当前位置:文档之家› 智能无人驾驶汽车计算机控制系统

智能无人驾驶汽车计算机控制系统

智能无人驾驶汽车计算机控制系统
智能无人驾驶汽车计算机控制系统

智能无人驾驶汽车计算机控制系统

一、智能无人驾驶汽车计算机控制系统简介

1、智能无人驾驶简介

智能无人驾驶汽车是一个集环境感知、规划决策、多等级辅助驾驶等功能于一体的综合系统,对车辆的操作实质上可视为对一个多输入、多输出、输入输出关系复杂多变、不确定多干扰源的复杂非线性系统的控制过程。驾驶员既要接受环境如通路、拥挤、方向、行人等的信息,还要感受汽车如车速、侧性偏移、横摆角速度等的信息,然后经过判断分析和决策,并与自己的驾驶经验相比较,确定出应该做的操纵动作,最后由身体、手、脚等来完成操纵车辆的动作。因此在整个驾驶过程中,驾驶员的人为因素占了很大的比重。一旦出现驾驶员长时间驾车、疲劳驾车、判断失误的情况,很容易造成交通事故。

二、系统的控制要求

(1)系统中心控制部件(单片机)可靠性高,抗干扰能力强,工作频率最高可达到25MHz,能保障系统的实时性。

(2)系统在软硬件方面均应采用抗干扰技术,包括光电隔离技术、电磁兼容性分析、数字滤波技术等。

(3)系统具有电源实时监控、欠压状态自动断电功能。

(4)系统具有故障自诊断功能。

(5)系统具有良好的人性化显示模块,可以将系统当前状态的重要参数(如智能车速度、电源电压)显示在LCD上。

(6)系统中汽车驱动力为500N时,汽车将在5秒内达到10m/s的最大速度。

一、系统总体方案设计

1、系统总体结构

整个系统主要由车模、模型车控制系统及辅助开发系统构成。

智能车系统的功能模块主要包括:控制核心模块、电源管理模块、路径识别模块、后轮

电机驱动模块、转向舵机控制模块、速度检测模块、电池监控模块、小车故障诊断模块、LCD 数据显示模块及调试辅助模块。每个模块都包括硬件和软件两部分。硬件为系统工作提供硬件实体,软件为系统提供各种算法。

2、控制机构与执行机构

智能车主要通过自制小车来模拟执行机构,自制小车长为34.6cm,宽为24.5cm,重为1.2kg,采样周期为3ms,检测精度为4mm。

控制机构中,主控制核心采用freescale16位单片机MC9S12DG128B。系统在CodeWarrior 软件平台基础上设计完成,采用C语言和汇编语言混合编程,提供强大的辅助模块,包括电池检测模块、小车故障诊断模块、LCD数据显示模块以及调试辅助模块。在路径识别模块,系统利用了freescaleS12系列单片机提供的模糊推理机。

3、控制规律

因为系统电机控制模块控制小车的运动状态,其在不同阶段特性参数变化很大,故采用数字PID控制器,该控制器技术成熟,结构简单,参数容易调整,不一定需要系统的确切数字模型。

4、系统各模块的主要功能

控制核心模块:使用freescale16位单片机MC9S12DG128B,主要功能是完成采集信号的处理和控制信号的输出。

电源管理模块:对电池进行电压调节,为各模块正常工作提供可靠的电压。

路径识别模块:完成跑道信息的采集、预处理以及数据识别。

后轮电机驱动模块:为电机提供可靠的驱动电路和控制算法。

转向舵机控制模块:为舵机提供可靠的控制电路和控制算法。

速度检测模块:为电机控制提供准确的速度反馈。

电池监控模块:对电池电量进行实时监控,以便科学的利用,保护电池。

小车故障诊断模块:对小车故障进行快速、准确的诊断。

LCD数据显示模块:显示系统当前状态的重要参数。

调试辅助模块:使得小车调试更加方便。

5、系统的开发平台

系统软件开发平台采用CodeWarrior for S12

二、系统硬件和软件设计

1、系统的硬件设计

系统硬件系统框图如下:

以下按各模块来分别设计本硬件电路:

(1)电源管理模块:

电源管理模块的功能对电池进行电压调节,为各个模块正常工作提供可靠的工作电压。电源管理模块采用7.2V、2000mAh镍镉电池以及LM2576(5V),LM317(6V)稳压芯片构成。

(2)微处理器:采用微处理器MC9S12DG128

(3)路径识别模块:

红外发射管和红外接收管以及达林顿管ULN2803A作为路径识别的传感器。采用双排传感器的策略,第一排传感器专门用于识别路径以及记忆路径的各种特征点,第二排传感器专门用于识别起始位置与十字交叉路口,由于不同传感器的功能不一样,因此它们的布置与安装位置也是不同。

(4)后轮驱动和速度检测模块:

驱动直流电机的型号为RS—380SH,输出功率为0.9W—40W。电机驱动部分采用了两块MC33886组成的全桥式驱动电路,可以控制电机的反转以达到制动的目的。

(5)转向舵机模块:

凡是需要操作性动作时都可以用舵机来实现。本设计采用的舵机型号为HS —925(SANWA ),尺寸为39.4*37.8*27.8,重量56kg ,工作速度0.11sec/60(4.8V ),0.07sec/60(6.0V ),堵转力矩6.1kg 。

(6)电源电压检测模块

智能车采用镍镉电池供电,本模块用到的主要器件为光电耦合芯片TLP521—2以及运算放大器LM324。

(7)液晶显示模块:LCD 控制器HD44780。

(8)辅助调试模块(红外遥控):

本模块主要用红外接收器HS0038A 和红外遥控器来进行遥控控制。

(9)故障诊断模块:

利用单片机的SCIO 口,通过RS —232接口与上位机连接起来,通过软件编程,小车不断的向上位机发送代码,通过故障代码就可以马上诊断出故障源。

2、系统的软件设计

(1)后轮驱动电机控制算法

采用数字控制器的连续化设计技术PID 控制算法来控制本部分电路。

PID 控制器的传递函数为:

2()1()(1)()D p I I p D p D I K s K s K K U s D s K T s K K s E s T s s s ++==++=++=

设定Kp= 1500进行测试,此时仿真静态值与静态误差以及上升时间已基本满足系统需求,从而完全可以通过继续增加比例系数来调节系统特性,进而理论上可以省去积分环节。但是随着比例系数的增加动态过程将让人不满意,其动态变化将过快,从而给驾驶人员带来身体上的不适,增加积分环节:

积分环节的加入可以调节系统的静态误差。设定Kp=1000,Ki= 50系统基本实现设计要求

所以综上所述,我们设计的PID 控制器的传递函数为:

()100050()()U s s D s E s s +==,采样周期为T=0.1s 。

然后,利用数字控制器的离散化设计步骤来设计本系统。通过前面的分析,知道被控对

象的连续传递函数为:

