当前位置:文档之家› 数学建模模型与应用

数学建模模型与应用

Mathematica软件常用功能

【实验目的】

1. 用Mathematica软件进行各种数学处理;

2. 用Mathematica软件进行作图;

3. 用Mathematica软件编写程序.

【注意事项】

Mathematica中大写小写是有区别的,如Name、name、NAME等是不同的变量名或函数名。

系统所提供的功能大部分以系统函数的形式给出,内部函数一般写全称,而且一定是以大写英文字母开头,如Sin[x],Conjugate[z]等。

乘法即可以用*,又可以用空格表示,如2 3=2*3=6 ,x y,2 Sin[x]等;乘幂可以用“^”表示,如x^0.5,Tan[x]^y。

自定义的变量可以取几乎任意的名称,长度不限,但不可以数字开头。当你赋予变量任何一个值,除非你明显地改变该值或使用Clear[变量名]或“变量名=.”取消该值为止,它将始终保持原值不变。

一定要注意四种括号的用法:()圆括号表示项的结合顺序,如

(x+(y^x+1/(2x)));[]方括号表示函数,如Log[x],BesselJ[x,1];{}大括号表示一个“表”(一组数字、任意表达式、函数等的集合),如

{2x,Sin[12 Pi],{1+A,y*x}};[[]]双方括号表示“表”或“表达式”的下标,如a[[2,3]]、{1,2,3}[[1]]=1。

Mathematica的语句书写十分方便,一个语句可以分为多行写,同一行可以写多个语句(但要以分号间隔)。当语句以分号结束时,语句计算后不做输出(输出语句除外),否则将输出计算的结果。

命令行“Shift+Enter”才是执行这个命令。

§1. 初等代数

1.1 有理式的运算 1. 多项式的展开

表1.1 多项式展开的常用命令

In[1]:= Out[1]= 9+6x+x 2+6y+2xy+y 2 In[2]:= Factor[f] Out[2]= (3+x+y)2 In[3]:= Exponent[f,x] Out[3]= 2 In[4]:=

Coefficient[f,x]

Out[4]= 6+2y 2. 有理式的运算 In[5]:=

Factor[(x^3+2x+1)/(x^3+x^2+x+1)]

Out[5]= )

x x)(1(1x 2x 123

++++

In[6]:=

Apart[%]

Out[6]= 2

x 11

x 111+++-

表1.2有理式运算的常用命令

3. 多项式的代数运算

表1.3多项式代数运算的常用命令

In[7]:= PolynomialQuotient[1+x^2,x+1,x] Out[7]= -1+x In[8]:=

PolynomialGCD[x^2+2x+1,x^3+1,x^5+1]

Out[8]= 1+x 1.2方程求解

表1.4 方程(组)求解的常用命令

In[1]:= Solve[a*x+b==0,x]

Out[1]= }}a

b {{x -→ In[2]:=

Reduce[a*x+b==0,x]

Out[2]= a

b &x &0a ||0&a &0b -=≠==== In[3]:=

FindRoot[Sin[x]==0,{x,3}]

Out[3]= {x →3.14159}

In[4]:= FindRoot[Sin[x]==0,{x,{6,6.5}}] Out[4]= {x →6.28319} In[5]:=

FindRoot[{2^x+y^2==4,x^2+Sin[y]==1}, {x,0},{y,0}]

Out[5]= {x →1.38686,y →-1.17682}

§2. 微积分

微积分的常用命令如表1.5所示,下面是一些例子. In[1]:=

Limit[Sin[x]/x,x->0]

Out[1]= 1 In[2]:=

D[Sin[n*x],x]

Out[2]= n Cos[n x] In[3]:=

D[Sin[n*x],{x,3}]

Out[3]= -n 3Cos[n x]

In[4]:= Dt[Sin[n*x],x]

Out[4]= Cos[n x] (n + x Dt[n, x]) In[5]:= Dt[Sin[n*x],x,Constants->n] Out[5]= n Cos[n x] In[6]:= Integrate[Log[x],x]

Out[6]= -x + x Log[x] In[7]:=

Integrate[Tan[x]*Tan[y],{x,0,1},{y,0,1}]

Out[7]= Log[Cos[1]]2

In[8]:= NIntegrate[Exp[-x^2/2],{x,0,Infinity}] Out[8]= 1.25331

In[9]:= DSolve[y'[x]-y[x]==1,y[x],x] Out[9]= {{y[x] -> -1 + E x C[1]}} In[10]:= Series[ArcTan[x],{x,0,5}]

Out[10]= 6

530[x]5

x 3x x ++-

表1.5微积分的常用命令

§3. 线性代数

3.1 向量与矩阵的定义

表1.6向量与矩阵的定义的常用命令

In[1]:=

a[1,1]=2;a[1,2]=3;a[2,1]=4;a[2,2]=5;A

Out[2]={{2, 3}, {4, 5}}

In[3]:=B=Table[1.0,{2},{2}]

Out[3]= {{1., 1.}, {1., 1.}}

3.2向量与矩阵的运算

向量与矩阵都可以看作为集合,因此有关集合的运算都能适用于向量与矩阵.另外,向量与矩阵还有下面的一些运算:

表1.7向量与矩阵的定义的常用命令

In[4]:= R=A-2*B

Out[4]= {{0., 1.}, {2., 3.}}

In[5]:= Inverse[R]

Out[5]= {{-1.5,0.5},{1,0}}

In[6]:=Eigenvectors[R]

Out[6]= {{-0.270323, -0.96277},{-0.871928,0.489634}}

In[7]:=Exp[R]

Out[7]={{1., 2.71828}, {7.38906, 20.0855}}

§4. 计算方法

4.1插值

Mathematica软件中的插值有两种形式

InterpolatingPolynomial[data,var] 多项式插值

Interpolation[data]一般插值其中data为被插值的数据,形式为

{{x1,y1},{x2,y2},…,{xn,yn}}

var为插值变量,一般可取为x.

In[1]:=d=Table[{x,Log[x]},{x,1.0,3.0}];

InterpolatingPolynomial[d,x]

Out[2]=(0.693147 - 0.143841 (-2. + x)) (-1. + x)

In[3]:=dat=Table[{x,Sin[x]},{x,0,2.0,0.1}];

f=Interpolation[dat]

Out[4]=InterpolatingFunction[{{0., 2.}}, <>]

在上面的第二个例子中,输出结果表示一个[0,2]上的插值函数,此插值函数无法给出表达式.

我们可以比较函数Sin[x]与所得到的插值函数的误差.

In[5]:=Plot[Sin[x]-f[x],{x,0,2}]

图1.1 拟合误差图

由图1.1可以看出,两个函数的误差相当小(数量级为10-6).

4.2 拟合

下面的命令用来对数据data进行最小二乘拟合.

