当前位置:文档之家› 信号与系统第9章

信号与系统第9章

信号与系统试题附答案99484

信科0801《信号与系统》复习参考练习题一、单项选择题:

14、已知连续时间信号,) 2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /s B 。200 rad /s C 。100 rad /s D 。50 rad /s

15、已知信号)(t f 如下图(a )所示,其反转右移的信号f 1(t) 是( ) 16、已知信号)(1t f 如下图所示,其表达式是( ) A 、ε(t )+2ε(t -2)-ε(t -3) B 、ε(t -1)+ε(t -2)-2ε(t -3) C 、ε(t)+ε(t -2)-ε(t -3) D 、ε(t -1)+ε(t -2)-ε(t -3) 17、如图所示:f (t )为原始信号,f 1(t)为变换信号,则f 1(t)的表达式是( ) A 、f(-t+1) B 、f(t+1) C 、f(-2t+1) D 、f(-t/2+1)

18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( ) 19。信号)2(4sin 3)2(4cos 2)(++-=t t t f π π 与冲激函数)2(-t δ之积为( ) A 、2 B 、2)2(-t δ C 、3)2(-t δ D 、5)2(-t δ ,则该系统是()>-系统的系统函数.已知2]Re[,6 51)(LTI 202s s s s s H +++= A 、因果不稳定系统 B 、非因果稳定系统 C 、因果稳定系统 D 、非因果不稳定系统 21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( ) A 、常数 B 、 实数 C 、复数 D 、实数+复数 22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( ) A 、阶跃信号 B 、正弦信号 C 、冲激信号 D 、斜升信号

信号与系统实验题目及答案

第一个信号实验的题目 1实现下列常用信号 (1)(5)u t +;(2)(1)t δ-;(3)cos(3)sin(2)t t +;(4)()[(1)(2)]f t t u t t u t t =?---; (5)0.5()4cos(),010t f t e t t π-=?= 2连续信号的基本运算与波形变换 已知信号2 2,2 1 ()33 t t f t ? -+-≤≤?=???,试画出下列各函数对时间t 的波形: (1)()f t -(2)(2)f t -+(3)(2)f t (4)1 (1)2 d f t dt +(5)(2)t f d ττ-∞-? 3连续信号的卷积运算 实现12()()f t f t *,其中1()f t 、2()f t 从第2个题目中任选3对组合。 4连续系统的时域分析 (1) 描述某连续系统的微分方程为()2()()()2()y t y t y t f t f t ''''++=+,求当输入信号为 2()2()t f t e u t -=时,该系统的零状态响应()y t 。 (2) 已知描述某连续系统的微分方程为2()()3()()y t y t y t f t '''+-=,试用MATLAB 绘出 该系统的冲激响应和阶跃响应的波形。 实验一答案: (1)(5)u t +在MATLAB 软件的输入程序及显示波形如下:

(2)(1)t δ-在MATLAB 软件的输入程序及显示波形如下: (3)cos(3)sin(2)t t +在MATLAB 软件的输入程序及显示波形如下: (4)()[(1)(2)]f t t u t t u t t =?---在MATLAB 软件的输入程序及显示波形如下: (5)0.5()4cos(),010t f t e t t π-=?=在MATLAB 软件的输入程序及显示波形如下:

(精品)信号与系统课后习题与解答第一章

1-1 分别判断图1-1所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号? 图1-1 图1-2

解 信号分类如下: ??? ?? ? ????--???--))(散(例见图数字:幅值、时间均离))(连续(例见图抽样:时间离散,幅值离散))(连续(例见图量化:幅值离散,时间))(续(例见图模拟:幅值、时间均连连续信号d 21c 21b 21a 21图1-1所示信号分别为 (a )连续信号(模拟信号); (b )连续(量化)信号; (c )离散信号,数字信号; (d )离散信号; (e )离散信号,数字信号; (f )离散信号,数字信号。 1-2 分别判断下列各函数式属于何种信号?(重复1-1题所示问) (1))sin(t e at ω-; (2)nT e -; (3))cos(πn ; (4)为任意值)(00)sin(ωωn ; (5)2 21??? ??。 解 由1-1题的分析可知: (1)连续信号; (2)离散信号; (3)离散信号,数字信号; (4)离散信号; (5)离散信号。 1-3 分别求下列各周期信号的周期T : (1))30t (cos )10t (cos -; (2)j10t e ; (3)2)]8t (5sin [; (4)[]为整数)(n )T nT t (u )nT t (u )1(0 n n ∑∞ =-----。 解 判断一个包含有多个不同频率分量的复合信号是否为一个周期信号,需要考察各 分量信号的周期是否存在公倍数,若存在,则该复合信号的周期极为此公倍数;若不存在,则该复合信号为非周期信号。 (1)对于分量cos (10t )其周期5T 1π=;对于分量cos (30t ),其周期15 T 2π=。由于 5π

