当前位置:文档之家› 高三数学教案 函数的对称性奇偶性

高三数学教案 函数的对称性奇偶性

高三数学教案   函数的对称性奇偶性
高三数学教案   函数的对称性奇偶性

函数的对称性、周期性

知识点及方法

对称性、周期性的概念;函数的奇偶性;二次函数的对称性;对称性、周期性与函数的解析式;化归思想

二次函数的对称性

1. 已知)(x f 是二次函数,图象开口向上,)2()2(x f x f -=+, 比较)2

2

(

),1(f f 大小。 2. 若二次函数)(x f 的图象开口向下,且f(x)=f(4-x),比较)22(),1(),0(f f f -的大小。 3. 二次函数32)(22+-+-=m mx x x f 满足)2()2(--=-x f x f ,求)(x f 的顶点的坐标。 4. 已知)0()(2>++=a c bx ax x f ,且)7()3(x f x f +=-.(1)写出b a ,的关系式 (2)指出)(x f 的单调区间。

5. 设二次函数)(x f 满足)2()2(+=-x f x f ,图象与y 轴交点为(0, 2),与x 轴两交点间的距离为2,求)(x f 的解析式。

函数的对称性、周期性与函数的解析式

1. 已知)(x f 是奇函数,当0≥x 时,)1lg()(2++=x x x f ,求)(x f 的解析式. 2. 已知)(x f 是偶函数,当0≤x 时,1)(3+=x x f ,求)(x f 的解析式.

3. 已知函数的)(x g 图象与函数29)(2+-=x x x f 的图象关于原点成中心对称, 求)(x g 的解析式。 4. 设函数y =f (x )的图象关于直线x =1对称,若当x ≤1时,y =x 2+1,求当x >1时, ,f (x )的解析式. 5. 设 1)(+=x x f , 求 )1(+x f 关于直线2=x 对称的曲线的解析式. 6. 已知函数)1(-=x f y 是偶函数,且x ∈(0,+∞)时有f (x )=

x

1

, 求当x ∈(-∞,-2)时, 求)(x f y = 的解析式.

7. 已知函数)(x f 是偶函数,当)1,0[∈x 时,,1)(x x f -=又)(x f 的图象关于直线1=x 对称,求)

(x f 在)6,5[的解析式. 定义在R 上的偶函数)(x f 满足).2()2(x f x f -=+且当]0,2[-∈x 时,4

5

)21()(-=x x f .(1)求)(x f 的单调区间;(2)求)60(log 2f 的值.

8. 定义在R 上的函数f (x )以4为周期,当x ∈[-1,3]时,f (x )=|x -1|-1, 求当x ∈[-16

21,-142

1

]时f (x )的最小值。

9. 设f (x )是定义在区间(-∞,+∞)上以2为周期的函数,对k ∈Z ,用k I 表示区间(2k -1,2k +1],已知x ∈I 0

时,2)(x x f =, 求f (x )在I k 上的解析式.

10.设)(x f 是定义在(-∞,+∞)上的函数,对一切x ∈R 均有0)2()(=++x f x f ,当1-<≤x 1时,

12)(-=x x f 求当31≤

11. 设f (x )是定义在(-∞,+∞)上以2为周期的周期函数,且f (x )是偶函数,当x ∈[2,3]时,f (x )=2(x -3)2+4.

(1)求x ∈[1,2]时,f (x )的解析式. (2)若矩形ABCD 的两个项点A 、B 在x 轴上,C 、D 在函数y =f (x )有图像上(0≤x ≤2),求这个矩形面积的最大值.

函数图象变换与函数解析式

1. 设函数y =arc tg x 的图像沿x 轴正方向平移2个单位所得的图像为C ,又设图像C ′与C 关于原点

对称, 求C ′所对应的函数解析式.

2. 将函数x y 2=的图像向左平移一个单位,得到图像1c ;再将1c 向上平移一个单位得到2c ,作出

2c 关于直线x y =对称的图像3c ,求3c 的解析式. 3. 把函数1

1

+=

x y 的图像沿x 轴向右平移1个单位,所得图像记为C , 求C 关于原点对称的图像的函数表达式.

4. 将函数)(x f y =的图像沿x 轴向左平移一个单位,再沿y 轴翻折180o ,得到x y lg =的图像, 求

)(x f y =的解析式.

5. 将函数x y cos =的图象上每一点的纵坐标保持不变,横坐标缩小为原来的一半,再将所得图象,

沿x 轴方向向右平移

4

π

个单位长度,求所得新图象对应的函数解析式. 6. 将函数y =cos x 的图像沿x 轴向左平移

4

π

得到曲线C ,又设曲线C 与C ′关于原点对称, 求C ′对的函数解析式.

7. 已知函数y =3x 的图象为C 1,曲线C 2与C 1关于原点对称,求C 2的解析式.

8. 将函数)(x f y =的图象向左移a (a >0)个单位得到图象C 1,又C 1和C 2的图象关于原点对称,求

C 2的解析式.

第七讲 函数的图象

知识点及方法

函数图象的初等变换;作函数的图象;函数的图象的应用(解不等式、解方程) 函数图象的初等变换 给出下列函数间的初等变换 1. 2

1

1-+=→=

x x y x y 2. )1lg(2lg -=→=x y x y 3. 1)3

4sin(22cos ++

-=→=π

x y x y

4. 3)12()1(-+--=→+=x f y x f y

函数的图象的选择题函数

1. 函数y =f (x )与函数y =f (a -x )的定义域均为R (a 为常数),这两个函数的图象( ) (A )关于y 轴对称 (B )关于x =a 对称 (C )关于x =

2

a

对称 (D )关于x =2a 对称 2. 设f (x )=x +1,那么f (x +1)关于直线x =2对称的曲线的解析式是 ( ) (A )y =x -6 (B )y =6+x (C )y =6-x (D )y =-x -2