Fit[data,funs,vars]

其中data为要拟合的数据,funs为拟合函数的基,vars为拟合的变量.

In[6]:=Clear[d,dat];

d=Table[{x,Log[x]},{x,1,10,1}];

Fit[d,{1,x,x^2},x]

Out[8]=-0.355396+0.529707x-0.0272091x2

4.3 最优化

下面的命令用来求函数f[x]在x0附近的极小值.

FindMinimum[f[x],{x,x0}]

In[9]:=t=FindMinimum[Sin[x], {x, 5}]

Out[9]= {-1., {x -> 4.71239}}

若要在程序中引用上面的结果中的函数的极小值或x的值,可以用下面的命令:In[10]:=t[[1]]

Out[10]=-1.

In[11]:=x/.t[[2,1]] (*在此处等价于x/.x->4.71239*)

Out[11]=4.71239

§5. Mathematica软件中的作图

5.1 二维函数作图

给出一个一元函数及其作图区间,用Plot语句可以立刻作出函数在相应区间上的图形.

In[1]:=Plot[Sin[x],{x,0,2Pi}] (*图1.2*)

In[2]:= Plot[Sin[x],{x,0,2Pi},

AspectRatio->Automatic, PlotStyle->{GrayLevel[0.1],

Dashing[{0.02,0.01}],Thickness[0.01]}, AxesLabel->{”x”,”y”}] (*图1.3*)

Plot 命令的一般形式为:

Plot[f[x],{x,xmin,xmax},选项]

在绘制图形时,允许使用选项对绘制图形的细节提出各种要求和设置.如果不设置任何选项,则Mathematica 软件作图时选项取默认值.

图1.2

x sin 的函数图形(1) 图1.3 x sin 的函数图形(2)

Plot 语句的各种常用的选项如下:

表1.8 Plot 语句的各种常用的选项

PlotStyle 的常用选项见表1.9.

表1.9 PlotStyle 的可选项

5.2二维参数作图

使用Plot 命令只能绘出一般的函数曲线,要绘制参数曲线,可以用ParametricPlot 命令,其一般形式为:

ParametricPlot[{x[t],y[t]},{t,tmin,tmax},选项]

In[3]:= ParametricPlot[{Cos[t],Sin[t]},{t,0,2Pi}]

图1.4 参数方程绘制的圆(1)

图1.5 参数方程绘制的圆(2)

In[3]中输入的是一个圆的参数方程,但由于系统默认的高宽比为0.618,故画出的是一个椭圆(图1.4),改变图形的高宽比可画出一个圆.

In[4]:= ParametricPlot[{Cos[t],Sin[t]},{t,0,2Pi},

AspectRatio->Automatic] (*图1.5*)

5.3 三维函数作图

作出二元函数),(y x f 的立体图形的命令是Plot3D ,其格式为:

Plot3D[f[x,y],{x,xmin,xmax},{y,ymin,ymax},选项] In[5]:= Plot3D[Sin[Sqrt[x^2+y^2]],

{x,-5,5},{y,-5,5}] (*图1.6*)

与Plot 语句类似,Plot3D 语句中也可以加入许多选项.

图1.6 三维函数作图1 图1.7 三维函数作图2

In[6]:=Plot3D[Sin[Sqrt[x^2+y^2]],{x,-5,5},

{y,-5,5},Boxed->False,Axes->False,

PlotPoints->50,Mesh->False] (*图1.7*)

表1.10 Plot3D语句的各种常用的选项

5.4 三维参数作图

在Mathematica软件中三维参数作图有两种形式,一种是空间曲线参数作图,其命令为:

ParametricPlot3D[{x[t],y[t],z[t]},{t,tmin,tmax},选项]

下面的命令给出图1.8中的螺旋线.

In[7]:=ParametricPlot3D[{6Cos[t],6Sin[t],3*t},

{t,-8,8},AspectRatio->1]

另一种是空间曲面参数作图,其命令为:

ParametricPlot3D[{x[u,v],y[u,v],z[u,v]},

{u,umin,umax},{v,vmin,vmax},选项]

图1.9是如下命令画出的球面.

In[8]:=ParametricPlot3D[{Cos[u]*Cos[v],

Sin[u]*Cos[v],Sin[v]},{u,0,2Pi},

{v,-Pi/2,Pi/2},Boxed->False]

图1.8 空间曲线参数作图图1.9 空间曲面参数作图5.5 数据作图

Mathematica软件也可以根据一组数据作出图形,其命令为:

ListPlot[数据,选项]

In[9]:=p=Table[{n,Prime[n]},{n,1,20}];

ListPlot[p] (*图1.10*)

In[10]:=ListPlot[p,

PlotStyle->AbsolutePointSize[4]]

(*图1.11,将点的大小定义为4个单位*)

In[11]:=ListPlot[p,PlotJoined->True]

(*图1.12,将相邻的点用线段相连*)

图1.10 散点图1 图1.11 散点图2

图1.12 连线散点图

5.6 图形的组合

上述的各种图形命令中,ParametricPlot, ParametricPlot3D,Plot 三个语句不仅可以画出一个函数的图形,而且可以同时画出几个函数的图形.其一般形式为:

图形命令[{函数1,函数2,…},变量范围,选项] In[12]:= Plot[{Sin[x],x,x-x^3/6,

x-x^3/6+x^5/120},{x,-2Pi,2Pi}] (*图1.13*) In[13]:=ParametricPlot3D[{{Cos[u]*Cos[v],

Sin[u]*Cos[v],Sin[v]},{2Cos[u]*Cos[v],

2Sin[u]*Cos[v],2Sin[v]}},{u,0,Pi},

{v,-Pi/2,Pi/2},Boxed->False,Axes->False]

(*图1.14*)

图1.13 组合图形(1) 图1.14 组合图形(2)

5.7图形元素作图

如果要绘制一些最基本的图形,如点,线段,圆等,可以先用Graphics语句(三维图用Graphics3D)作出基本的图形元素,再用Show语句显示图形.

常用的二维图形元素与三维图形元素分别见表1.11及表1.12.

表1.11常用的二维图形元素

执行下列语句所得图形为图1.15:

v1= Graphics[Circle[{0,0},{3.5,4}]];

v2= Graphics[Line[{{-2,2.5},{-1,2.5}}]];

v3= Graphics[Line[{{2,2.5},{1,2.5}}]];

v4= Graphics[Circle[{-1.5,1.5},0.5]];

v5= Graphics[Circle[{1.5,1.5},0.5]];

v6= Graphics[Disk[{-1.65,1.5},0.15]];

v7= Graphics[Disk[{1.35,1.5},0.15]];

v8= Graphics[Polygon[{{-0.5,-1},

{0.5,-1},{0,0}}]];

v9= Graphics[Circle[{0,-2},{0.5,0.3}]];

v10=Graphics[Text["我是谁?",{0,-5}]];

Show[v1,v2,v3,v4,v5,v6,v7,v8,v9,v10, AspectRatio->Automatic]

图1.15 图形元素作图

表1.12常用的三维图形元素

5.8 图形的重绘

Mathematica软件在屏幕上显示图形后,可以用Show命令再现图形、组合图形和修改图形的各种选项.

