当前位置:文档之家› 生物质燃料与其它燃料的对比

生物质燃料与其它燃料的对比

生物质燃料与其它燃料的对比
生物质燃料与其它燃料的对比

生物质燃料与其它燃料的对比

什么是生物质成型燃料?

??? 众所周知,人类的生存和发展离不开能源。随着世界能源需求量的迅猛增长,以煤、石油、天然气为代表的常规能源将最终被开采殆尽,同时大量使用这些化石燃料会导致一系列严重的环境污染问题。因此,大力提高能源的利用效率,以高新技术开发低污染、可再生的新能源,逐步取代石油、煤、天然气等不可再生能源,是解决能源危机和环境问题的重要途径。

??? 在众多的可再生能源中,生物质能以其资源储量丰富、清洁方便和可再生的特点,具有极大的开发潜力。生物质能是指绿色植物通过叶绿素将太阳能转化为化学能而储存在生物质内部的能量,即以生物质为载体的能量,是太阳能的一种表现形式。生物质是太阳能最主要的吸收器和储存器。太阳能照射到地球后,一部分转化为热能,一部分被植物吸收,转化为生物质能;由于转化为热能的太阳能能量密度很低,不容易收集,只有少量能被人类所利用,其他大部分存于大气和地球中的其他物质中;生物质通过光合作用,能够把太阳能富集起来,储存在有机物中,这些能量是人类发展所需能源的源泉和基础。基于这一独特的形成过程,生物质能既不同于常规的矿物能源,又有别于其他新能源,兼有两者的特点和优势,是人类最主要的可再生能源之一。我国有着丰富的生物质资源,据统计,全国桔杆年产量约5. 7亿吨,人畜粪便约3. 8亿吨,薪柴年产量(包括木材砍伐的废弃物)为1. 7亿吨,还有工业排放的大量有机废料、废渣,每年生物质资源总量折合成标准煤约3 亿吨。我国直接利用生物质能已有几千年的历史, 但利用效率极低,即使是目前农村已较普遍推广的省柴节煤灶, 热效率也仅20 % 左右。近年来,在一些经济发达的城市周边地区, 农民大量使用优质高效燃料, 用于炊事、取暖,而将农作物桔杆直接放在农田焚烧,浪费了能源,也污染了环境。生物质能资源结构疏松,能量密度低,仅是标准煤的一半多一些,且不易贮运。

生物质成型燃料是将秸秆、稻壳、锯末、木屑等生物质废弃物,用机械加压的方法,使原来松散、无定形的原料压缩成具有一定形状、密度较大的固体成型燃料,其具有体积小、密度大、储运方便;燃烧稳定、周期长;燃烧效率高;灰渣及烟气中污染物含量小等优点。生物质成型燃料由可燃质、无机物和水分组成,主要含有碳(C)、氢(H)、氧(O)及少量的氮(N)、硫(S)等元素,并含有灰分和水分。

各种成分构成其中:

◆碳:生物质成型燃料燃料含碳量少(约为40-45%),尤其固定碳的含量低,易于燃烧。

◆氢:生物质成型燃料燃料含氢量多(约为8-10%),挥发分高(约为75%)。

◆生物质燃料中碳多数和氢结合成低分子的碳氢化合物,遇到一定的温度后热分解而析出挥发物。

◆硫:生物质成型燃料燃料中含硫量少于%,燃烧时不必设置烟气脱硫装置,降低了成本,又有利于环境的保护。

◆氮:生物质成型燃料燃料中含氮量少于%,NOx排放完全达标。

◆灰分:生物质成型燃料,燃料采用高品质的木质类生物质作为原料,灰分极低,只有1%左右。

◆生物质成型燃料的热值:生物质成型燃料的密度一般为~m3,热值约为4,100±100Kcal/Kg。1吨生物质成型燃料相当于~吨标准煤或吨柴油/燃料油。生物质成型燃料除具有生物质燃料的一般特点外,还具有以下优点:

(1)密封塑料袋包装,装运方便,清洁安全;

(2)固体颗粒,密度大、体积小,贮存方便;

(3)燃料挥发分高,易于点燃和燃烧;

(4)燃料热值高,水份低,燃烧效果好;

(5)CO2可达到生态“零”排放,SO2、NOx优于柴油,排放完全达标,实现减排目标。

生物质成型燃料的主要用途:

◆1、小型炉窑:主要用来家庭取暖、供应生活热水。这种应用主要以生物质颗粒燃料为主,北欧采用的比较多,国内因为无相关产品开发,其应用几乎为空白。此类产品小型化,便于流水线生成,单品美观大方,适合家庭使用。

◆2、未加工的生物质燃料直接燃烧,此类多为中小型锅炉,由于燃料不加工,节省投资成本,国内多为此种锅炉。这类锅炉燃料以工业废料为主,燃烧投料方式粗放,且多为人工投料方式,炉膛漏风严重,存在安全隐患,锅炉总体效率不高。但是从此类锅炉用户企业自身来说,因为利用了自身废料来产生蒸汽或供热,大大节省了其他燃料的投资和之前废料处理的开支,生物质燃料燃烧污染少等特点,企业应用积极性非常高。

◆3、对原料进行粗加工,然后直接燃烧发电或者产汽。如将秸秆打碎,将木块、木条打碎,然后用输送机(气力输送或者机械输送)送入燃烧室。这类应用要求厂房建设在原料产地附近,以降低运输费用。

生物质成型燃料燃料与各种油、气燃料运行成本的比较:目前我国城镇4t/h以下的小型锅炉主要以燃油(气)居多,其中广东省就有数万台之多。以生物质成型燃料代替油(气)燃烧,经济效益非常显着,下表以蒸汽锅炉为例,列示了生物质成型燃料燃料与各种油、气燃料运行成本的比较:

项目生物质成型燃料天然气柴油重油

热值(kcal/kg) 4100 8600 10200 10000

锅炉热效率(%) 89% 90% 90% 89%

吨蒸汽燃料耗量(kg/t)

吨蒸汽燃料费用(元/t)

燃料费用节约率(-%)? ---21% 42% 22%

燃料费用比:

◆生物质成型燃料∶天然气∶轻柴油∶重油= 1 ∶∶∶

人类的生存和发展离不开能源,随着世界能源需求量的迅猛增长,然而作为人类目前主要能源来源的石油、天然气和煤炭却正在迅速地减少。根据国际能源机构的统计,如按目前的势头发展下去,不加节制的话,那么,地球上这三种能源供人类开采的年限分别只有40 年、50 年和240年了。因此,大力提高能源的利用效率,以高新技术开发低污染、可再生的新能源,逐步取代石油、煤、天然气等不可再生能源,是解决能源危机和环境问题的重要途径。生物质能源是一种理想的可再生能源,它来源广泛,每年都有大量的工业、农业及森林废弃物产出。即使不被用于生产能源,这些废弃物的处理也是令人头疼的事情。仅欧盟每年便产出五亿吨(干基) 这类物质。另外,

世界上87 %的能源需求来源于化石燃料,这些燃料燃烧时,向大气中排放出大量的CO2 ,而生物质作为燃料时,由于生物质在生长时需要的CO2 量相当于它燃烧时排放的CO2 量,因而大气中的CO2 净排放量近似为零。而且,生物质中硫的含量极低,基本上无硫化物的排放。所以,利用生物质作为替代能源,对改善环境,减少大气中的CO2 含量,从而减少“温室效应”都有极大的好处。因此,将生物质作为化石燃料的替代能源,便能向社会提供一种各方面都可被接受的可再生能源。从矿物能源资源有限和因大量使用会造成环境状态恶化的战略观点出发,结合我国拥有丰富生物质资源的现实,逐步发展工业锅炉生物质的燃烧技术,对节约常规能源、优化我国能源结构,将有积极意义。

生物质燃料对比

广州红晟生物质成型燃料有限公司一吨蒸汽使用不同燃料的效益比较 以上数据由广州红晟生物质成型燃料有限公司提供,仅作参考,不得盗用!