3. 如果函数y =f (x )有反函数y =f -

1(x ).给出以下四个命题:①若y =f (x )是增函数,则y =f -

1(x )是减函数;②若y =f (x )的图像与y =f -

1(x )的图像有公共点,则公共点必在直线y =x 上;③若y =f (x )的图像与直线y =x 没有公共点,则y =f (x )与y =f -

1(x )的图像也没有公共点;④若y =f (x )与y =f -

1(x )的图像没有公共点,则y =f (x )与y =x 的图像也没有公共点.其中正确命题的个数为 ( )

(A )0 (B )1 (C )2 (D )3

4. 对任意的函数y =f (x ),在同一坐标系中,函数y =f (x -1)与函数y =f (1-x )的图像恒 (A )关于x 轴对称 (B )关于直线x =1对称 (C )关于y 轴对称 (D )以上结论都不对

5. 方程lo g 2(x +4)=(

3

1)x

的实数解的个数是 ( ) (A )1 (B )2 (C )3 (D )0 6. 函数f (x )=5si n (2x +θ)的图象关于y 轴对称的充要条件是 ( ) (A )θ=2k π+

2π (B )θ=2k π+π (C ) θ=k π+2

π

(D )θ=k π+π,k ∈Z 7. y =(a -1)x -b -1(a >1)的图象过第二、三、四象限,那a 、b 的取值范围是( ) (A )a >0且b >0 (B )a >2且b <0 (C )10 8. 要作出函数y =sin(2x +

3

π

)的图像,只须将函数y =sin x 的图像作变换 ( ) (A )先把各点的横坐标扩大到原来的2倍(纵坐标不变),再向左平移6

π

个单位 (B )先把各点的横坐标缩小到原来的2

1

(纵坐标不变),再向右平移3π个单位

(C )先把各点向右平移6π

个单位,再使纵坐标不变,横坐标缩小到原来的2

1 (D )先把各点向左平移3π个单位,再使纵坐标不变,横坐标缩小到原来的2

1

9. 下列四个函数图象中,满足lg x 3

1

,lg y ,lg x 成等差数列的点M (x ,y )的轨迹是

10. 在同一坐标系中,函数y =mx +n , y =x n , y =m x

的图像不可能是 ( )

11. 在下列图像中,二次函数bx ax y +=2与指数函数x a

b

y )(=的图像只可能是

( )

12. y =ax 2+bx +c (a ≠0)的图象如图,下列式子成立的有 ( )

(A )a +b +c <0 (B )2a +b <0 (C )abc >0 (D )b >a +c

13. 已知二次函数y =ax 2+bx +c (a ≠0)的图象过(-1,3) 和(1,1)两点,并且在y 轴上的截距大于0小于1,则实 数a 的取值范围是 ( )

(A )1<a <3 (B )1<a <2 (C )2≤a <3 (D )1≤a ≤3

14. 在国内投寄外埠挂号信,每封信不超过20克 重付邮资5角,超过20克重而不超过40克重付邮资7 角,超过40克重而不超过60克重付邮资9角,设信的 重量为x (0<x ≤60)克时,应付的邮资为f (x )角,则这个 函数y =f (x )的图像是( )

15. 把函数y =f (x )在x ∈[a ,b ]之间的一段图像近似地看作线段(如图),

设a <m <b ,则

f (m )的近似值表示为

( )

(A )f (a

)+a b a m --[f (b

)-

f (a )] (B )f (b )-a

b a

m --[f (b )-f (a )] (C )

2

1

[f (a )+f (b )] (D ))()(b f a f

16. 函数y =f (x )的图象如图所示,则y =lo g 0.2f (x ) 的示意图是 ( )

17. 二次函数y =n (n +1)x 2-(2n +1)x +1当n =1,2,…时,其图象在x 轴上截得线段长度的总和是 (A ))1(1+n n (B )1+n n

(C )1 (D )2

1

函数图象与方程、不等式

1. 讨论下列方程的实根个数(1)222=+x (2)x x )31

()4(log 2=+ (3)33lg =+x (4)x a a

x 1log =

2. 关于x 的方程3)1(+-=x a x 只有正根没有负根,求a 的范围。 3. 已知x 的方程1+=ax x 有一负根且无正根,求实数a 的取值范围。

4. 已知a 、b 、c 依次为方程02=+x x 、x x =2log 和x x =2

1log 的实根,给出a 、b 、c 之间的大小

关系。

5. 不等式ax x x >-24的解集为]4,0(,求实数a 的取值范围。 6. 解不等式:11-<-x ax )0(>a

《函数对称性的解题方法归纳》

函数对称性的解题方法归纳 讲函数的对称性主要是讲奇偶函数图像的对称性,函数与反函数图像的对称性。前者是函数自身的性质,而后者是函数的变换问题。下文中我们均简称为函数的变换性。函数的对称性在近几年高考中屡见不鲜,对于解决其它问题也很有帮助,同时也是数学美的很好体现。现通过函数自身的对称性和不同函数之间的对称变换这两个方面来探讨函数对称性有关的性质。 1. 函数自身的对称性探究 设函数 )2()2(),()(x f x f x f +=-∞+-∞上满足在,)7()7(x f x f +=-,且在闭区间[0,7]上只有0)3()1(==f f (1)试判断函数)(x f y =的奇偶性; (2)试求方程0)(=x f 在闭区间[-2005,2005]上根的个数并证明你的结论。 分析:由)7()7(),2()2(x f x f x f x f +=-+=-可得:函数图象既关于x =2对称,又关于x =7对称,进而可得到周期性,然后再继续求解,而本题关键是要首先明确函数的对称性,因此,熟悉函数对称性是解决本题的第一步。 定理1 函数)(x f y =的图像关于直线x =a 对称的充要条件是)()(x a f x a f -=+即)2()(x a f x f -= 证明(略) 推论 函数)(x f y =的图像关于y 轴对称的充要条件是)()(x f x f -= 定理2 函数)(x f y =的图像关于点A (a ,b )对称的充要条件是 b x a f x f 2)2()(=-+ 证明(略) 推论 函数)(x f y =的图像关于原点O 对称的充要条件是0)()(=-+x f x f 偶函数、奇函数分别是定理1,定理2的特例。 定理3 ①若函数)(x f y =的图像同时关于点A (a ,c )和点B (b ,c )成中心对称(b a ≠),则)(x f y =是周期函数,且b a -2是其一个周期。