Show命令的一般形式见表1.13:

表1.13 Show命令的一般形式

§6. 编程

6.1 分支结构

在复杂的计算中常需要根据表达式的情况(它是否满足一些条件)确定是否做某些处理,或在满足不同的条件时做不同的处理.Mathematica软件提供了一些描述条件分支的结构,它们常用在程序里,用于控制程序的执行过程.

1. If语句

Mathematica软件中If语句有三种形式.

形式一:If[test,expr]

当test的值为True时,对expr求值,将它的值作为整个语句的值;当test 的值为False时,则给出空值Null.

形式二:If[test,expr1,expr2]

当test的值为True时,求expr1的值作为整个语句的值;当test的值为False时,求expr2的值作为整个语句的值.

形式三:If[test,expr1,expr2,expr3]

当test的值为True时,求expr1的值作为整个语句的值;当test的值为False时,求expr2的值作为整个语句的值;当test求不出值为True与False 时,求expr3的值作为整个语句的值.

In[1]:= abs[x_]=If[x>=0,x,-x]

In[1]中定义出的函数abs[x]即为绝对值函数Abs[x].

In[2]:=f[x_]:=If[x>5,3,2,1]

In[3]:=f[6]

Out[3]=3

In[4]:=f[5]

Out[4]=2

In[5]:=f[a]

Out[5]= 1

2. Which 语句

Which[test1,expr1,test2,expr2,]

该语句依次求出每一个条件的值,当求出第一个值为True 的条件时,求出对应表达式的值作为整个语句的值. 例:

In[6]:=

g[x_]:=Which[x>=8,8,x>=6,6,x>=4,4,True,0]

用“True ”作为Which 语句的最后一个条件,可以处理“其它”情况.在此处即为,当x<4时,g[x]取值为0.

6.2 循环结构

高级程序设计语言都提供了描述重复执行的循环语句.在Mathematica 软件中也提供了一些类似的循环控制结构.

1. While[test,expr]

在计算时,条件test 先被求值.若求出值为True ,则对表达式求值,然后再重复上述过程;一旦test 的值不是True ,整个循环结构计算结束.

例如下面的程序可用来计算∑=100

1

k k 与!100

k=1;s=0;p=1;

While[k<=100,s=s+k;p=p*k;k++]; Print[“s=”,s,“ p=”,p] 2. For[start,test,incr,body]

在计算时,其初始表达式start 首先求值,然后进入循环,依次计算条件test ,步进表达式incr 与循环体body .一旦test 的值不是True ,整个循环结构计算结束.

我们可将上面的程序用For 循环的形式改写如下: s=0;p=1;

For[k=1,k<=100,k++, s=s+k;p=p*k]

Print[“s=”,s,“ p=”,p] 3. Do[expr,{i,imin,imax,di}]

在循环变量i 依步长di 从imin 取到imax 时,重复计算循环表达式expr . 上述程序可用Do 循环的形式写为: s=0;p=1;

Do[s=s+k;p=p*k,{k,1,100}];

Print[“s=”,s,“ p=”,p]

6.3 过程

在高级程序设计语言中提供了子程序功能,用来将某些语句串在一起以实现某种目的.Mathematica软件中的过程也有类似的功能.

在Mathematica 软件中主要有两种过程.

1. {expr1;expr2;…;exprn}

这一过程的输出值为最后一个表达式exprn的值.下面的程序用来检验一个正整数是否可以写成两个素数的和.如果正整数x不能写成两个素数的和,则p[x]是一个空集;若正整数x能写成两个素数的和,则p[x]给出两个素数构成的集合,这两个素数的和为x.

p[x_]:={m=2;n=Floor[x/2];s={};

While[s=={}&&m<=n,

If[PrimeQ[m]&&PrimeQ[x-m],s={m,x-m}];

m++

];

s

}

2. Module[{x=x0,y,…},expr1;expr2;…;exprn]

在Module过程中,大括号中的语句用来说明局部变量,并可以赋初值.其输出结果也是表达式exprn的值.有时,我们为了输出多个结果,可将Return[{exprk1,exprk2,…}]置于Module过程的最后一个语句.

下面的程序的作用与上一个程序类似.只是输出有所不同,除了输出上述程序的结果,p[x]还给出用该程序进行判断所需的步数.

p[x_]:= Module[{m=2,n=Floor[x/2],s={}},

While[s=={}&&m<=n,

If[PrimeQ[m]&&PrimeQ[x-m],s={m,x-m}];

m++

];

Return[{s, m-2}]

]

读者可以运行上述两个程序来比较它们的不同.

数学模型应用问题(三)(含答案)

学生做题前请先回答以下问题 问题1:应用题的一般处理思路是什么? 问题2:应用题中建立数学模型常见的关键词和隐含数学关系有哪些? 数学模型应用问题(三) 一、单选题(共5道,每道20分) 1.今年我市水果大丰收,A,B两个水果基地分别收获水果380箱、320箱,现需把这些水果全部运往甲、乙两销售点,从A基地运往甲、乙两销售点的费用分别为每箱40元和20元,从B基地运往甲、乙两销售点的费用分别为每箱15元和30元,现甲销售点需要水果400箱,乙销售点需要水果300箱. (1)设从A基地运往甲销售点x箱水果,总运费为W元,请用含x的代数式表示W,并写出x的取值范围.( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:一次函数的应用 2.(上接第1题)若总运费不超过18300元,且A地运往甲销售点的水果不低于200箱,试求出最低运费.( ) A.6000 B.7600 C.18200 D.11200 答案:C 解题思路: 试题难度:三颗星知识点:一次函数的应用 3.在“十一”期间,某公司组织318名员工外出旅游,旅行社承诺每辆车安排有一名随团导游,并为此次旅行安排8名导游,现打算同时租用甲、乙两种客车,其中甲种客车每辆载客45人,乙种客车每辆载客30人. (1)旅行社的租车方案有( ) A.1种 B.2种 C.3种 D.4种 答案:B 解题思路:

试题难度:三颗星知识点:一元一次不等式组的应用 4.(上接第3题)(2)若甲种客车租金为800元/辆,乙种客车租金为600元/辆,则在租车方案中最少的租金为( ) A.5800元 B.6000元 C.6200元 D.3400元 答案:B 解题思路: 试题难度:三颗星知识点:一次函数的应用 5.(上接第3,4题)(3)旅行前,一名导游由于有特殊情况,旅行社只能安排7名导游随团导游,为保证所租的每辆车安排有一名导游,租车方案调整为:同时租65座、45座和30座的大小三种客车,出发时,所租的三种客车恰好坐满,则旅行社的租车方案是( ) A.65座的1辆,45座的5辆,30座的1辆 B.65座的2辆,45座的3辆,30座的2辆 C.65座的3辆,45座的1辆,30座的3辆 D.65座的1辆,45座的4辆,30座的2辆 答案:B 解题思路:

数学建模常用模型方法总结精品

【关键字】设计、方法、条件、动力、增长、计划、问题、系统、网络、理想、要素、工程、项目、重点、检验、分析、规划、管理、优化、中心 数学建模常用模型方法总结 无约束优化 线性规划连续优化 非线性规划 整数规划离散优化 组合优化 数学规划模型多目标规划 目标规划 动态规划从其他角度分类 网络规划 多层规划等… 运筹学模型 (优化模型) 图论模型存 储论模型排 队论模型博 弈论模型 可靠性理论模型等… 运筹学应用重点:①市场销售②生产计划③库存管理④运输问题⑤财政和会计⑥人事管理⑦设备维修、更新和可靠度、项目选择和评价⑧工程的最佳化设计⑨计算器和讯息系统⑩城市管理 优化模型四要素:①目标函数②决策变量③约束条件 ④求解方法(MATLAB--通用软件LINGO--专业软件) 聚类分析、 主成分分析 因子分析 多元分析模型判别分析 典型相关性分析 对应分析 多维标度法 概率论与数理统计模型 假设检验模型 相关分析 回归分析 方差分析 贝叶斯统计模型 时间序列分析模型 决策树 逻辑回归

传染病模型马尔萨斯人口预测模型微分方程模型人口预 测控制模型 经济增长模型Logistic 人口预测模型 战争模型等等。。 灰色预测模型 回归分析预测模型 预测分析模型差分方程模型 马尔可夫预测模型 时间序列模型 插值拟合模型 神经网络模型 系统动力学模型(SD) 模糊综合评判法模型 数据包络分析 综合评价与决策方法灰色关联度 主成分分析 秩和比综合评价法 理想解读法等 旅行商(TSP)问题模型 背包问题模型车辆路 径问题模型 物流中心选址问题模型 经典NP问题模型路径规划问题模型 着色图问题模型多目 标优化问题模型 车间生产调度问题模型 最优树问题模型二次分 配问题模型 模拟退火算法(SA) 遗传算法(GA) 智能算法 蚁群算法(ACA) (启发式) 常用算法模型神经网络算法 蒙特卡罗算法元 胞自动机算法穷 举搜索算法小波 分析算法 确定性数学模型 三类数学模型随机性数学模型 模糊性数学模型

什么是数学模型与数学建模

1. 什么是数学模型与数学建模 简单地说:数学模型就是对实际问题的一种数学表述。 具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。 更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。 数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。 2.美国大学生数学建模竞赛的由来: 1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。这并不是偶然的。在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。该竞赛每年2月或3月进行。 我国自1989年首次参加这一竞赛,历届均取得优异成绩。经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

浅谈数学模型在各个领域中的应用

浅谈数学模型在各个领域中的应用 发表时间:2018-05-02T11:10:12.163Z 来源:《科技中国》2017年11期作者:丁文[导读] 摘要:当今数学在各个领域蓬勃发展,应用广泛。数学模型是将数学知识应用于实际问题的重要纽带,它将实际问题抽象、简化,使人们利用数学理论和方法简单快速的解决实际问题。建立数学模型并且进行求解、检验、分析的全过程就是数学建模。如今数学模型在社会发展与生活中应用广泛。本文主要介绍了数学模型及其在医学、生物、经济、金融等相关领域的应用。 摘要:当今数学在各个领域蓬勃发展,应用广泛。数学模型是将数学知识应用于实际问题的重要纽带,它将实际问题抽象、简化,使人们利用数学理论和方法简单快速的解决实际问题。建立数学模型并且进行求解、检验、分析的全过程就是数学建模。如今数学模型在社会发展与生活中应用广泛。本文主要介绍了数学模型及其在医学、生物、经济、金融等相关领域的应用。 关键词:数学模型;数学建模;应用引言 数学是一种研究空间形式和数量关系的科学,它学科历史悠久,文化底蕴博大精深,如今发展迅速,在生产生活中发挥着重要的作用。然而,当今社会对数学的需求不只局限在数学理论,而更多是要求数学在实际应用中的作用,数学模型正是将理论知识与实践应用联系起来的桥梁。数学模型是通过运用数学理论和适当的数学工具、将复杂的实际问题不断简化的解题工具。数学建模的主要手段便是通过数学模型这一工具来快速解决实际问题。如今数学模型被应用于医学、生物、经济、金融等各个领域,取得了较好的经济效益和社会效益。 1.数学模型简介 1.1数学模型的定义 数学模型(Mathematical Model)是一种以解决实际问题为目的,运用数学语言和数学方法刻画出的数学结构。它利用数学的理论和方法分析和研究实际问题,并对实际的研究对象进行抽象、简化,进而利用数学知识解决现实生活中的问题。从另一种意义上来讲,它是一种将理论与实践紧密结合、并借此来解决各种复杂问题的最便捷的工具,对社会各个领域的发展都有重要意义。图1为数学建模流程图。 图1 数学建模流程 1.2模型分类 由于数学应用广泛,各领域对数学模型的要求各不相同,可根据不同的分类方法将数学模型分作许多种类。根据系统各量是否随时间的变化而变化可分为静态模型和动态模型,前者一般用代数方程式表达,后者则采用微分方程。分布参数模型和集中参数模型均用来描述动态特性,前者主要用偏微分方程表达,后者通过常微分方程来表达。上述各类用微分方程描述的模型都是连续时间模型,即模型中的时间变量是在一定区间内连续变化,与之相对的是离散时间模型,这是一种用差分方程描述的将时间变量离散化的数学模型。此外,还有根据变量间的关系是否确定区分的随机性模型和确定性模型;根据是否含有参数区分的参数模型和非参数模型;根据变量间的关系是否满足线性关系,是否满足叠加原理区分的线性模型和非线性模型,其中非线性模型中各量之间的关系不是线性的,不满足叠加原理,在某种情况下可转化为线性模型。 1.3数学建模 将实际问题进行抽象、简化,得到数学模型,然后对模型进行求解,再对模型的合理性进行分析、检验,最后将合理的模型应用到实际问题中,这便是数学建模。建立数学模型的过程,大体分为分析问题构建模型、运用数学方法数学工具求解、根据实际问题代入检验、应用于解决实际问题四个步骤,其中由于种种原因前三个步骤常常多次重复已求得最优解决方案。如今数学建模的应用很广,无论是在医学、军事、交通、经济、金融等较大课题,还是在日常计划、工作规划等较小事物中,都取得了较大的成就。 2.数学模型在各领域的应用 2.1数学模型在医学领域的应用

