当前位置:文档之家› 提高混凝土抗冻耐久性技术综述论文

提高混凝土抗冻耐久性技术综述论文

提高混凝土抗冻耐久性技术综述论文
提高混凝土抗冻耐久性技术综述论文

提高混凝土抗冻耐久性技术的研究综述【摘要】本文针对北方寒冷地区混凝土冻融破坏问题,扼要综述了国内外混凝土抗冻耐久性技术的研究动态,叙述了利用矿物掺合料和复合掺入混合料是改善混凝土抗冻耐久性的有效措施。

【关键词】混凝土;耐久性;冻融破坏矿物掺合料

1 前言

混凝土的耐久性是混凝土抵抗气候变化、化学侵蚀、磨损或任何其它破坏过程的能力,当在暴露的环境中,能耐久的混凝土应保持其形态、质量和使用功能。混凝土的耐久性研究内容包括:钢筋锈蚀、化学腐蚀、冻融破坏、碱集料破坏。混凝土的抗冻性作为混凝土耐久性的一个重要内容,在北方寒冷地区工程中是急待解决的重要问题之一。

2 外加剂改善抗冻耐久性技术研究动态

2.1 引气剂

长期的工程实践与室内研究资料表明:提高混凝土抗冻耐久性的一个十分重要而有效的措施是在混凝土拌合物中掺入一定量的引气剂。引气剂是具有增水作用的表面活性物质,它可以明显的降低混凝土拌合水的表面张力和表面能,使混凝土内部产生大量的微小稳定的封闭气泡。这些气泡切断了部分毛细管通路能使混凝土结冰时产生的膨胀压力得到缓解,不使混凝土遭到破坏,起到缓冲减压的作用。这些气泡可以阻断混凝土内部毛细管与外界的通路,使外界水份不易浸入,减少了混凝土的渗透性。同时大量的气泡还能

关于混凝土抗冻性 抗渗性及混凝土耐久性研究

关于混凝土抗冻性抗渗性及混凝土耐久性研究 发表时间:2019-09-11T08:47:40.423Z 来源:《建筑模拟》2019年第31期作者:王刚 [导读] 混凝土是建筑工程施工中重要的原材料之一,由于施工工地环境复杂,且混凝土性质不够稳定,导致混凝土的抗冻性、抗渗性、耐久性等性能在施工过程中会受到不同因素不同程度的影响。 王刚 新疆生产建设兵团公路科学技术研究所 摘要:本文分别对混凝土的抗冻性、抗渗性的机理及改善措施进行了深入的研究和介绍,并着重探讨了混凝土的耐久性即耐磨性、碳化、钢筋锈蚀等作用机理和改进措施,全面的分析了混凝土的几种性能,并为混凝土在施工过程中的使用提供了参考,以保障混凝土的质量,提高工程安全性和使用性。 关键词:混凝土;抗冻性;抗渗性;耐久性 混凝土是建筑工程施工中重要的原材料之一,由于施工工地环境复杂,且混凝土性质不够稳定,导致混凝土的抗冻性、抗渗性、耐久性等性能在施工过程中会受到不同因素不同程度的影响。因此,为了确保混凝土在工程施工中的使用质量,相关人员必须对如何提高混凝土的抗冻性、抗渗性以及耐久性等进行全面系统的研究。 一、混凝土的抗冻性 1.冻害机理 混凝土的抗冻性在寒冷地区体现的较为明显,抗冻性是指经过多次冻融循环后,处于饱和水状态下的混凝土的性能仍没有被破坏的能力。寒冷地区结构经常接触水的混凝土的部位,温度过低甚至低于混凝土中水的冰点以下,此时,混凝土中的水会成冰态,致使混凝土体积增大,增大后混凝土的孔壁后受到更大的压力,导致混凝土微小裂缝的产生,若反复冻融,将不断扩大裂缝并使其纵深发展,破坏混凝土结构。此外,混凝土的密实度、孔隙构造及数量、饱水程度等都会影响混凝土的抗冻性。 2.改善措施 试验证明,在混凝土中掺用引气剂或引气减水剂能有效提高混凝土的抗冻性,作用机理是通过在混凝土内部产生互不连通的微细气泡的方式将内部的渗水通道截断,组织水分渗入混凝土内部。引气时注意引入适宜的量,以4%一6%为宜,成分利用气泡的适应变形能力来减缓冰冻对混凝土结构的损害。此外,还可以通过严格控制水灰比、选用优良的施工材料以及加强早期养护等方式提高混凝土的抗冻性。 二、混凝土的抗渗性 1. 抗渗性机理 混凝土的渗透是由于的多孔性构造存在的内外压力差,导致混凝土中的液体或气体从其高处向低处迁移、渗透的现象。抗渗性能是指混凝土内部对气体或液体的渗透的抵抗能力。混凝土抗渗性强,则会有效阻止水向混凝土内部渗入,提高混凝土使用质量。 2.改善措施 降低毛细孔数量可以有效提高混凝土的抗渗性,混凝土的抗渗性随着水灰比的增大而降低,因此,要合理降低混凝土的水灰比,较高的水灰比形成的水泥凝胶会阻隔水泥面中的毛细孔,降低抗渗性,因此,可直接控制毛细孔数量达到提高抗渗性的目的。此外,还可通过减小石料最大粒径、掺用符合要求的引气剂或引气减水剂和适量的磨细粉煤灰以及施工中确保混凝土搅拌均匀等方式提高混凝土抗渗性。 三、混凝土的耐久性 1. 混凝土的耐磨性 混凝土的耐磨性指的是混凝土工程在使用过程中对反复荷载的磨耗及长期受侵蚀等的耐用性的反映。 (1)影响因素 混凝土的品种、强度和混凝土骨料硬度、最大粒径及其粒料级配会直接影响混凝土的耐磨性;水灰比会影响混凝土的耐磨性,较大水灰比会加大混凝土的孔隙率,并加大粗骨料与水泥浆之间界面的裂隙和孔隙,降低混凝土耐磨性;混凝土的施工质量也是影响混凝土耐磨性的重要原因之一。 (2)改善措施 有效的提高混凝土耐磨性的措施包括:浇筑混凝土时要防止出现离析现象;控制好混凝土的水灰比,防止泌水现象出现;在具体的施工过程中,要确保混凝土涂抹密实、平整,并加强混凝土的养护工作。 2.混凝土的碳化 (1)碳化机理 混凝土的碳化指的是二氧化碳由混凝土表面向内部逐步扩散深人从而改变水泥石化学组成及组织结构,进而使得水泥石中的氢氧化钙发生化学反应,降低的氢氧化钙浓度会使得水泥石中所有的水化产物被侵蚀和分解,形成硅胶和铝胶,影响混凝土的化学性能和物理性能,破坏混凝土的碱度、强度和收缩的平衡。 (2)混凝土碳化的影响因素 施工质量、集料种类及混凝土表面是否有涂层等均会影响碳化速度;施工中使用的水泥品种以及是否在水泥中掺入其他混合材料也会因影响混凝土的碳化速度,一般掺入水泥较硅酸盐会加快混凝土的碳化速度,且掺入的混合材料越多,碳化速度越快;混凝土的水灰比也会影响其碳化程度,较小的水灰比,水泥石有较好的密实性和透气性,因此,有着较慢的碳化速度;当混凝土处于气干状态时,碳化速度较快,若处于干湿交替或潮湿状态下,则碳化速度较慢;此外,若在混凝土中添加外加剂如引气剂或引气减水剂等,会使得混凝土的和易性改变,进而降低水灰比,减缓混凝土碳化速度。 (3)改善措施 由以上总结的影响混凝土碳化速度的原因可知控制混凝土碳化的措施主要包括:将混凝土保护层厚度适当增大、选择合适的水泥品种及掺入合适的混合料、将引气剂或引气减水剂适当引入以改善混凝土和易性和密实程度。此外,施工人员还应该加强对施工质量的控制,确保混凝土施工时振捣密实;混凝土的水灰比要尽量降低;还可以用刷涂料或用水泥砂浆抹面的方式保护混凝土表面不受二氧化碳的侵入

