当前位置:文档之家› 利用最小二乘法估算仿射变换参数

利用最小二乘法估算仿射变换参数

利用最小二乘法估算仿射变换参数
利用最小二乘法估算仿射变换参数

%% M文件功能:利用最小二乘法估算仿射变换参数

% [ ui vi ]' = [ a1 a2; a3 a4 ]*[ xi yi ]' + [ tx ty ]' % A * x = B;

% A = [ x1 y1 0 0 1 0;

% x2 y2 0 0 1 0;

% : : : ........;

% ....................;

% xn yn 0 0 1 0;

% 0 0 x1 y1 0 1;

% 0 0 x2 y2 0 1;

% : : : ........;

% ....................;

% 0 0 xn yn 0 1; ];

% B = [ x1'; x2';...; xn';y1';...; yn' ];

% H = [a1; a2; a3; a4; tx; ty];

% H = pinv(A)*B;

%%

clc;

clear;

% addpath E:\Master\Etone\SURFmex\examples\panorama %添加你的数据所在路径

po=importdata('point_O.txt');%读取数据,引号内为文件名pt=importdata('point_T.txt');

[m,n]=size(po);

A=zeros(2*m,2*n);

A(1:m,1:n)=po;

A(1+m:end,1+n:end)=po;

m2=size(A,1);

n2=size(A,2);

A(1:m2/2,(n2+1):(n2+2))=repmat([1 0],m2/2,1);

A(m2/2+1:end,(n2+1):(n2+2))=repmat([0 1],m2/2,1);

Bx=pt(:,1);

By=pt(:,2);

Bn=[Bx;By];

H=pinv(A)*Bn;

H2=reshape(H,2,3);

H3=H2;

H3(1,2)=H2(2,1);

H3(2,1)=H2(1,2);

H3(3,1:3)=[0;0;1];

H4=pinv(H3);

disp(H);

disp(H3); disp(H4);

对比分析最小二乘法与回归分析

对比分析最小二乘法与回归分析

摘要 最小二乘法是在模型确定的情况下对未知参数由观测数据来进行估计,而回归分析则是研究变量间相关关系的统计分析方法。 关键词:最小二乘法回归分析数据估计

目录 摘要 (2) 目录 (3) 一:最小二乘法 (4) 主要内容 (4) 基本原理 (4) 二:回归分析法 (6) 回归分析的主要内容 (6) 回归分析原理 (7) 三:分析与总结 (10)

一:最小二乘法 主要内容 最小二乘法又称最小平方法是一种数学优化技术。它通过定义残差平方和的方式,最小化残差的平方和以求寻找数据的最佳函数匹配,可以从一组测定的数据中寻求变量之间的依赖关系, 这种函数关系称 为经验公式.利用最小二乘法可以十分简便地求得未知的数据,并使 得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化 熵用最小二乘法来表达。 基本原理 考虑超定方程组(超定指未知数大于方程个数): 其中m 代表有m 个等式,n 代表有n 个未知数(m>n);将其进行向量化后为: ,

, 显然该方程组一般而言没有解,所以为了选取最合适的 让该等式"尽量成立",引入残差平方和函数S (在统计学中,残差平方和函数可以看成n 倍的均方误差当时, 取最小值,记作: 通过对进行微分求最值,可以得到: 如果矩阵非奇异则 有唯一解:

二:回归分析法 回归分析是确定两种或两种以上变量间相互依赖的相关关系的一种 统计分析方法。回归分析是应用极其广泛的数据分析方法之一。它基于观测数据建立变量间适当的依赖关系,建立不同的回归模型,确立不同的未知参数,之后使用最小二乘法等方法来估计模型中的未知参数,以分析数据间的内在联系。当自变量的个数等于一时称为一元回归,大于1时称为多元回归,当因变量个数大于1时称为多重回归,其次按自变量与因变量之间是否呈线性关系分为线性回归与非线性 回归。最简单的情形是一个自变量和一个因变量,且它们大体上有线性关系,叫一元线性回归。 回归分析的主要内容 ①从一组数据出发,确定某些变量之间的定量关系式,即建立数 学模型并估计其中的未知参数。估计参数的常用方法是最小二乘法。 ②对这些关系式的可信程度进行检验。 ③在许多自变量共同影响着一个因变量的关系中,判断哪个(或 哪些)自变量的影响是显著的,哪些自变量的影响是不显著的,将影 响显著的自变量加入模型中,而剔除影响不显著的变量,通常用逐步回归、向前回归和向后回归等方法。 ④利用所求的关系式对某一生产过程进行预测或控制。

阀门的分类与基本参数

阀门的分类与基本参数 一.阀门的分类 阀门的种类很多,按不同的分类方法[18]可取不同的名称。 1.按用途和作用分 (1)截断阀类: 截断阀又称闭路阀,其作用是接通或截断管路中的介质。截断阀类包括闸阀、截止阀、旋塞阀、球阀、蝶阀和隔膜阀等。 (2)止回阀类: 止回阀又称单向阀或逆止阀,其作用是防止管路中的介质倒流。止回阀类包括止回阀和底阀等。 (3)调节阀类: 调节阀类包括调节阀、节流阀和减压阀等,其作用是用来调节介质的流量、压力等参数。 (4)分流阀类: 分流阀类包括各种形式的分配阀及疏水阀等,其作用是分配、分离或混合管路中的介质。 (5)安全阀类: 安全阀类的作用是防止装置中介质压力超过规定数值,从而对管路或设备提供超压安全保护。它包括各种形式的安全阀。 2. 驱动方式分 (1)手动阀: 靠人力操纵手轮、手柄或链轮驱动阀门。当阀门启闭扭矩较大时,可在手轮和阀杆之间设置齿轮或涡轮减速器。必要时,也可以利用万向接头及传动轴进行较远距离的操作。 (2)动力驱动阀: 动力驱动阀可利用各种动力源进行驱动。主要包括:电动阀、气动阀、液动阀和电磁阀等。 (3)自动阀: 自动阀不需要外力驱动,而利用介质本身的能量来使阀门动作。主要包括:止回阀、安全阀、减压阀、疏水阀和自动调节阀等。 3.按公称压力分 (1)真空阀:工作压力低于标准大气压。 (2)低压阀:公称压力小于或等于16公斤力/厘米2。