()1()Y s U s ms b =+。其中,m=1000,b=50。因为零阶保持器的传递函数为:

1()Ts e H s S --=。所以得到广义对象的脉冲传递函数为:

1111()[*](1)[]100050(100050)Ts e G z Z z Z s s s s --==-++

1111111(1)[*]*(1)*20*[]11

10001000()2020z Z z Z s s s s --=-=--++ 111

20

11

1201(1)10.0488[]*505010.95121e z z z e z -------==-- 对单位脉冲输入信号的十倍,110()1R z z -=

-,选择 1()z z φ-=。

在十倍的单位阶跃信号,采样周期为1s 时,只需一拍输出就能跟踪输入,误差为零,非常好的达到了系统的设计要求。

(2)路径识别模块的软件设计

路径识别主要运用MC9S12DG128B 内部的模糊推理机运用模糊逻辑的基本知识来实现。

(3)数字滤波技术

在电动机数字闭环控制系统中,测量值

k y 是通过系统的输出量进行采样而得到的。它与给定值r (t )之差形成偏差信号k e ,所以,测量值k y 是决定偏差大小的重要数据。测量值如果不能真实地反映系统的输出,那么这个控制系统就会失去它的作用。在实际中,对电动机输出的测量值常混有干扰噪声,用混有干扰的测量值作为控制信号,将引起误动作,在有微分控制环节的系统中还会引起系统震荡,危害极大。

在本系统设计中,采用了移动平均滤波法。移动平均滤波法没计算一次测量值,只需采样一次,所以大大加快了数据处理速度,非常适合于实时控制。

移动平均滤波法是将采样后的数据按采样时刻的先后顺序存放在RAM 中,在每次计算前先顺序移动数据,将队列前的最先采样的数据移出,然后将最新采样的数据补充到队列的尾部,以保证数据缓冲区里总有n 个数据,并且数据仍按采样的先后顺序排列。这时计算队列中各数据的算术平均值,这个算术平均值就是测量值

k y ,它实现了每采样一次,就计算一

k y 。

(4)转向舵机控制算法

舵机控制是智能车系统中很重要的一个环节,舵机控制的好坏也直接影响了小车的控制效果,舵机的控制信号为20ms 的脉宽调制信号,其中脉冲宽度从0.5ms —2.5ms ,相对应舵盘的位置为0—180度,呈线性变化。也就是说,给它一定的脉宽,它的输出轴就会保持在一个相对应的角度上,无论外界转矩怎样改变,直到给它提供一个另外宽度的脉冲信号,它才会改变输出角度到新的对应的位置上。

(5)速度检测软件设计

速度传感器采用红外对射式传感器,传感器感应出与速度相关的脉冲后,接下来就要识别这些脉冲。有两种方法可以识别,一种是通过测量脉冲的宽度来识别小车的速度,另一种是通过计算一定时间内的脉冲的个数来识别小车的速度。本设计采用后一种方法。在本设计中利用了MC9S12DG128B 内部的两个资源,分别是RTI 中断和输入捕捉中断:通过RTI 中断,可以控制一定的时间,这段时间是固定的;通过输入捕捉中断,来计算捕获脉冲的个数,最后通过在这段时间内捕获的脉冲个数来反映小车速度的大小。

二、 系统设计总结

该智能车控制系统智能化程度较高,使用操作简单,性能可靠;采用专用单片机控制系统,提高系统工作可靠性;智能化程度较高,在一定程度下,基本不用人工操作;采用LCD 液晶显示,人机交互化程度较高。

(注:素材和资料部分来自网络,供参考。请预览后才下载,期待你的好评与关注!)

(整理)自动控制综合设计_无人驾驶汽车计算机控制系统方案

自动控制综合设计 ——无人驾驶汽车计算机控制系统 指导老师: 学校: :

目录 一设计的目的及意义 二智能无人驾驶汽车计算机控制系统背景知识三系统的控制对象 四系统总体方案及思路 1系统总体结构 2控制机构与执行机构 3控制规律 4系统各模块的主要功能 5系统的开发平台 6系统的主要特色 五具体设计 1系统的硬件设计 2系统的软件设计 六系统设计总结及心得体会

一设计目的及意义 随着社会的快速发展,汽车已经进入千家万户。汽车的普及造成了交通供需矛盾的日益严重,道路交通安全形势日趋恶化,造成交通事故频发,但专家往往在分析交通事故的时候,会更加侧重于人与道路的因素,而对车辆性能的提高并不十分关注。如果存在一种高性能的汽车,它可以自动发现前方障碍物,自动导航引路,甚至自动驾驶,那将会使道路安全性能得到极大提高与改善。本系统即为实现这样一种高性能汽车而设计。 二智能无人驾驶汽车计算机控制系统背景知识 智能无人驾驶汽车是一个集环境感知、规划决策、多等级辅助驾驶等功能于一体的综合系统,它集中运用了计算机、现代传感、信息融合、通讯、人工智能及自动控制等技术,是典型的高新技术综合体。目前对智能汽车的研究主要致力于提高汽车的安全性、舒适性,以及提供优良的人车交互界面。近年来,智能车辆已经成为世界车辆工程领域研究的热点和汽车工业增长的新动力,很多发达国家都将其纳入到各自重点发展的智能交通系统当中。 通过对车辆智能化技术的研究与开发,可以提高车辆的控制与驾驶水平,保障车辆行驶的安全通畅、高效。对智能化的车辆控制系统的不断研究完善,相当于延伸扩展了驾驶员的控制、视觉和感官功能,能极促进道路交通的安全性。智能车辆的主要特点是以技术弥补人为因素的缺陷,使得即便在很复杂的道路情况下,也能自动地操纵和驾驶车辆绕开障碍物,沿着预定的道路轨迹行驶。 三系统的控制对象 (1)系统中心控制部件(单片机)可靠性高,抗干扰能力强,工作频率最高可达到25MHz,能保障系统的实时性。 (2)系统在软硬件方面均应采用抗干扰技术,包括光电隔离技术、电磁兼容性分析、数字滤波技术等。 (3)系统具有电源实时监控、欠压状态自动断电功能。 (4)系统具有故障自诊断功能。