浅谈混凝土结构耐久性问题

④ XXXXXXX(XX)现代远程教育 毕业设计(论文)题目:浅谈混凝土结构耐久性问题 学习中心:XXXXXX 年级专业:函授XXX 专升本 学生姓名:XXX 学号:XXXXXXXXX 指导教师:X X X职称:副教授 导师单位:威海职业学院 中国石油大学(华东)远程与继续教育学院 论文完成时间:2012 年 6 月30 日

XXXXXXX(XX)现代远程教育 毕业设计(论文)任务书 发给学员xxx 1.设计(论文)题目:浅谈混凝土结构耐久性问题 2.学生完成设计(论文)期限:2012 年 1 月30 日至2012 年6 月30 日3.设计(论文)课题要求: 1)、重点论述提高我国中小型出口企业国际竞争力的对策 2)、论文字数不少于6000字。 3)、论文要求结构完整,思路清晰,论据缺凿,论点明确,有说服力。 4)、要从安全角度分析,从各个方面去论述。 5)、针对论文所重点阐述的内容,广泛查阅相关资料,为论文的写作奠定坚实的基础,提供有力的证据。 4.实验(上机、调研)部分要求内容: 如果条件具备,可深入企业进行实际调研,写出调研报告,为论文写作提供充分的素材 5.文献查阅要求: 广泛查阅与本文相关的文献材料,为论文写作奠定坚实的基础,通知注意文献材料的真实性。 6.发出日期:2012 年 1 月30 日 7.学员完成日期:2012 年 6 月30 日 指导教师签名: 学生签名:

摘要 混凝土耐久性是指结构在规定的使用年限内,在各种环境条件作用下,不需要额外的费用加固处理而保持其安全性、正常使用和可接受的外观能力。影响混凝土结构耐久性的因素有很多,本文通过从混凝土的渗透破坏、冻融破坏、侵蚀性介质的腐蚀、碱骨料反应、碳化和钢筋锈蚀六个方面论述了混凝土发生耐久性失效的原因及影响因素,对混凝土耐久性问题进行了研究。最终提出从混凝土材料的选择、结构设计和质量的生产控制三方面进行提高混土耐久性的处理措施。混凝土结构以其整体性好、耐久性好、可塑性强、维修费用少等优点广泛使用,随着混凝土结构应用领域越来越广泛,大量的混凝土结构由于各种各样的原因而提前失效,达不到预定的服役年限,混凝土耐久性发生失效现象日趋严重。 关键词:混凝土;耐久性;影响因素;措施

相关高性能混凝土方面的问题

高性能混凝土 简介 高性能混凝土(High performance concrete,简称HPC)是一种新型高技术混凝土,是在大幅度提高普通混凝土性能的基础上采用现代混凝土技术制作的混凝土。它以耐久性作为设计的主要指标,针对不同用途要求,对下列性能重点予以保证:耐久性、工作性、适用性、强度、体积稳定性和经济性。为此,高性能混凝土在配置上的特点是采用低水胶比,选用优质原材料,且必须掺加足够数量的矿物细掺料和高效外加剂。 定义 1950年5月美国国家标准与技术研究院(NIST)和美国混凝土协会(ACI)首次提出高性能混凝土的概念。但是到目前为止,各国对高性能混凝土提出的要求和涵义完全不同。 美国的工程技术人员认为:高性能混凝土是一种易于浇注、捣实、不离析,能长期保持高强、韧性与体积稳定性,在严酷环境下使用寿命长的混凝土。美国混凝土协会认为:此种混凝土并不一定需要很高的混凝土抗压强度,但仍需达到55MPa以上,需要具有很高的抗化学腐蚀性或其他一些性能。 日本工程技术人员则认为,高性能混凝土是一种具有高填充能力的的混凝土,在新拌阶段不需要振捣就能完善浇注;在水化、硬化的早期阶段很少产生有水化热或干缩等因素而形成的裂缝;在硬化后具有足够的强度和耐久性。 加拿大的工程技术人员认为,高性能混凝土是一种具有高弹性模量、高密度、低渗透性和高抗腐蚀能力的混凝土。 综合各国对高性能混凝土的要求,可以认为,高性能混凝土具有高抗渗性(高耐久性的关键性能);高体积稳定性(低干缩、低徐变、低温度变形和高弹性模量);适当的高抗压强度;良好的施工性(高流动性、高粘聚性、自密实性)。 中国在《高性能混凝土应用技术规程》(CECS207-2006)对高性能混凝土定义为:采用常规材料和工艺生产,具有混凝土结构所要求各项力学性能,具有高耐久性、高工作性和高体积稳定性的混凝土。 高性能混凝土的技术路线 高性能混凝土是由高强混凝土发展而来的,但高性能混凝土对混凝土技术性能的要求比高强混凝土更多、更广乏,高性能混凝土的发展一般可分为三个阶段:

混凝土结构耐久性论文

混凝土结构耐久性探析 摘要:混凝土耐久性是指混凝土在使用条件下,抵抗周围环境中各种因素长期作用而不破坏的能力。本文分析了混凝土结构耐久性影响因素,探讨了提高混凝土结构耐久性的措施。 关键词:混凝土;结构;耐久性 abstract: the durability of concrete is refers to the concrete in the use of conditions, the resistance of various factors in the surrounding environment without destroying long-term effects of ability. this paper analyzes the factors affecting the durability of concrete structure, and probes into the measures to improve the durability of concrete construction. keywords: concrete; structure; durability 中图分类号:tv331文献标识码:a 文章编号: 混凝土耐久性是指混凝土在使用条件下,抵抗周围环境中各种因素长期作用而不破坏的能力。环境对混凝土结构的物理化学作用以及混凝土结构抵御环境作用的能力,是影响混凝土结构耐久性的因素,对现有混凝土结构进行的耐久性检测与评估十分重要。 曾有调查表明 ,国内大多数工业建筑在使用25一30年后即需大修 ,处于严酷环境下的建筑物的使用寿命仅15 一20年 ,桥梁、港口等基础设施工程尤其严重。许多工程建成后几年就出现钢

混凝土结构耐久性浅谈

网络教育学院 本科生毕业论文(设计) 题目:混凝土结构耐久性浅谈 学习中心: 层次:专科起点本科 专业:土木工程 年级: 学号: 学生: 指导教师: 完成日期: 2013年 11 月 14 日

内容摘要 混凝土由于其具有经济、耐久、节能等众多优点,而成为重要的建筑材料,其应用范围十分广泛。作为目前世界最大宗的人造建筑材料,其在给人类带来巨大文明进步的同时,也面临由此造成的严峻的资源、能源和环境问题。传统意义上的混凝土由于自身结构材料和使用环境的特点,还存在着严重的耐久性问题,已不能满足混凝土行业的绿色可持续发展的要求。因此,提高混凝土的耐久性是实现混凝土环保化、节约化的积极有效措施。本文综述了耐久性对混凝土的重要意义,并着重分析了影响混凝土耐久性的主要因素。最后介绍了目前世界上提高混凝土的耐久性的研究结果以及目前国际上对混凝土的耐久性设计要求。 关键词:耐久性;混凝土;影响因素

目录 内容摘要 ........................................................................................................................... I 引言 . (1) 1 绪论 (2) 1.1 混凝土耐久性问题的提出 (2) 1.2 混凝土耐久性的概念 (2) 2 混凝土结构耐久性问题的分析 (3) 2.1 混凝土冻融破坏 (3) 2.1.1 破坏机理 (3) 2.1.2 影响因素 (4) 2.2 混凝土渗透破坏 (4) 2.2.1 破坏原因 (4) 2.2.2 影响因素 (5) 2.3 碱骨料反应 (5) 2.3.1 破坏原因 (5) 2.3.2 影响因素 (6) 2.4 混凝土的碳化 (6) 2.4.1 破坏原因 (6) 2.4.2 影响因素 (7) 2.5 钢筋锈蚀 (7) 2.5.1 破坏原因 (7) 2.5.2 影响因素 (8) 2.6 化学侵蚀 (8) 2.6.1 产生原因 (8) 2.6.2 影响因素 (9) 3 提高混凝土耐久性的措施 (10) 4 案例分析 (12) 5 结论与展望 (17)

混凝土耐久性与寿命预测

土木工程材料结课论文题目:混凝土耐久性与寿命预测

摘要 摘要:实现混凝土工程的高耐久和长寿命是效益巨大的节能减排和可持续发展之举措, 混凝土的耐久性成为影响混凝土技术未来发展的关键技术已成为共识。混凝土结构的耐久性问题是一个十分复杂的工程问题,不仅影响到结构的使用寿命,更加影响到整个社会的经济效益。本文介绍了混凝土结构耐久性的研究现状,详细阐述了混凝土结构耐久性的影响因素、研究方法以及耐久寿命的定义,重点介绍了混凝土结构材料耐久寿命预测的研究方法,最后提出了混凝土结构耐久性需进一步研究的问题。 关键词:混凝土;耐久性;研究现状;寿命预测 水泥混凝土以其原材料易得、易浇注成型、适应性强、性价比高、综合能耗低等优点而成为当今世界上应用最广泛、用量最大的建筑材料。尽管现代材料科学发展日新月异, 但仍然没有科学家能预言可替代水泥混凝土的建筑材料新品种。从20 世纪30 —40 年代开始,西方国家出于战后重建、工业化、城市化以及能源开发的需要, 用混凝土修建了大量的基础设施, 混凝土用量持续增长。之后, 发展中国家经济的强劲增长进一步助推了混凝土用量的迅猛增长。1987 年, 美国国家材料顾问委员会提交的调查研究报告使混凝土结构的耐久性在美国

乃至世界范围内引起轰动。该报告指出, 大约25.3 万座混凝土桥梁的桥面板, 其中部分仅使用不到20 年就已经发生不同程度地损坏, 使用年限远低于40 ~50 年的设计寿命。大量混凝土结构过早出现严重劣化引起了世界范围内对混凝土耐久性的高度关注, 不仅是因为需要花费巨资修补加固甚至重建, 还在于当今世界人口膨胀、能源供应紧张、环境污染、温室效应导致的气候变暖和生态恶化对可持续发展的迫切需要。混凝土耐久性成为关注焦点促进了世界范围内混凝土理论和技术的快速发展和进步, “混凝土耐久性的整体论模型”、“混凝土结构的寿命预测”、“混凝土结构寿命周期评价(影响评价、成本分析)”等新认识、新方法的出现, 将会为克服混凝土结构在服役过程中的过早劣化问题、实现混凝土技术的可持续发展提供强有力支撑。 混凝土结构的耐久性是一个十分复杂的工程问题。目前的研究主要集中在混凝土腐蚀机理研究、在役结构的健康状况评价和剩余寿命预测、结构性能的防护措施研究等方面,对在役建筑物如何评估其耐久性和剩余使用寿命,也尚无统一方法。事实表明,混凝土结构耐久性的研究滞后于工程实践的需要,因此,积极开展混凝土结构耐久性研究对国民经济建设具有重要意义。本文介绍了工程混凝土结构耐久性的研究现状、影响因素和研究方法,并对混凝土结构材料的寿命预测方法进行了总结和详述。 1 混凝土结构耐久性研究现状 混凝土结构的耐久性,是指混凝土结构在自然环境、使用环境及材料内部因素的作用下,在设计要求的目标使用期内,不需要花费大量资金加固处理而保持其安全、使用功能和外观要求的能力。混凝土结构的耐久性研究应考虑环