(3)中压阀:公称压力为25、40、64公斤力/厘米2。 (4)高压阀:公称压力为100~800公斤力/厘米2。 (5)超高压阀:公称压力大于或等于1000公斤力/厘米2。 4.按工作温度分 (1)高温阀:工作温度高于450OC。 (2)中温阀:工作温度高于120OC而低于或等于450OC。 (3)常温阀:工作温度高于或等于-40OC,而低于或等于120OC。 (4)低温阀:工作温度低于-40OC。 此外,还可按阀体材料分为铸铁阀、铸钢阀、锻钢阀、合金钢阀等;按使用部门分为通用阀、电站阀、船用阀、冶金用阀、水暖用阀等。 如上所述,阀门的分类方法很多,但主要是按其在管路中所起的作用或按其启闭件特点来进行分类的。为了便于统一起见,根据有关标准规定,把通用阀门分成如下十一类即:闸阀、截止阀、旋塞阀、球阀、蝶阀、隔膜阀、止回阀、节流阀、安全阀、减压阀和疏水阀。 按驱动方式、作用和结构特点分类,通用阀门综合列表如下: 闸阀 截止阀 截断阀类隔膜阀 旋塞阀 驱动阀球阀 蝶阀 通用阀门调节阀类—节流阀 止回阀类—止回阀 安全阀类—安全阀 自动阀分流阀类—疏水阀 调节阀类—减压阀 二.阀门的基本参数 阀门的基本参数[18]包括公称直径、公称压力和使用介质,这三者是阀门设计和选用中不可缺少的因素。 1.公称直径 公称直径是指阀门与管路连接处通道的名义直径,用D g表示。它表示阀门规格的大小,是阀门最主要的尺寸参数。为了便于设计、制造、选用和安装,我国已用国家标准的形式把公称直径系列确定下来。公称直径的数值应符合国家标准“管子和管路附件的公称直径”(GB1047-70)的规定,见附表1-1。 附表1-1阀门的公称通径系列(毫米)

最小二乘法及其应用..

最小二乘法及其应用 1. 引言 最小二乘法在19世纪初发明后,很快得到欧洲一些国家的天文学家和测地学家的广泛关注。据不完全统计,自1805年至1864年的60年间,有关最小二乘法的研究论文达256篇,一些百科全书包括1837年出版的大不列颠百科全书第7版,亦收入有关方法的介绍。同时,误差的分布是“正态”的,也立刻得到天文学家的关注及大量经验的支持。如贝塞尔( F. W. Bessel, 1784—1846)对几百颗星球作了三组观测,并比较了按照正态规律在给定范围内的理论误差值和实际值,对比表明它们非常接近一致。拉普拉斯在1810年也给出了正态规律的一个新的理论推导并写入其《分析概论》中。正态分布作为一种统计模型,在19世纪极为流行,一些学者甚至把19世纪的数理统计学称为正态分布的统治时代。在其影响下,最小二乘法也脱出测量数据意义之外而发展成为一个包罗极大,应用及其广泛的统计模型。到20世纪正态小样本理论充分发展后,高斯研究成果的影响更加显著。最小二乘法不仅是19世纪最重要的统计方法,而且还可以称为数理统计学之灵魂。相关回归分析、方差分析和线性模型理论等数理统计学的几大分支都以最小二乘法为理论基础。正如美国统计学家斯蒂格勒( S. M. Stigler)所说,“最小二乘法之于数理统计学犹如微积分之于数学”。最小二乘法是参数回归的最基本得方法所以研究最小二乘法原理及其应用对于统计的学习有很重要的意义。 2. 最小二乘法 所谓最小二乘法就是:选择参数10,b b ,使得全部观测的残差平方和最小. 用数学公式表示为: 21022)()(m in i i i i i x b b Y Y Y e --=-=∑∑∑∧ 为了说明这个方法,先解释一下最小二乘原理,以一元线性回归方程为例. i i i x B B Y μ++=10 (一元线性回归方程)

阀门主要参数标准

阀门主要参数:公称通径,公称压力,工作压力,工作温度 2007-6-10 09:37 阀门的主要性能参数:公称通径、公称压力、工作压力和工作温度 表示阀门的主要性能参数为公称通径、公称压力、工作压力和工作温度等。 一、公称通径 公称通径DN是管路系统中所有管路附件用数字表示的尺寸,以区别用螺纹或外径表示的那些零件。公称通径是用作参考的经过圆整的数字,与加工尺寸数值上不完全等同。 公称通径是用字母“DN”后紧跟一个数字标志。如公称通径250mm应标志为DN250。 二、公称压力 公称压力PN是一个用数字表示的与压力有关的标示代号,是供参考用的方便的圆整数。同一公称压力PN值所标示的同一公称通径!" 的所有管路附件具有与端部连接型式相适应的同一连接尺寸。 在我国,涉及公称压力时,为了明确起见,通常给出计量单位,以“MPA”表示。在英、美等国家中,尽管目前在有关标准中已列入了公称压力的概念,但实际使用中仍采用英制单位Class。由于公称压力和压力级的温度基准不同,因此两者没有严格的对应关系。两者间大致的对应关系参见表。 日本标准中有一种“K”级制,例如10K、20K、40K等。这种压力级的概念与英制单位中的压力级制相同,但计量单位采用米制。 三、压力—温度额定值 阀门的压力—温度额定值,是在指定温度下用表压表示的最大允许工作压力。当温度升高时,最大允许工作压力随之降低。压力—温度额定值数据是在不同工作温度和工作压力下正确选用法兰、阀门及管件的主要依据,也是工程设计和生产制造中的基本参数。 各种材料的压力—温度额定值、数据见第4章,许多国家都制订了阀门、管件、法兰的压力——温度额定值标准。 1、美国标准 在美国标准中,钢制阀门的压力—温度额定值按ASME/ANSI B16.5a-1992、ASME B16.34-1996的规定;铸铁阀门的压力—温度额定值按ANSI B16.1-1989~B16.4-1989,ANSI B16.42-1985的规定:青铜阀门的压力—温度额定值按ASME/ANSI B16.15a-1992、ASME B16.24-1991的规定。 1)美国ASME/ANSI B16.5a-1992中规定了英制单位和米制单位两种法兰尺寸系列,同时分别列出了适用了两种单位制的法兰压力温度额定值。在该标准附录D 中给出了确定英制单位压力—温度额定值的方法。 2)美国ANSI B16.42-1985《球墨铸铁管法兰及法兰管件》标准中规定了CL150