广州红晟生物质成型燃料有限公司燃烧机的锅炉配套与耗能表

以上数据由广州红晟生物质成型燃料有限公司提供,仅作参考,不得盗用! 生物质燃料代油节能技术一、什么是生物质燃料(Biomass Moulding Fuel,简称BMF)?

生物质燃料(Biomass Moulding Fuel,简称“BMF”)是采用木屑、秸秆等农林废弃物作为原材料, 经过粉碎、烘干、混合、挤压等工艺,制成颗粒状的可直接燃烧的一种新型清洁燃料。 生物质燃料多为茎状农作物经过加工产生的块装环保新能 源,其直径一般为6~8厘米,长度为其直径的4~5倍,破碎率小 于1.5%~2.0%,干基含水量小于10%~15%,灰分含量小于1.5%, 硫含量和氯含量均小于0.07%,氮含量小于0.5%。生物质燃料具 有可再生和环境友好得双重特点,被认为是未来可持续能源系统 得重要能源,可以看作一种绿色煤炭,是一种新型洁净能源。 二、生物质燃料指标及构成 项目发热量MJ/Kg 固定碳挥发份碳氧 指标17.02 15.99% 74.29% 46.88% 37.94% 项目氢硫氮灰份水份 指标 5.27% 0.05% 0.14% 1.81% 9.91% 三、生物质燃料特点 低碳能源:低碳、低硫、低氮、低粉尘 资源利用:生物质燃料是利用农、林业废弃物作为原材料,制造成各种成型可燃烧的现代化清洁燃料,替代燃油锅炉燃烧用油,达到变废为宝、节约能源的目的。 循环经济:生物质燃料产品的原材料来源于农、林业废弃物,不会产生"与人争粮"和"与粮争地"的社会问题,原料分布广泛,循环生长,取之不尽,用之不竭。

生物质燃料的燃烧特性

生物质燃料的燃烧特性 目前,生物质最主要的利用方式就是生物质燃烧。研究生物质燃料的组成成分,了解其燃烧特点,有利于进一步科学、合理地开发利用生物质能。从刘建禹、翟国勋等[20]对生物质燃料特性的研究可以发现,生物质燃料与化石燃料相比存在明显的差异。从化学的角度上看,生物质属于碳氢化合物,含固定碳少。生物质燃料中含碳量最高的也仅50%左右,相当于褐煤中的含碳量。因此,生物质燃料不抗烧,热值较低;若生物质燃料中含氢量变多,挥发分就明显增多。生物质燃料中的碳元素多数和氢元素结合成小分子的碳氢化合物,燃烧需要长时间的干燥,在一定的温度下热分解而析出挥发物。所以,生物质燃料易被引燃,燃烧初期,烟气量较大;生物质燃料含氧量明显地多于煤炭,它使得生物质燃料热值低,但易于引燃;生物质燃料的密度小于煤炭,其质地较疏松,特别是农作物秸杆和一些粪类,因此生物质燃料易于燃烧和燃尽,但其热值较低,发热量小,灰烬中残留的焦碳量少于燃烧煤炭;生物质燃烧排放烟气中硫氧化物和氮氧化物含量较少,故对环境的污染将小于燃烧煤炭等化石燃料,燃烧时无需设置控制气体污染装置,从而降低了成本,这也是生物质优于化石燃料的一方面[22]。生物质燃料的燃烧过程主要分为挥发份的燃烧和残余焦炭的燃。 本文有宇龙机械整理。 4 烧,其主要燃烧过程的特点是[23]: (1)生物质水分含量较多,燃烧需要较长时间的干燥,产生的烟气量较大,排烟造成热损失较高; (2)生物质燃料的密度较小,结构比较疏松,燃烧时受风面积大,较易造成悬浮燃烧,容易产生一些黑絮; (3)由于生物质热值低,发热量小,在锅炉内比较难以稳定的燃 烧; (4) 由于生物质挥发份含量高,燃料着火温度较低,一般在250℃ ~350℃温度下挥发份就大量析出并开始剧烈燃烧,此时若空气供应量不足,将会增大燃料的化学不完全燃烧损失; (5)挥发份析出燃尽后,受到灰烬包裹和空气渗透困难的影响,焦炭颗粒燃烧速度缓慢、燃尽困难,如不采取适当的必要措施,将会导致灰烬中残留较多的余碳,增大机械不完全燃烧损失。 生物质燃烧利用现状 涂装生物质燃烧机第一品牌-淳元将陆续为你带来行业新资讯。 生物质是全球应用最广泛的可再生能源,自从远古时代人类开始使用这种能源。人们主要是将生物质进行燃烧,其产生的热能可以用于做饭,取暖等日常生活;或者将生物质进行厌氧发酵生产沼气,也可以用来替代生物质能源,尤其是在发展中国家[20]。我国是一个发展中的农业大国 ,生物质资源十分丰富,每年农作物秸秆产量达几亿吨。生物质是唯一可转化成可替代常规液态石油燃料和其他化学品的烧,其主要燃过程的特点是[23]:(1)生物质水分含量较多,燃烧需要较长时间的干燥,产生的烟气量较大,排烟造成热损