汽车分类国家标准

道路上行驶的汽车造型和性能特征等千差万别,如何区别这些汽车?一般来讲,根据新的汽车分类国家标准(gb9417-89)就可方便地区分车型。中国汽车划分为8大类: 1.载货汽车:依公路运行时厂定最大总质量(ga)划分为:微型货车(ga≤1.8吨)轻型货车(1.8吨<ga≤6吨)中型货车(6.0吨<ga≤14吨)重型货车(ga>14吨)2.越野汽车:依越野运行时厂定最大总质量(ga)划分为:轻型越野汽车(ga≤5吨)中型越野汽车(5.0吨<ga≤13吨)重型越野汽车(13<ga≤24吨)超重型越野汽车(ga>24吨) 3.自卸汽车:依公路运行时厂定最大总质量(ga)划分为:轻型自卸汽车(ga≤6吨)中型自卸汽车(6.0吨<ga≤14吨)重型自卸汽车(ga>14吨)矿山自卸汽车; 4.牵引车:半挂牵引车、全挂牵引车; 5.专用汽车:厢式汽车、罐式汽车、起重举升汽车、仓棚式汽车、特种结构式汽车、专用自卸汽车; 6.客车:依车长(l)划分为:微型(l≤3.5米)轻型(3.5米<l≤7米)中型(7米<l≤10米)大型客车(l>10米)和特大型客车;中大型客车又可分为城市、长途、旅游及团体客车,特大型客车指铰接和双层客车; 7.轿车:依发动机排量(v)划分为:微型轿车(v≤1升)普通轿车(1升<v≤1.6升)中级轿车(1.6升<v≤2.5升)中高级轿车(2.5升<v≤4升)高级轿车(v>4升)8.半挂车:依公路运行时厂定最大总质量(ga)划分为:轻型半挂车(ga≤7.1吨)中型半挂车(7.1吨<ga≤19.5吨)重型半挂车(19.5<ga≤34吨)超重型半挂车(ga>34吨)本站点车型定义与分类本网站主要收集小型客车,如各种轿车,轻型越野汽车,微型货车,微型客车。在中国,根据公安部的车辆分类标准,小型客车的共分为四类,即:·小轿车、越野车、旅行车、轻型小客车·本站点即主要采用这种分类办法。·本站点还同时收录适宜家庭使用的小型货车(皮卡,pickup),归类为小货车每辆车属于哪一种车型,请参阅该车的行驶证(不是司机驾驶证)正页第5行均已标明。·小轿车举例:桑塔纳,宝马,奥迪等;夏利、奥拓属于小轿车。切诺基小客车在北京行驶按照小轿车进

无人驾驶行业公司研究报告

1. 何为无人驾驶 1.1 概念简言之,无人驾驶汽车就是一种不需要人进行驾驶的智能汽车,也叫轮式移动机器人,即主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶。 1.2 原理利用车载传感器来感知车辆周围环境,并根据感知所获得的道路、车辆位置和障碍物信息,自动规划行车路线, 控制车辆的转向和速度,从而使车辆能够安全、可靠地在道路上行驶。原理上是集自动控制、体系结构、人工智能、视觉计算等众多技术于一体。 以谷歌为例: 谷歌车顶上安装的激光测距仪在高速旋转时向周围发射64 束激光,激光碰到周围的物体并返回,便可计算出车体与周边物体的距离。计算机系统再根据这些距离数据描绘出精细的3D地形图,然后跟 高分辨率地图相结合,生成不同的数据模型供车载计算机系统使用。这样汽车就能够识别障碍,遵守交通规则。总结为四个词语就是感知、判断、执行、互联。 (1)感知——汽车的眼睛(视觉),耳朵(听觉),身体(触觉):依靠各类传感器获得环境数据,突破人类生理限制。传感器搭载数量的持续提升,使行车数据收集渠道显著拓宽; (2)判断——汽车的大脑(机器智能):根据传感器等输入数据,行车电脑取代司机主动发出控制指令;依靠芯片与算法的不断提升从而得以实现。 (3)执行——汽车的手与脚:电子装臵取代传统机械设备,根据行车电脑指令实施控制; (4)互联——汽车的远程智囊:车内网,车际网,三网融合进一步提升整个交通系统的运行效率。 2. 无人驾驶发展史 2.1 上世纪70 年代,美、英、德等开始进行无人驾驶的研究,在可行性和实用性方面取得了突破性的进展; 2.2 中国从上世纪80 年代开始进行无人驾驶汽车的研究,国防科大在1992 年成功研制出中国第辆真正意义上的无人驾驶汽车;2005 年,首辆城市无人驾驶汽车在上海交通大学研制成功; 2.3 商业领域 (1)最早进入无人驾驶领域、技术最为成熟的企业要属谷歌,它在2014 年宣布第一部具备完整功能 的自动驾驶汽车研发成功,进入商业化准备阶段;(PS;无人驾驶车已经获得了加利福尼亚州立法获批)(2)其后,通用、奥迪等无人驾驶车辆也都拿到路试资格;

《车用汽油》国家标准标准

《车用汽油》国家标准 征求意见稿编制说明 1任务来源 依据国家标准化管理委员会下发的国标委综合[2012]25号“关于下达《车用汽油》等2项国家标准制修订项目的通知”,由中国石油化工股份有限公司石油化工科学研究院负责对修订《车用汽油》国家标准。项目编号:20120002-Q-469。 2目的和意义 近年来,国民经济的高速发展带动了国内汽车工业的发展。根据资料显示,2010年我国汽车的产量达到1826万辆,占到世界汽车总产量的23.5%。汽车的大量使用,在给人们的出行带来便捷的同时,也给大气质量造成一定的影响,汽车排放的污染物分担率不断上升,为此,为了降低机动车的排放污染物数量,改善大气环境,中国目前正在制定我国未来第V阶段的汽车排放法规。为了满足这一更加严格的排放要求,需要高质量的车用汽油与之相配套。 本标准在GB 17930-2011《车用汽油》附录A的基础上,参考了2012年北京市制定第V阶段地方标准时所做的一些研究工作,对某些指标进行适当的调整。 3 标准的编制过程及强制理由 本标准依据国家标准化管理委员会2012年4月27日下发的国标委综合[2012]25号“关于下达《车用汽油》等2项国家标准制修订项目的通知”,由中国石油化工股份有限公司石油化工科学研究院负责修订GB 17930-2011《车用汽油》国家标准。 2012年5-6月,接到任务后,课题组首先对国内相关标准的变化情况和国外标准的现状以及目前国内炼厂的状况开展调研。由于本次标准制定的时间要求非常急迫,难于遵循过去在GB 17930-2006和GB 17930-2011起草中所采用的研究方法,为此经课题组研究,本标准在GB 17930-2011《车用汽油》附录A的基础上,参考北京地方标准研究的相关数据。编写《车用汽油》国家标准的征求意见稿及编制说明,并向全国石油产品和润滑剂标准化技术委员会石油燃料和润滑剂分技术委员会的委员及有关单位发送标准征求意见稿,进行意见征集工作。