计算机图形学报告_仿射变换最小二乘法

计算机图形学报告仿射变换最小二乘法 姓名: 班级: 学号:

仿射变换的定义 仿射变换(Affine Transformation或 Affine Map),是指在几何中,一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间。 一个对向量平移一般可用如下公式表示: 等价于: 仿射变换可以由以下基本变换复合而成:平移(Translation)、缩放(Scale)、翻转(Flip)、旋转(Rotation)和错切(Shear),这些基本的变换如下图1表示: 图1 下图2中变换矩阵将原坐标(x, y)变换为新坐标(x', y') 图2

最小二乘法 最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。 这是一个示例:某次实验得到了四个数据点:、、、 (图3红色的点)。我们希望找出一条和这四个点最匹配的直线 ,即找出在某种“最佳情况”下能够大致符合如下超定线性方程组 的和: 图3 最小二乘法采用的手段是尽量使得等号两边的方差最小,也就是找出这个函数的最小值: 最小值可以通过对分别求和的偏导数,然后使它们等于零得 到。 如此就得到了一个只有两个未知数的方程组,很容易就可以解出: 也就是说直线是最佳的。

仿射变换最小二乘法 景物在成像过程中产生的扭曲,会使图像的比例失调,可用仿射变换来校正各种畸变。而仿射变换的参数可以用最小二乘法进行估算。 设原图像为f(x,y),畸变后的图像为F(X',Y'),要将F(X',Y')恢复为f(x,y),就是要找到(X',Y')坐标与(x,y)坐标的转换关系,这个转换关系称为坐标变换,表示为(x,y)=T(X',Y')。 景物在成像过程中产生的扭曲,会使图像的比例失调,可用仿射变换来校正各种畸变。先计算出坐标变换的系数,仿射变换的表达式为:R(x)=Px+Q, x=(x,y)是像素的平面位置,P是2*2的旋转矩阵,Q是2*1的平移向量,P、Q即为仿射变换参数,即: x= AX' + BY' + C y= DX' + EY' + F 因此,几何畸变的校正归根结底为坐标转换系数A,B,C,D,E,F的求解。 为了防止出现空像素,一般采用反向映射,由最小二乘法得(matlab): vec1 = inv([X Y I]'*[X Y I])*[X Y I]'*U; vec2 = inv([X Y I]'*[X Y I])*[X Y I]'*V; 其中vec1=[A B C]'; vec2 =[D E F]'; X Y U V I分别是x,y,X', Y', 1构成的向量。 最小二乘法估计就是估计原始坐标点与经过变换后的坐标点之间的关系,从通过这种关系进行矫正图像,大体步骤如下:

仿射变换

仿射变换

————————————————————————————————作者:————————————————————————————————日期:

第四章保距变换和仿射变换 本章教学目的:通过本章的学习,使学生掌握保距变换和仿射变换这两类重要的几何变换,从而深化几何学的研究,并掌握解决几何问题的一个有效方法。 本章教学重点:(1)保距变换和仿射变换的定义和性质; (2)仿射变换的基本定理; (3)保距变换和仿射变换的变换公式; (4)图形的仿射分类与仿射性质。 本章教学难点:仿射变换的性质和基本定理;仿射变换的变换公式的求法。 本章教学内容: §1 平面的仿射变换与保距变换 1.1――对应与可逆变换 集合X到集合Y的一个映射f:X→Y是把X中的点对应到Y中的点的一个法则,即?x∈X,都决定Y中的一个元素f(x),称为点x在f下的像。对X的一个子集A,记 f(A)={f(a)|a∈A}, 它是Y的一个子集,称为A在f下的像。对Y的一个子集B,记 f-1(B)={x∈X|f(x)∈B}, 称为B在F下的完全原像,它是X的子集。 如果f是X到Y的映射,g上Y到Z的映射,则它们的复合上X到Z的映射,记作 gf: X→Z,规定为 g f(x)=g(f(x)),?x∈X. 对A?X, gf(A)=g(f(A)); 对C?Z, (g f)-1(C)=f-1(g-1(C)). 映射的复合无交换律,但有结合律。 映射f: X→X称为X上的一个变换,idX: X→X,?x∈X,id X(x)=x,称为X的恒同变换。 对映射f: X→Y,如果有映射g:Y→X,使得 g f= idX:X→X,fg=idY:Y→Y, 则说f是可逆映射,称g是f的逆映射。 如果在映射f: X→Y下X的不同点的像一定不同,则称f是单射。如果f(X)=Y,则称f是满射。 如果映射f: X→Y既是单射,又是是满射,则称f为——对应。此时?f-1f=id X,, ff-1= idY,于是f是可逆映射,并且f的逆映射是f-1。 一个集合X到自身的可逆映射称为X上的可逆变换。 1.2平面上的变换群 平移取定平行于平面的一个向量u,规定π的变换P u:π→π为:?A∈π,令P u AP(A)=u的点。称P u为π上的一个平移,称向量u是P u的平移量。(A)是使得 u