生物质燃料和固体矿物质燃料(煤)的主要差别

生物质燃料直接燃烧过程特性的分析 1 生物质燃料和固体矿物质燃料(煤)的主要差别 生物质燃料和煤碳相比有以下一些主要差别 1)含碳量较少,含固定碳少。生物质燃料中含碳量最高的也仅50%左右,相当于生成年代较少的褐煤的含碳量。特别是固定碳的含量明显地比煤炭少。因此, 生物质燃料不抗烧,热值较低。 2)含氢量稍多,挥发分明显较多。生物质燃料中的碳多数和氢结合成低分子的碳氢化合物,遇一定的温度后热分解而折出挥发物。所以,生物质燃料易被引燃燃烧初期,析出量较大,在空气和温度不足的情况下易产生镶黑边的火焰。在使用生物质为燃料的设备设计中必须注意到这一点。 3)含氧量多。生物质燃料含氧量明显地多于煤炭,它使得生物质燃料热值低, 但易于引燃。在燃烧时可相对地减少供给空气量。 4)密度小。生物质燃料的密度明显地较煤炭低,质地比较疏松,特别是农作物秸杆和粪类。这样使得这类燃料易于燃烧和燃尽,灰烬中残留的碳量较燃用煤炭 者少。 5)含硫量低。生物质燃料含硫量大多少于 0."20%,燃烧时不必设置气体脱硫装置降低了成本,又有利于环境的保护。 2 生物质燃料的燃烧过程 生物质燃料的燃烧过程是强烈的化学反应过程,又是燃料和空气间的传热、传质过程。燃烧除去燃料存在外,必须有足够温度的热量供给和适当的空气供应。它可分作: 预热、干燥(水分蒸发)、挥发分析出和焦碳(固定碳)燃烧等过程。燃料送入燃烧室后,在高温热量(由前期燃烧形成)作用下,燃料被加热和析出水分。随后,然料由于温度的继续增高,约250C左右,热分解开始,析出挥发分,并形成焦碳。气态的挥发分和周围高温空气掺混首先被引燃而燃烧。一般情况下,焦碳被挥发分包 围着,燃烧室中氧气不易渗透到焦碳表面,只有当挥发分的燃烧快要终了时,焦碳及

生物质燃料与其它燃料的对比

生物质燃料与其它燃料的对比 什么是生物质成型燃料? 众所周知,人类的生存和发展离不开能源。随着世界能源需求量的迅猛增长,以煤、石油、天然气为代表的常规能源将最终被开采殆尽,同时大量使用这些化石燃料会导致一系列严重的环境污染问题。因此,大力提高能源的利用效率,以高新技术开发低污染、可再生的新能源,逐步取代石油、煤、天然气等不可再生能源,是解决能源危机和环境问题的重要途径。 在众多的可再生能源中,生物质能以其资源储量丰富、清洁方便和可再生的特点,具有极大的开发潜力。生物质能是指绿色植物通过叶绿素将太阳能转化为化学能而储存在生物质内部的能量,即以生物质为载体的能量,是太阳能的一种表现形式。生物质是太阳能最主要的吸收器和储存器。太阳能照射到地球后,一部分转化为热能,一部分被植物吸收,转化为生物质能;由于转化为热能的太阳能能量密度很低,不容易收集,只有少量能被人类所利用,其他大部分存于大气和地球中的其他物质中;生物质通过光合作用,能够把太阳能富集起来,储存在有机物中,这些能量是人类发展所需能源的源泉和基础。基于这一独特的形成过程,生物质能既不同于常规的矿物能源,又有别于其他新能源,兼有两者的特点和优势,是人类最主要的可再生能源之一。我国有着丰富的生物质资源,据统计,全国桔杆年产量约5. 7亿吨,人畜粪便约3. 8亿吨,薪柴年产量(包括木材砍伐的废弃物)为1. 7亿吨,还有工业排放的大量有机废料、废渣,每年生物质资源总量折合成标准煤约3 亿吨。我国直接利用生物质能已有几千年的历史, 但利用效率极低,即使是目前农村已较普遍推广的省柴节煤灶, 热效率也仅20 % 左右。近年来,在一些经济发达的城市周边地区, 农民大量使用优质高效燃料, 用于炊事、取暖,而将农作物桔杆直接放在农田焚烧,浪费了能源,也污染了环境。生物质能资源结构疏松,能量密度低,仅是标准煤的一半多一些,且不易贮运。 生物质成型燃料是将秸秆、稻壳、锯末、木屑等生物质废弃物,用机械加压的方法,使原来松散、无定形的原料压缩成具有一定形状、密度较大的固体成型燃料,其具有体积小、密度大、储运方便;燃烧稳定、周期长;燃烧效率高;灰渣及烟气中污染物含量小等优点。生物质成型燃料由可燃质、无机物和水分组成,主要含有碳(C)、氢(H)、氧(O)及少量的氮(N)、硫(S)等元素,并含有灰分和水分。 各种成分构成其中: ◆碳:生物质成型燃料燃料含碳量少(约为40-45%),尤其固定碳的含量低,易于燃烧。 ◆氢:生物质成型燃料燃料含氢量多(约为8-10%),挥发分高(约为75%)。 ◆生物质燃料中碳多数和氢结合成低分子的碳氢化合物,遇到一定的温度后热分解而析出挥发物。 ◆硫:生物质成型燃料燃料中含硫量少于0.02%,燃烧时不必设置烟气脱硫装置,降低了成本,又有利于环境的保护。 ◆氮:生物质成型燃料燃料中含氮量少于0.15%,NOx排放完全达标。 ◆灰分:生物质成型燃料,燃料采用高品质的木质类生物质作为原料,灰分极低,只有1%左右。 ◆生物质成型燃料的热值:生物质成型燃料的密度一般为1.1~1.4t/m3,热值约为 4,100±100Kcal/Kg。1吨生物质成型燃料相当于0.55~0.6吨标准煤或0.4吨柴油/燃料油。生物质成型燃料除具有生物质燃料的一般特点外,还具有以下优点: (1)密封塑料袋包装,装运方便,清洁安全; (2)固体颗粒,密度大、体积小,贮存方便;

生物质燃料对比

广州红晟生物质成型燃料有限公司一吨蒸汽使用不同燃料得效益比较

以上数据由广州红晟生物质成型燃料有限公司提供,仅作参考,不得盗用! 广州红晟生物质成型燃料有限公司 燃烧机得锅炉配套与耗能表 生物质燃料代油节能技术

一、什么就是生物质燃料(Biomass Moulding Fuel,简称BMF)? 生物质燃料(Biomass Moulding Fuel,简称“BMF”)就是采用木屑、秸秆等农林废弃物作为原材料,经过粉碎、烘干、混合、挤压等工艺,制成颗粒状得可直接燃烧得一种新型清洁燃料。 生物质燃料多为茎状农作物经过加工产生得块装环保新能源,其直径 一般为6~8厘米,长度为其直径得4~5倍,破碎率小于1、5%~2、0%, 干基含水量小于10%~15%,灰分含量小于1、5%,硫含量与氯含量均 小于0、07%,氮含量小于0、5%。生物质燃料具有可再生与环境友好得

双重特点,被认为就是未来可持续能源系统得重要能源,可以瞧作一种绿色煤炭,就是一种新型洁净能源。

1、燃烧器采用整体结构、外形稳重大方; 2、启动时由液化气点火、助燃,使生物质燃料在短时间内稳 定燃烧; 3、采用电子点火,火焰自动检测; 4、燃烧热负荷自动跟踪调节; 5、意外熄火时自动关闭燃烧器,停止燃料供应,确保下次 点火正常顺畅;?6、燃烧器运行噪音低,符合环保要求; ?7、全自动控制,可实现与炉体联锁控制与保护;一体化产 品,安装维修简单方便。 五、生物质燃料与各种油、气燃料比较 项目生物质颗粒天然气柴油重油动力煤生物质燃烧 机 热值 (kcal/kg)4000±1 9800 5000±100 5000±100 单价1、30元/kg 6元/m3 6、5元/kg 4、64元/kg 0、95元/kg 1、30元/kg 锅炉热效率 (%) 75 90 9090 70 85 吨蒸汽燃料耗量240 78、4 70 75230 150 吨蒸汽燃料费用(元/t) 288 468455345 218 195