信号与系统试题附答案

信号与系统》复习参考练习题一、单项选择题:

14、已知连续时间信号,) 2(100) 2(50sin )(--= t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /s B 。200 rad /s C 。100 rad /s D 。50 rad /s

f如下图(a)所示,其反转右移的信号f1(t) 是() 15、已知信号)(t f如下图所示,其表达式是() 16、已知信号)(1t A、ε(t)+2ε(t-2)-ε(t-3) B、ε(t-1)+ε(t-2)-2ε(t-3) C、ε(t)+ε(t-2)-ε(t-3) D、ε(t-1)+ε(t-2)-ε(t-3) 17、如图所示:f(t)为原始信号,f1(t)为变换信号,则f1(t)的表达式是() A、f(-t+1) B、f(t+1) C、f(-2t+1) D、f(-t/2+1) 18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是()

19。信号)2(4 sin 3)2(4 cos 2)(++-=t t t f π π 与冲激函数)2(-t δ之积为( ) A 、2 B 、2)2(-t δ C 、3)2(-t δ D 、5)2(-t δ ,则该系统是()>-系统的系统函数.已知2]Re[,6 51 )(LTI 202s s s s s H +++= A 、因果不稳定系统 B 、非因果稳定系统 C 、因果稳定系统 D 、非因果不稳定系统 21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( ) A 、常数 B 、 实数 C 、复数 D 、实数+复数 22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( ) A 、阶跃信号 B 、正弦信号 C 、冲激信号 D 、斜升信号 23. 积分 ?∞ ∞ -dt t t f )()(δ的结果为( ) A )0(f B )(t f C.)()(t t f δ D.)()0(t f δ 24. 卷积)()()(t t f t δδ**的结果为( ) A.)(t δ B.)2(t δ C. )(t f D.)2(t f

信号与系统实验指导书

实验一 常用信号分类与观察 一、实验目的 1、了解单片机产生低频信号源; 2、观察常用信号的波形特点及产生方法; 3、学会使用示波器对常用波形参数的测量。 二、实验内容 1、信号的种类相当的多,这里列出了几种典型的信号,便于观察。 2、这些信号可以应用到后面的“基本运算单元”和“无失真传输系统分析”中。 三、实验原理 对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。在本实验中,将对常用信号和特性进行分析、研究。 信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。常用信号有:指数信号、正弦信号、指数衰减正弦信号、抽样信号、钟形信号、脉冲信号等。 1、正弦信号:其表达式为)sin()(θω+=t K t f ,其信号的参数:振幅K 、角频率ω、与初始相位θ。其波形如下图所示: 图 1-5-1 正弦信号 2、指数信号:指数信号可表示为at Ke t f =)(。对于不同的a 取值,其波形表现为不同的形式,如下图所示:

图 1-5-2 指数信号 3、指数衰减正弦信号:其表达式为 ?? ? ??><=-)0()sin()0(0)(t t Ke t t f at ω 其波形如下图: 图 1-5-3 指数衰减正弦信号 4、抽样信号:其表达式为: sin ()t Sa t t = 。)(t Sa 是一个偶函数,t = ±π,±2π,…,±n π时,函数值为零。该函数在很多应用场合具有独特的运用。其信号如下图所示:

信号与系统期末考试试题(有答案的)