函数的对称性

函数的对称性 知识梳理 一、对称性的概念及常见函数的对称性 1、对称性的概念 ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数;②一次函数;③二次函数;④反比例函数;⑤指数函数;⑥对数函数;⑦幂函数;⑧正弦函数; ⑨正弦型函数sin()y A x ω?=+既是轴对称又是中心对称;⑩余弦函数;⑾正切函数;⑿耐克函数; ⒁绝对值函数:这里主要说的是(||)y f x =和|()|y f x =两类。前者显然是偶函数,它会关于y 轴对称;后者是把x 轴下方的图像对称到x 轴的上方,是否仍然具备对称性,这也没有一定的结论,例如|ln |y x =就没有对称性,而|sin |y x =却仍然是轴对称。 ⒂形如(0,)ax b y c ad bc cx d +=≠≠+的图像是双曲线,其两渐近线分别直线d x c =- (由分母为零确定)和直线a y c =(由分子、分母中x 的系数确定),对称中心是点(,)d a c c -。 二、抽象函数的对称性 【此类问题涉及到了函数图象的两种对称性,一种是同一函数自身的对称性,我们称其为自对称;另一种是两个函数之间的对称性 ,我们称其为互对称。】 1、函数)(x f y =图象本身的对称性(自对称问题) (1)轴对称 ①)(x f y =的图象关于直线a x =对称 ?)()(x a f x a f -=+ ?)2()(x a f x f -= ?)2()(x a f x f +=-

函数对称性、周期性和奇偶性的规律总结大全-.

函数对称性、周期性和奇偶性的规律总结大全-.

换种说法: )(x f y =与)(x g y =若满足)2()(x a g x f -=,即它们关于a x =对称。 1、 )(x f y =与)(2x f a y -=关于直线a y =对称。 换种说法:)(x f y =与)(x g y =若满足a x g x f 2)()(=+,即它们关于a y =对称。 2、 )2(2)(x a f b y x f y --==与关于点(a,b)对称。 换种说法:)(x f y =与)(x g y =若满足b x a g x f 2)2()(=-+,即它们关于点(a,b)对称。 3、 )(x a f y -=与)(b x y -=关于直线2 b a x +=对称。 4、 函数的轴对称: 定理1:如果函数 ()x f y =满足()()x b f x a f -=+,则函数()x f y =的图象关于直线2 b a x +=对称. 推论1:如果函数()x f y =满足()()x a f x a f -=+,则函数()x f y =的图象关于直线a x =对称. 推论2:如果函数 ()x f y =满足()()x f x f -=,则函数()x f y =的图象关于直线0=x (y 轴)对称.特别地,推论2就是偶函数的定义和性质.它是上述定理1的简化. 5、 函数的点对称: 定理2:如果函数 ()x f y =满足()()b x a f x a f 2=-++,则函数()x f y =的图象关于点()b a ,对 称. 推论3:如果函数()x f y =满足()()0=-++x a f x a f ,则函数()x f y =的图象关于点()0,a 对称. 推论4:如果函数()x f y =满足()()0=-+x f x f ,则函数()x f y =的图象关于原点()0,0对称.特别地,推论4就是奇函数的定义和性质.它是上述定理2的简化. 三、总规律:定义在R上的函数 ()x f y =,在对称性、周期性和奇偶性这三条性质中,只要有两条存在,则第三条一定存在。 四、试题 1.已知定义为R 的函数()x f 满足()()4+-=-x f x f ,且函数()x f 在区间()+∞,2上单调递增.如果212x x <<,且421<+x x ,则()()21x f x f +的值(A ). A .恒小于0 B .恒大于0 C .可能为0 D .可正可负.

函数的奇偶性、周期性、对称性三者之间的关系

函数的奇偶性、周期性和对称性三者之间的关系 1、若函数)(x f 在R 上满足图像关于直线)(,,b a b x a x ≠==对称,则函数)(x f 为周期函数,)(2b a T -=是它的一个周期。 证:根据题意有:)()2();()2(x f x b f x f x a f -=+-=+ 令b x x 2-=,代入上式得:)2()22(b x f b x a f +-=-+——————————① )2()(b x f x f +-=—————————————② 将②式代入①式得:)()](2[x f b a x f =-+ ∴函数)(x f 是周期函数,且)(2b a T -=是它的一个周期。 2、若函数)(x f 在R 上满足图像关于点))(0,(),0,(b a b a ≠对称,则函数)(x f 为周期函数,)(2b a T -=是它的一个周期。 证:根据题意有:0)()2(,0)()2(=-++=-++x f x b f x f x a f 令b x x 2-=,代入上式得:)2()22(b x f b x a f +--=-+————————① )2()(b x f x f +--=————————————② 将②式代入①式得:)()](2[x f b a x f =-+ ∴函数)(x f 是周期函数,且)(2b a T -=是它的一个周期。 3、若函数)(x f 在R 上满足图像关于直线a x =和点))(0,(b a b ≠对称,则函数)(x f 为周期函数,)(4b a T -=是它的一个周期。 证:根据题意有:0)()2(),()2(=-++-=+x f x b f x f x a f 令b x x 2-=,代入上式得:)2()22(b x f b x a f +-=-+,)2()(b x f x f +--= 则)()22(x f b a x f -=-+,又令b a x x 22-+=,得)22()](4[b a x f b a x f -+-=-+ )()](4[x f b a x f =-+∴ ∴函数)(x f 是周期函数,且)(4b a T -=是它的一个周期。

