当前位置:文档之家› 不对称反应及应用—手性合成前沿研究

不对称反应及应用—手性合成前沿研究

不对称反应及应用—手性合成前沿研究
不对称反应及应用—手性合成前沿研究

- 14 -

第2期2019年4月No.2 April,2019

1 什么是手性化合物

手性是三维物体的基本属性。如果一个物体不能与其镜像重合,该物体就称为手性物体。1848年,法国化学家巴斯德(L.Pasteur ,1822~1895)发现酒石酸两种不同的存在形式:左旋酒石酸、右旋酒石酸;发现手性分离方法—镊子。世界上大多数的有机物都是有手性的,即有光学活性。大多数氨基酸是D 型,大多数的单糖是L 型。手性化合物在我们身边无处不在。

2 手性合成的农业应用

农药残留引起的食品安全问题一直是社会关注的热点问题。在中国,目前生产的农药中,40%以上是手性农药,这一比例还在不断上升。手性化合物由一对或多对对映体组成。然而,无论是制备技术还是经济原因,大多数农药都是以消旋体的形式生产的。据报道,目前科学家们已提出了一种新的多残留分析方法,用于黄瓜、番茄、卷心菜、葡萄桑、苹果和梨中22种手性农药的对映体选择性分析。以石墨烯为吸附剂,采用磁性固相萃取技术对农药进行高效提取,采用响应面法进行多变量优化。例如,我们采用反相液相色谱—串联质谱联用技术,在Chiralpak IG 柱上47 min 内实现了对映体的完美手性拆分,拆分大量手性化合物具有显著的改善作用。该方法在选择性、线性、灵敏度、真实感、精密度等方面进行了验证,均满足农药残留分析的要求。该方法成功地应用于监测不同果蔬中农药的发生和对映体组成。有机农药广泛应用于农业中,以控制霉菌、害虫、杂草,从而保证世界各地蔬菜、水果和农作物的高品质和高产。由于农药的大量消耗,农药在农产品中经常被检测到,这可能对人体健康造成潜在的威胁。采用手性液相色谱法在美国马萨诸塞州米尔福市Waters Corp 的AcquityTM UPLC 系统上进行分析,该系统包括一个AcquityTM UPLC 双泵溶剂管理系统、一个AcquityTM UPLC 自动取样器和一个恒温柱室。采用Chiralpak IG 柱对22种农药进行手性分离,柱长250 mm ×4.6 mm ,I.D.5 m ,Daicel ,日本,柱长10 mm ×4 mm ,I.D.5 um ,Daicel ,日本。该手

性固定相的选择是基于其良好的对映体识别和分离能力。

Chiralpak IG 柱可用于正相、反相或极性有机相,但由于移动相组成与质谱仪具有较好的相容性,因此采用反相模式分离农药对映体。对映体拆分的最佳色谱条件在混炼上测定了化学成分。有效地对消旋体进行手性拆分,对于人类生活具有重大的意义。

3 手性合成在医药化学中的应用

医药工业对光学纯有机化合物的需求日益增大。生命体系是一个手性环境,比如20种最基本的天然氨基酸中除结构最简单的甘氨酸之外,其他19种均是含手性中心的单一异构体,由这些手性的单元连接起来组成的蛋白质就必然是手性的环境(见表1)。

表1 1994~1996年世界新药(NCE )上市情况分析药物199419951996手性药物262329混旋体药物756非手性药物141116合计

47

39

51

从1 850种常用药物看,大多数天然药物和半合成药物是手性化合物,以单一立体异构体存在并注册为药物,成为手性药物。由于手性药物具有副作用少、使用剂量低和疗效高等特点,颇受市场欢迎,销量迅速增长,近年来催化不对称全合成具有复杂结构的生物活性天然产物的研究进展飞速。催化不对称合成天然产物,用于开发新型抗感染和抗癌药物的天然产物是生物活性化合物的丰富来源,经常被开发成药物。

此外合成有机化学在天然产物结构的基础上,拓宽了可获得的化学实体的渠道,为药物和天然产物化学架起了桥梁。比如,Caprazamycin B 被发现是一种抗结核抗生素,并被开发为CPZEN-45,对广泛耐药株(XDR-TB )亮氨酸抑素A 具有活性,在相应基质细胞存在的情况下对肿瘤细胞具有

作者简介:孙阿强(1995— ),男,汉族,安徽阜阳人,本科生;研究方向:有机化学不对称合成。

不对称反应及应用—手性合成前沿研究

孙阿强

(河南师范大学 化学化工学院,河南 新乡 453007)

摘 要:通过研究近年以来的手性合成—不对称合成及应用发现,手性合成前沿研究的领域不再局限于传统的从自然界

直接分离提取手性药物,而是与生物、药物、计算机等多学科交叉应用,达到手性合成的高效合成和分离应用。不对称合成应用在药物开发、医学等领域是当今手性合成前沿研究的热点。对手性合成—不对称合成研究领域进行探讨,介绍了手性药物的发展历程、研究价值、应用方向,并对手性药物的手性合成未来趋向做出了展望。关键词:不对称反应;手性合成;应用现代盐化工