混凝土抗冻性浅析

混凝土抗冻性浅析 混凝土的耐久性是混凝土抵抗气候变化、化学侵蚀、磨损或任何其它破坏过程的能力,当在暴露的环境中,能耐久的混凝土应保持其形态、质量和使用功能。混凝土的耐久性研究内容包括:钢筋锈蚀、化学腐蚀、冻融破坏、碱集料破坏。混凝土的抗冻性作为混凝土耐久性的一个重要内容,在北方寒冷地区工程中是急待解决的重要问题之一。 我国地域辽阔,有相当大的部分处于严寒地带,致使不少水工建筑物发生了冻融破坏现象。根据全国水工建筑物耐久性调查资料,在32座大型混凝土坝工程、40余座中小型工程中,22%的大坝和21%的中小型水工建筑物存在冻融破坏问题,大坝混凝土的冻融破坏主要集中在东北、华北、西北地区。尤其在东北严寒地区,兴建的水工混凝土建筑物,几乎100%工程局部或大面积地遭受不同程度的冻融破坏。除三北地区普遍发现混凝土的冻融破坏现象外,地处较为温和的华东地区的混凝土建筑物也发现有冻融现象。 因此,混凝土的冻融破坏是我国建筑物老化病害的主要问题之一,严重影响了建筑物的长期使用和安全运行,为使这些工程继续发挥作用和效益,各部门每年都耗费巨额的维修费用,而这些维修费用为建设费用的1~3倍。美国投入混凝土基建工程的总造价为16万亿美元,据估计今后每年用于混凝土工程维修和重建的费用估计达3000亿美元。 2.外加剂改善抗冻耐久性技术研究动态 2.1引气剂 长期的工程实践与室内研究资料表明:提高混凝土抗冻耐久性的一个十分重要而有效的措施是在混凝土拌合物中掺入一定量的引气剂。引气剂是具有增水作用的表面活性物质,它可以明显的降低混凝土拌合水的表面张力和表面能,使混凝土内部产生大量的微小稳定的封闭气泡。这些气泡切断了部分毛细管通路能使混凝土结冰时产生的膨胀压力得到缓解,不使混凝土遭到破坏,起到缓冲减压的作用。这些气泡可以阻断混凝土内部毛细管与外界的通路,使外界水份不易浸入,减少了混凝土的渗透性。同时大量的气泡还能起到润滑作用,改善混凝土和易性。因此,掺用引气剂,使混凝土内部具有足够的含气量,改善了混凝土内部的孔结构,大大提高混凝土的抗冻耐久性。国内外的大量研究成果与工程实践均表明引气后混凝土的抗冻性可成倍提高。 美国是最早开始研究引气剂的国家,自1934年在美国堪萨斯州与纽约州道路工程施工中发现引气混凝土,至今已有半个多世纪。挪威1974年首次在大坝中使用引气剂,经过20年运行后,掺引气剂的混凝土表面完好无损,而未掺引气剂的混凝土则已遭受较严重的冻融破坏。我国这方面的工作始于50年代。我国混凝土学科创始人吴中伟教授,在50年代初期就强调了混凝土抗冻的重要性,并创先研制了松香热聚物加气剂(引气剂),应用于治淮水利混凝土工程,开创了

混凝土抗冻性、抗渗性及混凝土耐久性研究

混凝土抗冻性、抗渗性及混凝土耐久性研究 发表时间:2016-09-28T10:51:37.510Z 来源:《基层建设》2016年13期作者:李展桃 [导读] 摘要:分别对混凝土的抗冻性、抗渗性的机理及改善措施进行了深入的研究和介绍,并着重探讨了混凝土的耐久性即耐磨性、碳化、钢筋锈蚀等作用机理和改进措施,全面的分析了混凝土的几种性能,并为混凝土在施工过程中的使用提供了参考,以保障混凝土的质量,提高工程安全性和使用性。 佛山市三水区建筑工程质量检测站 528100 摘要:分别对混凝土的抗冻性、抗渗性的机理及改善措施进行了深入的研究和介绍,并着重探讨了混凝土的耐久性即耐磨性、碳化、钢筋锈蚀等作用机理和改进措施,全面的分析了混凝土的几种性能,并为混凝土在施工过程中的使用提供了参考,以保障混凝土的质量,提高工程安全性和使用性。 关键词:混凝土;抗冻性;抗渗性;耐久性 引言: 混凝土是建筑工程施工中重要的原材料之一,由于施工工地环境复杂,且混凝土性质不够稳定,导致混凝土的抗冻性、抗渗性、耐久性等性能在施工过程中会受到不同因素不同程度的影响。因此,为了确保混凝土在工程施工中的使用质量,相关人员必须对如何提高混凝土的抗冻性、抗渗性以及耐久性等进行全面系统的研究。 1 混凝土的抗冻性 1.1 冻害机理 混凝土的抗冻性在寒冷地区体现的较为明显,抗冻性是指经过多次冻融循环后,处于饱和水状态下的混凝土的性能仍没有被破坏的能力。寒冷地区结构经常接触水的混凝土的部位,温度过低甚至低于混凝土中水的冰点以下,此时,混凝土中的水会成冰态,致使混凝土体积增大,增大后混凝土的孔壁后受到更大的压力,导致混凝土微小裂缝的产生,若反复冻融,将不断扩大裂缝并使其纵深发展,破坏混凝土结构。此外,混凝土的密实度、孔隙构造及数量、饱水程度等都会影响混凝土的抗冻性。 1.2 改善措施 试验证明,在混凝土中掺用引气剂或引气减水剂能有效提高混凝土的抗冻性,作用机理是通过在混凝土内部产生互不连通的微细气泡的方式将内部的渗水通道截断,组织水分渗入混凝土内部。引气时注意引入适宜的量,以4%一6%为宜,成分利用气泡的适应变形能力来减缓冰冻对混凝土结构的损害。此外,还可以通过严格控制水灰比、选用优良的施工材料以及加强早期养护等方式提高混凝土的抗冻性。 2 混凝土的抗渗性 2.1 抗渗性机理 混凝土的渗透是由于的多孔性构造存在的内外压力差,导致混凝土中的液体或气体从其高处向低处迁移、渗透的现象。抗渗性能是指混凝土内部对气体或液体的渗透的抵抗能力。混凝土抗渗性强,则会有效阻止水向混凝土内部渗入,提高混凝土使用质量。 2.3 改善措施 降低毛细孔数量可以有效提高混凝土的抗渗性,混凝土的抗渗性随着水灰比的增大而降低,因此,要合理降低混凝土的水灰比,较高的水灰比形成的水泥凝胶会阻隔水泥面中的毛细孔,降低抗渗性,因此,可直接控制毛细孔数量达到提高抗渗性的目的。此外,还可通过减小石料最大粒径、掺用符合要求的引气剂或引气减水剂和适量的磨细粉煤灰以及施工中确保混凝土搅拌均匀等方式提高混凝土抗渗性。 3 混凝土的耐久性 3.1 混凝土的耐磨性 混凝土的耐磨性指的是混凝土工程在使用过程中对反复荷载的磨耗及长期受侵蚀等的耐用性的反映。 3.1.1影响因素 混凝土的品种、强度和混凝土骨料硬度、最大粒径及其粒料级配会直接影响混凝土的耐磨性;水灰比会影响混凝土的耐磨性,较大水灰比会加大混凝土的孔隙率,并加大粗骨料与水泥浆之间界面的裂隙和孔隙,降低混凝土耐磨性;混凝土的施工质量也是影响混凝土耐磨性的重要原因之一。 3.1.3 改善措施 有效的提高混凝土耐磨性的措施包括:浇筑混凝土时要防止出现离析现象;控制好混凝土的水灰比,防止泌水现象出现;在具体的施工过程中,要确保混凝土涂抹密实、平整,并加强混凝土的养护工作。 3.2混凝土的碳化 3.2.1碳化机理 混凝土的碳化指的是二氧化碳由混凝土表面向内部逐步扩散深人从而改变水泥石化学组成及组织结构,进而使得水泥石中的氢氧化钙发生化学反应,降低的氢氧化钙浓度会使得水泥石中所有的水化产物被侵蚀和分解,形成硅胶和铝胶,影响混凝土的化学性能和物理性能,破坏混凝土的碱度、强度和收缩的平衡。 3.2.2混凝土碳化的影响因素 施工质量、集料种类及混凝土表面是否有涂层等均会一定程度上影响碳化速度;施工中使用的水泥品种以及是否在水泥中掺入其他混合材料也会因影响混凝土的碳化速度,一般掺入水泥较硅酸盐会加快混凝土的碳化速度,且掺入的混合材料越多,碳化速度越快;混凝土的水灰比也会影响其碳化程度,较小的水灰比,水泥石有较好的密实性和透气性,因此,有着较慢的碳化速度;当混凝土处于气干状态时,碳化速度较快,若处于干湿交替或潮湿状态下,则碳化速度较慢;此外,若在混凝土中添加外加剂如引气剂或引气减水剂等,会使得混凝土的和易性改变,进而降低水灰比,减缓混凝土碳化速度。 3.2.3 改善措施 由以上总结的影响混凝土碳化速度的原因可知控制混凝土碳化的措施主要包括:将混凝土保护层厚度适当增大、选择合适的水泥品种及掺入合适的混合料、将引气剂或引气减水剂适当引入以改善混凝土和易性和密实程度。此外,施工人员还应该加强对施工质量的控制,