第1章 数学建模与误差分析

第1章数学建模与误差分析 1.1 数学与科学计算 数学是科学之母,科学技术离不开数学,它通过建立数学模型与数学产生紧密联系,数学又以各种形式应用于科学技术各领域。数学擅长处理各种复杂的依赖关系,精细刻画量的变化以及可能性的评估。它可以帮助人们探讨原因、量化过程、控制风险、优化管理、合理预测。近几十年来由于计算机及科学技术的快速发展,求解各种数学问题的数值方法即计算数学也越来越多地应用于科学技术各领域,相关交叉学科分支纷纷兴起,如计算力学、计算物理、计算化学、计算生物、计算经济学等。 科学计算是指利用计算机来完成科学研究和工程技术中提出的数学问题的计算,是一种使用计算机解释和预测实验中难以验证的、复杂现象的方法。科学计算是伴随着电子计算机的出现而迅速发展并获得广泛应用的新兴交叉学科,是数学及计算机应用于高科技领域的必不可少的纽带和工具。科学计算涉及数学的各分支,研究它们适合于计算机编程的数值计算方法是计算数学的任务,它是各种计算性学科的联系纽带和共性基础,兼有基础性和应用性的数学学科。它面向的是数学问题本身而不是具体的物理模型,但它又是各计算学科共同的基础。 随着计算机技术的飞速发展,科学计算在工程技术中发挥着愈来愈大的作用,已成为继科学实验和理论研究之后科学研究的第三种方法。在实际应用中所建立的数学模型其完备形式往往不能方便地求出精确解,于是只能转化为简化模型,如将复杂的非线性模型忽略一些因素而简化为线性模型,但这样做往往不能满足精度要求。因此,目前使用数值方法来直接求解较少简化的模型,可以得到满足精度要求的结果,使科学计算发挥更大作用。了解和掌握科学计算的基本方法、数学建模方法已成为科技人才必需的技能。因此,科学计算与数学建模的基本知识和方法是工程技术人才必备的数学素质。 1.2 数学建模及其重要意义 数学,作为一门研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和人们生活的实际需要密切相关。用数学方法解决工程实际和科学技术中的具体问题时,首先必须将具体问题抽象为数学问题,即建立起能描述并等价代替该实际问题的数学模型,然后将建立起的数学模型,利用数学理论和计算技术进行推演、论证和计算,得到欲求解问题的解析解或数值解,最后用求得的解析解和数值解来解决实际问题。本章主要介绍数学建模基本过程和求解数学问题数值方法的误差传播分析。 1.2.1 数学建模的过程 数学建模过程就是从现实对象到数学模型,再从数学模型回到现实对象的循环,一般通过表述、求解、解释、验证几个阶段完成。数学建模过程如图1.2.1所示,数学模型求解方法可分为解析法和数值方法,如图1.2.2所示。 表述是将现实问题“翻译”成抽象的数学问题,属于归纳。数学模型的求解方法则属于演绎。归纳是依据个别现象推出一般规律;演绎是按照普遍原理考察特定对象,导出结论。演绎利用严格的逻辑推理,对解释现象做出科学预见,具有重要意义,但是它要以归纳的结论作为公理化形式的前提,只有在这个前提下

《数学建模与数学实验》本科教学日历

《数学建模与数学实验》本科教学日历 数学建模部分 开设课程课程名称数学建模课程编号0701107 施教单位理学院 课内学时 总课时36 课程性质公共基础讲授课时28 修读要求选修实践课时8 选用教材教材名称数学建模教程出版社名称高等教育出版社 出版时间 及版次 2011年出版,第一版印刷时间2011年 其他情况 教学安排 班次授课对象及人数任教教员(指导教员)姓名及职称数学建模A 各专业本科学员 吴孟达教授 段晓君教授 毛紫阳讲师 王丹讲师 数学建模B 各专业本科学员 吴孟达教授 段晓君教授 毛紫阳讲师 王丹讲师 课次节 次 授课内容 教学 方法 采用现代化教学手段(课时) 多媒体电教双语网络实验 1 1 (1)什么是数学建模?数学建模的一般概念 (2)几个数学建模问题 讲授 1 2 (1)数学建模的一般步骤 (2)敏感问题调查案例 讲授 1 2 3 (1)行走步长问题 (2)雨中行走淋雨量最小问题 (3)道路是越多越通畅吗? 讲授 1 4 (1)有奖销售的抽奖策略问题 (2)“非诚勿扰”女生最佳选择问题 (3)网络文章流行度预测和招聘匹配 讲授 1 3 5 (1)线性规划模型基本概念 (2)整数规划模型 (3)0-1规划模型 讲授 1 6 (1)非线性规划 (2)多目标规划 讲授 1 4 7 (1)最短路算法 (2)最小生成树算法 讲授 1 8 (1)最大流算法 (2)PageRank算法 讲授 1 5 9 规划模型上机实践实践 1

课次节 次 授课内容 教学 方法 采用现代化教学手段(课时) 多媒体电教双语网络实验10 图论模型上机实践实践 1 6 11 (1)博弈模型基本概念 (2)Nash平衡和Pareto最优 (3)博弈论案例 讲授 1 12 (1)贝叶斯纳什均衡 (2)拍卖模型 讲授 1 7 13 社会选择理论中的选举问题数学模型-阿罗不可能定理讲授 1 14 越野长袍团体赛排名规则公平性问题讲授 1 8 15 军事作战模型-Lanchester作战模型讲授 1 16 自动化车床管理模型讲授 1 9 17 (1)“边际效应”基本概念 (2)实物交换模型,最佳消费模型、报童售报问题 讲授 1 18 (1)价格弹性模型 (2)合作效益的Shapley值分配模型 讲授 1 10 19 (1)聚类分析基本概念 (2)常用聚类算法 讲授 1 20 (1)方差分析基本概念 (2)单因素方差分析 (3)双因素方差分析 讲授 1 11 21 (1)主成分分析基本概念 (2)因子分析 讲授 1 22 (1)一元回归分析 (2)多元回归分析 (3)多元回归模型的检验与优化 讲授 1 12 23 聚类分析和方差分析上机实践实践 1 24 主成分分析和多元回归分析上机实践实践 1 13 25 (1)遗传算法基本思想 (2)算法步骤 讲授 1 26 遗传算法计算实例讲授 1 14 27 (1)模拟退火算法基本思想 (2)算法步骤 讲授 1 28 模拟退火算法计算实例讲授 1 15 29 (1)蚁群算法基本思想 (2)算法步骤 讲授 1 30 (1)数学建模中的计算机仿真 (2)不可召回的秘书招聘问题 (3)车灯光源优化设计 (4)生命游戏 讲授 1 16 31 遗传算法上机实践实践 1 32 模拟退火算法上机实践实践 1