Modern Salt and Chemical Industry

从几个生活实例看数学建模及其应用

从几个生活实例看数学建模及其应用 [内容摘要] 本文通过几个生活中的事例,并运用数学建模,来分析问题,以便更方便的得出解决问题的方案。从中通过将数学建模的抽象理论实例化,生动化,我们能够更清楚看出数学在生活中无处不在,无处不用。 [关键词] 数学建模生活数学 数学,作为一门研究现实世界数量关系和空间形式的科学,与生活是息息相关的。作为用数学方法解决实际问题的第一步,数学建模自然有着与数学相当的意义。在各种不同的领域中,人们一直在运用数学建模来描绘,刻画某种生活规律或者生活现象,以便找到其中解决问题的最佳方案或得到最佳结论。例如,运用模拟近似法建模的方法,在社会科学,生物学,医学,经济些学等学科的实践中,来建立微分方程模型。在这些领域中的一些现象的规律性仍是未知的,或者问题太过复杂,所以在实际应用中总要通过一些简化,近似的模型来与实际情况比对,从而更加容易的得出规律性。 本文通过数学模型在生活中运用的几个例子,来了解,探讨数学模型的相关知识。 一、数学模型的简介 早在学习初等代数的时候,就已经碰到过数学模型了,例如在三个村庄之间建立一个粮仓,使其到三个村子的距离只和最短。我们可以通过建立方程组以及线性规划来解决该问题。

当然,真实实际问题的数学建模通常要复杂得多,但是建立数学建模的基本内容已经包含在解决这类代数应用题的过程中了。那就是:根据建立模型的目的和问题的背景作出必要的简化假设;用字母表示待求的未知量;利用相应的物理或其他规律,列出数学式子;求出数学上的解答;用这个答案解释问题;最后用实际现象来验证结果。 一般来说,数学模型可以描述为,对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,作出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。 二、数学模型的意义 1)在一般工程技术领域,数学建模仍然大有用武之地。 2)在高新技术领域,数学建模几乎是必不可少的工具。 3)数学迅速进入一些新领域,为数学建模开拓了许多新的处女地。 三、数学建模实例 例1、某饲养场每天投入6元资金用于饲养、设备、人力,估计可使一头60kg重的生猪每天增重。目前生猪出售的市场价格为12元/kg,但是预测每天会降低元,问该场应该什么时候出售这样的生猪问题分析投入资金可使生猪体重随时间增长,但售价随时间减少,应该存在一个最佳的出售时机,使获得利润最大。根据给出的条件,可作出如下的简化假设。 模型假设每天投入6元资金使生猪的体重每天增加的常数为r(=);生猪出售的市场价格每天降低常数g(=元)。

手性药物的合成与拆分的研究进展

手性药物的合成与拆分的研究进展 手性是自然界的一种普遍现象,构成生物体的基本物质如氨基酸、糖类等都是手性分子。手性化合物具有两个异构体,它们如同实物和镜像的关系,通常叫做对映异构体。对映异构体很像人的左右手,它们看起来非常相似,但是不完全相同。 目前市场上销售的化学药物中,具有光学活性的手性药物约占全部化学药40% } 50%,药物的手性不同会表现出截然不同的生物、药理、毒理作用,服用对映体纯的手性药物不仅可以排除由于无效(不良)对映体所引起的毒副作用,还能减少药剂量和人体对无效对映体的代谢负担,对药物动力学及剂量有更好的控制,提高药物的专一性,因而具有十分广阔的市场前景和巨大的经济价值[Dl 1由天然产物中提取 天然产物的提取及半合成就是从天然存在的光活性化合物中获得,或以价廉易得的天然手性化合物氨基酸、菇烯、糖类、生物碱等为原料,经构型保留、构型转化或手性转换等反应,方便地合成新的手性化合物。如用乳酸可合成(R)一苯氧基丙酸类除草剂[}z}。天然存在的手性化合物通常只含一种对映体用它们作起始原料,经化学改造制备其它手性化合物,无需经过繁复的对映体拆分,利用其原有的手性中心,在分子的适当部位引进新的活性功能团,可以制成许多有用的手性化合物。 2手性合成 手性合成也叫不对称合成。一般是指在反应中生成的对映体或非对映体的量是不相等的。手J险合成是在催化剂和酶的作用下合成得到过量的单一对映体的方法。如利用氧化还原酶、合成酶、裂解酶等直接从前体化合物不对称合成各种结构复杂的手性醇、酮、醛、胺、酸、酉旨、酞胺等衍生物,以及各种含硫、磷、氮及金属的手性化合物和药物,其优点在于反应条件温和、选择性强、不良反应少、产率高、产品光学纯度高、无污染。 手性合成是获得手性药物最直接的方法。手J险合成包括从手性分子出发来合成目标手性产物或在手性底物的作用下将潜在手性化合物转变为含一个或多个手性中心的化合物,手性底物可以作为试剂、催化剂及助剂在不对称合成中使用。如Yamad等和Snamprogetti 等在微生物中发现了能催化产生N-氨甲酞基一D-氨基酸的海因酶( Hy-dantoinase)。海因酶用于工业生产D一苯甘氨酸和D一对轻基苯甘氨酸。D一苯甘氨酸和D一对轻基苯甘氨酸是生产重要的临床用药半合成内酞胺抗生素(氨节青霉素、轻氨节青霉素、氨节头炮霉素、轻氨节头炮霉素)的重要侧链,目前国际上每年的总产量接近SOOOto 3外消旋化合物的拆分 外消旋拆分法是在手性助剂的作用下,将外消旋体拆分为纯对映体。外消旋体拆分法是一种经典的分离方法,在工业生产中己有100多年的历史,目前仍是获得手性物质的有效方法之一。拆分是用物理化学或生物方法等将外消旋体分离成单一异构体,外消旋体拆分法又可分为结晶拆分法;化学拆分法;生物拆分法;色谱拆分法;膜拆分和泳技术。 3. 1结晶拆分法 3.1.1直接结晶法 结晶法是利用化合物的旋光异构体在一定的温度下,较外消旋体的溶解度小,易拆分的性质,在外消旋体的溶液中加入异构体中的一种(或两种)旋光异构体作为晶种,诱导与晶种相同的异构体优先(分别)析出,从而达到分离的目的。在。一甲基一L一多巴的工业生产中就是使两种对映体同时在溶液中结晶,而母液仍是外消旋的,把外消旋混合物的过饱和溶液通过含有各个对应晶种的两个结晶槽而达到拆分的目的[3]。结晶法的拆分效果一般都不太理想,但优点是不需要外加手性拆分试剂。若严格控制反应条件也能获得较纯的单一对应体。 3. 1. 2非对映体结晶法