管道阀门分类、特性、参数及选型

在流体管道系统中,阀门是控制元件,其主要作用是隔离设备和管道系统、调节流量、防止回流、调节和排泄压力。 阀门可用于控制空气、水、蒸汽、各种腐蚀性介质、泥浆、油品、液态金属和放射性介质等各种类型流体的流动。由于管道系统选择最适合的阀门显得非常重要,所以,了解阀门的特性及选择阀门的步骤和依据也变得至关重要起来。 阀门的分类 一、阀门总的可分两大类:第一类自动阀门:依靠介质(液体、气体)本身的能力而自行动作的阀门。如止回阀、安全阀、调节阀、疏水阀、减压阀等。第二类驱动阀门:借助手动、电动、液动、气动来操纵动作的阀门。如闸阀,截止阀、节流阀、蝶阀、球阀、旋塞阀等。 二、按结构特征,根据关闭件相对于阀座移动的方向可分:1.截门形:关闭件沿着阀座中心移动;2.闸门形:关闭件沿着垂直阀座中心移动;3.旋塞和球形:关闭件是柱塞或球,围绕本身的中心线旋转; 4.旋启形:关闭件围绕阀座外的轴旋转; 5.碟形:关闭件的圆盘,围绕阀座内的轴旋转; 6.滑阀形:关闭件在垂直于通道的方向滑动。 三、按用途,根据阀门的不同用途可分:1.开断用:用来接通或切断管路介质,如截止阀、闸阀、球阀、蝶阀等。2.止回用:用来防止介质倒流,如止回阀。3.调节用:用来调节介质的压力和流量,如调节阀、减压阀。4.分配用:用来改变介质流向、分配介质,如

三通旋塞、分配阀、滑阀等。5.安全阀:在介质压力超过规定值时,用来排放多余的介质,保证管路系统及设备安全,如安全阀、事故阀。6.其他特殊用途:如疏水阀、放空阀、排污阀等。 四、按驱动方式,根据不同的驱动方式可分:1.手动:借助手轮、手柄、杠杆或链轮等,有人力驱动,传动较大力矩时装有蜗轮、齿轮等减速装置。2.电动:借助电机或其他电气装置来驱动。3.液动:借助(水、油)来驱动。4.气动:借助压缩空气来驱动。 五、按压力,根据阀门的公称压力可分:1.真空阀:绝对压力 <0.1Mpa 即 760mm 汞柱高的阀门,通常用 mm 汞柱或mm水柱表示压力。2.低压阀:公称压力PN≤1.6Mpa 的阀门(包括PN≤1.6MPa 的钢阀)3.中压阀:公称压力 PN2.5—6.4MPa 的阀门。4.高压阀:公称压力 PN10.0—80.0MPa 的阀门。5.超高压阀:公称压力 PN≥100.0MPa 的阀门。 六、按介质的温度分,根据阀门工作时的介质温度可分:1.普通阀门:适用于介质温度-40℃~425℃的阀门。2.高温阀门:适用于介质温度425℃~600℃的阀门。3.耐热阀门:适用于介质温度600℃以上的阀门。4.低温阀门:适用于介质温度-150℃~ -40℃的阀门。5.超低温阀门:适用于介质温度-150℃以下的阀门。 七、按公称通径分,根据阀门的公称通径可分:1.小口径阀门:公称通径 DN<40mm 的阀门。2.中口径阀门:公称通径 DN50~300mm 的阀门。3.大口径阀门:公称通径 DN350~1200mm 的阀门。4.特大口径阀门:公称通径DN≥1400mm 的阀门。

普通最小二乘法(OLS)

普通最小二乘法(OLS ) 普通最小二乘法(Ordinary Least Square ,简称OLS ),是应用最多的参数估计方法,也是从最小二乘原理出发的其他估计方法的基础,是必须熟练掌握的一种方法。 在已经获得样本观测值i i x y ,(i=1,2,…,n )的情况下 (见图中的散点),假如模型()的参数估计量已经求得到, 为^0β和^ 1β,并且是最合理的参数估计量,那么直线方程(见 图中的直线) i i x y ^ 1^0^ββ+= i=1,2,…,n 应该能够最 好地拟合样本数据。其中^i y 为被解释变量的估计值,它是由参数估计量和解释变量的观测值计算得到的。那么,被解释变量的估计值与观测值应该在总体上最为接近,判断的标准是二者之差的平方和最小。 ),()(1022101ββββQ u x y Q i i n i i ==--=∑∑= ()()),(min ????1021 10212?,?1100ββββββββQ x y y y u Q n i i n i i i =--=-==∑∑∑== 为什么用平方和因为二者之差可正可负,简单求和可能将很大的误差抵消掉,只有平方和才能反映二者在总体上的接近程度。这就是最小二乘原则。那么,就可以从最小二乘原则和样本观测值出发,求得参数估计量。 由于 2 1 ^1^012 ^ ))(()(∑∑+--=n i i n i i x y y y Q ββ= 是^0β、^1β的二次函数并且非负,所以其极小值总是存在的。根据罗彼塔法则,当Q 对^0β、^ 1β的一阶偏导数为0时,Q 达到最小。即

0011001100?,?1 ?,?0 =??=??====ββββββββββQ Q 容易推得特征方程: ()0)??(0?)??(1011 10==--==-=--∑∑∑∑∑==i i i i n i i i i i i n i i e x x y x e y y x y ββββ 解得: ∑∑∑∑∑+=+=2^ 1^0^1^0i i i i i i x x x y x n y ββββ () 所以有:???? ?????-=---=--=∑∑∑∑∑∑∑=======x y x x y y x x x x n y x y x n n i i n i i i n i i n i i n i i n i i n i i i 10121 21121111??)())(()()()(?βββ () 于是得到了符合最小二乘原则的参数估计量。 为减少计算工作量,许多教科书介绍了采用样本值的离差形式的参数估计量的计算公式。由于现在计量经济学计算机软件被普遍采用,计算工作量已经不是什么问题。但离差形式的计算公式在其他方面也有应用,故在此写出有关公式,不作详细说明。记 ∑=-i x n x 1 ∑=-i y n y 1 y y y x x x i i i i -=-= ()的参数估计量可以写成