浅谈混凝土强度和耐久性

建议提高混凝土强度和耐久性指标二滩拱坝原设计最大主压应力为8.6Mpa,运行几年后,实测的最大压应力达11.9Mpa,为原设计的1.38倍,而拉应力原设计为-0.90Mpa,运行几年后实测的最大拉应力达-3.56Mpa,为原设计的3.95倍;以上情况告诉我们,混凝土的抗压强度必须要有足够余量,抗拉强度更要有富余量。建议提高混凝土强度指标我国原拱坝设计规范:混凝土的强度除以最大主压应力,等于4(即为安全系数,龄期90d,试件尺寸20cm立方体),如果试件尺寸为15cm立方体,则应取安全系数K 4.2;现时我国一些高拱坝的混凝土抗压强度安全系数取K 4,试件尺寸15cm立方体,龄期180d,安全系数比90d龄期的还要小。建议提高混凝土强度指标根据二滩大坝实际的混凝土抗压强度反馈折算成 15cm立方体试件的抗压强度,分别计算180d和90d 龄期的设计最大主压应力和实测的最大压应力的安全系数,计算结果:提高混凝土耐久性指标抗冻指标抗渗指标极限拉伸值水胶比提高混凝土抗冻指标在北方气温低,至少应取F300或更高些,正如前面介绍的,苏联的萨扬舒申斯克坝抗冻指标F400,而瑞士的莫瓦桑坝为F1000,康特拉坝为F5000,混凝土中掺适量的引气剂,含气量达到4~5%,是容易达到高抗冻融指标的。有引气的混凝土,冻融300次循环,其相对动弹性模量仍还在95%以上,而没有引气的混凝土在冻融75次以后,其相对动弹性模量下降到规定的60%。提高混凝土抗冻指标掺引气剂混凝土还有减少碱骨料反应引起膨胀的功能,可以提高混凝土抗硫酸盐侵蚀作用;试验表明,掺气的混凝土不仅可以提高其抗冻

融能力,而且还可提高其抗渗能力,如混凝土中含气量达 4.8%时,其渗透系数只有没掺气剂混凝土的1/5。提高混凝土抗渗指标康特拉坝(220m高),对混凝土抗渗要求为:2倍水头作用下,试件不渗水,相当于W40以上。美国规定混凝土渗透系数K 1.5×10-9cm/s,相当于我国抗渗指标W12。建议我国对于高拱坝混凝土的抗渗指标应大于W12,对于引水建筑物中与水接触的混凝土抗渗指标也应达到W12。混凝土的极限拉伸值影响因素很多,特别是骨料的类别影响大,如灰岩骨料的混凝土,它的极限拉件值90d龄期可大于1.2×10-4,二滩的正长岩骨料混凝土的极限拉件值90d龄期的(1.07-1.17)×10-4;但有的玄武岩骨料混凝土的极限拉伸值,180d 龄期也难达到大于1.1×10-4。建议高拱坝混凝土90d龄期的极限拉伸值≥1.0×10-4。控制水胶比国外一些高拱坝混凝土的水胶比0.50;美国ACI建议:暴露在淡水中混凝土的水灰比≯0.48,暴露在海水中混凝土的水灰比≯0.44。为了保证高拱坝混凝土的强度和耐久性,建议必须严格控制水胶比 0.50,发电引水隧洞混凝土的水胶比,也不要超过0.50。不同骨料对混凝土性能的影响影响强度影响极限拉伸值影响弹性模量影响徐变度影响线胀系数骨料对混凝土强度的影响碎石比河卵石混凝土强度提高10%,河卵石的比表面积约为碎石的80%,因此碎石混凝土要比河卵石混凝土多用胶凝材料。骨料的母岩湿抗压强度要为混凝土配合比强度的1.5倍和大于60MPa。骨料对混凝土极限拉伸值的影响石灰岩骨料混凝土比二滩正长岩混凝土的极限拉伸值约高5%,比河卵石混凝土极限拉伸值