浅谈数学模型在实际生活中的应用

万方数据

浅谈数学模型在实际生活中的应用 作者:蔡桂荣 作者单位:湖北黄冈职业技术学院 刊名: 黑河教育 英文刊名:HEIHE EDUCATION 年,卷(期):2010,""(8) 被引用次数:0次 参考文献(2条) 1.问题解决的数学模型方法 1999 2.数学建模基础 2004 相似文献(10条) 1.期刊论文陈登连整体建构学生活数学自主探究过数学生活——浅谈小学数学课堂教学的有效性-科技信息2009,""(34) 课堂教学的有效性直接影响学生知识的建构和数学素养的养成.新课程下提高数学教学的有效性,关键在于教师要树立以学生发展为中心的教学理念,尊重学生的主体地位,科学地解读教材与学生,充分考虑学生的已有知识经验,不断沟通生活数学与教材数学的联系,努力为学生营造一个适合探索的氛围,满足学生的求知心理需求;沟通数学与生活的联系,让书本的数学成为生活的数学,让凝固的数学成为活动的数学,让理论的数学成为实践的数学.通过有效的课堂,让学生快乐地学"生活数学",愉快地过"数学生活". 2.期刊论文梁慧也谈数学与生活-教师2010,""(19) 数学来源于生活,生活中又充满着数学.学生的数学知识与才能,不仅来自于课堂,还来自于现实生活实际.所以教师在课堂教学中要善于发现和挖掘生活中的数学素材,把数学和学生的现实生活结合起来,从学生的实际生活中引出数学知识,让学生深刻感受到自己的生活中处处都有教学问题,自己的生活实际本身就是和数学知识融为一体的,这样学生学起来也会感到自然亲切和真实.因此,在数学教学中教师应重视学生的生活体验,把学生的生活体验和我们的数学知识相联系,把生活情境和数学问题相结合,让我们的教学生活化,让我们的生活数学化. 3.期刊论文程继德.许洪洪回归数学本质,把"生活数学"提升到"学校数学"-教育实践与研究2007,""(3) 数学教学"生活化"是新课程改革极为重视和倡导的内容,但由于一些教师对数学教学"生活化"的片面理解,错误地将"生活数学"等同于"学校数学",出现了片面追求数学教学生活化的倾向.对此我们认为要正确看待"生活数学",认识"生活数学"的必要性和局限性,以及"生活数学"与"学校数学"的不同点.要克服"生活数学"的局限性,数学教学必须回归数学本质,把"生活数学"提升到"学校数学",从具体的生活情景中抽象概括出一般的数学知识;从现实的生活问题中归纳建立适用的数学模型;从普通的生活现象中发展学生的数学思考. 4.期刊论文沙宪柱在生活中学习数学,在数学中感受生活-青年与社会·中外教育研究2009,""(12) 为使学生感受数学与现实生活的联系,教学时必须从学生熟悉的生活情景和感兴趣的事物出发,为他们提供观察和操作的机会,使他们有更多的机会从周围熟悉的事物中学习和理解数学,体会到数学就在我们身边,感受到数学的趣味和作用,体验到数学的魅力. 5.期刊论文郑吉洁生活中的数学,数学中的生活——记课例:数学归纳法及其应用(第一课时)-科教导刊2010,""(21) 新课程强调数学课堂教学应为学生提供丰富的学习材料,拓展学生的数学活动空间,让学生感受数学来源于生活,发展学生"做数学""用数学"的意识,认识到课本不是课程的唯一资源;课本不是学生的世界,而世界才是学生的课本.只有教师跳出数学看数学,学生才能透过数学看世界. 6.期刊论文陈雪燕引生活之源活数学之水——谈小学"生活数学"的构建-现代中小学教育2009,""(8) 数学来源于生活,而又应用于生活,因此在教学中应奉行"生活数学"的教学理念.构建生活数学需采用一定的策略:运用"生活语言",感受数学的趣味性;捕捉"生活现象",认识数学的普遍性;模拟"生活情景",感悟数学的生动性;开展"生活实践",体验数学的实践性;拓展"生活时空",体会数学的应用性. 7.期刊论文张维数学来源于生活、生活中处处有数学-中国科教创新导刊2007,""(2) 数学来源于生活,又应用于生活.教学与生活是一个相辅相成、和谐兼容的有机整体.生活的世界就是教学的世界.那么,如何让小学生在数学生活中体验生括、在感受生活中学会数学呢?下面就此谈谈自己的几点粗浅的认识. 8.期刊论文胡支祥数学源于生活用于生活-剑南文学2010,""(5) 数学源于实际生活,植根于生活,教育只有通过生活才能产生作用并真正成为教育.学生用数学可以解决生活中的实际问题,增强其学习数学的主动性. 9.期刊论文任浙斌生活与数学走得更近一些-湖南中学物理·教育前沿2009,""(4) 数学是对客观世界数量关系和空间关系的一种抽象.可以说生活中处处有数学.<课程标准>中指出:"数学教学是数学活动,教师要紧密联系学生的生活环境,从学生的经验和已有的知识出发,创设生动的数学情境……."数学的兴趣和学习数学的信心对学生来说是十分重要的问题,教师就应该将学生的生活与数学学习结合起来,让学生熟知.亲近.现实的生活数学走进学生视野,进入数学课堂,使数学教材变的具体.生动.直观,使学生感悟,发现数学的作用与意义,学会用数学的眼光观察周围的客观世界,增强数学作用意识. 10.期刊论文杨潮突出"生活数学",营造教学之美-考试周刊2010,""(22) 数学来源于生活,而又应用于生活.教师应让数学走出书本、走出教室,融进生活、融进活动,把生活问题带进数学课堂,紧密联系学生的生活实际讲数学,把生活经验数学化,把数学问题生活化,让学生在感知、认知的气氛中想学、乐学、会学,使学生感受到生活的世界是一个充满数学的世界,把看似枯燥的数学教得生动、有趣、易于理解,营造数学课堂教学之美,真正调动学生学习数学的积极性,培养他们的自主探索能力. 本文链接:https://www.doczj.com/doc/5619048179.html,/Periodical_hhjy201008056.aspx

数学建模中常见的十大模型

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的

数学模型与数学建模-2

2.1MATLAB MATLAB Matrix Laboratory , MathWorks 20 80 , , MATLAB Simulink .MATLAB 1) , ; 2) , ; 3) , ; 4) ( ), . 2.1.1MATLAB MATLAB , , . , MATLAB , 2.1.1 . MATLAB “>>” , MATLAB . , Enter ,MATLAB .