超材料行业行动计划

超材料行业行动计划产业投资建设规划

超材料指的是一些具有人工设计的结构并呈现出天然材料所不具备的超常物理性质的复合材料,是21世纪以来出现的一类新材料,具备天然材料所不具备的特殊性质。其在声学、电学、磁学或光学等方面的材料特性是由基体和基体中的微结构共同决定的,而且微结构在其中起到了决定性的作用。超常的物理特性使得超材料的应用前景十分广泛,其应用范围覆盖了工业、军事、生活等各个方面。例如,电磁超材料可以用于隐身衣、电磁黑洞、慢波结构等元器件的制作,适用于吸波材料、智能蒙皮、雷达天线、通信天线,对未来的雷达、通信、光电子/微电子、先进制造产业以及隐身、探测、核磁、强磁场、太阳能及微波能利用等技术将产生深远的影响。 当前我国正处于全面建设小康社会的关键发展阶段,国内国际环境总体上都有利于我国加快发展。相关产业作与国民经济关联度比较高,随着推进工业化和城镇化进程,都将拉动相关产业的快速发展。 为加快区域产业结构调整和优化升级,依据国家和xx省产业发展规划,结合区域产业xx年发展情况,制定该规划,请结合实际情况认真贯彻执行。 第一部分规划思路

以产业转型升级为发展主线;以质量效率型、集约增长型为主要 发展方式;以创新驱动为主要发展途径。促进区域产业总体保持中高 速增长,产业迈向中高端水平,实现产业发展质量和效益全面提升。 第二部分原则 1、坚持融合发展。推进业态和模式创新,促进信息技术与产业深 度融合,强化产业与上下游产业跨界互动,加快产业跨越式发展。 2、协同发展,实现互利共赢。加强区域产业集中谋划,统筹产业 协同发展。创新产业合作模式,打破市场壁垒,推动要素自由流动, 构建多层次、宽领域的产业融合发展机制,实现优势互补、互利共赢。 3、因地制宜,示范引领。着眼区域实际,充分考虑经济社会发展 水平,逐步研究制定适合区域特点的能效标准。制定合理技术路线, 采用适宜技术、产品和体系,总结经验,开展多种示范。 第三部分产业发展分析 超材料指的是一些具有人工设计的结构并呈现出天然材料所不具 备的超常物理性质的复合材料,是21世纪以来出现的一类新材料,具 备天然材料所不具备的特殊性质。其在声学、电学、磁学或光学等方 面的材料特性是由基体和基体中的微结构共同决定的,而且微结构在 其中起到了决定性的作用。

高中数学-函数模型及其应用夯基提能作业

2.9 函数模型及其应用 A组基础题组 1.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后来为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( ) 答案 C 小明匀速运动时,所得图象为一条直线,且距离学校越来越近,故排除A.因交通 堵塞停留了一段时间,与学校的距离不变,故排除D.后来为了赶时间加快速度行驶,故排除B.故选C. 2.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年的年产量保持不变,将该厂6年来这种产品的总产量C与时间t(年)的函数关系用图象表示,正确的是( ) 答案 A 依题意,前3年年产量的增长速度越来越快,说明总产量C的增长速度越来越快,只有选项A中的图象符合要求,故选A.

3.(2018临沂模拟)某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边夹角为60°(如图),考虑防洪堤坚固性及石块用料等因素,设计其横断面要求面积为9√3平方米,且高度不低于√3米.记防洪堤横断面的腰长为x 米,外周长(梯形的上底线段BC 与两腰长的和)为y 米.要使防洪堤横断面的外周长不超过10.5米,则其腰长x 的范 围为( ) A.[2,4] B.[3,4] C.[2,5] D.[3,5] 答案 B 根据题意知,9√3=1 2(AD+BC)h,其中AD=BC+2·x 2=BC+x,h=√3 2x,所以 9√3=1 2(2BC+x)·√3 2x,得BC=18x -x 2,由,得2≤x<6,所以y=BC+2x=,+ 3x 2 (2≤x<6),由18x + 3x 2 ≤10.5, 解得3≤x ≤4.因为[3,4]?[2,6),所以腰长x 的范围是[3,4]. 4.加工爆米花时,爆开且不煳的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t(单位:分钟)满足函数关系p=at 2 +bt+c(a,b,c 是常数),下图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( ) A.3.50分钟 B.3.75分钟 C.4.00分钟 D.4.25分钟 答案 B 由已知得,解得, ∴p=-0.,t , +1.5,-2=-,+13 16 , ∴当t=15 4=3.75时p 最大, 即最佳加工时间为3.75分钟.故选B. 5.某校甲、乙两食堂某年1月份的营业额相等,甲食堂的营业额逐月增加,并且每月的增加值相同;乙食堂的营业额也逐月增加,且每月增加的百分率相同.已知该年9月份两食堂的营业额又相等,则该年5月份( ) A.甲食堂的营业额较高