高一数学函数奇偶性练习题及答案解析

高一数学函数奇偶性练习题及答案解析 数学函数奇偶性练习题及答案解析 1.下列命题中,真命题是 A.函数y=1x是奇函数,且在定义域内为减函数 B.函数y=x3x-10是奇函数,且在定义域内为增函数 C.函数y=x2是偶函数,且在-3,0上为减函数 D.函数y=ax2+cac≠0是偶函数,且在0,2上为增函数 解析:选C.选项A中,y=1x在定义域内不具有单调性;B中,函数的定义域不关于原点对称;D中,当a<0时,y=ax2+cac≠0在0,2上为减函数,故选C. 2.奇函数fx在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为-1,则2f-6+f-3的值为 A.10 B.-10 C.-15 D.15 解析:选C.fx在[3,6]上为增函数,fxmax=f6=8,fxmin=f3=-1.∴2f-6+f-3=-2f6- f3=-2×8+1=-15. 3.fx=x3+1x的图象关于 A.原点对称 B.y轴对称 C.y=x对称 D.y=-x对称 解析:选A.x≠0,f-x=-x3+1-x=-fx,fx为奇函数,关于原点对称. 4.如果定义在区间[3-a,5]上的函数fx为奇函数,那么a=________. 解析:∵fx是[3-a,5]上的奇函数, ∴区间[3-a,5]关于原点对称, ∴3-a=-5,a=8. 答案:8 1.函数fx=x的奇偶性为

A.奇函数 B.偶函数 C.既是奇函数又是偶函数 D.非奇非偶函数 解析:选D.定义域为{x|x≥0},不关于原点对称. 2.下列函数为偶函数的是 A.fx=|x|+x B.fx=x2+1x C.fx=x2+x D.fx=|x|x2 解析:选D.只有D符合偶函数定义. 3.设fx是R上的任意函数,则下列叙述正确的是 A.fxf-x是奇函数 B.fx|f-x|是奇函数 C.fx-f-x是偶函数 D.fx+f-x是偶函数 解析:选D.设Fx=fxf-x 则F-x=Fx为偶函数. 设Gx=fx|f-x|, 则G-x=f-x|fx|. ∴Gx与G-x关系不定. 设Mx=fx-f-x, ∴M-x=f-x-fx=-Mx为奇函数. 设Nx=fx+f-x,则N-x=f-x+fx. Nx为偶函数. 4.已知函数fx=ax2+bx+ca≠0是偶函数,那么gx=ax3+bx2+cx A.是奇函数 B.是偶函数 C.既是奇函数又是偶函数

北京--正弦函数图象的对称性(檀晋轩)CASIO

课题:正弦函数、余弦函数的图象和性质(五)——正弦函数图象的对称性 教材:人教版全日制普通高级中学数学教科书(必修)第一册(下) 授课教师: 北京市第十九中学 檀晋轩 【教学目标】 1.使学生掌握正弦函数图象的对称性及其代数表示形式,理解诱导公式x x sin )sin(=-π(∈x R )与x x sin )2sin(-=-π(∈x R )的几何意义,体会正弦函数的对称性. 2.在探究过程中渗透由具体到抽象,由特殊到一般以及数形结合的思想方法,提高学生观察、分析、抽象概括的能力. 3.通过具体的探究活动,培养学生主动利用信息技术研究并解决数学问题的能力,增强学生之间合作与交流的意识. 【教学重点】 正弦函数图象的对称性及其代数表示形式. 【教学难点】 用等式表示正弦函数图象关于直线2π= x 对称和关于点)0,(π对称. 【教学方法】 教师启发引导与学生自主探究相结合. 【教学手段】 计算机、图形计算器(学生人手一台). 【教学过程】 一、复习引入 1.展示生活实例 对称在自然界中有着丰富多彩的显现,各种对称图案、对称符号也都十分普遍(见下图).

2.复习对称概念 初中我们已经学习过轴对称图形和中心对称图形的有关概念: 轴对称图形——将图形沿一条直线折叠,直线两侧的部分能够互相重合; 中心对称图形——将图形绕一个点旋转180°,所得图形与原图形重合. 3.作图观察 请同学们用图形计算器画出正弦函数的图象 (见右图),仔细观察正弦曲线是否是对称图形? 是轴对称图形还是中心对称图形? 4.猜想图形性质 经过简单交流后,能够发现正弦曲线既是轴对 称图形也是中心对称图形,并能够猜想出一部分对 称轴和对称中心.(教师点评并板书) 如何检验猜想是否正确? 我们知道, 诱导公式x x sin )sin(-=-(∈x R ),刻画了正弦曲线关于原点对称,而x x cos )cos(=-(∈x R ),刻画了余弦曲线关于y 轴对称. 从这两个特殊的例子中我们得到一些启发,如果我们能够用代数式表示所发现的对称性,就可以从代数上进行严格证明. 今天我们利用图形计算器来研究正弦函数图象的对称性.(板书课题) 二、探究新知 分为两个阶段,第一阶段师生共同探讨正弦曲线的轴对称性质,第二阶段学生自主探索正弦曲线的中心对称性质. (一)对于正弦曲线轴对称性的研究 第一阶段,实例分析——对正弦曲线关于直线 2π=x 对称的研究. 1.直观探索——利用图形计算器的绘图功能进行 探索 请同学们在同一坐标系中画出正弦曲线和直线 2 π=x 的图象,选择恰当窗口并充分利用画图功能对问题进行探索研究(见右图),在直线2 π=x 两侧正弦函数值有什么变化规律? 给学生一定的时间操作、观察、归纳、交流,最