2动态过程数学模型参数估计的最小二乘方法

第二章 参数估计的最小二乘方法Least Squares §2—1静态线性模型参数的最小二乘估计(多元线性回归) 一、 什么是最小二乘估计 系统辨识三要素:模型,数据,准则。 例: y = ax + ε 其中:y 、x 可测;ε — 不可测的干扰项; a —未知参数。通过 N 次实验,得到测量数据 y k 和 x k k = 1、2、3 …,确定未知参数 a 称“参数估计”。 使准则 J 为 最小 : 令:? J / ? a = 0 , 导出 a = ? 称为“最小二乘估计”,即残差平方总和为最小的估计,Gauss 于 1792 年提出。 min )(2 1 =-=∑=k N k k ax y J 0)(21 =--=??∑=k k N k k ax y x a J

二、多元线性回归 线性模型 y = a 0+ a 1x 1+ + a n x n + ε 式(2 - 1- 1) 引入参数向量: θ = [ a 0,a 1, a n ]T (n+1)*1 进行 N 次试验,得出N 个方程: y k = ?k T θ + εk ; k=1、2…、N 式(2 -1- 2) 其中:?k = [ 1,x 1,x 2, ,x N ] T (n+1) *1 方程组可用矩阵表示为 y = Φ θ + ε 式(2 -1- 3) 其中:y = [ y 1,y 2, 。。。,y N ] T (N *1) ε = [ ε1, ε2, 。。。,ε N ] T (N *1) N *(n+1) 估计准则有: = (y — Φ θ)T ( y — Φ θ) (1*N) ( N *1) ?????? ? ???????=??????? ?? ???=T N T T nN N n n x x x x x x ???φ.... 1...........1 (1211212) 111 21)(θ?T k N k k y J -=∑=[] ? ? ?? ? ?????----=)(..)(*)(...)(1 111θ?θ?θ?θ?T N N T T N N T y y y y J

阀门基本知识介绍

阀门基本知识培训 1.阀门的分类 1.1按阀门的用途分 a)截断用:截断管路中介质。如:闸阀、截止阀、球阀、旋塞阀、蝶阀等 b)止回用:防止介质倒流。如:止回阀 c)调节用:调节压力和流量。如:调节阀、减压阀、节流阀、蝶阀、V形开口 球阀、平衡阀等 d)分配用:改变管路中介质流向,分配介质。如:分配阀、三通或四通球阀、 旋塞阀等 e)安全用:用于超压安全保护。如:安全阀、溢流阀。 f)其它特殊用途:如蒸汽疏水阀、空气疏水阀、排污阀、放空阀、呼吸阀、排 渣阀、温度调节阀等。 1.2按驱动形式分 a)自动阀门。靠介质本身的能力而动作。 b)驱动阀门。包括手动、电动、气动、液动等 1.3按压力分 a)真空阀:小于标准大气压 b)低压阀门:PN≤1.6MPa c)中压阀门:PN2.5~6.4MPa d)高压阀门:PN10.0~80.0MPa e)超高压阀门:PN≥100Mpa 1.4按工作温度分 a)超低温阀:t<100°C b)低温阀:-100°C≤t≤-40°C c)常温阀:-40°C450°C 1.5按通用分类 闸阀 流阻小,启闭力小,开启时间长 按阀杆分:明杆闸阀、暗杆闸阀 按闸板分:平板闸阀(单平板、双平板)、楔式闸阀(单闸板、双闸 板) 按中法兰分:螺栓连接阀盖、压力密封阀盖、螺纹焊接阀盖截止阀 工作行程小,启闭时间短,流阻大,启闭力大 按阀杆分:外螺纹截止阀、下螺纹截止阀 按流道分:直通式截止阀、角式截止阀、三通截止阀,Y型截止阀

按阀瓣分:锥面密封、球面密封、抛物线型、平面密封、刀型密封、V型、针型截止阀、柱塞式截止阀 按中法兰分:螺栓连接阀盖、压力密封阀盖、螺纹焊接阀盖止回阀 介质单向流动 按结构形式分:旋启式止回阀、升降式止回阀、蝶式止回阀、对夹式 止回阀 球阀 流阻小,使用温度不高,节流性差 按结构形式分:浮动球阀、固定球阀 按中腔结构分:一片式球阀、两片式球阀、三片式球阀、上装式球阀蝶阀 启闭力小,流阻小,调节性能好,使用压力和温度范围小 按结构形式分:中心蝶阀、单偏心蝶阀、双偏心蝶阀、三偏心蝶阀 按连接形式分:对夹式蝶阀、法兰式蝶阀、支耳式蝶阀、焊接式蝶阀2.阀门的主要性能参数 公称通径(口径)1/2~36” 工作压力、工作温度与公称压力的关系: 工作压力并圆整到下一个25PSI,水密封试验压力按1.1倍的工作压力,气密封试验压力按0.6Mpa

新编整理[阀门主要性能参数]cpu的主要性能参数有

[阀门主要性能参数]cpu的主要性能参数有阀门(famen)是流体输送系统中的控制部件,具有截止、调节、导流、防止逆流、稳压、分流或溢流泄压等功能。 用于流体控制系统的阀门,从最简单的截止阀到极为复杂的自控系统中所用的各种阀门,其品种和规格相当繁多。阀门可用于控制空气、水、蒸汽、各种腐蚀性介质、泥浆、油品、液态金属和放射性介质等各种类型流体的流动。阀门根据材质还分为铸铁阀门,铸钢阀门,不锈钢阀门(201、304、316等),铬钼钢阀门,铬钼钒钢阀门,双相钢阀门,塑料阀门,非标订制等阀门材质。 表示阀门的主要性能参数为公称通径、公称压力、工作压力和工作温度等。 一、公称通径 公称通径DN是管路系统中所有管路附件用数字表示的尺寸,以区别用螺纹或外径表示的那些零件。公称通径是用作参考的经过圆整的数字,与加工尺寸数值上不完全等同。 公称通径是用字母DN后紧跟一个数字标志。如公称通径250mm 应标志为DN250。 二、公称压力 公称压力PN是一个用数字表示的与压力有关的标示代号,是供参考用的方便的圆整数。同一公称压力PN值所标示的同一公称通径!的所有管路附件具有与端部连接型式相适应的同一连接尺寸。 在我国,涉及公称压力时,为了明确起见,通常给出计量单位,以MPA表示。在英、美等国家中,尽管目前在有关标准中已列入了公称压力的概念,但实际使用中仍采用英制单位Class。由于公称压

