2.已知数列{a n }的前n 项和S n =n 2+n 2 ,n ∈N *. (1)求数列{a n }的通项公式; (2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. 解析 (1)当n =1时,a 1=S 1=1; 当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2 =n . 故数列{a n }的通项公式为a n =n .

等比数列练习题加答案

等比数列练习题加答案 2.4 等比数列(人教A 版必修5) 一、选择题(每小题3分,共27分) 1. 如果数列an 是等比数列,那么( ) A. 数列{a2}是等比数列 a n B. 数列 是等比数列 C. 数列lg an 是等比数列 D. 数列nan 是等比数列 2. 在等比数列an 中,a 4+比=10, a6 + a = 20,则 a 8+ a 9=( ) A.90 B.30 C.70 D.40 3. 已知等比数列a n 的各项为正数,且3是 比 为() n p A. k n B. n p p k n k k p C. n p D. n p 9.已知在等比数列a n 中, a 5,a 95为方程 8.已知公差不为零的等差数列的第k,n,p 项构 成等比数列的连续三项,贝U 等比数列的公 a s 和a e 的等比中项,贝U aa ?L 日。=( A.3 C.311 B.3 D.3 10 12 4.在等比数列an 中,若 a 3a 5a 7a 9an — 243,则 2 並的值为( ) an A.9 B.1 C.2 D.3 5. 已知在等比数列 列bn 是 b s +b 9 =( A.2 C.8 6. 在等比数列 6, 84+ a 〔4 3n 中,有 a 3d1=4a 7,数 等差数列,且b 7= a ,则 ) B.4 D.16 a n 中 a n 5,则至=( a 16 *+1,且 a 7an = 3 A.3 1 C.1 B. D.6 各项都是正数, 且 a , a 3 , 2a 2成等差数列. 贝卩比3,0 2 a 7 a 8 ( ) A.1 + 2 B.1 —2 C.3 + 2 2 D.3 —2 2 中, n 7.已知在等比数列a x 2+10x + 16=0的两根,则 a 20 a 50 a 80 的值为 ( ) A.256 B. ± 256 C.64 D. ± 64 二、 填空题(每小题4分,共16分) 10. 等比数列an 中,a n 0,且a 2=1 - q , a 4=9 — a 3,贝 U a 4+ a 5 = _______ ? 1 11. 已知等比数列a n 的公比q =— 3贝U a 1 a 3 a 5 a 7 = a 2 a 4 a 6 a 8 12. 在3和一个未知数间填上一个数,使三 数成等差数列,若中间项减去 6,则成等比 数列,此未知数是 _________ ? 13. 一种专门占据内存的计算机病毒的大小 为2 KB ,它每3 s 自身复制一次,复制后所 占内存是原来的两倍,则内存为 64 MB (1 MB =210 KB )的计算机开机后经过 s ,内 存被占完. 三、 解答题(共57分) 14. (8分)已知an 是各项均为正数的等比数 列,且 a + a 2 = 2 ——, a 1 a 2 a 3+ a 4 = 32丄丄?求 an 的通项公式. a 3 a 4

相关主题
文本预览
相关文档 最新文档