函数奇偶性对称性与周期性有关结论

函数奇偶性对称性与周期性有关结论 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

函数奇偶性、对称性与周期性 奇偶性、对称性和周期性是函数的重要性质,下面总结关于它们的一些重要结论及运用它们解决抽象型函数的有关习题。 一、几个重要的结论 (一)函数)(x f y =图象本身的对称性(自身对称) 2、)2()(x a f x f -= ?)(x f y =的图象关于直线a x =对称。 3、)2()(x a f x f +=- ?)(x f y =的图象关于直线a x =对称。 4、)()(x b f x a f -=+ ?)(x f y =的图象关于直线2 2)()(b a x b x a x +=-++=对称。 5、b x a f x a f 2)()(=-++ ?)(x f y =的图象关于点),(b a 对称。 6、b x a f x f 2)2()(=-+ ?)(x f y =的图象关于点),(b a 对称。 7、b x a f x f 2)2()(=++- ?)(x f y =的图象关于点),(b a 对称。 8、c x b f x a f 2)()(=-++ ?)(x f y =的图象关于点),2 (c b a +对称。 (二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解) 1、函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称。 2、函数)(x f y =与)2(x a f y -=图象关于直线a x =对称

3、函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称 4、函数)(x a f y +=与)(x b f y -=图象关于直线0)()(=--+x b x a 对称 即直线2a b x -= 对称 5、函数)(x f y =与)(x f y -=图象关于X 轴对称。 6、函数)(x f y =与)(x f y -=图象关于Y 轴对称。 7、函数)(x f y =与)(x f y --=图象关于原点对称 (三)函数的周期性 1、)()(x f T x f =+ ?)(x f y =的周期为T 2、)()(b x b f a x f ++=+ )(b a < ?)(x f y =的周期为a b T -= 3、)()(x f a x f -=+ ?)(x f y =的周期为a T 2= 4、) (1)(x f a x f =+ ?)(x f y =的周期为a T 2= 5、)(1)(x f a x f - =+ ?)(x f y =的周期为a T 2= 6、) (1)(1)(x f x f a x f +-=+ ?)(x f y =的周期为a T 3= 7、 1)(1)(+- =+x f a x f ?)(x f y =的周期为a T 3= 8、) (1)(1)(x f x f a x f -+=+ ?)(x f y =的周期为a T 4=

函数对称性、周期性和奇偶性规律总结

( 函数对称性、周期性和奇偶性 关岭民中数学组 (一)、同一函数的函数的奇偶性与对称性:(奇偶性是一种特殊的对称性) 1、奇偶性:(1) 奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f (2)偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 2、奇偶性的拓展 : 同一函数的对称性 (1)函数的轴对称: 函数)(x f y =关于a x =对称?)()(x a f x a f -=+ > )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 若写成:)()(x b f x a f -=+,则函数)(x f y =关于直线 2 2)()(b a x b x a x +=-++= 对称 证明:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知, )2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点 ),(11y x 与点),2(11y x a -关于x=a 对称。得证。 说明:关于a x =对称要求横坐标之和为2a ,纵坐标相等。 ∵1111(,)(,)a x y a x y +-与 关于x a =对称,∴函数)(x f y =关于a x =对称 ?)()(x a f x a f -=+ ∵1111(,)(2,)x y a x y -与关于x a =对称,∴函数)(x f y =关于a x =对称 ?)2()(x a f x f -= ∵1111(,)(2,)x y a x y -+与关于x a =对称,∴函数)(x f y =关于a x =对称 ?)2()(x a f x f +=- (2)函数的点对称: · 函数)(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+-

(完整word)高考专题函数对称性

函数对称性 一知识点精讲: I 函数)(x f y =图象本身的对称性(自身对称) 1、)()(x b f x a f -=+?)(x f y =图象关于直线2 2)()(b a x b x a x +=-++=对称 证明:函数)(x f y =图象上的任一点00(,)P x y (满足00()f x y =)关于直线a b x +=的对称点为 (Q a b +∴点Q 推论1推论2推论32、f ((Q a b +∴点Q 推论1推论2推论3II 1、y 2、y 345.函数证明:函数()y f a x =+图象上的任一点00(,)P x y (满足00()f a x y +=)关于直线2b a x -= 的对称点为00(,)Q b a x y --,Q 000[()]()f b b a x f a x y ---=+= ∴点Q 在函数()y f b x =-的图象上;反之函数()y f b x =-的图象上任一点关于直线2 b a x -= 的对称点也在函数()y f a x =+图象上.从而函数()y f a x =+与()y f b x =-的图象关于直线2 b a x -=对称. 推论1:函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称 推论2:函数)(x f y =与)2(x a f y -=图象关于直线a x =对称 推论3:函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称

6若函数)(x f y =的定义域为R ,则函数()y f a x =+与()y f b x =--的图象关于点( ,0)2 b a -对称. 证明:函数()y f a x =+图象上的任一点00(,)P x y (满足00()f a x y +=)关于点(,0)2 b a -的对称点为00(,)Q b a x y ---,Q 000[()]()f b b a x f a x y ----=-+=- ∴点Q 在函数()y f b x =--的图象上;反之函数()y f b x =--的图象上任一点关于点(,0)2 b a -的对称点也在函数()y f a x =+图象上.从而函数()y f a x =+与()y f b x =--的图象关于点(,0)2b a -对称. 二典例解析: 11x (log 2f 解析:)(x f -(log f 234 5 解析:的,故6、设y )2(x f =解析:)2(x f 是由2 1=x ,=x 7个实根之和为解析:)(x f y =的图象关于直线3=x 对称,故五个实根,有两对关于直线3=x 对称,它们的和为12,还有一个根就是3。故这5个实根之和为15,正确答案为15 8、设函数)(x f y =的定义域为R ,则下列命题中, ①若)(x f y =是偶函数,则)2(+=x f y 图象关于y 轴对称; ②若)2(+=x f y 是偶函数,则)(x f y =图象关于直线2=x 对称; ③若)2()2(x f x f -=-,则函数)(x f y =图象关于直线2=x 对称; ④)2(-=x f y 与)2(x f y -=图象关于直线2=x 对称, 其中正确命题序号为_______。 解析:①错)2(+=x f y 关于直线2-=x 对称,②对③错若)2()2(x f x f -=-,则函数)(x f y =图象关于直线0=x 对称;④对正确答案为②④