手性药物不对称合成90 (3)_附件

手性药物及其不对称合成 [摘要]近年来不对称合成法应用在手性药物及药物中间体的制备中,使手性药物得到了快速的发展,不少手性药物及其中间体已经实现了工业化生产。本文介绍了手性药物及获取手性药物的方法,对不对称合成法尤其是不对称催化法在手性药物工业制备中的应用进行了综述。 [关键词]手性药物;制备;不对称合成;不对称催化 Chiral Drugs and Asymmetric Synthesis Abstract: In recent years ,since the asymmetric synthesis has been used in preparation of the chiral drugs and pharmaceutical intermediates ,there has been fast development in preparation of chiral drugs ,some of which has been already synthesed in industry scale .What is chiral drugs and the ways to abtain the chiral drugs are introduced .The methods of asymmetric synthesis,especially asymmetric catalytic reaction used in synthesis chiral drugs are reviewed . Key words :chiral drugs ,preparation , asymmetric synthesis;asymmetric catalytic synthesis 1 引言 2001 年10 月10 日,瑞典皇家科学院决定将2001年度诺贝尔化学奖授予在催化不对称反应领域做出突出贡献的3 位科学家:威廉·诺尔斯,野依良治与巴里·夏普赖斯。他们利用手性催化剂大大提升了单一对映异构体的产率,为手性药物的制备以及其他行业的发展都做出了突出的贡献。【1】 2手性药物 : 手性药物(chiral drug)是指其分子立体结构和它的镜像彼此不能够重合的

双语:未来的世界 由超材料建造

Plastics. Computers. Metamaterials? 塑料。电脑。超材料? Almost half a century after Dustin Hoffman was taken aside in “The Graduate” and given the famous “one word” line about the future, it may be time to update the script again. And metamaterials appear to have the same potential to transform entire industries. Over the past 15 years or so, scientists have learned how to construct materials that bend light waves, as well as radar, radio, sound and even seismic waves, in ways that do not naturally occur. 在电影《毕业生》(The Graduate)中,有人将达斯汀·霍夫曼(Dustin Hoffman)叫到一旁,对他说出了那句著名的“一个词”未来预言。现在距离电影上映已过去将近半个世纪,或许是时候更新剧本了。超 材料似乎也具有那种可以改变整个产业的潜力。在过去大约15年的时间里,科学家已经学会如何制造能够以非自然的方式使光波、雷达波、无线电波、声波,甚至地震波 弯曲的材料。 First theorized in 1967 by the Russian physicist Victor Veselago and invented in 1999 by a group led by the physicist David R. Smith, the new design approach was first seen as a curiosity that hinted at science fiction applications like invisibility cloaks. 俄罗斯物理学家维克托·韦谢拉戈(Victor Veselago)于1967年首次在理论上提出设想,物理学家戴维·R·史密斯(David R. Smith)领导的研究小组于1999年将理论转变为现实。 这种新方法起初被视作科幻小说中提到的稀奇之物,比如隐形披风。 But today, researchers have gained a better understanding of the science and are generating innovations in an array of fields, including radio antennas, radar, cosmetics, soundproofing and walls that help protect against earthquakes and tsunamis. 但如今,研究人员已经更好地了解了这项技术,正在各个领域进行创新,制造产品,比如无线电天线、雷达、化妆品、隔音材料,以及能抵御地震和海啸的墙壁。 Last year, the aircraft manufacturer Airbus announced that it was joining with Lamda Guard, a Canadian company, to test a metamaterial-based coating for cockpit windows to protect pilots in commercial aircraft from being blinded by laser pointers. 去年,飞机制造商空客(Airbus)宣布将与加拿大Lamda Guard公司合作,测试一种由 超材料制成的驾驶舱窗户保护层,以使商用飞机飞行员的视力免受激光指示器的影响。 A key innovation behind metamaterials is that they are constructed with subcomponents that are smaller than the wavelength of the type of radiation they are designed to manipulate. The precise, often-microscopic patterns can then be used to manipulate the waves in unnatural ways. 超材料背后的关键创新在于他们是

浅谈数学模型在各个领域中的应用

浅谈数学模型在各个领域中的应用 发表时间:2018-05-02T11:10:12.163Z 来源:《科技中国》2017年11期作者:丁文[导读] 摘要:当今数学在各个领域蓬勃发展,应用广泛。数学模型是将数学知识应用于实际问题的重要纽带,它将实际问题抽象、简化,使人们利用数学理论和方法简单快速的解决实际问题。建立数学模型并且进行求解、检验、分析的全过程就是数学建模。如今数学模型在社会发展与生活中应用广泛。本文主要介绍了数学模型及其在医学、生物、经济、金融等相关领域的应用。 摘要:当今数学在各个领域蓬勃发展,应用广泛。数学模型是将数学知识应用于实际问题的重要纽带,它将实际问题抽象、简化,使人们利用数学理论和方法简单快速的解决实际问题。建立数学模型并且进行求解、检验、分析的全过程就是数学建模。如今数学模型在社会发展与生活中应用广泛。本文主要介绍了数学模型及其在医学、生物、经济、金融等相关领域的应用。 关键词:数学模型;数学建模;应用引言 数学是一种研究空间形式和数量关系的科学,它学科历史悠久,文化底蕴博大精深,如今发展迅速,在生产生活中发挥着重要的作用。然而,当今社会对数学的需求不只局限在数学理论,而更多是要求数学在实际应用中的作用,数学模型正是将理论知识与实践应用联系起来的桥梁。数学模型是通过运用数学理论和适当的数学工具、将复杂的实际问题不断简化的解题工具。数学建模的主要手段便是通过数学模型这一工具来快速解决实际问题。如今数学模型被应用于医学、生物、经济、金融等各个领域,取得了较好的经济效益和社会效益。 1.数学模型简介 1.1数学模型的定义 数学模型(Mathematical Model)是一种以解决实际问题为目的,运用数学语言和数学方法刻画出的数学结构。它利用数学的理论和方法分析和研究实际问题,并对实际的研究对象进行抽象、简化,进而利用数学知识解决现实生活中的问题。从另一种意义上来讲,它是一种将理论与实践紧密结合、并借此来解决各种复杂问题的最便捷的工具,对社会各个领域的发展都有重要意义。图1为数学建模流程图。 图1 数学建模流程 1.2模型分类 由于数学应用广泛,各领域对数学模型的要求各不相同,可根据不同的分类方法将数学模型分作许多种类。根据系统各量是否随时间的变化而变化可分为静态模型和动态模型,前者一般用代数方程式表达,后者则采用微分方程。分布参数模型和集中参数模型均用来描述动态特性,前者主要用偏微分方程表达,后者通过常微分方程来表达。上述各类用微分方程描述的模型都是连续时间模型,即模型中的时间变量是在一定区间内连续变化,与之相对的是离散时间模型,这是一种用差分方程描述的将时间变量离散化的数学模型。此外,还有根据变量间的关系是否确定区分的随机性模型和确定性模型;根据是否含有参数区分的参数模型和非参数模型;根据变量间的关系是否满足线性关系,是否满足叠加原理区分的线性模型和非线性模型,其中非线性模型中各量之间的关系不是线性的,不满足叠加原理,在某种情况下可转化为线性模型。 1.3数学建模 将实际问题进行抽象、简化,得到数学模型,然后对模型进行求解,再对模型的合理性进行分析、检验,最后将合理的模型应用到实际问题中,这便是数学建模。建立数学模型的过程,大体分为分析问题构建模型、运用数学方法数学工具求解、根据实际问题代入检验、应用于解决实际问题四个步骤,其中由于种种原因前三个步骤常常多次重复已求得最优解决方案。如今数学建模的应用很广,无论是在医学、军事、交通、经济、金融等较大课题,还是在日常计划、工作规划等较小事物中,都取得了较大的成就。 2.数学模型在各领域的应用 2.1数学模型在医学领域的应用