无人驾驶智能汽车

无人驾驶智能汽车研究 (机电一体化129020007 余飞) 摘要:智能汽车能够大大提高交通系统的效率和安全性,将是未来汽车发展的主流。本文介绍了智能汽车提出的背景,研究的目的和意义,国内外智能汽车汽车的发展现状和发展方向,无人驾驶汽车的灌浆技术,以及无人驾驶汽车的应用前景。 关键词:智能汽车;自动驾驶; 1 无人驾驶汽车的研究意义 无人驾驶汽车是一种智能汽车,也可以称之为轮式移动机器人,主要依靠车内以计算机系统为主的智能驾驶仪来实现无人驾驶。它一般是利用车载传感器来感知车辆周围环境,并根据感知所获得的道路、车辆位置和障碍物信息,控制车辆的转向和速度,从而使车辆能够安全、可靠地在道路上行驶。 无人驾驶汽车从根本上改变了传统的“人—车—路”闭环控制方式,将不可控的驾驶员从该闭环系统中请出去,从而大大提高了交通系统的效率和安全性。现代无人驾驶汽车以汽车工业为基础,以高科技为依托,遵循由低到高、由少到多、由单方面到多方面、螺旋上升的规律发展。其横向发展离不开各种用途的实际需要,而其纵向发展的生命力在于持续不断的技术创新。 20世纪80年代以来,智能控制理论与技术在交通运输工程中越来越多地被应用。在这一背景下,自动驾驶汽车的提出是十分必然的。智能汽车是一种高新技术密集的新型汽车,是目前主流汽车的换代产品。 随着我国汽车保有量的增加,道路交通拥堵现象越来越严重,每年发生的交通事故也在不断上升,为了更好的解决这一问题,研究和开发汽车自动驾驶系统是很必要的。而自动驾驶汽车能很好的解决道路拥堵,提高文通系统效率。有研究表明:一个年轻敏捷的驾驶员,通常对各种情况做出及时反应的时间约为500毫秒,自动驾驶系统做出反应的时间不超过

无人驾驶汽车地传感器系统设计及技术展望

一、无人驾驶汽车传感器的研究背景和意义 无人驾驶汽车是人工智能的一个非常重要的验证平台,近些年成为国内外研究热点.无人驾驶汽车作为一种陆地轮式机器人,既与普通机器人有着很大的相似性,又存在着很大的不同.首先它作为汽车需保证乘员乘坐的舒适性和安全性,这就要求对其行驶方向和速度的控制更加严格;另外,它的体积较大,特别是在复杂拥挤的交通环境下,要想能够顺利行驶,对周围障碍物的动态信息获取就有着很高的要求。无人驾驶的研究目标是完全或部分取代驾驶员,是人工智能的一个非常重要的实现平台,同时也是如今前沿科技的重要发展方向。当前,无人驾驶技术具有重大的应用价值,生活和工程中,能够在一定程度上减轻驾驶行为的压力;在军事领域内,无人驾驶技术可以代替军人执行侦查、排雷、以及战场上危险环境中的任务;在科学研究的领域,无人驾驶技术可以实现外星球等极端环境下的勘探活动。无人驾驶车辆技术,又称智能车辆,即利用将无人驾驶的技术应用于车辆的控制中。 国外的无人驾驶车辆技术大多通过分析激光传感器数据进行动态障碍物的检测。代表有斯坦福大学的智能车“Junior”,利用激光传感器对跟踪目标的运动几何特征建模,然后用贝叶斯滤波器分别更新每个目标的状态;卡耐基?梅隆大学的“BOSS”智能车从激光传感器数据中提取障碍物特征,通过关联不同时刻的激光传感器数据对动态障碍物进行检测跟踪。牛津大学研制的无人车辆“WildCat”,不使用GPS,使用激光雷达和相机监控路面状况。我国相关技术开展较晚,国防科学技术大学研制的自主车“开路雄狮”,采用三维激光雷达Velodyne作为主要传感器,将Velodyne获取的相邻两激光数据作差,并在获得的差分图像上进行聚类操作,对聚类结果建立方盒模型。 无人驾驶车辆是一项融合了认知科学、人工智能、机器人技术与车辆工程等多学科的技术,涉及到电子电路,计算机视觉,自动控制,信号处理等多学科技术。无人驾驶汽车的出现从根本上改变了传统的“人——车——路”闭环控制方式,将无法用规则严格约束的驾驶员从该闭环系统中请出去,从而大大提高了交通系统的效率和安全性,是汽车工业发展的革命性产物。 二、无人驾驶汽车的传感器系统整体设计 无人驾驶汽车的实现需要大量的科学技术支持,而其中最重要的就是大量的传感器定位。核心技术是包括高精度地图、定位、感知、智能决策与控制等各个模块。其中有几个关键的技术模块,包含精确GPS定位及导航、动态传感避障系统、机械视觉三个大部分,其他的如只能行为规划等不属于传感器范畴,

汽车计算机控制系统研究

汽车计算机控制系统研究 作者:李磊, 李敏 作者单位:郑州旅游职业学院,河南,郑州,450009 刊名: 科教导刊 英文刊名:THE GUIDE OF SCIENCE & EDUCATION 年,卷(期):2009(30) 参考文献(3条) 1.解福泉电控发动机维修 2002 2.史久根;张培仁CAN现场总线系统设计技术 2004 3.顾柏良BOSCH汽车工程手册 2004 本文读者也读过(10条) 1.陈宝平计算机控制系统在汽车性能测试方面的应用[期刊论文]-中国新技术新产品2010(24) 2.张英汽车计算机控制系统[期刊论文]-佳木斯大学学报(自然科学版)2001,19(2) 3.鲍警予计算机网络技术在汽车中的应用[会议论文]-2003 4.姚腾飞.赵继.YAO Teng-fei.ZHAO Ji浅谈计算机技术在汽车维修业中的应用[期刊论文]-黑龙江交通科技2010,33(9) 5.李威.王春燕汽车网络检测线计算机控制系统的开发和研制[期刊论文]-交通与计算机2001,19(5) 6.朱俊诠译现代汽车的微机网络技术[期刊论文]-城市车辆2008(5) 7.刘越琪.郁春兰汽车发动机计算机控制仿真系统[期刊论文]-公路与汽运2003(3) 8.张艳琴.张占领计算机网络技术在汽车工业中的应用[会议论文]-2007 9.朱星汉.Zhu Xinghan计算机控制系统的汽车应用研究[期刊论文]-计算机光盘软件与应用2011(6) 10.陈三昧.陈晨.CHEN San-mei.CHEN Chen CAN总线在汽车计算机控制系统中的应用[期刊论文]-内燃机2006(2)本文链接:https://www.doczj.com/doc/7415431117.html,/Periodical_kjdk200930098.aspx

无人驾驶汽车转向系统控制

无人驾驶汽车转向系统控制 摘要 伴随现代科技发展,无人驾驶汽车成为了新的研究热点,引领着汽车产业的发展方向。为了保证汽车在道路上正常行驶,解决无人驾驶汽车的转向控制成为了关键性问题。而融合先进的电子技术、信息技术和控制技术的线控转向技术被越来越多的科技工作者所青睐。 本文对无人驾驶汽车转向系统控制进行了研究。本文首先对无人驾驶汽车自动转向控制的研究现状进行了分析介绍。然后根据汽车转向时驾驶员操纵方向盘的实际情况,设计了转向执行机构。根据电路原理设计控制器的电源电路、程序烧写电路、信号调理电路和电机驱动电路,并绘制电路图。在此基础上,考虑到实际实验条件限制,采用仿真实验方法。运用MATLAB中的SIMLINK建立电机模型。在电机控制选择上,为保证电机平稳运转,采用了PID闭环控制方法对电机进行控制。然后采用与CARSIM联合仿真的方法对转向系统进行了可行性实验。仿真实验结果证明,转向控制器可以有效控制仿真车进行转向。 关键词:无人驾驶汽车;线控转向;CARSIM和MATLAB联合仿真