信号与系统期末考试试题 一、选择题(共10题,每题3分 ,共30分,每题给出四个答案,其中只有一个正确的) 1、 卷积f 1(k+5)*f 2(k-3) 等于 。 (A )f 1(k)*f 2(k) (B )f 1(k)*f 2(k-8)(C )f 1(k)*f 2(k+8)(D )f 1(k+3)*f 2(k-3) 2、 积分 dt t t ? ∞ ∞ --+)21()2(δ等于 。 (A )1.25(B )2.5(C )3(D )5 3、 序列f(k)=-u(-k)的z 变换等于 。 (A ) 1-z z (B )-1-z z (C )11-z (D )1 1--z 4、 若y(t)=f(t)*h(t),则f(2t)*h(2t)等于 。 (A ) )2(41t y (B ))2(21t y (C ))4(41t y (D ))4(2 1 t y 5、 已知一个线性时不变系统的阶跃相应g(t)=2e -2t u(t)+)(t δ,当输入f(t)=3e —t u(t)时,系 统的零状态响应y f (t)等于 (A )(-9e -t +12e -2t )u(t) (B )(3-9e -t +12e -2t )u(t) (C ))(t δ+(-6e -t +8e -2t )u(t) (D )3)(t δ +(-9e -t +12e -2t )u(t) 6、 连续周期信号的频谱具有 (A ) 连续性、周期性 (B )连续性、收敛性 (C )离散性、周期性 (D )离散性、收敛性 7、 周期序列2)455.1(0 +k COS π的 周期N 等于 (A ) 1(B )2(C )3(D )4 8、序列和 ()∑∞ -∞ =-k k 1δ等于 (A )1 (B) ∞ (C) ()1-k u (D) ()1-k ku 9、单边拉普拉斯变换()s e s s s F 22 12-+= 的愿函数等于 ()()t tu A ()()2-t tu B ()()()t u t C 2- ()()()22--t u t D 10、信号()()23-=-t u te t f t 的单边拉氏变换()s F 等于 ()A ()()()232372+++-s e s s ()() 2 23+-s e B s

信号与系统课后习题答案—第1章

第1章 习题答案 1-1 题1-1图所示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号? 解: ① 连续信号:图(a )、(c )、(d ); ② 离散信号:图(b ); ③ 周期信号:图(d ); ④ 非周期信号:图(a )、(b )、(c ); ⑤有始信号:图(a )、(b )、(c )。 1-2 已知某系统的输入f(t)与输出y(t)的关系为y(t)=|f(t)|,试判定该系统是否为线性时不变系统。 解: 设T 为此系统的运算子,由已知条件可知: y(t)=T[f(t)]=|f(t)|,以下分别判定此系统的线性和时不变性。 ① 线性 1)可加性 不失一般性,设f(t)=f 1(t)+f 2(t),则 y 1(t)=T[f 1(t)]=|f 1(t)|,y 2(t)=T[f 2(t)]=|f 2(t)|,y(t)=T[f(t)]=T[f 1(t)+f 2(t)]=|f 1(t)+f 2(t)|,而 |f 1(t)|+|f 2(t)|≠|f 1(t)+f 2(t)| 即在f 1(t)→y 1(t)、f 2(t)→y 2(t)前提下,不存在f 1(t)+f 2(t)→y 1(t)+y 2(t),因此系统不具备可加性。 由此,即足以判定此系统为一非线性系统,而不需在判定系统是否具备齐次性特性。 2)齐次性 由已知条件,y(t)=T[f(t)]=|f(t)|,则T[af(t)]=|af(t)|≠a|f(t)|=ay(t) (其中a 为任一常数) 即在f(t)→y(t)前提下,不存在af(t)→ay(t),此系统不具备齐次性,由此亦可判定此系统为一非线性系统。 ② 时不变特性 由已知条件y(t)=T[f(t)]=|f(t)|,则y(t-t 0)=T[f(t-t 0)]=|f(t-t 0)|, 即由f(t)→y(t),可推出f(t-t 0)→y(t-t 0),因此,此系统具备时不变特性。 依据上述①、②两点,可判定此系统为一非线性时不变系统。 1-3 判定下列方程所表示系统的性质: )()()]([)()(3)(2)(2)()()2()()(3)(2)()()()()() (2''''''''0t f t y t y d t f t y t ty t y c t f t f t y t y t y b dx x f dt t df t y a t =+=++-+=+++=? 解:(a )① 线性 1)可加性 由 ?+=t dx x f dt t df t y 0)()()(可得?????→+=→+=??t t t y t f dx x f dt t df t y t y t f dx x f dt t df t y 01122011111)()()()()()()()()()(即即 则 ???+++=+++=+t t t dx x f x f t f t f dt d dx x f dt t df dx x f dt t df t y t y 0212102201121)]()([)]()([)()()()()()( 即在)()()()()()()()(21212211t y t y t f t f t y t f t y t f ++前提下,有、→→→,因此系统具备可加性。 2)齐次性 由)()(t y t f →即?+=t dx x f dt t df t y 0)()()(,设a 为任一常数,可得 )(])()([)()()]([)]([000t ay dx x f dt t df a dx x f a dt t df a dx x af t af dt d t t t =+=+=+??? 即)()(t ay t af →,因此,此系统亦具备齐次性。 由上述1)、2)两点,可判定此系统为一线性系统。