力和压力级的温度基准不同,因此两者没有严格的对应关系。两者间大致的对应关系参见表。 日本标准中有一种K级制,例如10K、20K、40K等。这种压力级的概念与英制单位中的压力级制相同,但计量单位采用米制。 三、压力-温度额定值 阀门的压力-温度额定值,是在指定温度下用表压表示的最大允许工作压力。当温度升高时,最大允许工作压力随之降低。压力-温度额定值数据是在不同工作温度和工作压力下正确选用法兰、阀门及管件的主要依据,也是工程设计和生产制造中的基本参数。 各种材料的压力-温度额定值、数据见第4章,许多国家都制订了阀门、管件、法兰的压力--温度额定值标准。 1、美国标准 在美国标准中,钢制阀门的压力-温度额定值按ASME/ANSIB16.5a-1992、ASMEB16.34-1996的规定;铸铁阀门的压力-温度额定值按ANSIB16.1-1989~B16.4-1989,ANSIB16.42-1985的规定:青铜阀门的压力-温度额定值按ASME/ANSIB16.15a-1992、ASMEB16.24-1991的规定。 1)美国ASME/ANSIB16.5a-1992中规定了英制单位和米制单位两种法兰尺寸系列,同时分别列出了适用了两种单位制的法兰压力温度额定值。在该标准附录D中给出了确定英制单位压力-温度额定值的方法。 2)美国ANSIB16.42-1985《球墨铸铁管法兰及法兰管件》标准中规定了CL150和CL300球墨铸铁法兰压力-温度额定值在标准附录中又规定了压力-温度等级的制订方法,其基本原理、使用范围、限

图形复合变换的原理

图形复合变换的原理 复合变换是指:图形作一次以上的几何变换,变换结果是每次的变换矩阵相乘的形式。任何一复杂的几何变换都可以看作基本几何变换的组合形式。 复合变换具有形式: 在二维变换中,由于矩阵乘法不满足交换率,故此矩阵相乘的顺序不可以交换,仅在某些特殊的情况下才可以交换。 相对任一参考点的二维几何变换 相对某个参考点(xF,yF)作二维几何变换,其变换过程为: (1) 平移:将整个图形与参考点一起平移,使参考点与坐标原点重合。 (2) 针对原点进行二维几何变换。 (3) 反平移,将图形与参考点一起平移,使参考点回到原来的位置。 例1. 相对点(xF,yF)的旋转变换 相对点(xF,yF)的旋转变换的变换矩阵如下: 相对任意方向的二维几何变换 相对任意方向作二维几何变换,其变换的过程是: (1) 旋转变换,将任意方向旋转,使之与某个坐标轴重合。 (2) 针对坐标轴进行二维几何变换; (3) 反向旋转。

例. 将正方形ABCO各点沿(0, 0)→(1, 1)方向进行拉伸,结果如图所示,写出其变换矩阵和变换过程。 解:这一变换是沿着固定方向的比例变换,故有: 坐标系之间的变换 问题:x'o'y'坐标系是在xoy坐标系中定义的局部坐标系,已知x'o'y'坐标系中的点P,求P点在xoy坐标系中的坐标值。 图6-12 坐标系间的变换

分析:假设在xoy坐标系中,有一点P*,使P*点的坐标与P点在x'oy'坐标系中的坐标一致,这样问题就转化为求P*点的坐标,由图中可以看出,将p 点与x'oy'坐标系一起通过变换使x'oy'坐标系与xoy坐标系重合,此时P点将变换到P*点,即P*点的坐标是P点变换后P'点的坐标。 图6-13 坐标系变换的变换原理 故此坐标系间的变换可以分以下两步进行: (1)通过平移变换将x'o'y'坐标系的原点与xoy坐标系的原点重合。 (2)通过旋转变换使x'轴与x轴重合。 图6-14 坐标系变换的过程 于是有:

最小二乘法参数估计

【2-1】 设某物理量Y 与X1、X2、X3的关系如下:Y=θ1X 1+θ2X 2+θ3X 3 由试验获得的数据如下表。试用最小二乘法确定模型参数θ1、θ2和θ3 X1: 0.62 0.4 0.42 0.82 0.66 0.72 0.38 0.52 0.45 0.69 0.55 0.36 X2: 12.0 14.2 14.6 12.1 10.8 8.20 13.0 10.5 8.80 17.0 14.2 12.8 X3: 5.20 6.10 0.32 8.30 5.10 7.90 4.20 8.00 3.90 5.50 3.80 6.20 Y: 51.6 49.9 48.5 50.6 49.7 48.8 42.6 45.9 37.8 64.8 53.4 45.3 解:MATLAB 程序为: Clear all; A= [0.6200 12.000 5.2000 0.4000 14.2000 6.1000 0.4200 14.6000 0.3200 0.8200 12.1000 8.3000 0.6600 10.8000 5.1000 0.7200 8.2000 7.9000 0.3800 13.0000 4.2000 0.5200 10.5000 8.0000 0.4500 8.8000 3.9000 0.6900 17.0000 5.5000 0.5500 14.2000 3.8000 0.3600 12.8000 6.2000 ]; B=[51.6 49.9 48.5 50.6 49.7 48.8 42.6 45.9 37.8 64.8 53.4 45.3]'; C=inv(A'*A)*A'*B =[0.62 12 5.2;0.4 14.2 6.1;0.42 14.6 0.32;0.82 12.1 8.3; 0.66 10.8 5.1;0.72 8.2 7.9;0.38 13 4.2;0.52 10.5 8; 0.45 8.8 3.9;0.69 17 5.5;0.55 14.2 3.8;0.36 12.8 6.2] 公式中的A 是ΦN, B 是YN ,运行M 文件可得结果: 在matlab 中的运行结果: C= 29.5903 2.4466 0.4597 【2-3】 考虑如下模型 )()(3.03.115.0)(2 12 1t w t u z z z z t y ++-+=---- 其中w(t)为零均值、方差为1的白噪声。根据模型生成的输入/输出数据u(k)和y(k),分别采用批处理最小二乘法、具有遗忘因子的最小二乘法(λ=0.95)和递推最小二乘法估计模型参数(限定数据长度N 为某一数值,如N=150或其它数