赵治亚:超材料高端装备

赵治亚:超材料高端装备 7月28日,中国电科发展战略研究中心与远望智库联合举办了“新挑战、新理念、新技术——未来战争研讨会”,来自权威机构共13名专家,对前沿科技和未来战争相关问题,进行全面深入解析,展开广泛交流和探讨。来自军方、国防工业部门以及科研院校近600人参加了会议。超材料高端装备赵治亚深圳光启高等理工研究院(在未来战争论坛上的报告) 感谢中国电科发展战略研究中心和远望智库提供这么好的 一个平台,我们大家进行思维的交流和互动。我们一直是从事于超材料的技术及装备的研究,我们想在这里从超材料,从材料的这个角度以及在国内外的应用情况和对未来战争 的影响。从这块跟大家分享一下我们的心得。概述 这块的特殊之处,因为超材料整个从概念到技术它还是一个相对来讲比较新的程度。而且它的成熟度尤其是以2006年开始为一个起点。所以从这个角度上来讲大家从美国也好,从中国也好,大家的起跑的时间是一致的。尤其是我们的几位院长,原来在美国的这个领域研发的核心团队,所以在这块我们更看重的是这个里面的发展的时间窗口。谁能更有效地把握住时间窗口,还有像上午专家所说的,更快地进行研究里面的迭代,谁就更有可能去把握先机影响到未

来的战场。图1 下面的报告想从三个方面跟大家简要地介绍一下。第一个可能大家对于超材料从原理到技术到应用可能还不是很熟悉。想对超材料进行一个电磁材料进行一个介绍。第二个主要是从国内外的超材料的发展还有超材料武器装备上面的发展 进行介绍,尤其是以国外的武器装备发展的情况为主。还有第三个也想简要地介绍一下我们对于未来装备发展,尤其是我们超材料能够在未来装备发展里面所产生的作用和影响。part 1 超材料介绍图2 图2比较好地介绍了超材料的基本的原理。根据我们的国家标准GJB 32005-2015这个标准里面的描述,超材料的定义是什么呢?就是一种特殊的复合材料或者是结构,通过对于材料的关键物理尺寸上进行有序的结构设计,来使它进行常规材料所不具备的这种超常物理性质。如果是针对电磁波的频谱,我们可以根据电磁波频谱工作的波长取这个波长的四分之一到二十分之一波长这 样的一个尺寸。比如在厘米级和毫米级的这样的一个尺寸我们对它进行人工的拓扑结构和排布方式进行一个设计,可以看到比如说类似于这样的二维的柔性的超材料,和三维的这种超材料的设计,从而达到一个传统的介质材料所不能达到的,对于电磁波的调控的影响。所以它的整个的超材料的核心就是针对于我所要工作的这个波长进行有序的结 构和排布设计,从而达到我们可以人工定制化地去调制电磁