高性能混凝土论文

试论高性能混凝土 姓名:*** 学院:************ 学号:**********

摘要 , 高性能混凝土是一种是以耐久性为主要指标同时具备高强、高早强、高施工性等优异性能的新型混凝土。应该通过制备的科学性以及提高浇筑、捣实等施工方法和工艺来提高混凝土的高施工性、高强度和体积稳定性从而提高道路桥梁的使用寿命和整体经济效益。 The high-performance concrete is based on durability as the main indicators, alongwith highstrength,high early strength, high workability andexcellent performanceofnew concrete.Through the preparation ofthe scientific and improve the casting, to trace the actualconstruction methods andprocess to improve concrete construction,high strengthand volumestability, therebyenhancing thelife and the overall economicbenefitsof roads and bridges. 关键字:高强、高性能混凝土 1 高性能混凝土的定义 高性能混凝土(HighPerformance Concrete,简称HPC)是在高强度混凝土(High Strength Concrete,简称HSC)的基础上发展起来的。在不同国家,甚至是同一国家的不同应用部门,对高性能混凝土的定义都有差别。美国和加拿大的学者认为高性能混凝土应该是高耐久性的,而不仅仅是高强度;除了强度之外,高耐久性还应包括高的体积稳定性、低渗透性和高工作性。日本学者更重视混凝土的工作性,认为高流态、免振自密实混凝土就是高性能混凝土。英国和北美学者则更重视混凝土的强度。 综合分析各种观点,我国学者提出:高性能混凝土是在大幅度提高常规混凝土性能的基础上采用现代(先进的预拌)混凝土技术,选用优质原材料,除水泥、水、集料外,必须掺加足够数量的活性细掺料和高效外加剂的一种新型高技术混凝土。高性能混凝土应具有几种性能:耐久性、工作性及各种力学性能。 但目前,高性能混凝土的概念又有了新的变化,清华大学冯乃谦教授提出普通混凝土也可能高性能化,其研究成果在工程实际中也得到了应用。因此,高性能混凝土并不一定强调高强,还包括普通混凝土的高性能化。 2 高性能混凝土产生的背景 传统的混凝土虽然已有近200 年的历史,也经历了几次大的飞跃,但今天却面临着前所未有的严峻挑战: (1)随着现代科学技术和生产的发展,各种超长、超高、超大型混凝土构筑物,以及在严酷环境下使用的重大混凝土结构,如高层建筑、跨海大桥、海底隧道、海上采油平台、核反应堆、有毒有害废物处置工程等的建造需要在不断增加。 这些混凝土工程施工难度大,使用环境恶劣、维修困难,因此要求混凝土不但施工性能要好,尽量在浇筑时不产生缺陷,更要耐久性好,使用寿命长。 (2) 进入20世纪70年代以来,不少工业发达国家正面临一些钢筋混凝土 结构,特别是早年修建的桥梁等基础设施老化问题,需要投入巨资进行维修或更新。1987 年美国国家材料咨询局的一份政府报告指出:在美国当时的57.5

混凝土抗冻耐久性综述

混凝土抗冻耐久性综述X 张鸿雁 (内蒙古建筑职业技术学院,内蒙古呼和浩特 010000) 摘 要:我国地域辽阔,环境复杂,华北、西北、东北地区的水工大坝,特别是东北地区的混凝土结构物,几乎100%的工程局部或大面积地遭受不同程度冻融破坏。本文针对混凝土冻融破坏问题,结合笔者所做的实验,扼要介绍了影响混凝土抗冻耐久性的主要因素及相应预防措施。 关键词:混凝土;抗冻;耐久性 中图分类号:T U528 文献标识码:A 文章编号:1006—7981(2012)23—0034—02 1 综述 混凝土在饱水状态下因冻融循环产生的破坏即为混凝土冻融破坏,混凝土在饱水状态下抵抗冻融循环作用的性能称为混凝土的抗冻耐久性(简称抗冻性)。混凝土冻害发生必须具备两个条件:一是混凝土处于饱水状态;二是冻融循环交替发生。我国的华北、西北、东北地区的水工混凝土构筑物,几乎100%的工程局部或大面积地遭受不同程度冻融破坏。而且长江以北黄河以南的中部地区,也有大量的混凝土建筑物(构筑物)出现冻融破坏的现象。由此可见,北方地区,混凝土的抗冻耐久性直接决定影响混凝土的耐久性[1]。 2 冻融破坏机理研究 迄今为止,关于混凝土冻融破坏机理还没有形成共识。得到较多学者认可的假说可以归结为2类:一类是Pow ers提出的静水压假说[2];一类是他此后与Helm uth一起提出了渗透压假说。这两个假说结合在一起,较为成功的解释了混凝土冻融破坏机理。 静水压假说认为:水受冻变成冰时,体积要膨胀9%,从而迫使未结冰的孔溶液从结冰区向外迁移,产生静水压力。静水压力随孔隙水流程长度增加而增加,因此,存在一个极限流程长度,如果孔隙水的流程长度大于该极限长度则静水压力将超过混凝土的抗拉强度,混凝土开始破坏。 渗透压假说认为:混凝土孔溶液中含有Na+、K+、Ca2+等盐类,气温降低时大孔中的部分溶液首先结冰,则未冻溶液中盐的浓度就会上升,就会与周围较小空隙中的溶液产生浓度差。这个浓度差将迫使小孔中溶液向大孔迁移。即使是浓度为0的孔溶液,由于冰的饱和蒸汽压低于同温度下水的饱和蒸汽压,小孔中的溶液也要向已部分结冰的大孔溶液迁移。可见渗透压是孔溶液的盐浓度差和冰水饱和蒸气压差共同形成的。 目前静水压、渗透压不能由实验测定,也无法准确用物理化学公式计算。现阶段得到公认的影响混凝土抗冻性的参数是平均气泡间隔系数。气泡间隔系数即气泡间距的一半。当混凝土的平均气泡间隔系数小于某个临界值时,毛 很大的影响。严格控制电子间的环境条件,可以延长热控设备的使用寿命,并且可以提高系统工作的可靠性。这一点,一定要引起我们足够的重视一定要提高DCS硬件质量和软件的自我诊断能力,努力提高DCS系统软、硬件的质量和自诊断能力,对提前预防、软化故障有着十分重要的作用。随着我国电力事业和高新技术的快速发展,发电设备日趋高度自动化和智能化,系统的安全性、可靠性变得日益重要。这是设计、安装、调试、检修人员追求的最高目标。热控调试在火力发电机组调试过程中的作用并不显眼,但热控系统却关系着机组的安全运行、自动化水平及经济、稳定运行。热控仪表多种多样,控制方式繁杂,与热力系统的关系错综复杂,这就要求热控专业与其他专业紧密结合、通力协作,杜绝和预防各种事故的发生。火电厂自动化技术应用的发展,尽管经历过挫折和重重困难,但仍以前所未有的速度发展。可以预见,进入21世纪,我国火电厂自动化技术应用很可能将以更快的速度发展,随着世界高科技飞速发展,火电厂热工自动化的保护与管理也必将进入高科技信息时代。 [参考文献] [1] 黄平森.热工自动化设备的改造对策[J].电力 建设,1996,(3). [2] 樊静明,孙宝义.热控保护标准化作业[M].北 京:中国电力出版社,2007. 34内蒙古石油化工 2012年第23期 *收稿日期:2012-09-22