Steering system control of unmanned vehicle Abstract With the development of modern science and technology, autonomous vehicle has become a new research hotspot, which can greatly improve the security of the transportation system. In order to ensure the normal running of the vehicle, the steering control of unmanned vehicles has become a key issue. And the integration of advanced electronic technology, information tech-nology and control technology of steer by wire technology is favored by more and more scien-tists and technicians. This paper researches the control system of unmanned vehicle steering system. This paper introduces the research status of automatic steering control for unmanned vehicles.According to the procedure of the power supply circuit, this paper designs controller programming circuit, signal conditioning circuit and motor drive circuit, and draw circuit diagram. On the basis of this, taking the actual experimental conditions into account, this paper chooses the simulation method. This paper uses MATLAB in SIMLINK to build motor model. In order to ensure the smooth op-eration of the motor, the PID closed loop control method is used to control the motor. Then this paper has focused on the method that combines with the CARSIM simulation of the steering controller for the feasibility of the experiment. The experimental results show that the steering controller can effectively control the steering of the simulation vehicle. Key words:Unmanned vehicle;SBW;CARSIM and MATLAB joint simulation

无人驾驶汽车论文

无人驾驶汽车 院别:**学院专业:自动化 学号:******** 姓名:********* 摘要:无人驾驶汽车通过传感器装置和计算机来实现无人驾驶,这一技术正渐渐地在生活中的到应用,并在生活中发挥着巨大的作用,有着广泛的发展前景。 2009年11月,在国外某社交网站上的一段视频,引起广泛关注。视频的上传者本·蔡特林在美国旧金山和帕洛阿尔托之间的280号高速公路行驶时,发现旁边有一辆“怪异”的丰田普锐斯轿车,在它的车顶,装着一个类似于扰流板的装置,蔡特林最初以为这是用来测试风速的,其实这就是谷歌所研发的无人驾驶汽车系统,在当时,这还是一个秘密进行中的项目。 关键字:无人驾驶汽车,智能,传感器,导航,安全 一、无人驾驶汽车概念 什么是无人驾驶汽车?清华大学汽车系副研究员王建强将无人驾驶汽车定义为“通过车载传感系统感知道路环境,自动规划行车路线并控制车辆到达预定目标的智能汽车”。同时它也可以称之为轮式移动机器人,其核心在于位于其内的计算机系统。 二、无人驾驶汽车的原理 它是利用智能软件和车载传感器来感知车辆周围环境,并根据感知所获得的道路、车辆位置和障碍物信息,随即作出反应判断,控制车辆的转向和速度,从而使车辆能够安全、可靠地

在道路上行驶。比如,车体多个部位装有激光感应器,用于确定车身与障碍物的距离;有效地避开障碍物。车载电脑可以经由后视镜附近的摄像头识别交通信号、交通标志并分析路况。无人驾驶车的运动控制包括感知、动作、行为3个部分。感知主要是通过车的“眼睛”认知周围环境,实现对环境的精确建模,如结构化环境中的车道线的检测、半结构环境中的边缘检测等;动作是指车的“大脑”在收到感知信息时作出的规划、控制与决策;而行为则是无人驾驶汽车在规划、控制与决策下产生的外在响应,体现了无人车的自主性能。无人驾驶车是集视觉计算、模式识别和控制等众多技术于一体、具有人工智能功能的汽车。它有车载麦克风、声波定位仪、红外线传感器、罗盘、激光扫描仪和微波雷达等多种传感器,这些装置相当于无人驾驶车辆的“眼耳”,用来感知车辆周围环境,并将感知所获得的道路、车辆位置、障碍物信息等,传输给无人驾驶车辆的“大脑”——安装在车辆内部的高性能计算机进行分析和计算,以控制车辆的转向和速度,从而使车辆在遵守交通规则的前提下能够安全、可靠地在道路上自主行驶。 当然,不同公司生产的无人驾驶汽车其原理都不太一样。 1法国的无人驾驶汽车原理:该 车使用类似于给巡航导弹制导的全球定位技术,通过触摸屏设定路线,通过全球定位系统引路,只不过给该汽车带路的全球定位系统要比普通的全球定位系统功能强大许多。普通GPS 系统的精度只能达到几米,而该汽车却装备了名为“实时运动GPS”的特殊GPS系统,其精良高达1厘米。这款无人驾驶汽车装有充当“眼睛”的激光传感器.能够避开前进道路上的障碍物,还装有双镜头的摄像头,来按照路标行驶 德国的无人驾驶汽车:车内安装的无人驾驶设备,包括激光摄像机、全球定位仪和智能计算机。在行驶过程中,车内安装的全球定位仪将随时获取汽车所在准确方位。隐藏在前灯和

智能汽车

智能汽车:IT巨头们的新道场 2010年第21期《中国企业家》 作为展示时下最热门的三大技术(云计算、物联网、LTE网络)的平台,智能汽车发展路上的阻碍不是技术问题,而是利益如何分割 谁都想拥有一台像《变形金刚》里大黄蜂那样的汽车,它会思考、能交流,无需驾驶者费心便可以自行穿梭在城市道路上。不仅仅是《变形金刚》,不少科技题材的电影作品都不约而同地选择汽车作为噱头。 这一次汽车又被诸多IT大佬选中。但不再是虚构的电影道具,而是作为展示时下三项热门技术(云计算、物联网、LTE网络)的平台。 今年10月,谷歌在美国加州完成了“无人驾驶汽车”的测试;上海贝尔在今年世博会和国际通信展期间展示了其LTE概念车;有传闻说苹果要推出iCar,美国本土甚至有言论称,乔布斯出手或可解救美国汽车业。 未来一段时间里,IT行业几乎注定会给汽车这一传统产业带来巨大转变,因为IT厂商已经不满足于仅仅在电脑、手机这类终端中施展手脚。英特尔全球CEO保罗·欧德宁(Paul Otellini)在解释公司最新战略“推进计算创新”时就提出:计算已不再局限于个人电脑,它已无处不在。 由于汽车天然具备移动属性,拥有移动互联网的应用环境;此外,作为现代人常规的交通工具,在车上所花费的时间很长,尤其是商务人士还需要在车上完成部分工作,汽车或许正是IT厂商们的第一个新目标。 无人驾驶的背后 “这车真能实现这么多功能?” 已有无数参观通信展的观众这样询问上海贝尔的工作人员。“大家都对这个车很感兴趣,人多的时候还需要排队才能上车体验。”每届通信展上最能吸引普通观众的往往都是终端厂商,作为通信设备厂商,上海贝尔的参展人员第一次体验到了观众们在车展上才会有的热情。比起复杂又专业的通信设备,这部LTE概念车的确更能吸引参观者的眼球。 其实,大家不关心LTE网络,也不关心这车到底采用了什么技术,这部车究竟能够做什么,才是焦点。阿尔卡特朗讯亚太区市场总监祝振军介绍了其中一项应用:车主驾车时,油不够了就要费心思去找加油站。但这部概念车可以随时了解现在油处于什么状况,车处在什么位置;需要加油时,它会自动报警,不仅提醒需要加油,还会告诉车主附近有哪些加油站,每个加油站的汽油价格以及其他车主的评价。