函数的对称性完美

函数的对称性 一、教学目标 函数图象的对称性是一类函数的特性,是函数性质的重要方面,它包括自身对称和两个函数图象之间的对称,理解掌握函数对称性,对数学问题的解决有很大的帮助,对也是数形结合思想的重要体现。 1.自身对称函数,函数图象本身具有对称轴或是对称中心,该函数的图象是轴对称图形或是中心对称图形,奇函数与偶函数是最典型的两类函数,其它自身对称的函数都可以由奇偶函数平移得到; 2.两个函数图象的对称,是指两个图形之间的关系,它们之间存在某种关联,即它们关于某一点对称或是关于某一条直线对称,研究其中一个函数的性质就可知另一个函数的特点(互为反函数的两个函数图象)。 二、举例分析 例1. 设()f x 是定义在R 上的函数, (1)若对任意x R ∈,都有()()f a x f b x -=+成立,则函数()f x 的图象关于直线2 a b x +=对称; (2)若对任意x R ∈,都有()()22f x f a x b +-=,则函数()f x 的图象关于点(),a b 成中心对称。 选题目的:通过此题的学习,让学生明白一个道理,函数()f x 的图象是轴对称或是中心对称,函数解析式()f x 应满足一关系式是什么,并能通过奇偶函数的平移获得理解这种关系式的钥匙。 思路分析: (1)要证明()f x 图象上任意一点()00,P x y 关于直线2 a b x +=对称的点()00,Q a b x y +-也在()f x 的图象上。 事实上,()()()()00000y f x f a a x f b a x f a b x ==--=+-=+-????????,即得点()00,Q a b x y +-也在()f x 的图象上。 特别地,当,a b 都为0时,就是偶函数的特征了。

函数对称性、周期性和奇偶性的规律总结大全 .分解

函数对称性、周期性和奇偶性规律 一、 同一函数的周期性、对称性问题(即函数自身) 1、 周期性:对于函数 )(x f y =,如果存在一个不为零的常数 T ,使得当x 取定义域内的每一个值时,都有 )()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周 期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 2、 对称性定义(略),请用图形来理解。 3、 对称性: 我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 奇函数关于(0,0)对称,奇函数有关系式 0)()(=-+x f x f 上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称?)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在 )(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==, 即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。得证。 若写成:)()(x b f x a f -=+,函数)(x f y =关于直线2 2)()(b a x b x a x +=-++= 对称 (2)函数 )(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在 )(x f y =上,即) (11x f y =,通过 b x f x a f 2)()2(=+-可知, b x f x a f 2)()2(11=+-,所以 1 112)(2)2(y b x f b x a f -=-=-,所以点 )2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。得 证。 若写成:c x b f x a f =-++)()(,函数)(x f y =关于点)2 ,2( c b a + 对称 (3)函数 )(x f y =关于点b y =对称:假设函数关于b y =对称,即关于任一个x 值,都有两个 y 值与其对应,显然这不符合函数的定义,故函数自身不可能关于b y =对称。但在曲线c(x,y)=0,则 有可能会出现关于 b y =对称,比如圆04),(22=-+=y x y x c 它会关于y=0对称。 4、 周期性: (1)函数 )(x f y =满足如下关系系,则T x f 2)(的周期为 A 、 )()(x f T x f -=+ B 、) (1 )()(1)(x f T x f x f T x f - =+= +或 C 、 )(1)(1)2(x f x f T x f -+=+或) (1) (1)2(x f x f T x f +-=+(等式右边加负号亦成立)

高中数学函数的奇偶性说课稿

《函数的奇偶性》说课稿 各位评委老师,上午好,我是号考生叶新颖。今天我的说课题目是函数的奇偶性。首先我们来进行教材分析。 一、教材分析 函数是中学数学的重点和难点,函数的思想贯穿于整个高中数学之中。函数的奇偶性是函数中的一个重要内容,它不仅与现实生活中的对称性密切相关联,而且为后面学习指、对、幂函数的性质作好了坚实的准备和基础。因此,本节课的内容是至关重要的,它对知识起到了承上启下的作用。 二.教学目标 1.知识目标: 理解函数的奇偶性及其几何意义;学会运用函数图象理解和研究函数的性质;学会判断函数的奇偶性; 2.能力目标: 通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想. 3.情感目标: 通过函数的奇偶性教学,培养学生从特殊到一般的概括归纳问题的能力.三.教学重点和难点: 教学重点:函数的奇偶性及其几何意义 教学难点:判断函数的奇偶性的方法与格式 四、教学方法 为了实现本节课的教学目标,在教法上我采取: 1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性。 2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。 3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。 五、学习方法

1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。 2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。 六.教学程序 (一)创设情景,揭示课题 “对称”是大自然的一种美,这种“对称美”在数学中也有大量的反映,让我们看看下列各函数有什么共性? 观察下列函数的图象,总结各函数之间的共性. 2()f x x = ()||1f x x =- 2 1()x x = x x x 通过讨论归纳:函数2()f x x =是定义域为全体实数的抛物线;函数()||1f x x =-是定义域为全体实数的折线;函数21()f x x =是定义域为非零实数的两支曲线,各函数之间的共性为图象关于y 轴对称.观察一对关于y 轴对称的点的坐标有什么关系? 归纳:若点(,())x f x 在函数图象上,则相应的点(,())x f x -也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等. (二)互动交流 研讨新知 函数的奇偶性定义: 1.偶函数 一般地,对于函数()f x 的定义域内的任意一个x ,都有()()f x f x -=,那么