浅谈如何提高混凝土的耐久性

浅谈如何提高混凝土的耐久性 发表时间:2009-12-29T11:34:07.170Z 来源:《中小企业管理与科技》2009年11月下旬刊供稿作者:刘俊 [导读] 我国人口众多,过去为及时解决居住需要和促进工业生产,建造过不少质量不高的民用房屋和工业厂房 刘俊(龙江县房地产管理局) 摘要:通过对影响混凝土结构耐久性几方面因素的分析,结合现有的施工经验,阐述如何提高混凝土结构耐久性的措施。 关键词:耐久性碱-集料反应腐蚀高性能砼 1 混凝土工程中的耐久性问题 我国人口众多,过去为及时解决居住需要和促进工业生产,建造过不少质量不高的民用房屋和工业厂房。结构设计虽然采用可靠度理论计算,实质上仅能满足安全可靠指标的要求,而对耐久性要求考虑不足,且由于忽视维修保养,现有建筑物老化现象相当严重。 2 混凝土结构耐久性问题的分析 混凝土耐久性问题,是指结构在所使用的环境下,由于内部原因或外部原因引起结构的长期演变,最终使混凝土丧失使用能力。即所为的耐久性失效,耐久性失效的原因很多,有抗冻失效,碱-集料反应失效,化学腐蚀失效,钢筋锈蚀造成结构破坏等。下面作具体分析。 2.1 混凝土的冻融破坏结构处于冰点以下环境时,部分混凝土内孔隙中的水将结冰,产生体积膨胀,过冷的水发生迁移,形成各种压力,当压力达到一定程度时,导致混凝土的破坏。混凝土发生冻融破坏的最显著的特征是表面剥落,严重时可以露出石子。混凝土的抗冻性能与混凝土内部的孔结构和气泡含量多少密切相关。孔越少越小,破坏作用越小,封闭气泡越多,抗冻性越好。影响混凝土抗冻性的因素,除了孔结构和含气量外,还包括:混凝土的饱和度,水灰比,混凝土的龄期,集料的孔隙率及其间的含水率等。 2.2 混凝土的碱-集料反应混凝土的碱-集料反应,是指混凝土中的碱与集料中活性组分发生的化学反应,引起混凝土的膨胀,开裂,甚至破坏。因反应的因素在混凝土内部,其危害作用往往是不能根冶的,是混凝土工程中的一大隐患。许多国家因碱-集料反应不得不拆除大坝,桥梁,海堤和学校,造成巨大损失,国内工程中也有碱-集料反应损害的类似报道,一些立交桥,铁道轨枕等发生不同程度的膨胀破坏。混凝土碱-集料反应需具备三个条件,即有相当数量的碱,相应的活性集料,水份。反应通常有三种类型:碱-硅酸反应,碱-碳酸盐反应,慢膨胀型碱-硅酸盐反应,避免碱-集料反应的方法可采用:①尽量避免采用活性集料;②限制混凝土的碱含量;③掺用混合材。 2.3 化学侵蚀当混凝土结构处在有侵蚀性介质作用的环境时,会引起水泥石发生一系列化学,物理与物化变化,而逐步受到侵蚀,严重的使水泥石强度降低,以至破坏。常见的化学侵蚀可分为淡水腐蚀,一般酸性水腐蚀,碳酸腐蚀,硫酸盐腐蚀,镁盐腐蚀五类。淡水的冲刷,会溶解水泥石中的组分,使水泥石孔隙增加,密实度降低,从而进一步造成对水泥石的破坏;研究表明,当水泥石中的氧化钙溶出5%时,强度下降7%,当溶出24%时,强度下降29%,因此,淡水冲刷会对水工建筑有一定影响;而当水中溶有一些酸类时,水泥石就受到溶淅和化学溶解双重作用,腐蚀明显加速,这类侵蚀常发生在化工厂;碳酸对混凝土的影响主要为:在溶淅水泥石的同时,破坏混凝土内的碱环境,降低水泥水化产物的稳定性,影响水泥石的致密度,造成对混凝土的侵蚀;硫酸盐的腐蚀则表现为SO42-离子深入混凝土内与水泥组分反应,生成物体积膨胀开裂造成损坏;海水中由于存在多种离子,侵蚀形式较为复杂,但主要是由于镁盐使硬化水泥石的结构组分分解,同时硫酸盐作用会造成对水泥石的损坏,而氧化镁沉淀会堵塞混凝土孔隙,会使海水侵蚀有所缓和。 2.4 钢筋的锈蚀钢筋的锈蚀,其一表现为钢筋在外部介质作用下发生电化反应,逐步生成氢氧化铁等即铁锈,其体积比原金属增大2-4倍,造成混凝土顺筋裂缝,从而成为腐蚀介质渗入钢筋的通道,加快结构的损坏。氢氧化铁在强碱溶液中会形成稳定的保护层,阻止钢筋的锈蚀,但碱环境被破坏或减弱,则会造成钢筋的锈蚀,如混凝土的碳化或中性化。造成混凝土碳化和中性化的原因,主要是混凝土的密实度即抗渗性不足,酸性气体(如CO2,SO2,H2S,HCL,NO2)渗入混凝土内与氢氧化钙作用;其二,氯离子对钢筋表面钝化膜有特殊的破坏作用,当混凝土中氯含量超过标准时,钢筋会锈蚀,而水和氧的存在是钢筋被腐蚀的必要条件,因此,若混凝土开裂,造成水和氧的通道,则钢筋锈蚀加速,促成混凝土裂缝进一步开展,混凝土保护层剥落,最终使构件失去承载力。 2.5 使用方面的因素。有些旧建筑物已经使用好几十年了,已满足不了现代发展的使用要求,这些建筑物经常处于超负荷运转中,由于费用等因素的影响使用单位往往忽视对建筑物早期的防腐处理和必要的维修加固,缩短了建筑物的使用寿命。 3 提高混凝土耐久性的措施 3.1 原材料的选择 3.1.1 水泥水泥类材料的强度和工程性能,是通过水泥砂浆的凝结,硬化形成的,水泥石一旦受损,混凝土的耐久性就被破坏,因此水泥的选择需注意水泥品种的具体性能,选择碱含量小,水化热低,干缩性小,耐热性,抗水性,抗腐蚀性,抗冻性能好的水泥,并结合具体情况进行选择。水泥强度并非是决定混凝土强度和性能的唯一标准,如用较低标号水泥同样可以配制高标号混凝土。因此,工程中选择水泥强度的同时,需考虑其工程性能,有时,其工程性能比强度更重要。 3.1.2 集料与掺合料集料的选择应考虑其碱活性,防止碱集料反应造成的危害,集料的耐蚀性和吸水性,同时选择合理的级配,改善混凝土拌合物的和易性,提高混凝土密实度;大量研究表明了掺粉煤灰,矿渣,硅粉等混合材能有效改善混凝土的性能,改善混凝土内孔结构,填充内部空隙,提高密实度,高掺量混凝土还能抑制碱集料反应,因而掺混合材混凝土,是提高混凝土耐久性的有效措施。即近年来发展的高性能混凝土。 3.2 混凝土的设计应考虑耐久的要求混凝土配比的设计配合比设计在满足混凝土强度,工作性的同时应考虑尽量减少水泥用量和用水量,降低水化热,减少收缩裂缝,提高密实度,采用合理的减水剂和引气剂,改善混凝土内部结构,掺入足量的混合料,提高混凝土耐久性能。结构构件应按其使用环境设计相应的混凝土保护层厚度,预防外界介质渗入内部腐蚀钢筋。结构的节点构造设计也应考虑构件受局部损坏后的整体耐久能力。结构设计尚应控制混凝土的裂缝的开裂宽度。 3.3 混凝土工程施工应考虑结构耐久性混凝土的拌制尽量采用二次搅拌法,裹砂法,裹砂石法等工艺,提高混凝土拌合料的和易性,保水性,提高混凝土强度,减少用水量;大体积混凝土的浇筑振捣应控制混凝土的温度裂缝,收缩裂缝,施工裂缝,建立混凝土的浇筑振捣制度,提高混凝土密实度和抗渗性,重视混凝土振捣后的表面工序,并加强养护,以减少混凝土裂缝。混凝土的施工过程对控制构件外观裂缝,施工裂缝至关重要,应加强施工质量管理,特殊季节施工的混凝土结构,尚应采取特殊措施。 3.4 使用阶段的检查和维护。过去建成的大量工程已经过早老化,而且以往的设计标准较低,房屋的维修问题十分突出。由于维修费用不到位,造成工程安全隐患,并在以后需支出更多的大修费用。因此定期的检查和维护是非常必要的,这对混凝土结构的适用性和耐久