汽车发动机-国标汇总

GB 3843— 1983、 GB 14761.6 —1993、 GB 3847— 1999、 GB/T 3846-1993 、 GB 18285— 2000 中的压燃式发 动机汽车部分 GB 18285 — 2000 中的点燃式发 动机汽车部分 GB 18296 —2001 汽车燃油箱 安全性能要求和试验方法 GB 18352.3 — 2005 轻型汽车污染物排放限值及测量方法(中国Ⅲ、 Ⅳ阶段) GB 18352.2 —2001 GB 20890 —2007 重型汽车排气污染物排放控制系统耐久性要求 及试验方法 GB/T 5181 — 2001 汽车排放术语和定义 GB/T 5181 — 1985 GB/T 16570 —1996 汽车柴油机架装直列式喷油泵 安装尺寸 GB/T 17692 —1999 汽车用发动机净功率测试方法 GB/T 18297 —2001 汽车发动机性能试验方法 GB/T 18377 —2001 汽油车用催化转化器的技术要求和试验方法 GB/T 19055 —2003 汽车发动机可靠性试验方法 QC/T 525-1999 GB/T 25983 —2010 歧管式催化转化器 QC/T 33 —2006 汽车发动机硅油风扇离合器试验方法 QC/T 33 —1992 QC/T 280 — 1999 (2009) 汽车发动机主轴瓦及连杆轴瓦技术条件 ZB T12 002 —1987* QC/T 281 — 1999 (2009) 汽车发动机轴瓦铜铅合金金相标准 ZB T12 003 —1987* QC/T 282 — 1999 (2009) ZB T12 004 汽车发动机曲轴止推片技术条件 —1987* QC/T 288.1 —2001 (2009) 汽车发动机冷却水泵技术条件 QC/T 288 — 1999 QC/T 288.2 —2001 (2009) 汽车发动机冷却水泵试验方法 QC/T 289 — 2001 (2009) 汽车发动机机油泵技术条件 QC/T 289 — 1999 QC/T 468 — 2010 汽车散热器 QC/T 468 — 1999 QC/T 469 — 2002(2009) 汽车发动机气门技术条件 QC/T 469 — 1999 QC/T 471 — 2006 汽车柴油机技术条件 QC/T 471 — 1999 QC/T 481 — 2005 汽车发动机曲轴技术条件 QC/T 481 — 1999 十、汽车发动机标准 GB 11340 —2005 GB 14762 —2008 GB 14763 —2005 GB 17691 —2005 GB 18285 —2005 装用点燃式发动机重型汽车 曲轴箱污染物排 放限值及测量方法 GB 14761.4 —1993、 GB 11340 — 1989 重型车用汽油发动机与汽车排气污染物排放限 GB 14762 — 2002 值及测量方法 ( 中国Ⅲ、Ⅳ阶段 ) 装用点燃式发动机重型汽车 燃油蒸发污染物 GB 14761.3 —1993、 排放限值及测量方法(收集法) GB 14763 — 1993 车用压燃式、 气体燃料点燃式发动机与汽车排气 GB 17691 — 2001、 污染物排放限值及测量方法 (中国Ⅲ、 Ⅳ、Ⅴ阶 GB 14762— 2002 中的气体燃 料 段) 点燃式发动机部分 点燃式发动机汽车排气污染物排放限值及测量 GB 14761.5 —1993、 方法(双怠速法及简易工况法) GB/T 3845 — 1993、 GB 3847 —2005 车用压燃式发动机和压燃式发动机汽车排气烟

浅谈计算机控制系统在汽车行业的应用

浅谈计算机控制系统在汽车行业的应用关键词:计算机控制;汽车行业;汽车性能测试;汽车监控;汽车检测 摘要:一直以来汽车工业都是国家经济发展的支柱产业之一。随着社会的进步,经济的发展以及我国入世以后汽车行业的迅速发展,这就把汽车行业对科技水平需求提升到了一个新的高度。文章就计算机控制系统在汽车行业中的一些重点应用问题进行了综合论述。 我国入世以后汽车行业得到了迅猛发展,汽车已逐渐成为人们生产和生活中不可或缺的工具。目前,我国是全世界机动车保有量增长最快的国家(2007年末统计超过2300万辆)。这也就强烈的促进了汽车行业的发展。与此同时,现计算机控制技术已渗透到汽车的各个组成部分,汽车的结构变得越来越复杂,自动化程度也越来越高。不过对于汽车行业来说,从宏观角度来看计算机控制系统表现最为突出的是在:汽车出厂前的性能测试、汽车出厂后的监控及汽车检测三大方面。下面我们首先来看一下: 1.计算机控制系统在汽车性能测试方面的应用 由于电子技术的飞速发展,测试技术日新月异。应用先进、成熟的测试技术,是成功开发性能优良、经济实用的汽车性能测试系统的基本原则。在汽车性能的测试方面,最常见的计算机控制系统包括: 1.1 PLC控制系统 可编程序控制器PLC(Programmable Logic controller)控制系 统:PLC是重要的机电一体化产品,其主要功能是开关量控制。起初主要用于替继电器控制,目前已发展到具有模拟控制功能,因而应用范围也有所扩展,形成了以PLC为核心的控制系统模型。 1.2 面向对象控制系统 面向对象的控制系统是利用典型基础控制产品,针对特定应用对象进行系统设计和二次开发,二次开发的重点是系统结构、专用系统或部件以及应用软件的开发。这种系统由于其针对性强,因而能够做到系统紧凑、价格低廉,并能实现EIC(电控、仪控、计算机)一体化。 1.3 DCS控制系统 分布式控制系统DCS(Distributed control of system),DCS是当今汽车过程工业自动化的主控系统,特点是控制分散、操作显示集中、系统具有很高的可靠性和很强的功能。 1.4 模块化控制系统