·8· 2 ? ? 2.1.1MATLAB 1.help , help . poly?t . help polyfit POLYFIT Fit polynomial to data..P=POLYFIT(X,Y,N)finds the coeffici-ents of a polynomial P(X)of degree N that fits the data Y best in a least-squares sense.P is a row vector of length N+1containing the polynomial coefficients in descending powers,P(1)*X^N+P(2)*X^(N-1) +···+P(N)*X+P(N+1). , MATLAB Help . Help Product Help , ( 2.1.2) 2.1.2Help

2.1MATLAB ·9· Seach , . 2.clear clear . “a=1”, >>a=1. 1 a. a , clear . >>clear a???Undefined function or variable a . 3.format MATLAB format . format short , 5 ; format rational ; format long g 15 ; >>format short>>pi ans=3.1416;>>format rational >>pi ans=355/113; >>format long g>>pi ans=3.14159265358979 2.1.2MATLAB 1. 2.1.1 MATLAB . MATLAB 1 , .MATLAB , B b . 2.1.1MATLAB pi i,j inf . n/0 inf, n 0 ans , . ,MATLAB ans NaN , . 0/0 inf/inf 2. MATLAB , . . MATLAB , , , . A=[1?256?49] A=[1,?2,5,6,?4,9] 6 A.

数学建模与数学实验习题

数学建模与数学实验课程总结与练习内容总结 第一章 1.简述数学建模的一般步骤。 2.简述数学建模的分类方法。 3.简述数学模型与建模过程的特点。 第二章 4.抢渡长江模型的前3问。 5.补充的输油管道优化设计。 6.非线性方程(组)求近似根方法。 第三章 7.层次结构模型的构造。 8.成对比较矩阵的一致性分析。 第五章 9.曲线拟合法与最小二乘法。 10 分段插值法。 第六章 11 指数模型及LOGISTIC模型的求解与性质。 12.VOLTERRA模型在相平面上求解及周期平均值。 13 差分方程(组)的平衡点及稳定性。 14 一阶差分方程求解。 15 养老保险模型。

16 金融公司支付基金的流动。 17 LESLLIE 模型。 18 泛函极值的欧拉方法。 19 最短路问题的邻接矩阵。 20 最优化问题的一般数学描述。 21 马尔科夫过程的平衡点。 22 零件的预防性更换。 练习集锦 1. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是成对比较矩阵 31/52a b P c d e f ?? ??=?????? ,(1)确定矩阵P 的未知元素。 (2)求 P 模最大特征值。 (3)分析矩阵P 的一致性是否可以接受(随机一致性指标RI取0.58)。 2. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是三阶成对比较矩阵 322P ? ???=?????? ,(1)将矩阵P 元素补全。 (2)求P 模最 大特征值。 (3)分析矩阵P 的一致性是否可以接受。 3.考虑下表数据

(1)用曲改直的思想确定经验公式形式。 (2)用最小二乘法确定经验公式系数。 4.. 考虑微分方程 (0.2)0.0001(0.4)0.00001dx x xy dt dy y xy dt εε?=--????=-++?? (1)在像平面上解此微分方程组。(2)计算0ε=时的周期平均值。(3)计算0.1ε=时,y 的周期平均值占总量的周期平均值的比例增加了多少? 5考虑种群增长模型 '()(1/1000),(0)200x t kx x x =-= (1)求种群量增长最快的时刻。(2)根据下表数据估计参数k 值。 6. 布均匀,若环保部门及时发现并从某时刻起切断污染源,并更新湖水(此处更新指用新鲜水替换污染水),设湖水更新速率是 3 (m r s 单位:)。 (1) 试建立湖中污染物浓度随时间下降的数学模型? 求出污染物浓度降为控制前的5%所需要的时间。 7. 假如保险公司请你帮他们设计一个险种:35岁起保,每月交费400元,60岁开始领取养老金,每月养老金标准为3600元,请估算该保险费月利率为多少(保留到小数点后5位)? 8. 某校共有学生40000人,平时均在学生食堂就餐。该校共有,,A B C 3 个学生食堂。经过近一年的统计观测发现:A 食堂分别有10%,25%的学生经常去B ,C 食堂就餐,B 食堂经常分别有15%,25%的同学去

高一数学函数模型及其应用练习题2

函数模型及其应用测试题 一、选择题 1.某工厂的产值月平均增长率为P,则年平均增长率是() A.11 +-D.12 (1)1 P P +- (1)P +B.12 (1)P +C.11 (1)1 答案:D 2.某人2000年7月1日存入一年期款a元(年利率为r,且到期自动转存),则到2007年7月1日本利全部取出可得() A.7 a r +元 (1) (1) a r +元B.6 C.7 (1)(1)(1) +++++++ …元 a a r a r a r (1) a a r ++元D.26 答案:A 3.如图1所示,阴影部分的面积S是h的函数(0) ≤≤,则该函数的图象可 h H 能是() 答案:C 4.甲、乙两个经营小商品的商店,为了促销某一商品(两店的零售价相同),分别采取了以下措施:甲店把价格中的零头去掉,乙店打八折,结果一天时间两店都卖出了100件,且两店的销售额相同,那么这种商品的价格不可能是()A.4.1元B.2.5元C.3.75元D.1.25元 答案:A 5.某厂工人收入由工资性收入和其他收入两部分构成.2003年该工厂工人收入3150元(其中工资性收入1800元,其他收入1350元).预计该地区自2004年开始的5年内,工人的工资性收入将以每年6%的年增长率.其他收入每年增加160元.据此分析,2008年该厂工人人均收入将介于() A.42004400 元 元B.44004600 C.46004800 元D.48005000 元 答案:B 二、填空题 6.兴修水利开渠,其横断面为等腰梯形,如图2,腰与水平线夹角为60 ,要求浸水周长(即断面与水接触的边界长)为定值l,同渠深h=,可使水渠量最大.