函数对称性、周期性和奇偶性规律总结

函数对称性、周期性和奇偶性规律总结

注:换种说法:)(x f y =与()()y g x f x ==-若满足)()(x g x f -=,即它们关于0=y 对称。 2、()y f x =与()y f x =-关于Y 轴对称。 证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以()y f x =-经过点11(,)x y - ∵11(,)x y 与11(,)x y -关于Y 轴对称,∴()y f x =与()y f x =-关于Y 轴对称。 注:因为11(,)x y -代入()y f x =-得111(())()y f x f x =--=所以()y f x =-经过点11(,)x y - 换种说法:)(x f y =与()()y g x f x ==-若满足)()(x g x f -=,即它们关于0=x 对称。 ()(())()g x f x f x -=--= 3、()y f x =与(2)y f a x =-关于直线x a = 对称。 证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以(2)y f a x =-经过点11(2,)a x y - ∵11(,)x y 与11(2,)a x y -关于x a =轴对称,∴()y f x =与(2)y f a x =-关 于直线x a = 对称。 注:换种说法:)(x f y =与()(2)y g x f a x ==-若满足)2()(x a g x f -=,即它们关于a x =对称。 4、)(x f y =与)(2x f a y -=关于直线a y =对称。 证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以)(2x f a y -=经过点11(,2)x a y - ∵11(,)x y 与11(,2)x a y -关于y a =轴对称,∴)(x f y =与)(2x f a y -=关于直线a y =对称. 注:换种说法:)(x f y =与()2()y g x a f x ==-若满足a x g x f 2)()(=+,即它们关于a y =对称。 5、)2(2)(x a f b y x f y --==与关于点(a,b)对称。 证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以2(2)y b f a x =--经过点11(2,2)a x b y --

高一数学函数的奇偶性知识及例题

高一数学函数的奇偶性 提出问题 ① 如图所示,观察下列函数的图象,总结各函数之间的共性 对于函数定义域内任意一个x,都有f(-x)=f(x). 定义: 1 ?偶函数:一般地,对于函数f(x)的定义域内的任意一个X,都有f( x) f (x),那么f (x) 就叫做偶函数. 2 ?奇函数:一般地,对于函数 f (x)的定义域的任意一个x,都有f( x) f (x),那么f (x) 就叫做奇函数. 1、如果函数y f (x)是奇函数或偶函数,我们就说函数y f (x)具有奇偶性;函数的奇偶性是函 数的整体性质; 2、根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、既不是奇函 数也不是偶函数; 3、由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则x也一定是定义域内的一个自变量(即定义域关于原点对称) .如果一个函数的定义域不关于“0”(原点)对称,则该函数既不是奇函数也不是偶函数; 4、偶函数的图象关于y轴对称,反过来,如果一个函数的图象关于y轴对称,那么这个函数为偶 函数且f(x) f (|x|)。奇函数的图象关于原点对称;反过来,如果一个函数的图象关于原点 对称,那么这个函数为奇函数? 且f(0)=0 5、可以利用图象判断函数的奇偶性,这种方法称为图象法,也可以利用奇偶函数的定义判断函数的奇偶性,这种方法称为定义法用定义判断函数奇偶性的步骤是 (1)、先求定义域,看是否关于原点对称; (2)、再判断f( x) f (x)或f ( x) f (x)是否恒成立;

(3)、作出相应结论. 若f ( x) f(x)或彳(x) f(x) 0,则f(x)是偶函数; 若 f( x) f (x)或 f ( x) f (x) 0,则 f (x)是奇函数 例?判断下列函数的奇偶性 x 3 x 2 为非奇非偶函数;(2)f (x) 为非奇非偶函数 x 1 x 1 奇函数;(4) f (x) (x 1). \ x 1 (7) f (x) .1 x 2 . x 2 1 既是奇函数又是偶函数 (8) f (x) a,a 0 为非奇非偶函数 常用结论: (1) . 两个偶函数相加所得的和为偶函数 (2) . 两个奇函数相加所得的和为奇函数 . ⑶.一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数 (4) . 两个偶函数相乘所得的积为偶函数 . (5) . 两个奇函数相乘所得的积为偶函数 . (6) . 一个偶函数与一个奇函数相乘所得的积为奇函数 . 一?分段函数奇偶性的判断 1 2 —x 2 1 (x 0) 例1.判断函数的奇偶性: g(x) 2 1 2 —X 2 1 (x 0) 2 解:当x >0时,一x v 0,于是 1 2 1 2 g( x) -( x)2 1 (-x 2 1) g(x) 2 2 当x v 0时,一x > 0,于是 1 2 1 2 1 2 g( x) ( x) 1 x 1 ( x 1) g(x) 2 2 2 综上可知, g(x)是奇函数. 2 (1)f (x) x x [ 1,2] 3 (3) f (x) x x (5)f(x) =x+ 丄; x 奇函数;(6) f (x) ■, 1 x 2 2 |x 2| 奇函数