生物质燃料特性指标

1、生物质成型燃料 木质颗粒燃料 以农林剩余物(锯末、林木剪枝等)为原料,经(粉碎)、干燥、压缩成型、冷却、包装等工艺过程生产出不同规格的颗粒状燃料。与矿物能源相比,该燃料在燃用过程中对环境污染小、可再生、运输存储方便等特征,可替代常规化石能源,用于城镇集中供热、企业生产用能、别墅供暖等领域。 秸秆颗粒燃料 以农林剩余物(玉米秸秆、豆秸、棉秸、花生壳等)为原料,经粉碎、(干燥)、压缩成型、冷却、包装等工艺过程生产出不同规格的颗粒状燃料。与矿物能源相比,该燃料在燃用过程中对环境污染小、可再生、运输存储方便等特征,可替代常规化石能源,用于城镇集中供热、企业生产用能、别墅供暖、农村炊事采暖、生物质发电等领域。

秸秆块状燃料 以农林剩余物(玉米秸秆、豆秸、棉秸、花生壳等)为原料,经粉碎、(干燥)、压缩成型、冷却、包装等工艺过程生产出的块状燃料。与矿物能源相比,该燃料在燃用过程中对环境污染小、可再生、运输存储方便等特征,可替代常规化石能源,用于城镇集中供热、企业生产用能、别墅供暖、农村炊事采暖、生物质发电等领域。 木片燃料 以林业剩余物(林木修枝、林业加工剩余物等)为原料,通过专业设备加工成一定形状和尺寸的燃料。与矿物能源相比,该燃料在燃用过程中对环境污染小、可再生等特征,可替代常规化石能源,用于城镇集中供热、企业生产用能、农村炊事采暖、生物质发电等领域。 生物质型煤 生物质型煤是指煤中按一定比例加入可燃生物质( 如秸秆)和添加剂后压制成型的产 品。生物质型煤层状燃烧可以有效提高热效率、减少污染物排放,是一种清洁能源。生物质型煤清洁燃烧机理:一是起火温度低、燃烧快,减少了高温燃烧产生的氮氧化物; 二是由于

棕榈壳生物质燃料分析

棕榈壳生物质燃料 一、背景 能源是现代经济社会发展的基础和重要制约因素,随着各国经济和人口的增长,近年来世界能源需求量不断攀升,据英国石油公司(BP)发布的2012年般的《BP2030世界能源展望》显示,全球能源需求量到2030年预计增长39%,每年增长1.6%。 展望未来,石油、天然气、煤炭等传统石化燃料,由于其不可在生长性,燃烧过程中的二氧化碳对环境的破坏性、以及价格的不断升高,在能源使用中,其份额会逐步下降核能、水能、风能和太阳能等不可再生能源的份额则会提高,逐步形成多元化能源结构。 随着社会的进步和发展,人们的节能意识和环保意识的日益增强,国际社会对节能减排的要求标准越来越高,因而对清洁能源的开发利用也逐步走上台面,而生物质能源因其廉价和可再生性而受到各国广泛的关注。生物质燃料问题已成为世界各国可持续发展战略的重要组成部分,可以为政府提供多赢的能源解决方案---首先低廉的价格降低能源使用成本,碳排放量减少兑现对京都议定书的承诺:同时亦降低了对遥远的、政局不稳甚至是危险国原油的依赖程度,有利于能源安全。 当前中国经济快速增长,对能源的需求量也急剧增长,2011

年中国的原油净进口量已经达到2.64亿吨。大力发展生物质燃料有助于缓解石油资源短缺和需求不断增长的矛盾。降低对能源的进口依赖,保障国家能源安全。 二、项目简介 本项目的目标物“棕榈废料生物质燃料”,是一种以棕榈废料为原材料,通过破碎,压榨、烘干、揉丝、挤压等技术手段,制成成型的生物质燃料。 其生产流程如下: 1、棕榈油厂收集脱油后的果柄下脚料 2、输送到挤压机(挤出水分和果柄剩余油分) 3、输送到破碎机破碎 4、输入烘干线 5、烘干后到输送到揉丝机进行二次粉碎 6、挤压机挤压成型 7、输送到包装车间 8、输送人成品仓库 9、送至码头装集装箱

生物质燃料燃烧特性

生物质燃料燃烧特性 Prepared on 22 November 2020

生物质燃料燃烧特性 生物质由C、H、O、N、S等元素组成,是空气中CO2、水和阳光通过光合作用的产物,且有挥发份高,炭活性高、S、N含量低(%%,%--3%,)灰分低(%%)等特点,生物质燃料中可燃部分主要为纤维素、半纤维素、木质素、按质量计量,纤维素占40%--50%,半纤维素20%--40%,木质素占10%--20%。 由于与化石燃料特性不同,生物质燃料的燃料机理、反应速度及燃料产物成分与化石燃料的相比都有较大的差别。生物质燃料的燃烧过程主要分为挥发份的析出,燃烧和残余焦炭的燃烧、燃尽两个独立阶段。其燃烧过程的特点: ①水分含量多,燃料需要较高的干燥温度和较长的干燥时间,产生的烟气体积较大,排烟损失较高。 ②燃料的密度小,结构松散,迎风面积大,易吹起,悬浮段燃 烧份额较大。 ③发热量低,灰熔点低,炉内温度水平低,组织稳定的燃烧比 较困难。 ④由于挥发份高,燃料着火温度较低,一般在250—350℃温度下挥发份便大量析出并开始剧烈燃烧,此时若空气量不足,会增大化学不完全燃烧损失。 ⑤会犯分析出燃尽后,受到灰烬包裹和空气渗透困难的影响,焦炭颗粒燃尽困难,燃烧过度缓慢,如不采取适当的必要措施,将会导致灰烬中残留较多的余碳,增大机械不完全燃烧损失。 ⑥秸秆等部分生物质燃料含氯量较高,因此需要对床层部分结构和运行工况加以特殊考虑,防止其对床层部分的腐蚀。 由此可见,生物质燃烧设备的设计和运行方式的选择应从不同种类生物质燃料特性出发才能保证生物质燃料设备运行的经济性和可靠性,提高生物质开发利用的效率。