图形复合变换的原理

图形复合变换的原理复合变换是指:图形作一次以上的几何变换,变换结果是每次的变换矩阵相乘的形式。任何一复杂的几何变换都可以看作基本几何变换的组合形式。 复合变换具有形式: P-T = P (T{- 7;AT n) = P^T2-T3AT n (n>l) 在二维变换中,由于矩阵乘法不满足交换率,故此矩阵相乘的顺序不可以交换,仅在某些特殊的情况下才可以交换 相对任一参考点的二维几何变换 相对某个参考点(xF,yF)作二维几何变换,其变换过程为: (1)平移:将整个图形与参考点一起平移,使参考点与坐标原点重合 (2)针对原点进行二维几何变换。 (3)反平移,将图形与参考点一起平移,使参考点回到原来的位置。 例1.相对点(xF,yF)的旋转变换 相对点(xF,yF)的旋转变换的变换矩阵如下: ■ 10 01cos 6^sin^ 0I Q0_ 0 1 0*cos^ 0■010 -yjr L 1 00 ]*L■ ■ ■cos 901 —-suiS GQS^-0 -V-cos Z? + sill sin£1 相对任意方向的二维几何变换 相对任意方向作二维几何变换,其变换的过程是: (1)旋转变换,将任意方向旋转,使之与某个坐标轴重合。 (2)针对坐标轴进行二维几何变换; (3)反向旋转。

例?将正方形 ABCO 各点沿(0, 0)-(1,1)方向进行拉伸,结果如图所示, 1/2 3/2 0 坐标系之间的变换 问题:x'o'y'坐标系是在xoy 坐标系中定义的局部坐标系,已知 坐标系中的点P ,求P 点在xoy 坐标系中的坐标值。 图6-12坐标系间的变换 on(-4y ) ■ o t C0S45* sin4S* ■ T - -siru( ^4 5*) ms(-4 覽) 0 r 0 I -SU145* cos45* 0 ? 1 ° 0 1 0 0 1 0 ■ 0 1 MT 0 0 3/2 1/2 0 1/2 3/2 0 解:这一变换是沿着固定方向的比例变换,故有: x'o'y' 写出其变换矩阵和变换过程。

第四章参数的最小二乘法估计

精心整理 第四章最小二乘法与组合测量 §1概述 最小二乘法是用于数据处理和误差估计中的一个很得力的数学工具。对于从事精密科学实验的人们来说,应用最小乘法来解决一些实际问题,仍是目前必不可少的手段。例如,取重复测量数据 其后在 x x, , 2 1 n 2 1 显然,最可信赖值应使出现的概率P为最大,即使上式中页指数中的因子达最小,即 权因子: 2 2 o i i w 即权因子 i w∝ 2 1 i ,则 再用微分法,得最可信赖值x

11 n i i i n i i w x x w 即加权算术平均值 这里为了与概率符号区别,以i 表示权因子。 特别是等权测量条件下,有: 以上最可信赖值是在残差平方和或加权残差平方和为最小的意义下求得的,称之为最小二乘法 1x +3x =0.5 2x +3x =-0.3 这是一个超定方程组,即方程个数多于待求量个数,不存在唯一的确定解,事实上,考虑到测量有误差,记它们的测量误差分别为4321,,,v v v v ,按最小二乘法原理 Min v i 2 分别对321,,x x x 求偏导数,令它们等于零,得如下的确定性方程组。

(1x -0.3)+(1x +3x -0.5)=0 (2x +0.4)+(2x +3x +0.3)=0 (1x +3x -0.5)+(2x +3x +0.3)=0 可求出唯一解1x =0.325,2x =-0.425,3x =0.150这组解称之为原超定方程组的最小二乘解。 以下,一般地讨论线性参数测量方程组的最小二乘解及其精度估计。 即 x j ][][][][2211y a x a a x a a x a a t t t t t t 式中,j a ,y 分别为如下列向量 ][k l a a 和][y a j 分别为如下两列向量的内积: ][k l a a =nk nl k l k l a a a a a a 2211 ][y a j =n nj j j y a y a y a 2211

阀门的主要性能参数 公称通径 公称压力 工作压力和工作温度

阀门主要参数:公称通径,公称压力,工作压力,工作 温度 阀门的主要性能参数:公称通径、公称压力、工作压力和工作温度 表示阀门的主要性能参数为公称通径、公称压力、工作压力和工作温度等。 一、公称通径 公称通径DN是管路系统中所有管路附件用数字表示的尺寸,以区别用螺纹或外径表示的那些零件。公称通径是用作参考的经过圆整的数字,与加工尺寸数值上不完全等同。 公称通径是用字母“DN”后紧跟一个数字标志。如公称通径250mm应标志为DN250。 二、公称压力 公称压力PN是一个用数字表示的与压力有关的标示代号,是供参考 用的方便的圆整数。同一公称压力PN值所标示的同一公称通径!" 的所有管路附件具有与端部连接型式相适应的同一连接尺寸。 在我国,涉及公称压力时,为了明确起见,通常给出计量单位,以“MPA”表示。在英、美等国家中,尽管目前在有关标准中已列入了公称压力的概念,但实际使用中仍采用英制单位Class。由于公称压力和压力级的温度基准不同,因此两者没有严格的对应关系。两者间大致的对应关系参见表。 日本标准中有一种“K”级制,例如10K、20K、40K等。这种压力级的概念与英制单位中的压力级制相同,但计量单位采用米制。 三、压力—温度额定值 阀门的压力—温度额定值,是在指定温度下用表压表示的最大允许工作压力。当温度升高时,最大允许工作压力随之降低。压力—温度额定值数据是在不同工作温度和工作压力下正确选用法兰、阀门及管件的主要依据,也是工程设计和生产制造中的基本参数。 各种材料的压力—温度额定值、数据见第4章,许多国家都制订了阀门、管件、法兰的压力——温度额定值标准。 1、美国标准