浅谈数学模型在实际生活中的应用

万方数据

浅谈数学模型在实际生活中的应用 作者:蔡桂荣 作者单位:湖北黄冈职业技术学院 刊名: 黑河教育 英文刊名:HEIHE EDUCATION 年,卷(期):2010,""(8) 被引用次数:0次 参考文献(2条) 1.问题解决的数学模型方法 1999 2.数学建模基础 2004 相似文献(10条) 1.期刊论文陈登连整体建构学生活数学自主探究过数学生活——浅谈小学数学课堂教学的有效性-科技信息2009,""(34) 课堂教学的有效性直接影响学生知识的建构和数学素养的养成.新课程下提高数学教学的有效性,关键在于教师要树立以学生发展为中心的教学理念,尊重学生的主体地位,科学地解读教材与学生,充分考虑学生的已有知识经验,不断沟通生活数学与教材数学的联系,努力为学生营造一个适合探索的氛围,满足学生的求知心理需求;沟通数学与生活的联系,让书本的数学成为生活的数学,让凝固的数学成为活动的数学,让理论的数学成为实践的数学.通过有效的课堂,让学生快乐地学"生活数学",愉快地过"数学生活". 2.期刊论文梁慧也谈数学与生活-教师2010,""(19) 数学来源于生活,生活中又充满着数学.学生的数学知识与才能,不仅来自于课堂,还来自于现实生活实际.所以教师在课堂教学中要善于发现和挖掘生活中的数学素材,把数学和学生的现实生活结合起来,从学生的实际生活中引出数学知识,让学生深刻感受到自己的生活中处处都有教学问题,自己的生活实际本身就是和数学知识融为一体的,这样学生学起来也会感到自然亲切和真实.因此,在数学教学中教师应重视学生的生活体验,把学生的生活体验和我们的数学知识相联系,把生活情境和数学问题相结合,让我们的教学生活化,让我们的生活数学化. 3.期刊论文程继德.许洪洪回归数学本质,把"生活数学"提升到"学校数学"-教育实践与研究2007,""(3) 数学教学"生活化"是新课程改革极为重视和倡导的内容,但由于一些教师对数学教学"生活化"的片面理解,错误地将"生活数学"等同于"学校数学",出现了片面追求数学教学生活化的倾向.对此我们认为要正确看待"生活数学",认识"生活数学"的必要性和局限性,以及"生活数学"与"学校数学"的不同点.要克服"生活数学"的局限性,数学教学必须回归数学本质,把"生活数学"提升到"学校数学",从具体的生活情景中抽象概括出一般的数学知识;从现实的生活问题中归纳建立适用的数学模型;从普通的生活现象中发展学生的数学思考. 4.期刊论文沙宪柱在生活中学习数学,在数学中感受生活-青年与社会·中外教育研究2009,""(12) 为使学生感受数学与现实生活的联系,教学时必须从学生熟悉的生活情景和感兴趣的事物出发,为他们提供观察和操作的机会,使他们有更多的机会从周围熟悉的事物中学习和理解数学,体会到数学就在我们身边,感受到数学的趣味和作用,体验到数学的魅力. 5.期刊论文郑吉洁生活中的数学,数学中的生活——记课例:数学归纳法及其应用(第一课时)-科教导刊2010,""(21) 新课程强调数学课堂教学应为学生提供丰富的学习材料,拓展学生的数学活动空间,让学生感受数学来源于生活,发展学生"做数学""用数学"的意识,认识到课本不是课程的唯一资源;课本不是学生的世界,而世界才是学生的课本.只有教师跳出数学看数学,学生才能透过数学看世界. 6.期刊论文陈雪燕引生活之源活数学之水——谈小学"生活数学"的构建-现代中小学教育2009,""(8) 数学来源于生活,而又应用于生活,因此在教学中应奉行"生活数学"的教学理念.构建生活数学需采用一定的策略:运用"生活语言",感受数学的趣味性;捕捉"生活现象",认识数学的普遍性;模拟"生活情景",感悟数学的生动性;开展"生活实践",体验数学的实践性;拓展"生活时空",体会数学的应用性. 7.期刊论文张维数学来源于生活、生活中处处有数学-中国科教创新导刊2007,""(2) 数学来源于生活,又应用于生活.教学与生活是一个相辅相成、和谐兼容的有机整体.生活的世界就是教学的世界.那么,如何让小学生在数学生活中体验生括、在感受生活中学会数学呢?下面就此谈谈自己的几点粗浅的认识. 8.期刊论文胡支祥数学源于生活用于生活-剑南文学2010,""(5) 数学源于实际生活,植根于生活,教育只有通过生活才能产生作用并真正成为教育.学生用数学可以解决生活中的实际问题,增强其学习数学的主动性. 9.期刊论文任浙斌生活与数学走得更近一些-湖南中学物理·教育前沿2009,""(4) 数学是对客观世界数量关系和空间关系的一种抽象.可以说生活中处处有数学.<课程标准>中指出:"数学教学是数学活动,教师要紧密联系学生的生活环境,从学生的经验和已有的知识出发,创设生动的数学情境……."数学的兴趣和学习数学的信心对学生来说是十分重要的问题,教师就应该将学生的生活与数学学习结合起来,让学生熟知.亲近.现实的生活数学走进学生视野,进入数学课堂,使数学教材变的具体.生动.直观,使学生感悟,发现数学的作用与意义,学会用数学的眼光观察周围的客观世界,增强数学作用意识. 10.期刊论文杨潮突出"生活数学",营造教学之美-考试周刊2010,""(22) 数学来源于生活,而又应用于生活.教师应让数学走出书本、走出教室,融进生活、融进活动,把生活问题带进数学课堂,紧密联系学生的生活实际讲数学,把生活经验数学化,把数学问题生活化,让学生在感知、认知的气氛中想学、乐学、会学,使学生感受到生活的世界是一个充满数学的世界,把看似枯燥的数学教得生动、有趣、易于理解,营造数学课堂教学之美,真正调动学生学习数学的积极性,培养他们的自主探索能力. 本文链接:https://www.doczj.com/doc/734793840.html,/Periodical_hhjy201008056.aspx