生物质成型燃料优点分析

生物质成型燃料优点分析 一、生物质实现循环经济 生物质燃料的生产和使用,减少了农林废弃物在田间焚烧或分解过程对环境的危害,增加农民收入,创造就业机会。与常规燃料相比,生物质燃料属于碳中性在为使用者带来经济利益的同时,也使其成为了环保的倡导典范。 到2012年将会产生6亿吨生物质,其中有超过80%的生物质将得不到利用。中国的十一五规划以及2007年《中国应对气候变化国家方案》均提出温室气体以及二氧化硫的减排目标。这些文件都非常鼓励采用生物质并提出了许多具体的鼓励措施。有了这些文件,燃料使用者不仅能够拥护国家提出的上述目标还能免交高额的排放税。另外,这也将使得通过《京都议定书》中规定的核证减排量(CERs)形式或核实减排量(VERs)形式实现的碳配额货币化成为可能。 对于生物燃料的发展,中国的“十一五”规划明确了发展替代能源要按照以新能源替代传统能源、以优势能源替代稀缺能源、以可再生能源替代化石能源的思路,逐步提高替代能源在能源结构中的比重。按照这一思路,以木质材料为基础的可再生能源应该是当前发展的重点。 二、什么是生物质成型燃料(BMF)? 生物质成型燃料(Biomass Moulding Fuel,简称“BMF”)是应用农林废弃物(如秸杆、锯末、甘蔗渣、稻糠等)作为原料,经过粉碎、烘干、挤压等工艺,制成各种成型的(如颗粒状)可在澄宇研制的BMF锅炉内直接燃绕的新型清洁燃料。 三、为什么使用生物质成型燃料 标准燃料=燃料稳定 降低含水率<(10%)提高燃烧效率 减少烟气和粉尘排放 增加密度(以锯末为例200KG/M 到650KG/M) 降低运输成本 减少储存空间 易于掌控操作方便 属于低碳燃料 含氢量高,挥发分高,易于燃烧 含氧量高,易于燃烧和燃尽,灰渣中残留的碳量极少 含硫量低,燃烧时不必设置气体脱硫装置,降低了成本,又有利于环境保护 燃烧器排烟温度较低,效率提高 灰分含量低……(词句不变) 低位发热量3800-4800K/CAL/KG,与中质煤相当 属于可再生能源,可替代化石燃料,有效降低温室气体排放 四、生物质成型燃料的环保优势 运用国际先进技术,各种生物质原料都可以成型燃料。这些成型燃料运输方便,同时符合环境管理体系(EHS)的储存要求。颗粒燃能够在工业锅炉里极稳定的燃烧,并且较之其它燃料产生更少的灰烬和排放物。

生物质燃料燃烧特性

生物质燃料燃烧特性 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

生物质燃料燃烧特性 生物质由C、H、O、N、S等元素组成,是空气中CO2、水和阳光通过光合作用的产物,且有挥发份高,炭活性高、S、N含量低(%%,%--3%,)灰分低(%%)等特点,生物质燃料中可燃部分主要为纤维素、半纤维素、木质素、按质量计量,纤维素占40%--50%,半纤维素20%--40%,木质素占10%--20%。 由于与化石燃料特性不同,生物质燃料的燃料机理、反应速度及燃料产物成分与化石燃料的相比都有较大的差别。生物质燃料的燃烧过程主要分为挥发份的析出,燃烧和残余焦炭的燃烧、燃尽两个独立阶段。其燃烧过程的特点: ①水分含量多,燃料需要较高的干燥温度和较长的干燥时间,产生的烟气体积较大,排烟损失较高。 ②燃料的密度小,结构松散,迎风面积大,易吹起,悬浮段燃 烧份额较大。 ③发热量低,灰熔点低,炉内温度水平低,组织稳定的燃烧比 较困难。 ④由于挥发份高,燃料着火温度较低,一般在250—350℃温度下挥发份便大量析出并开始剧烈燃烧,此时若空气量不足,会增大化学不完全燃烧损失。 ⑤会犯分析出燃尽后,受到灰烬包裹和空气渗透困难的影响,焦炭颗粒燃尽困难,燃烧过度缓慢,如不采取适当的必要措施,将会导致灰烬中残留较多的余碳,增大机械不完全燃烧损失。 ⑥秸秆等部分生物质燃料含氯量较高,因此需要对床层部分结构和运行工况加以特殊考虑,防止其对床层部分的腐蚀。 由此可见,生物质燃烧设备的设计和运行方式的选择应从不同种类生物质燃料特性出发才能保证生物质燃料设备运行的经济性和可靠性,提高生物质开发利用的效率。

生物质燃料分析与测试实验报告(20210224122810)

生物质燃料分析与测试 实验报告 学院:可再生能源学院 班级: 姓名: 学号: 指导老师:

目录 元素分析实验 (3) 热值测定实验 (5) 灰熔点测定实验 (7) 工业分析实验 (9) 热重分析实验 (11) 运动粘度的测定 (15)

元素分析实验 依据标准:GB/T 25214-2010煤中全硫测定红外光谱法 DL/T 568-1995燃料元素的快速分析方法(高温燃烧红外热导法) 1.原理 2.试剂和材料 3.仪器设备 4.实验步 实验之前须用标准物质标定6组。 实验时取一锡箔模具,称取30mg废液,由于液体有一定挥发性,所以重量会一直降低,需迅速放入压模机中封口,然后再于天平中称量。将试样重量输入系统,把包好的试样按序号放入元素分析仪的放样口中。元素分析仪会自动测量样品中的N、C、H、S含量。 5.数据处理 ,素分析测试型测得的结果手下: weight N[%] C[%] H[%] S[%] average 以上数据为干燥基数据,已知样品的灰分(干燥基)含量为9%,空干基样品的水分含量为10%o 干燥基: N, = 0.099(%) C d =35.12(%) H d =12.371(%) S d =0.218(%) 4=9(%) O =100-统一6-耳 /-4=43.192(%)

空干基: O°d = 10° 一 %-H —Qd-A ,一 38.873(%) 干燥无灰基: =1 °0 — N daf - C 的一"轲 一 S 阿=47.464(%) 6 .原始数据 见附录 100-心 100-10 100 100- _____________ Cd 100~~ 100-M , _______ 100- 100-M , 100 100-M , ad 100 100-10 100 x 0.0985 = 0.08865(% 卜 0.089(%) x35.12 = 31.608(%) 100-10 100 100-10 100 100-10 x4 = -------- 100 xl2.371 = U.1339(%)? 11.134(%) xO.218 = 0.1962(%) ? 0.196(%) x9 = 8.1(%) 100 100-4 100 100-4 100 loo —4 100 100 — 4 100 100-9 100 100-9 100 x 0.0985 = 0.10824(%) x 0.108(%) x35.12 = 38.59341(%)比 38.593(%) 100-9 x 12.371 = 13.59451(%)?13.595(%) i nn xS. = ]0()x0.218 = 0.23956(%)^0.240(%)

生物质燃料特性简介

生物质成型燃料简介 生物质成型燃料(BMF),是以农林废弃物(秸秆、稻壳、花生壳、木屑、树枝等)为原料,通过生物质固体燃料致密加工成型设备在特定的工艺条件下加工制成块状的高效燃料,是一种环保、可再生能源。生物质成型燃料的二氧化硫排放量是煤的1/28,是天然气的1/8,二氧化碳可做到零排放,可替代煤炭、天然气、液化气等不可再生资源,广泛应用于工商业生产和居民生活,是国家重点支持发展的新能源。(一)BMF物理特性 密度:800~1100 kg/m 热值低:3400~4000 kcal/kg(详见测试报告) 挥发份高:60~70% 灰分大:5~15%(不稳定) 水分高:5~12% 含硫量低:0.02~0.21%(常用的烟煤含硫量为0.32~3%) (详见测试报告) 常见生物质原料制成生物质成型燃料热值参考值 玉米秸秆:3470 kcal/kg 棉花秸秆:3790 kcal/kg 松木锯末:4010 kcal/kg 稻草:3470 kcal/kg 烟杆:3499 kcal/kg