数学模型应用问题(讲义和习题)含答案

数学模型应用问题(讲义) ? 课前预习 1. 填写下列表格,并回忆相关概 念. 2. 解下列方程 [](10)38010(12)1750x x ---= 10(8)200106400.5x x -?? --?= ??? ? 知识点睛 应用题的处理思路 1. 理解题意,梳理信息 通过列表或画线段图等方式,对信息分类整理. 2. 辨识类型,建立模型 根据所属类型,围绕关键词、隐含的数学关系,建立数学

类型常考虑: ①所属的数学模型(方程不等式问题、函数问题、测量问题); ②实际生活的背景(工程问题、行程问题、经济问题). 常见关键词: ①共需、同时、刚好、恰好、相同……,考虑方程; ②不超过、不多于、少于、至少……,考虑不等式(组); ③最大利润、最省钱、运费最少、尽可能少、最小值……,考虑函数(一次函数、二次函数), 根据函数性质求取最值. 隐含的数学关系: ①原材料供应型(使用量≤供应量) ②容器容量型(载重量≥货物量) 3.求解验证,回归实际 ①结果是否符合题目要求; ②结果是否符合实际意义. ?精讲精练 1.某次地震后,政府为安置灾民,准备从某厂调拨用于搭建帐篷的帆布5 600 m2和撑杆2 210 m. (1)该厂现有帆布4 600 m2和撑杆810 m,不足部分计划安排110人进行生产.若每人每天能生产帆布50 m2或撑杆 40 m,则应分别安排多少人生产帆布和撑杆,才能确保同时完成各自的生产任务? (2)计划用这些材料在某安置点搭建甲、乙两种规格的帐篷共100顶,若搭建一顶甲型帐篷和一顶乙型帐篷所需帆布与撑杆的数量及安置人数如下表所示,则这100顶帐篷最多能安置多少灾

数学建模与数学实验试卷及答案

数学建模与数学实验试卷及答案 二、本题10分(写出程序和结果) 蚌埠学院2010—2011学年第二学期 2,x在 [-5 ,5] 区间内的最小值,并作图加以验证。求函数yxe,,,3《数学建模与数学实验》补考试卷答案 f1=inline('x.^2 +exp(-x)-3') 注意事项:1、适用班级:09数学与应用数学本科1,2班 2、本试卷共1页,附答题纸1页。满分100分。 x=fmin(f1,-5,5) 3、考查时间100分钟。 y=f1(x) 4、考查方式:开卷 fplot(f1,[-5,5]) 一、填空:(每空4分,共60分) x = 0.3517,y== -2.1728 123111,,,,, ,,,,三、本题15分(写出程序和结果) 1. 已知,,则A的秩为 3 ,A的特征值为 A,612B,234,,,, ,,,,,215531,,,,,360000xx,,,12,max2.5fxx,,求解:, stxx..250000,,,1212-1.9766 4.4883 + 0.7734i 4.4883 - 0.7734i ,若令 A([1,3],:)= B([2,3],:),则,x,150001,A(2,:)= 6 1 2 ; 解: xxx,,,22,123,model: 2. 的解为 1.25 ,0.25 0.5 ; xxx,,,521,123max=2.5*x1+x2; ,242xxx,,,123,3*x1+x2<=60000; 装订线内不要答题 2*x1+x2<=50000; 3. 将1234521 分解成质因数乘积的命令为_factor(sym(‘1234521’)),

数学建模基础(入门必备)

一、数学模型的定义 现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。一般来说数学建模过程可用如下框图来表明: 数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予更为重要的意义。 二、建立数学模型的方法和步骤 1. 模型准备 要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 2. 模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。 3. 模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 4. 模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 5. 模型分析 对模型解答进行数学上的分析。“横看成岭侧成峰,远近高低各不同”,能否对模型结果

数学建模与数学实验课后习题答案

P59 4.学校共1002名学生,237人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。学生要组织一个10人的委员会,使用Q 值法分配各宿舍的委员数。 解:设P 表示人数,N 表示要分配的总席位数。i 表示各个宿舍(分别取A,B,C ),i p 表示i 宿舍现有住宿人数,i n 表示i 宿舍分配到的委员席位。 首先,我们先按比例分配委员席位。 A 宿舍为:A n = 365.21002 10237=? B 宿舍为:B n =323.31002 10333=? C 宿舍为:C n =311.4100210432=? 现已分完9人,剩1人用Q 值法分配。 5.93613 22372 =?=A Q 7.92404 33332 =?=B Q 2.93315 44322 =?=C Q 经比较可得,最后一席位应分给A 宿舍。 所以,总的席位分配应为:A 宿舍3个席位,B 宿舍3个席位,C 宿舍4个席位。

商人们怎样安全过河

由上题可求:4个商人,4个随从安全过河的方案。 解:用最多乘两人的船,无法安全过河。所以需要改乘最多三人乘坐的船。 如图所示,图中实线表示为从开始的岸边到河对岸,虚线表示从河对岸回来。商人只需要按照图中的步骤走,即可安全渡河。总共需要9步。

P60 液体在水平等直径的管内流动,设两点的压强差ΔP 与下列变量有关:管径d,ρ,v,l,μ,管壁粗糙度Δ,试求ΔP 的表达式 解:物理量之间的关系写为为()?=?,,,,,μρ?l v d p 。 各个物理量的量纲分别为 []32-=?MT L p ,[]L d =,[]M L 3-=ρ,[]1-=LT v ,[]L l =,[]11--=MT L μ,Δ是一个无量纲量。 ???? ??????-----=?0310100011110010021113173A 其中0=Ay 解得 ()T y 00012111---=, ()T y 00101102--=, ()T y 01003103--=, ()T y 10000004= 所以 l v d 2111---=ρπ,μρπ112--=v ,p v ?=--313ρπ,?=4π 因为()0,,,,,,=??p l v d f μρ与()0,,,4321=ππππF 是等价的,所以ΔP 的表达式为: ()213,ππψρv p =?

数学模型应用题

数学模型应用题 一.选择题(共14小题) 1.(2011?恩施州)小明的爸爸骑着摩托车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下: 时刻12:0013:0014:30 碑上的数是一个两位数,数字 之和为6 十位及个位数字及12:00时所看 到的正好颠倒了 比12:00时看到的两位数 中间多了个0 则12:00时看到的两位数是() A.24B.42C.51D.15 2.(2012?百色)某县政府2011年投资0.5亿元用于保障性房建设,计划到2013年投资保障性房建设的资金为0.98亿元.如果从2011年到2013年投资此项目资金的年增长率相同,那么年增长率是() A.30%B.40%C.50%D.60% 3.(2011?台湾)如图为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为平方公分,则此方格纸的面积为多少平方公分?() A.11B.12C.13D.14 4.(2013?资阳)在芦山地震抢险时,太平镇部分村庄需8组战士步行运送物资,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不够90人,那么预定每组分配的人数是

A.10人B.11人C.12人D.13人 5.(2013?潍坊)对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3,若[]=5,则x的取值可以是() A.40B.45C.51D.56 6.(2012?武汉)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)及乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是() A.①②③B.仅有①②C.仅有①③D.仅有②③7.(2012?牡丹江)已知等腰三角形周长为20,则底边长y关于腰长x的函数图象是() A.B.C.D. 8.(2013?绍兴)教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)及开机后用时(min)

相关主题
文本预览
相关文档 最新文档