三角函数图象的对称性

三角函数图象的对称性质及其应用 观察三角函数的图象,不难发现它们都具有对称性 ,虽然历届高考中关于三角函数图象的对称性问题屡有涉及,但教材中却是一个盲点。为此,本文谈谈三角函数图象的对称性质及其应用。 一、正弦曲线和余弦曲线都是轴对称图形 性质1、函数)sin(?ω+=x A y 和)cos(?ω+=x A y 的图象关于过最值点且垂直于x 轴的直线分别成轴对称图形; )sin(?ω+=x A y 对称轴方程的求法是:令1)sin(±=+?ωx ,得 2ππ?ω+=+k x )(Z k ∈,则ω ?π22)12(-+= k x ,所以函数)sin(?ω+=x A y 的图象的对称轴方程为ω?π22)12(-+=k x ; )cos(?ω+=x A y 对称轴方程的求法是:令1)cos(±=+?ωx ,得π?ωk x =+)(Z k ∈,则ω?π-= k x ,所以函数)cos(?ω+=x A y 的图象的对称轴方程为ω?π-=k x 。 例1、函数)62sin(3π+ =x y 图象的一条对称轴方程是( ) (A )0=x (B )32π=x (C )6π-=x (D )3π=x 解:由性质1知,令1)62sin(3±=+ πx 得262πππ+=+k x )(Z k ∈,即62ππ+=k x )(Z k ∈,取1=k 时,3 2π=x ,故选(B )。 例2、函数)3 3cos(21)(π+=x x f 的图象的对称轴方程是 解:由性质1知, 令1)33cos(±=+ πx 得ππk x =+33)(Z k ∈,即93ππ-=k x )(Z k ∈,所以)3 3cos()(π+=x x f 的图象的对称轴方程是9 3ππ-=k x )(Z k ∈。 二、正弦曲线和余弦曲线都是中心对称图形 性质2、函数)sin(?ω+=x A y 和)cos(?ω+=x A y 的图象关于其与x 轴的交点分别成中心对称图形; )sin(?ω+=x A y 的对称中心求法是:令0)sin(=+?ωx ,得

函数对称性

函数对称性 一 知识点 I 函数图象本身的对称性(自身对称) 若,则具有周期性;若,则具有对称性:“内同表示周期性,内反表示对称性”。 1、图象关于直线对称 推论1:的图象关于直线对称 推论2、的图象关于直线对称 推论3、的图象关于直线对称 2、的图象关于点对称 推论1、的图象关于点对称 推论2、的图象关于点对称 推论3、的图象关于点对称 II 两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解) 1、与图象关于Y轴对称 2、与图象关于原点对称函数 3、函数与图象关于X轴对称 4、函数与其反函数图象关于直线对称 5.函数与图象关于直线对称 推论1:函数与图象关于直线对称 推论2:函数与图象关于直线对称 推论3:函数与图象关于直线对称 二典例解析: 1、定义在实数集上的奇函数恒满足,且时, ,则________。 2、已知函数满足,则图象关于__________对称。 3、函数与函数的图象关于关于__________对称。 4、设函数的定义域为R,且满足,则的图象关于__________对称。 5、设函数的定义域为R,且满足,则的图象关于__________对称。 6、设的定义域为R,且对任意,有,则关于__________对称,图象关于

__________对称,。 7、已知函数对一切实数x满足,且方程有5个实根,则这5个实根之和为() A、5 B、10 C、15 D、18 8、设函数的定义域为R,则下列命题中,①若是偶函数,则图象关于y 轴对称;②若是偶函数,则图象关于直线对称;③若,则函数图象关于直线对称;④与图象关于直线对称,其中正确命题序号为_______。

关于函数图像对称性问题

关于函数图像对称性的问题 胡春林 指导老师:刘荣玄 【摘要】函数图象的对称性反映了函数的特性,是研究函数性质的一个重要方面,函数图象的对称性包括一个函数图象自身的对称性与两个函数图象之间的对称性。 【关键词】函数图像对称性轴对称中心对称 一、函数自身的对称性的问题 函数是中学数学教学的主线,是中学数学的核心内容,也是一个高中数学的基础。函数的性质是高考的重点与热点,函数的对称性是函数的一个基本性质,也是难点,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质的一些思考。 例题1. 函数y = f (x)的图像关于点A (a ,b)对称的充要条件是 f (x) + f (2a-x) = 2b 证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P ‘(2a-x,2b-y)也在y = f (x)图像上,∴2b-y = f (2a-x) 即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。 (充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0) ∵ f (x) + f (2a-x) =2b∴f (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。 故点P‘(2a-x0,2b-y0)也在y = f (x) 图像上,而点P与点P‘关于点A (a ,b)对称,充分性得征。例题2 ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对 (a≠b),则y = f (x)是周期函数,且2| a-b|是其一个周期。 ②若函数y = f (x) 图像同时关于直线x = a 和直线x = b成轴对称(a≠b),则y = f (x)是周期函数, 且2| a-b|是其一个周期。 ③若函数y = f (x)图像既关于点A (a ,c) 成中心对称又关于直线x =b成轴对称(a≠b),则y = f (x)是周期函数,且4| a-b|是其一个周期。 ①②的证明留给读者,以下给出③的证明:

3.2.1奇偶函数图象的对称性

奇偶函数图象的对称性 一.选择题(共35小题) 1.(2019秋?丹东期末)下列函数中,其图象与函数y lgx =的图象关于点(1,0)对称的是( ) A .(1)y lg x =- B .(2)y lg x =- C .0.1log (1)y x =- D .0.1log (2)y x =- 2.(2008?全国卷Ⅱ)函数1 ()f x x x =-的图象关于( ) A .y 轴对称 B .直线y x =-对称 C .坐标原点对称 D .直线y x =对称 3.(2010?重庆)函数41 ()2 x x f x +=的图象( ) A .关于原点对称 B .关于直线y x =对称 C .关于x 轴对称 D .关于y 轴对称 4.(2011?山东)对于函数()y f x =,x R ∈,“|()|y f x =的图象关于y 轴对称”是“()y f x =是奇函数”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 5.(2009?黑龙江)函数2 2log 2x y x -=+的图象( ) A .关于直线y x =-对称 B .关于原点对称 C .关于y 轴对称 D .关于直线y x =对称 6.(2014?南昌模拟)已知定义域为R 的函数()y f x =满足()(4)f x f x -=-+,当2x >时, ()f x 单调递增,若124x x +<且12(2)(2)0x x --<,则12()()f x f x +的值( ) A .恒大于0 B .恒小于0 C .可能等于0 D .可正可负 7.(2015?凯里市校级模拟)函数sin 3 x y x = +的图象大致是( ) A . B .

相关主题
文本预览
相关文档 最新文档