花生壳:3818 kcal/kg (二) BMF燃烧特性 从燃烧特性曲线可以看出,BBDF燃烧分三个阶段进行:第一阶段(A-B):水分蒸发阶段(~180℃); 第二阶段(B-C):挥发份析出、燃烧阶段(180~370℃),此阶段挥发份大量析出,并在300℃左右着火剧烈燃烧;

第三阶段(C-D):固定碳燃烧阶段(370~620℃)。 BMF的燃烧具有如下特点: 着火温度低:一般为300℃左右 挥发分析出温度低:一般为180~370℃ 易结焦且结焦温度低:一般800℃左右 根据以上研究成果可知: 由于生物质燃料特性的不同,导致生物质燃料在燃烧过程中的燃烧机理、反应速度以及燃烧产物的成份与燃煤相比都存在较大的差别,表现出与燃煤不同的燃烧特性。 (三)BMF燃烧原理 生物质燃料洁净燃烧必须满足三个条件: 1、要求较高的温度(不低于380℃) 2、可燃气体在高温区停留时间要长 3、充足的氧气

生物质直接燃烧技术

生物质直接燃烧技术 、引言 目前,生物质直接燃烧技术是最简便、最具潜力的生物质资源有效利用方式之一。但由于生物质燃料与化石燃料相比,在物理、化学性质等方面存在着较大的差异,因此对燃烧设备的设计要求和燃烧方式的选择也不同于化石燃料。 、生物质燃烧的特性 了解生物质燃料的组成成分,有助于对其燃烧特性的研究,从而进一步科学、合理地开发利用生物质能。 由上表可以看出,生物质燃料组成成分的特点是:(1)生物质含水分多,含硫量低;(2)生物质含碳量少,固定碳含量更少,热值普遍偏低; 3)生物质含氧量高,挥发份明显较多;(4)生物质灰份少、密度小, 尤其是农作物秸秆。因此,生物质燃料的燃烧过程是强烈的化学反应过程,又是燃料和空气间的传热、传质的过程,主要分为挥发份的析出、燃烧和残余焦炭的燃烧、燃尽两个独立的阶段。 三、生物质燃料直接燃烧技术 直接燃烧是目前最简便的生物质能源转化技术,即将生物质直接作为燃料燃烧,燃烧过程所产生的能量主要用于发电或集中供热。作为燃料的生物质包括各种农林业废弃物、城市生活垃圾等。 目前,生物质直接燃烧技术主要有以下几种: 3.1 生物质直接燃烧流化床技术 采用流化床技术开发生物质能是考虑到流化燃烧效率高,有害气体排放少,热容量大等一系列优点,适合燃用水分大、热值低的生物质燃料。 生物质直接燃烧流化床技术是采用细砂等颗粒作为媒体床料,以保证形成稳定的密相区料层,为生物质燃料提供充分的预热和干燥热源;采用风力给料装置,使生物质燃料均匀散布在床层表面,有助于燃料的及时着火和稳定燃烧;采用稀相区强旋转切向二次风形成强烈旋转上升气流,可以使高温烟气、空气和生物质物料颗粒混合强烈,并延长物料颗粒在炉内的停留时间;采用稀相区后设置卧式旋风燃烬室,使可

生物质燃料市场推广分析报告

生物质燃料市场调查 一、生物质燃料概述 生物质固体成型燃料(简称:生物质燃料;俗称“秸秆煤”)。是利用新技术及专用设备将各种农作物秸秆、木屑、锯末、花生壳、玉米芯、稻草、麦秸麦糠、树枝叶、甘草等压缩碳化成型的现代化清洁燃料,无需任何添加剂和粘结剂,生物质成型燃料挥发份高,易析出,碳活性好,易燃,灰分少,点火快,更加节约燃料,降低使用成本,是未来再生能源的一个重要发展方向。随着世界性的能源匮乏,生物质再生能源的市场需求和利润空间将不可估量。 二、秸秆燃料成型后的主要技术参数: 密度:700—1400千克/立方米;灰分:1—20 %;水分≤15% 。热值:3700—4500大卡/千克;秸秆成型燃料块的热值以秸秆的种类不同而不同。以玉米秸秆为例:热值约为煤的0.7~0.8倍,即1.25t的玉米秸秆成型燃料块相当于1t煤的热值,玉米秸秆成型燃料块在配套的下燃式生物质燃烧炉中燃烧,其燃烧效率是燃煤锅炉的1.3~1.5倍,因此1t玉米秸秆成型燃料块的热量利用率与1t煤的热量利用率相当。 通过不同形式的锅炉使用试验表明,现有的燃煤锅炉完全适应生物质燃料,无需更换锅炉,可以直接使用生物质成

型燃料: 生物质燃料燃烧排放物完全符合环保标准,是国家部门认可的现代化清洁燃料,烧后的废气排放: CO零排放;NO2 14毫克/立方米(微量);SO246毫克/立方米远低于国家标准,可忽略不计;烟尘低于127毫克/立方米远低于国家标准。物质燃料燃烧后的灰分处理: 生物质燃料燃尽率可达96%,剩余4%的灰分可以回收做钾肥,实现了“秸秆→燃料→肥料”的有效循环。 三、关于使用生物质燃料相关政策 1、生物质发电是利用生物质所具有的生物质能进行的发电,是可再生能源发电的一种。它一般分为农林废弃物发电和城镇生活垃圾发电,具体包括农林废弃物直接燃烧发电、生物质混合燃烧发电、农林废弃物气化发电、垃圾焚烧发电、垃圾填埋气发电、沼气发电等多种形式。我国生物质发电产业仍处于政策引导扶持期,其产业与上下游配套产业发展不协调、燃料的收储运困难、生物质发电运行成本高等问题有待在下一步的推进中得到解决。 2、《可再生能源“十二五”规划》中明确表示,2015年我国生物质发电装机达到1300万千瓦,其中农林生物质发电800万千瓦、沼气发电200万千瓦、垃圾焚烧发电300万千瓦,分别为2010年装机量的4.0、2.5和6.0倍,将带来行业的爆发式增长,按农林生物质和垃圾发电厂装机容量约为