混凝土抗冻性研究

冻融循环对钢纤维混凝土的影响研究 摘要:混凝土的抗冻性是寒冷地区混凝土工程设计的重要指标,特别是混凝土在含水量较高时的冻融环境作用下,其内部极 容易形成水、冰、骨料的多相损伤介质,不均匀冻胀力和冻胀变形所引起的巨大破坏作用,对混凝土强度和结构安全性将产 生显著的影响。在混凝土中掺入钢纤维是提高混凝土阻裂能力的有效途径。随着我国经济和技术发展,钢纤维混凝土应用得 到了逐步推广。因此,开展对钢纤维混凝土抗冻融性能研究具有重要意义。 关键词:混凝土;冻融;钢纤维;机理;影响 1.混凝土的抗冻性研究 冻融破坏:混凝土在饱水状态下因冻融循环产生膨胀压和渗透压,两者共同反复作用,导致混凝土结构破坏。即由于混凝土孔隙中的水由于冰冻膨胀引起结冰膨胀压和体积膨胀导致周围未结冰水向外迁移引起渗透压。混凝土盐冻破坏:在冻融循环条件下,由于使用除冰盐引起混凝土路面的剥蚀开裂破坏现象[1]。 1.1混凝土的冻融破坏的机理 Selleck[2]等人认为,冻融循环产生的破坏作用在混凝土中形成均匀分布损伤,这种损伤一般是细小微裂缝,虽然微裂缝存在不致使混凝土立即破坏,但是微裂缝经过进一步损伤发展,在混凝土中形成宏观裂缝,导致混凝土破坏。李金玉等[3]认为混凝土在冻融破坏过程中宏观特性主要表现在密实度和强度降低,其中最敏感的是抗拉强度和抗折强度。混凝土冻融破坏力随着冻结温度降低和冻结速率加快而增强。随着冻融次数增加,混凝土中伴随微裂缝出现和发展。 Mohamed0.A.[4]等人认为,水结冰膨胀挤压未冻结水导致孔内体积不足而产生压力。如果这种水压不能释放,包含冰和未冻结水的毛细孔会扩张。当水压超过基体抗拉强度时,就会产生破坏。他认为引气剂可以释放这种压力从而提高混凝土抗冻融性。Litvan[5]认为,当混凝土表面存在盐时将导致水分向其表面迁移,当这些水结冰时将起到冰塞作用,从而产生破坏压力。曹建国[6]认为试件表面降温速度比内部快,因此在降温时造成混凝土内部出现拉应力,并且水冻结时体积膨胀造成混凝土内部出现应力。 1.2混凝土冻融破坏研究的意义 建国以后,我国兴建了大量的混凝土工程,随着运行时间的加长,混凝土结构的冻融破坏问题日益突出,这不仅影响正常的生产和工作,甚至危及到工程的安全运行。经调查发现,混凝土冻融破坏不仅发生在“三北”等严寒地区,在长江以北黄河以南的中部地区也广泛存在。在美国,据1980年报道,有56万座公路桥因使用除冰盐引起混凝土冻融剥蚀和钢筋锈蚀,其中有9万座需要大修或重建,仅1978年一年,经济损失己达63亿美元[7]。 混凝土冻融破坏是混凝土结构老化病害主要问题之一,严重影响混凝土建筑物长期使用和安全运行,为使这些工程继续发挥作用,每年都要消耗巨额维修费用。在寒冷地区冻融循环导致混凝土耐久性降低而破坏,最终表现为裂缝的出现和发展。因此,开展对混凝土冻融性能研究具有重要理论意义、实用价值和经济效益。 2.钢纤维混凝土 纤维混凝土是继钢筋混凝土、预应力混凝土之后的又一次重大突破。由于纤维和混凝土共同作用,使混凝土具有一系列优越的性能,因而受到国内外工程界极大关注与青睐。纤维混凝土已广泛应用于各工程领域,在建筑、交通、水利、矿山、冶金、军事、耐火材料工业等方面都在研究应用。

相关主题
文本预览
相关文档 最新文档