无人驾驶汽车的构造原理

无人驾驶汽车的构造原理 现代科技学院 机械设计制造及其自动化1003班 张建 2010614270311 内容摘要:无人驾驶汽车是一种智能汽车,也可以称之为轮式移动机器人,主 要依靠车内以计算机系统为主的智能驾驶仪来实现无人驾驶。它一般是利用车 载传感器来感知车辆周围环境,并根据感知所获得的道路、车辆位置和障碍物 信息,控制车辆的转向和速度,从而使车辆能够安全、可靠地在道路上行驶无人驾驶汽车集自动控制、体系结构、人工智能、视觉计算等众多技术 于一体,是计算机科学、模式识别和智能控制技术高度发展的产物,也是衡 量一个国家科研实力和工业水平的一个重要标志,在国防和国民经济领域具 有广阔的应用前景。 关键字:无人驾驶汽车技术原理 无人驾驶汽车的发展现状: 发达国家从20世纪70年代开始进行无人驾驶汽车研究,目前在可行性和实 用性方面,美国和德国走在前列。美国是世界上研究无人驾驶车辆最早、水平 最高的国家之一。 无人驾驶技术在我国经过20多年的发展,虽然投入很少,但取得了很好的成绩。在人才方面,我国几个五年计划的国家预研项目和国家自然科学基金的 支持项目,培养了一大批从事无人驾驶技术的研究人才。随着国外在这项新技 术研发步伐的加快,我国也已启动了这项国家级的重大研究计划——“视听觉 信息的认知计算”项目。 无人驾驶汽车的技术原理: 车辆定位技术是无人驾驶汽车行驶的基础。目前常用的技术包括磁导航和 视觉导航等。其中,磁导航是目前最成熟可靠的方案,现大多数均采用这种导 航技术。例如,荷兰阿姆斯特丹国际机场和鹿特丹的ParkShuttle系统,上海交通大学的CyberC3系统等。磁导航最大的优点是不受天气等自然条件的影响,即使风沙或大雪埋没路面也一样有效,而且便于维护。另外,通过变换磁极朝进 行编码,可以向车辆传输道路特性信息,诸如位置、方向、曲率半径、下一个 道路出口位置等信息。但是,磁导航方法往往需要在道路上埋设一定的导航设 备(如磁钉或电线),系统实施过程比较繁琐,且不易维护,变更运营线路需重 新埋设导航设备。视觉导航就不存在这个问题。视觉导航的优点是车载计算机 可以在试验样车偏离目标车道前,事先知道并预防其发生,同时当在高速公路 使用时不需要对现有的道路结构做变化,并且在混合交通中,也可使用;其缺 点为,当风沙、大雾等自然因素致使能见度过低或路面上的白色标线不清晰时,

汽车发动机-国标汇总

十、汽车发动机标准 GB 3847—2005 GB 11340—2005 车用压燃式发动机和压燃式发动机汽车排气烟 度排放限值及测量方法 装用点燃式发动机重型汽车曲轴箱污染物排 放限值及测量方法 GB 3843—1983、 GB 14761.6—1993、 GB 3847—1999、 GB/T 3846-1993、 GB 18285—2000中的压燃式发 动机汽车部分 GB 14761.4—1993、 GB 11340—1989 GB 14762—2008 重型车用汽油发动机与汽车排气污染物排放限 值及测量方法(中国Ⅲ、Ⅳ阶段) GB 14762—2002 GB 14763—2005 装用点燃式发动机重型汽车燃油蒸发污染物 排放限值及测量方法(收集法)GB 14761.3—1993、GB 14763—1993 GB 17691—2005 车用压燃式、气体燃料点燃式发动机与汽车排气 污染物排放限值及测量方法(中国Ⅲ、Ⅳ、Ⅴ阶 段)GB 17691—2001、 GB 14762—2002中的气体燃料点燃式发动机部分 GB 18285—2005 点燃式发动机汽车排气污染物排放限值及测量 方法(双怠速法及简易工况法)GB 14761.5—1993、 GB/T 3845—1993、 GB 18285—2000中的点燃式发动机汽车部分 GB 18296—2001 汽车燃油箱安全性能要求和试验方法 GB 18352.3—2005 轻型汽车污染物排放限值及测量方法(中国Ⅲ、 Ⅳ阶段) GB 18352.2—2001 GB 20890—2007 重型汽车排气污染物排放控制系统耐久性要求 及试验方法 GB/T 5181—2001 汽车排放术语和定义GB/T 5181—1985 GB/T 16570—1996 汽车柴油机架装直列式喷油泵安装尺寸 GB/T 17692—1999 汽车用发动机净功率测试方法 GB/T 18297—2001 汽车发动机性能试验方法 GB/T 18377—2001 汽油车用催化转化器的技术要求和试验方法 GB/T 19055—2003 汽车发动机可靠性试验方法QC/T 525-1999 GB/T 25983—2010 歧管式催化转化器 QC/T 33—2006 汽车发动机硅油风扇离合器试验方法QC/T 33—1992 QC/T 280—1999 (2009) 汽车发动机主轴瓦及连杆轴瓦技术条件ZB T12 002—1987* QC/T 281—1999 (2009) 汽车发动机轴瓦铜铅合金金相标准ZB T12 003—1987* QC/T 282—1999 (2009) 汽车发动机曲轴止推片技术条件ZB T12 004—1987* QC/T 288.1—2001 (2009) 汽车发动机冷却水泵技术条件QC/T 288—1999 QC/T 288.2—2001 (2009) 汽车发动机冷却水泵试验方法 QC/T 289—2001 (2009) 汽车发动机机油泵技术条件QC/T 289—1999 QC/T 468—2010 汽车散热器QC/T 468—1999 QC/T 469—2002(2009) 汽车发动机气门技术条件QC/T 469—1999