燃煤锅炉燃生物质锅炉天然气锅炉的分析与比较

燃煤锅炉、燃生物质锅炉、天然气锅炉的分析与比较 近年来,由于环保压力的不断加大和能源危机日益严重,在政府不断推出一系列关于促进减排及节约能源,鼓励新能源推广等的法律法规后,作为耗能和排放大户的锅炉,也在各级政府、锅炉生产和使用单位、能源供应企业等的共同推动下,已经或正在进行着大规模的更新或改造。但由于各地政策的不一,各市场主体利益驱动不一以及技术和认识的不足等原因,导致部份锅炉使用单位对各种改造方案的优劣势认识不充分,改造后实际运行效果与预定效果差距明显或严重不适用,为此,特本着对客户负责,以大量详实科学的数据为基础,从客观公正的角度来综合比较几种主要能源(煤、天然气、生物质)锅炉方案的差异,以供客户甄别选择。 一、理论上三种能源在锅炉使用成本上的差异 (以吨蒸汽60万大卡热焓为例): 注: 1、II类烟煤低位热值国家标准范围:4200—5000Kcal/Kg,取中值4600 Kcal/Kg;生物质燃料由于成份、加工 等不同,燃料热值范围为3300-5000 Kcal/Kg,通常为3800-4200 Kcal/Kg,取中值4000 Kcal/Kg。 2、锅炉理论效率取自国家标准《锅炉节能技术监督管理规程》中的限定值,即最低设计要求值。 3、燃料价格暂按长沙市场目前价格核算,各地可按实际自行修正。 二、实际运行中三种能源在锅炉使用成本上的差异 (仍以吨蒸汽60万大卡热焓为例)。由于: (一)燃煤锅炉 1、燃煤锅炉煤质易波动,煤量计量普遍存在一定的问题; 2、锅炉本体设计、司炉人员操作水平、煤质不稳定、积灰等原因导致实际层燃锅炉(20T以下链条锅炉)平均运行效率均低于70%,部份锅炉甚至低于60%(摘自哈工大赵钦新教授在工业锅炉行业协会上的报告);

生物质燃烧特性分析

生物质燃烧特性分析 实验报告 华中科技大学煤燃烧国家重点实验室 年月

目录 1. 前言 (1) 2. 主要试验容与试验方法 (1) 3. 试验结果与分析 (4) 3.1 生物质样品工业分析 (4) 3.2 生物质样品元素分析 (5) 3.3 生物质样品堆密度 (5) 3.4 生物质灰成分分析 (5) 3.5 生物质样品灰熔融特性 (6) 3.6 生物质样品燃烧特性分析 (7) 3.7 生物质样品着火、燃尽特性评价 (8) 3.8 生物质样品的结渣特性评价 (9) 附录Ⅰ生物质灰熔点分析 (11) 附录Ⅱ生物质燃烧特性分析 (17)

1. 前言 为满足秸秆生物质发电厂的设计需求,华中科技大学煤燃烧国家重点实验室受项目的委托,对收集的稻杆和油菜杆、棉秆3种生物质样品以及它们的混合样品的物化特性与燃烧特性进行测试分析,进而以生物质的燃烧试验为基础,辅以各单项的常规与非常规数据和指标,对生物质的着火、稳燃、燃烬、结渣、沾污等动力用燃料的主要特性进行评价。其工艺思路如下: 2. 主要试验容与试验方法 (1) 制样 根据仪器分析的需要对来样进行加工制备,采用切片机和粉碎机把生物质样品粉碎成1mm左右的粉末为分析所用,并根据安陆当地生物质样品的分布情况,进行混合样的制备,均匀混合、研磨,以供后续仪器分析。 (2) 堆积密度 堆密度分为松散堆积密度和振实堆积密度。松散堆积密度是指自然堆积状态的未经振实的颗粒物料的总质量除以堆积物料的总体积求得,而振实堆积密度为包括颗粒外孔及颗粒间空隙的经振实的颗粒堆积体的平均密度。

生物质的堆密度是在具有一定容积的容器中装满生物质样品,然后称出样品的质量,再换算成单位体积的质量(kg/m3)。 (3) 生物质样的工业分析 鉴于生物质样品的物化特性与煤有很大的差别,不能直接采用煤的工业分析的标准方法进行分析测量。我们根据在生物质研究方面积累的丰富经验,摸索出针对生物质特点的工业分析方法。在本研究中利用本实验室的工业分析仪(西班牙Las Navas 公司,型号:SDTGA-2000),根据热失重原理在不同温度及气氛环境下对生物质样品中所含的水分、挥发分、固定碳与无机矿物质的量进行准确分析。 (4) 生物质样的元素分析 采用本实验室的元素分析仪(德国Vario公司,型号:EL-2)确定生物质样品的主要元素(C, H, O, N, S)的含量。元素分析仪采用燃烧法自动测定固体或液体有机物中的碳、氢、氮、硫、氧,精确度达到0.1%。 (5) 生物质样的发热量分析 生物质作为能源燃料,低位发热量是其作为能源的主要品质保证。采用本实验室的自动量热仪(美国Parr 公司,型号:Parr 6300)对生物质的氧弹发热量进行测定。其主要测量原理是采用封闭体系,假定热量不损失的情况下,放出的热量等于吸收的热量,通过测量体系水的温度变化,得到样品发热量。最后,根据生物质的工业分析与元素分析进一步确定生物质样品的低位发热量。 (6) 生物质的灰成分分析 生物质灰中含有丰富的无机矿物质成分,如:硅酸盐,碳酸盐、硫酸盐与磷酸盐等,灰的组成对生物质的热解特性有着重要的影响,且硅酸盐、碱金属及碱