参数的最小二乘法估计

第四章最小二乘法与组合测量 §1概述 最小二乘法是用于数据处理和误差估计中的一个很得力的数学工具。对于从事精密科学实验的人们来说,应用最小乘法来解决一些实际问题,仍是目前必不可少的手段。例如,取重复测量数据的算术平均值作为测量的结果,就是依据了使残差的平方和为最小的原则,又如,在本章将要用最小二乘法来解决一类组合测量的问题。另外,常遇到用实验方法来拟合经验公式,这是后面一章回归分析方法的内容,它也是以最小二乘法原理为基础。 最小二乘法的发展已经经历了200多年的历史,它最先起源于天文和大地测量的需要,其后在许多科学领域里获得了广泛应用,特别是近代矩阵理论与电子计算机相结合,使最小二乘法不断地发展而久盛不衰。 本章只介绍经典的最小二乘法及其在组合测量中的一些简单的应用,一些深入的内容可参阅专门的书籍和文献。 §2最小二乘法原理 最小二乘法的产生是为了解决从一组测量值中寻求最可信赖值的问题。对某量x 测量一组数据n x x x ,,,21 ,假设数据中不存在系统误差和粗大误差,相互独立,服从正态分布,它们的标准偏差依次为:n σσσ ,,21记最可信赖值为x ,相应的残差x x v i i -=。测值落入),(dx x x i i +的概率。 根据概率乘法定理,测量n x x x ,,,21 同时出现的概率为 显然,最可信赖值应使出现的概率P 为最大,即使上式中页指数中的因子达最小,即

权因子:2 2o i i w σσ=即权因子i w ∝21i σ,则 再用微分法,得最可信赖值x 1 1 n i i i n i i w x x w === ∑∑即加权算术平均值 这里为了与概率符号区别,以i ω表示权因子。 特别是等权测量条件下,有: 以上最可信赖值是在残差平方和或加权残差平方和为最小的意义下求得的,称之为最小二乘法原理。它是以最小二乘方而得名。 为从一组测量数据中求得最佳结果,还可使用其它原理。 例如 (1)最小绝对残差和法:Min v i =∑ (2)最小最大残差法:Min v i =max (3)最小广义权差法:Min v v i i =-m in m ax 以上方法随着电子计算机的应用才逐渐引起注意,但最小二乘法便于解析,至今仍用得最广泛。 §3.线性参数最小二乘法 先举一个实际遇到的测量问题,为精密测定三个电容值:321,,x x x 采用的测量方案是,分别等权、独立测得323121,,,x x x x x x ++,列出待解的数学模型。 1x =0.3 2x =-0.4 1x +3x =0.5

阀门技术参数

阀门与软接设备一、设备清单

、技术规范 本节规定了闸阀、蝶阀、止回阀、伸缩节和可曲挠橡胶接头的设计、制造、工厂试验的技术要求。 参考标准 所采用的标准应等效于或高于下列标准 GB12220-89通用阀门标志 JB/T 7928-1995通用阀门供货要求 GB12227-2005通用阀门球墨铸铁技术条件 CJ/13006铸铁闸门的设计、制造、实验和验收标准 CJ/T3006-92给水排水工程用铸铁闸门标准 GB50231-2009机械设备安装工程施工及验收通用规范 SZ-06-99排水工程机电设备安装质量检验评定标准 GB12238-2008通用阀门法兰和对夹连接蝶阀 GB/T13927-2008通用阀门压力试验 GB12221-2005法兰连接金属阀门结构长度 GB/ 整体铸铁法兰连接标准 CJ/T3049-1995铁制阀门通用技术要求 JB/T7387-94工业过程控制系统用电动控制阀 GB12220-89 通用阀门标志

蝶式止回阀 技术参数 适用温度:最低温度≥5℃ 最高温度≤55℃ 适用介质: 河水/ 自来水 公称压力: 连接方式:法兰 材质: 阀体: 球墨铸铁QT450-10 阀瓣:不锈钢304 阀轴:不锈钢420 阀座:不锈钢304 配套螺栓、 螺母、垫圈均应符合ISO相关标准采用304 不锈钢。 技术要求 1)阀体的表面应是光滑的,不得有毛刺、凹坑、凸起等表面质量缺陷。 2)整体铸造,铸造不允许有裂痕、气封、夹渣等铸造缺陷,表面应清除干净。 3)法兰要与阀体铸为一体,法兰的连接尺寸要符合GB/T 的有关规定。

4)采用金属密封或复合金属密封,以保证阀没有泄露。阀开启、关闭时密封副之无相对摩擦,密封弹性佳,彻底将阀板金属与流体隔离。 5 )阀体内外采用环氧树脂粉末静电喷涂,大于DN1200采用环氧树脂液体喷涂。粉末喷涂厚度不小于250mm,液体喷涂厚度不小于150mm。 设备检测每台设备必须经检验合格,并附有使用维护说明书;阀门的包装、标志、涂层参照“所有阀门的共性”中的有关规定。 手动刀型闸阀 技术标准 所采用的标准应等效于或高于下列标准 GB/T13927-2008 GB12227-2005 GB1220-2007 技术参数 公称压力: 适用介质:河水 介质温度: 5~55℃ 驱动方式:手动 连接方式: 法兰式/对夹式 材质: 阀体: 球墨铸铁QT450-10+喷涂 闸板:不锈钢316 阀座:不锈钢304 阀杆:不锈钢420

相关主题
文本预览
相关文档 最新文档