浅谈手性化合物与现代医学

浅谈手性化合物与现代医学 一、手性化合物简介 手性化合物(chiral compounds)是指分子量、分子结构相同,但左右排列相反,如实物与其镜中的映体。人的左右手、结构相同,大姆至小指的次序也相同,但顺序不同,左手是由左向右,右手则是由右向左,所以叫做“手性”。也就是指一对分子。由于它们像人的两只手一样彼此不能重合,又称为手性化合物。判断分子有无手性的可靠方法是看有没有对称面和对称中心。 手性问题与我们的日常生活密切相关。天然存在的手性化合物品种很多,并且通常只含有一种对映体,手性问题还牵涉到农业化学、食品添加剂、饮料、药物、材料、催化剂等诸多领域。它的研究已经成为科学研究和很多高科技新产品开发的热点。在过去20年里,手性研究具有戏剧性的发展,已从过去的少数几个专家的学术研究发展到大面积科学研究的需要,在一些领域并已带来了巨大的经济效益。物质的手性已经变成越来越需要考虑的问题,其对我们的日常生活正在起到越来越重要的作用。 手性化合物主要从天然来源、不对称合成和外消旋体拆分3个方面得到。由天然来源获得手性化合物,原料丰富,价廉易得,生产过程简单,产品的纯度一般都较高,因此很多量大的产品都是从天然物中获得。在药物工业中由于对手性药物的要求不断增加,其大大激发了不对称有机合成的发展,使一些生物技术、生物催化剂也迅速扩展到该领域产生纯的的手性中间体和手性产品。 二、手性药物 由于自然界的生命体存在有手性,因而也就产生了手性药物。手性药物指分子结构中存在手性因素的药物。通常是指由具有药理活性的手性化合物组成的药物,或者是只含有效对映体或是以有效对映体为主的药物。按药效方面的简单划分,手性药物可能存在以下几种不同的情况:①只有一种对映体具有所要求的药理活性,而另一种对映体没有药理作用或活性很小。②一对对映体中的两个化合物具有等同或近乎等同的同一药理活性。③一对对映体具有完全不同的药理活性。 ④一对对映体之间一个有药理活性,另一个不但没有活性,甚至表现出一定的毒副作用。⑤一对对映体之间药理活性相近,但存在个体差异。⑥一对对映体中,一个有活性,另一个却发生拮抗作用。 三、手性药物未来展望 手性制药是医药行业的前沿领域,2001年诺贝尔化学奖就授予在分子不对称催化反应中做出杰出贡献的三位科学家。目前,世界单一对映体手性药物的销售额持续增长。1998年销售额已达到964亿美元。2000年的销售额为1330亿美元,并估计2008年达到2000亿美元。手性药物以其疗效高、毒副作用小、用药量少的优点满足了市场的需求,因而成为未来新药研发的方向。

颠覆未来作战的前沿技术——超材料

超材料是通过在材料关键物理尺寸上的结构有序设计,突破某些表观自然规律的限制,获得超出自然界原有普通物理特性的超常材料的技术。超材料是一个具有重要军事应用价值和广泛应用前景的前沿技术领域,将对未来武器装备发展和作战产生革命性影响。 新型材料颠覆传统理论 尽管超材料的概念出现在2000年前后,但其源头可以追溯到更早。

1967年,苏联科学家维克托·韦谢拉戈提出,如果有一种材料同时具有负的介电常数和负的磁导率,电场矢量、磁场矢量以及波矢之间的关系将不再遵循作为经典电磁学基础的“右手定则”,而呈现出与之相反的“负折射率关系”。 这种物质将颠覆光学世界,使光波看起来如同倒流一般,并且在许多方面表现出有违常理的行为,例如光的负折射、“逆行光波”、反常多普勒效应等。这种设想在当时一经提出,就被科学界认为是“天方夜谭”。 随着传统材料设计思想的局限性日渐暴露,显著提高材料综合性能的难度越来越大,材料高性能化对稀缺资源的依赖程度越来越高,

发展超越常规材料性能极限的材料设计新思路,成为新材料研发的重要任务。 ● 2000年,首个关于负折射率材料的报告问世; ● 2001年,美国加州大学圣迭戈分校的科研人员首次制备出在微波波段同时具有负介电常数和负磁导率的超材料; ● 2002年,美国麻省理工学院研究人员从理论上证实了负折射率材料存在的合理性; ●2003年,由于超材料的研究在世界范围内取得了多项研究成果,被美国《科学》杂志评为当年全球十项重大科技进展之一。 此后,超材料研究在世界范围内取得了多项成果,维克托·韦谢拉戈的众多预测都得到了实验验证。 现有的超材料主要包括:负折射率材料、光子晶体、超磁材料、频率选择表面等。与常规材料相比,超材料主要有3个特征: 一是具有新奇人工结构; 二是具有超常规的物理性质; 三是采用逆向设计思路,能“按需定制”。 负折射率材料具有介电常数与磁导率同时为负值的电磁特性,电磁波在该介质中传播时,电场强度、磁场强度与传播矢量三者遵循负

不对称合成的发展与应用

不 对 称 合 成 的 发 展 与 应 用 专业:化学 姓名:史茹月 学号:2013296043

不对称合成的发展与应用 摘要:本文介绍了手性药物的重要性与类型;结合实例对不对称催化法合成手性药物作简要概述,尤其就是化学不对称催化技术,包括不对称催化氢化、羰基的不对称催化还原、不对称催化氧化、不对称环丙烷化、不对称催化羰基化及不对称催化加成反应等;展望了不对称催化反应在手性药物合成中的发展方向。 1、概述 手性就是自然界与生命休戚相关的基本属性之一。近年来,人们对单一手性化合物及手性功能材料的需求推动了手性科学的蓬勃发展,手性物质的合成与医药、农药、精细化工与材料科学的密切关系也显示出重要的应用前景。 近年来,研究者设计合成了一系列高选择性的手性配体与催化剂,其中螺环型手性配体已成为优势手性配体之一;她们发展了多个高选择性的不对称催化反应,并发展了手性催化剂负载化、分离回收新方法。 生命体系的大部分基本单元都就是手性分子,其所涉及的生命过程及相互作用也大多以手性方式进行。因此,具有生物活性的物质,如手性药物的对映体都以不同方式参与生命过程并对生物体产生不同的作用效果。 2、“完美合成化学”的重要途径 低成本、高药效的手性药物开发为不对称催化合成的发展提供了