不同进料方式燃烧器对生物质燃料颗粒物排放特性的影响

第30卷第12期农业工程学报V ol.30 No.12 200 2014年6月Transactions of the Chinese Society of Agricultural Engineering Jun. 2014 不同进料方式燃烧器对生物质燃料颗粒物排放特性的影响 张学敏2,张永亮1,2,姚宗路1※,赵立欣1,孟海波1,田宜水1(1. 农业部规划设计研究院,农业部农业废弃物能源化利用重点实验室,北京 100125; 2. 中国农业大学工学院,北京 100083) 摘 要:为摸清不同进料方式的燃烧器对生物质成型燃料燃烧后颗粒物排放的影响,该文对上进料式(A型)、水平进料式(B型)和下进料式(C型)等3种类型的燃烧器进行燃烧颗粒排放试验,采用低压电子冲击仪对玉米秸秆、棉秆、木质3种成型燃料燃烧后颗粒物排放开展数量浓度和质量浓度研究,并计算出每种燃料在3种燃烧器中每秒排放的颗粒物数量和质量分布。试验结果表明:3种燃烧器中的颗粒物质量分布都成双峰分布,主要集中在5~7级和12级,占总颗粒物质量的90%;木质和棉杆燃料在A型燃烧器中的颗粒物质量排放最少,玉米秸秆燃料在B型中颗粒物质量最少。3种燃烧器中的颗粒物数量分布都成单峰分布玉米秸秆和木质在B型燃烧器上的颗粒物数量主要集中在1~5级,在A型和C型燃烧器上颗粒物数量主要集中在3~6级;棉杆在C型燃烧器上集中在1~5级,在A型和B型燃烧器上颗粒物数量主要集中在3~6级。3种燃烧器对颗粒物质量的分布影响不大。根据试验结果,建议不同的燃料匹配不同的燃烧器。从颗粒物排放总量角度,玉米秸秆应该匹配B型燃烧器,棉杆和木质燃料应该匹配A型燃烧器。从PM2.5所占比例得出,玉米秸秆燃料应匹配C型燃烧器,棉杆匹配B型燃烧器,木质匹配A型燃烧器。并建议生物质成型燃料燃烧器结构应具有以下特点:进料连续平稳; 带有主动清渣装置并且清渣波动小;鼓风配风,保证过量空气系数高。研究结果为中国生物质固体成型燃料的颗粒物排放法规的制定提供参考。 关键词:生物质;颗粒物;燃料;燃烧器;结构;分布 doi:10.3969/j.issn.1002-6819.2014.12.025 中图分类号:S216 文献标识码:A 文章编号:1002-6819(2014)-12-0200-08 张学敏,张永亮,姚宗路,等. 不同进料方式燃烧器对生物质燃料颗粒物排放特性的影响[J].农业工程学报,2014,30(12):200-207. Zhang Xuemin, Zhang Yongliang, Yao Zonglu, et al. Effect of burners with different feeding modes on emission characteristics of biomass molding fuel particles[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(12): 200-207. (in Chinese with English abstract) 0 引 言 生物质固体成型燃料是通过专门设备将木屑,秸秆、稻壳等农业废弃物压缩成特定形状来增加其密度的固体燃料,可替代煤炭等化石燃料用于炊事、供暖、发电等能源消耗[1-3]。生物质成型燃料的应用,不仅能充分利用农业废弃物,避免资源浪费,而且减少了大量燃烧煤炭和焚烧农业秸秆所造成的空气污染。经过多年研究,生物质燃烧器也得到迅速发展,尤其在瑞典、奥地利等国家,可实现高效、自动化运行。目前按照进料方式,可分为上进 收稿日期:2013-11-07 修订日期:2014-04-10 基金项目:北京科技新星(Z131105*********);大北农教育基金(1071-2413003) 作者简介:张学敏(1976-),男,内蒙古呼市人,副教授,主要从事内燃机排放方面研究。北京中国农业大学工学院,100083。 Email:xuemin_zh@https://www.doczj.com/doc/7413674020.html, ※通信作者:姚宗路(1980-),男,山东临沂人,博士,主要从事生物质资源开发利用方面研究。北京农业部规划设计研究院,100125。Email:yaozonglu@https://www.doczj.com/doc/7413674020.html, 料式、水平进料式和下进料式[4-6]。上进料式燃烧器与料仓分离,回火危险小;可根据功率要求保证精确定量进料,但下落颗粒会引起燃烧波动,燃烧不稳定。水平进料式燃烧器和下进料式燃烧器,燃烧波浪小,燃烧过程连续、稳定,但有回火危险[7]。 随着生物质固体成型燃料的普及和燃烧器技术的成熟与提高,生物质成型燃料燃烧后的颗粒物排放又逐渐成为人们研究的课题。空气中的颗粒物是引起天空阴霾和空气可见度低的主要原因,尤其是颗粒物中空气动力学直径小于 2.5 μm的颗粒物(PM2.5),被人体吸入后,对人体健康危害极大[8-10],各国对空气中不同粒径的颗粒物浓度有严格的限制[11-14]。因此,各国在不同生物质燃烧设备上对成型燃料燃烧后产生的颗粒物粒径分布规律以及PM2.5的含量展开了详细研究。 Ghafghazi等研究了固定床燃烧木质后颗粒物排放情况[15],Limousy等在一种12 kW并且带回燃结构的燃烧器上研究了咖啡渣燃烧后的颗粒物排放情况[16],Meyer研究了几种壁炉燃烧木质燃料后

生物质燃料市场运营和管理

生物质燃料市场运营和管理 摘要:简要说明一次性资源量的有限性,可再生资源浪费造成的危害性,开发可再生能源的必要性。重点分析了生物质能的开发利用、市场运营和管理。对运营管理中的一些问题,扼要阐述了解决这些问题的途径,以供探讨。 关键词:生物质能、运营、管理 引言 随着全球工业化的迅速推进,对能源的需求不断增加,一次性能源终有枯竭的一天,能源成为社会经济发展的瓶颈,由于常规能源的有限性,近年来世界各国对可持续能源的发展都给予高度重视,寻找新能源、提高能源利用率已成为重要的战略任务。中央提出“要加快发展再生资源综合利用”。 秸秆是一种重要的可再生资源,虽然我国秸秆资源丰富,却被民众所忽视,现在农村的秸秆利用,主要是作为生活燃料及饲料使用,能源利用率不足20%,处于较低的原始利用水平。而80%以上的秸秆就被弃置田间地头,或烧或扔,造成资源的严重浪费和环境的污染。秸秆资源的利用,涉及到整个农业生态系统中的土壤肥力、水土保持、环境安全以及再生资源有效利用等方面。利用生物质发电在我国尚属新兴产业,可以解决资源的浪费,提高再生能源的综合利用[1]。1生物质燃料市场的运营 市场的启动 秸秆是一季收割常年使用的生物质,首先要保证秸秆离田有草可收,其次是要实现有效的秸秆储存保管。在秸秆收集市场化还没有形成的初期,要达到“屯草于民、藏草于农”的效果,必须实行政府行政推动和企业市场运作相结合的方式,才能保证电厂有草可收。 生物质燃料从秸秆的产出→收集→运输→加工→运输→销售到电厂入炉,这是一个产业链,不同的环节要由不同的行业来做,这些环节的费用构成生物质燃料的成本。如果不正视每个环节的运营,将会增加整个生物质燃料的成本;相反如果一味降低生物质燃料的收购价,也会造成产业链的畸形发展。生物质发电是我国的一个新兴产业,不少电厂在原料保障方面走过了许多弯路,实践证明,以公司投入建站的模式建立能源基地的,会大大增加燃料运营成本。我们必须依托当地原有资源,在运作初期,可以适当投入设备带动运营市场,积极推进市场化运作。生物质燃料运营只有走市场化运作之路,尊重市场规律,才能提高各环节的积极性,使市场逐渐走入良性循环,实现燃料的长期供应,真正变废为宝。 市场的培育 可根据前期调研,掌握资源的分布区域,深入宣传发动,培育经纪人,并从中筛选出有实力、能做事的经纪人,和他们签订合同,给予技术服务,提供必要的资金或设备支持。特别是要引导他们掌握生物质收集、储存、加工和运输等各个环节的技能,了解如何降低各环节费用支出。以点带面推动他们的周边人加入生物质产业链的行列,从而扩大市场、稳固市场,带动产业链的良性发展。 收购模式的定位 一个好的收购模式决定市场的命运,为降低收购环节的成本,尽量采取直供的收购模式,不留中间环节。对运营好的经纪人签订购销合同,鼓励发展秸秆收储大户,对保质完成合同的给予奖励,优胜劣汰逐渐壮大经纪人队伍。另一方面为拓宽资源渠道,调动广大农户从事生物质收集的积极性,快速启动市场,在市场启动阶段,最有效的收购模式是采取挂牌收购,公开收购价格和质量标准。这样可以让有实力并愿意尝试的人全部参与进来,不会因为个别人的操作不当造成整个区域的资源流失。 根据市场正确定价 市场前期启动阶段,不要盲目定价,定价的依据是资源考察和市场调研。根据资源

相关主题
文本预览
相关文档 最新文档