青少年无人驾驶智能车制作竞赛活动方案

青少年无人驾驶智能车制作竞赛活动方案 ----------青少年科学教育方案一、方案背景: 无人驾驶智能车也可称之为轮式移动机器人,其主要依靠车内的以机器人系统为主的智能驾驶仪来实现无人驾驶。无人驾驶汽车集自动控制、体系结构、人工智能、视觉计算等众多技术于一体,是计算机科学、模式识别和智能控制技术高度发展的产物。无人驾驶智能车是通过摄像头、激光雷达、超声传感器等感知路况、识别交通标志并让电脑控制节流阀、刹车、驾驶、转向等,完全是按照人的驾驶习惯按规矩自动驾驶。无人驾驶车辆主要有三大系统支撑:环境感知系统,定位导航系统,控制系统。环境感知系统先用车上安装的感应器去感觉周围环境,紧接着,感知系统将信息传回“大脑”,用定位导航系统作出相应判断,是否要拐弯、刹车、加速、移动方向盘,随即对控制系统发出指令,车辆则自行完成上述“动作”。目前,无人驾驶智能车被广泛应用于科研、救灾、军事等领域。 我国的无人驾驶汽车仍处于初步研究阶段,整体研究工作和水平不高,与美国欧洲相比偏低,其重要原因是缺少大批的科技创新型高级人才。如何在中小学开展相关科技创新竞赛活动,提高学生兴趣,发现、培养未来科技人才至关重要。 青少年无人驾驶智能车主要由控制器、马达、指南针、超声波测距、红外线检测、灰度测距等电子模块及机械零部件组成。无人驾驶智能车能按照事先编写好的程序在特定的场地行驶,具有避障、标志识别、区域识别、定位等功能。控制器、马达、传感器等电子部件均为模块化结构,易于中小学生制作,并具有较大的自主设计、创新空间;无人驾驶智能车可适用于机器人教学、竞赛、科普等活动。 无人驾驶智能车竞赛活动旨在激发青少年从事科学研究与探索的兴趣和潜能,倡导青少年理论联系实际、求真务实的学风和团队协作的精神,为青少年创新性实验计划项目优秀成果展示提供一个良好的平台。是以迅猛发展的机器人技术为背景,涵盖了控制、模式识别、传感技术、电子、电气、计算机、机械等多个学科交叉的科技创意性比赛。引导和激励学生实事求是、刻苦钻研、勇于创新、多出成果、提高素质,发现和培养一批在学术科技上有作为、有潜力的优秀人才。 二、方案目标: 1、通过本活动的开展,探索青少年从事科学研究与探索教育教学模式、具体途径、方式方法和有效措施。 2、如何利用青少年无人驾驶智能车竞赛的学习,给学生的创新教育搭建一个平台,培养学生的创新意识和创新能力,提高学生的科技素养,发展学生的科技特长,培养合格加特长的富有创造性的人才。

无人驾驶汽车的传感器系统设计及技术展望

一、无人驾驶汽车传感器的研究背景与意义 无人驾驶汽车就是人工智能的一个非常重要的验证平台,近些年成为国内外研究热点.无人驾驶汽车作为一种陆地轮式机器人,既与普通机器人有着很大的相似性,又存在着很大的不同.首先它作为汽车需保证乘员乘坐的舒适性与安全性,这就要求对其行驶方向与速度的控制更加严格;另外,它的体积较大,特别就是在复杂拥挤的交通环境下,要想能够顺利行驶,对周围障碍物的动态信息获取就有着很高的要求。无人驾驶的研究目标就是完全或部分取代驾驶员,就是人工智能的一个非常重要的实现平台,同时也就是如今前沿科技的重要发展方向。当前,无人驾驶技术具有重大的应用价值,生活与工程中,能够在一定程度上减轻驾驶行为的压力;在军事领域内,无人驾驶技术可以代替军人执行侦查、排雷、以及战场上危险环境中的任务;在科学研究的领域,无人驾驶技术可以实现外星球等极端环境下的勘探活动。无人驾驶车辆技术,又称智能车辆,即利用将无人驾驶的技术应用于车辆的控制中。 国外的无人驾驶车辆技术大多通过分析激光传感器数据进行动态障碍物的检测。代表有斯坦福大学的智能车“Junior”,利用激光传感器对跟踪目标的运动几何特征建模,然后用贝叶斯滤波器分别更新每个目标的状态;卡耐基?梅隆大学的“BOSS”智能车从激光传感器数据中提取障碍物特征,通过关联不同时刻的激光传感器数据对动态障碍物进行检测跟踪。牛津大学研制的无人车辆“WildCat”,不使用GPS,使用激光雷达与相机监控路面状况。我国相关技术开展较晚,国防科学技术大学研制的自主车“开路雄狮”,采用三维激光雷达Velodyne作为主要传感器,将Velodyne获取的相邻两激光数据作差,并在获得的差分图像上进行聚类操作,对聚类结果建立方盒模型。 无人驾驶车辆就是一项融合了认知科学、人工智能、机器人技术与车辆工程等多学科的技术,涉及到电子电路,计算机视觉,自动控制,信号处理等多学科技术。无人驾驶汽车的出现从根本上改变了传统的“人——车——路”闭环控制方式,将无法用规则严格约束的驾驶员从该闭环系统中请出去,从而大大提高了交通系统的效率与安全性,就是汽车工业发展的革命性产物。 二、无人驾驶汽车的传感器系统整体设计 无人驾驶汽车的实现需要大量的科学技术支持,而其中最重要的就就是大量的传感器定位。核心技术就是包括高精度地图、定位、感知、智能决策与控制等各个模块。其中有几个关键的技术模块,包含精确GPS定位及导航、动态传感避障系统、机械视觉三个大部分,其她的如只能行为规划等不属于传感器范畴,属

关于汽车的所有国家标准

B/T3730.1-1998汽车和半挂车的术语及定义车辆类型 GB/T3730.3-1992汽车和半挂车的术语及定义车辆尺寸 GB/T3730.2-1996道路车辆质量词汇和代码 GB/T17347-1998商用道路车辆尺寸代码 GB/T16735-1997道路车辆车辆识别代号(VIN)位置及固定 GB/T16736-1997道路车辆车辆识别代号(VIN)内容与构成 GB/T16737-1997道路车辆世界制造厂识别代号(WMI) GB/T16738-1997道路车辆世界零件制造厂识别代号(WPMI) GB/T17349.1-1998道路车辆汽车诊断系统词汇 GB/T4782-1984道路车辆-操纵件、指示器及信号装置-词汇 GB/T4971-1985汽车平顺性名词术语和定义 GB/T12549-1990汽车操纵稳定性术语及其定义 GB/T15089-1994机动车辆分类 QC/T34-1992汽车的故障模式及分类 QC/T571-1999汽车清洁度工作导则名词、术语 GB/T9417-1988汽车新产品型号编制规则 GB/T17349.2-1998道路车辆汽车诊断系统图形符号 GB4094-1999汽车操纵件指示器及信号装置的标志 GB/T17676-1999天然气汽车和液化石油气汽车标志 GB/T4781-1984牵引车与全挂车的机械连接装置互换性 GB/T4606-1984道路车辆半挂车鞍座50号牵引销主要尺寸和安装互换性尺寸GB/T4607-1984道路车辆半挂车鞍座90号牵引销主要尺寸和安装互换性尺寸QC/T538-1999载货汽车燃料消耗量限值 QC/T535-1999重型载货汽车燃料消耗量限值 GB1495-1979机动车辆允许噪声 GB16170-1996汽车定置噪声限值 GB1589-1989汽车外廓尺寸限界 GB11561-1989汽车加速器控制系统的技术要求 GB11553-1989汽车正面碰撞时对燃油泄漏的规定 GB/T7031-1986车辆振动输入路面平度表示方法 GB7258-1997机动车运行安全技术条件 GB17259-1998机动车用液化石油气钢瓶 GB17258-1998汽车用压缩天然气钢瓶 QC/T245-1998压缩天然气汽车专用装置和安装要求 QC/T247-1998液化石油气汽车专用装置和安装要求 QC/T251-1998矿用自卸汽车应急转向性能要求 GB/T16887-1997卧铺客车技术条件 QC/T635-2000双层客车技术要求

相关主题
文本预览
相关文档 最新文档