巨大的吸引力,其广阔的市场需求更就是不对称催化发展的强劲动力。 人工合成就是获得手性物质的主要途径。外消旋体拆分、底物诱导的手性合成与手性催化合成就是获得手性物质的三种方法,其中,手性催化合成方法被公认为学术与经济上最为可取的手性技术,因而得到广泛的关注与深入的研究。因为一个高效的手性催化剂分子可以诱导产生成千上万乃至上百万个手性产物分子,达到甚至超过了酶催化的水平。 因此,如何设计合成高效、新型的手性催化剂,探讨配体与催化剂设计的规律,解决手性催化剂的选择性与稳定性,以及研究手性催化剂的设计、筛选、负载与回收的新方法,发展一系列重要的不对称反应就是该研究领域面临的新挑战。 3、科学基金布局手性合成研究 手性催化剂的研究目前还缺少系统的理性指导以及规律性可循,手性催化剂及高效催化反应的开发大都凭借经验、运气与坚持不懈的努力。因此,要实现手性催化反应的高选择性、高效率,需要从基础研究入手,通过理论、概念与方法的创新,解决这一挑战性问题。 上世纪80年代,我国科学家就开始注意到手性合成这一重要研究方向,并陆续有出色的成果出现。国家自然科学基金委员会适时组织了我国化学与生物学两个学科的研究人员,集中力量在手性药物的化学与生物学领域开展基础研究。 国家自然科学基金“九五”计划期间,由中国医学科学院药物研

超材料技术发展

[转载]西苑沙龙第一次会议——超材料技术发展战略研讨会召开 2013年5月8日,第一次西苑沙龙会议在北京西苑饭店召开。此次会议的主题为“超材料技术发展战略”。超材料是新材料技术发展的热点方向,备受科技界和产业界的关注。来自863计划新材料技术领域主题专家、科技界和工业部门等的14位专家参加了会议。 会议邀请了863计划新材料领域新型功能与智能材料专家组召集人周少雄教授,做了题为“超材料技术发展战略思考”的主题报告,并邀请深圳光启研究院刘若鹏院长等4位专家就工业级超材料技术的创建与发展、超材料在微波光波等领域应用、超材料与自然材料的融合等方面问题做了专题报告。与会专家就超材料概念、应用前景、面临的挑战、技术路线、发展重点等展开了热烈的讨论和争论,各抒己见,并就我国超材料技术发展战略与对策提出宝贵的意见和建议。 附: “西苑沙龙”是科技部高技术研究发展中心为了推动国家科技计划相关领域发展战略研究,举办的以西苑饭店为场地的系列科技发展战略和学术研讨沙龙活动。沙龙重点围绕高技术、基础研究及其学科交叉领域的发展前沿与趋势、重大应用和产业发展需求方面的重大问题,探讨科技前沿、讨论最新突破性进展,展望未来发展趋势。沙龙鼓励与会者本着“客观、求实,融合、创新”的原则,以客观求实的态度,发表自己的学术观点;鼓励和引导多学科交叉融合,激励创新思想。 德国研制出“隐热”衣让热“弯曲”传导 利用特殊的超介质材料让光线、声音绕过物体传播,能达到隐形、隐身的效果。据物理学家组织网5月9日(北京时间)报道,最近,德国卡尔斯鲁厄理工学院(KIT)研究人员成功演示了超材料同样也能影响热的传导。他们的“隐热”衣能让热力“弯曲”似的、绕过中央的隐藏区而传导。相关论文发表在最近的《物理评论快报》上。 这种“隐热”衣是用铜和硅制造的一个盘子,盘子虽能导热但其中心的圆形区域却不会受热力影响。“这两种材料必须排列得十分巧妙。”论文第一作者、KIT的罗伯特·斯奇特尼解释说,铜是热的良导体,而所用的硅材料叫做PDMS,是一种不良导体。“我们给一个薄铜盘制作了多重环形花纹的硅结构,使它能从多个方向,以不同的速度来传导热量,这样绕过一个隐藏目标所需的时间就能互相弥补。” 如果给一个简单的金属盘的左边加热,热量会一致地向右传导,盘子的温度从左到右会呈下降趋势。如果用这种铜硅超介质材料来做这个实验,也会表现出类似现象,但却只在盘子外圈呈现温度从左到右的下降,没有热量能穿透到内部,在内圈没有任何被加热的迹象。

十大经典数学模型

1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,是比赛时必用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)元胞自动机 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 以上为各类算法的大致介绍,下面的内容是详细讲解,原文措辞详略得当,虽然不是面面俱到,但是已经阐述了主要内容,简略之处还望大家多多讨论。 1、蒙特卡罗方法(MC)(Monte Carlo): 蒙特卡罗(Monte Carlo)方法,或称计算机随机模拟方法,是一种基于“随机数”的计算方法。这一方法源于美国在第二次世界大战进行研制原子弹的“曼哈顿计划”。该计划的主持人之一、数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。 蒙特卡罗方法的基本原理及思想如下: 当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。这就是蒙特卡罗方法的基本思想。蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。 可以把蒙特卡罗解题归结为三个主要步骤: 构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 例:蒲丰氏问题 为了求得圆周率π值,在十九世纪后期,有很多人作了这样的试验:将长为2l的一根针任意投到地面上,用针与一组相间距离为2a( l<a)的平行线相交的频率代替概率P,再利用准确的关系式:

相关主题
文本预览
相关文档 最新文档