信号与系统试题附答案精选范文

信科0801《信号与系统》复习参考练习题 一、单项选择题 (2分1题,只有一个正确选项,共20题,40分) 1、已知连续时间信号,)2(100)2(50sin )(--= t t t f 则信号t t f 410cos ·)(所占有的频带宽度为(C ) A .400rad /s B 。200 rad /s C 。100 rad /s D 。50 rad /s 2、已知信号)(t f 如下图(a )所示,其反转右移的信号f 1(t) 是( D ) 3、已知信号)(1t f 如下图所示,其表达式是( B ) A 、ε(t )+2ε(t -2)-ε(t -3) B 、ε(t -1)+ε(t -2)-2ε(t -3) C 、ε(t)+ε(t -2)-ε(t -3) D 、ε(t -1)+ε(t -2)-ε(t -3) 4、如图所示:f (t )为原始信号,f 1(t)为变换信号,则f 1(t)的表达式是( D ) A 、f(-t+1) B 、f(t+1) C 、f(-2t+1) D 、f(-t/2+1) 5、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( C )

6。信号)2(4sin 3)2(4cos 2)(++-=t t t f π π与冲激函数)2(-t δ之积为( B ) A 、2 B 、2)2(-t δ C 、3)2(-t δ D 、5)2(-t δ 7线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( B ) A 、常数 B 、 实数 C 、复数 ? D 、实数+复数 8、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( A ) A 、阶跃信号 B 、正弦信号? C 、冲激信号 ? D 、斜升信号

信号与系统 奥本海姆第九章答案

Chapter 9 9.21 Solution: (a). Q )()()(32t u e t u e t x t t ??+= ∴ )3)(2(523121)(+++=+++=s s s s s s X , 2}Re{?>s (b). Q )()5(sin )()(54t u t e t u e t x t t ??+= ∴ )55)(55)(4(70155)5(541)(222j s j s s s s s s s X ?++++++=++++=, 4}Re{?>s (i). Q )()()(t u t t x +=δ ∴ s s s s X 111)(+=+=, 0}Re{>s (f). Q )3()3()(t u t t x +=δ ∴ s s s s X 333/13131)(+=?+=, 0}Re{>s 9.22 Solution: (a). Q 1211/6/6()9(3)(3)33 j j X s s s j s j s j s j ?===+++?+?,0}Re{>s ∴ 3311()()()(sin 3)()663j t j t j j x t e u t e u t t u t ?=? +=

(b). Q 221/21/2()9(3)(3)33s s X s s s j s j s j s j = ==+++?+?,0}Re{>s ∴ 33211()()()(cos3)()22 j t j t x t e u t e u t t u t ?=+= (c) From the property of shifting in the time-domain and (b),we can get 22()(cos(3))()()9s x t t u t s ??=??? ?+,Re{}0s < So 2()cos(3)()()9 s g t t u t G s s =???=+,Re{}0s < From the property of shifting in the s-domain,we can get 321()(1)(1)9 s X s G s s +==+++,Re{}1s

信号与系统第一章答案

1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11))]7()()[6sin()(--=k k k k f εεπ (12) )]()3([2)(k k k f k ---=εε 解:各信号波形为

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2) )2()1(2)()(-+--=t r t r t r t f (5) )2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11) )]7()()[6sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k ---=εε 1-3 写出图1-3所示各波形的表达式。 1-4 写出图1-4所示各序列的闭合形式表达式。 1-5 判别下列各序列是否为周期性的。如果是,确定其周期。 (2))63cos()443cos()(2ππππ+++=k k k f (5))sin(2cos 3)(5t t t f π+= 解: 1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。 (1))()1(t t f ε- (2))1()1(--t t f ε (5) )21(t f - (6))25.0(-t f (7)dt t df ) ( (8)dx x f t ?∞-)( 解:各信号波形为

信号与系统第四章练习题

第四章 连续时间系统的复频域分析 一、试写出几个常用信号的拉式变换 二、求下列函数(1)(2)的单边拉式变换(3)(4)的反变换。 1)t e t t f 21)1()(-+==2)2(3++s s 2)t e t t f 222)(-==3)2(2 +s 3)3524)(23+++=s s s s F 4)5 2)(24++=s s s s F 三、已知函数)4()()(--=t A t A t f εε,求)22(-t f 的拉式变换。 四、求图中各信号的拉式变换 五、已知某系统的输入-输出关系,其系统方程为 )(3)(')(2)('3)(''t f t f t y t y t y +=++各激励)()(t t f ε=,初始状态1)0(=-y , 2)0('=-y ,试求系统的响应)(t y 。

六、图a 所示的电路,激励为)(t u s ,求零状态响应)(t u c 。设(1) )(5)(3t e t u t s ε-=, (2))(2cos 5)(t t t u s ε=。 七、)(t f 如图中所示,试求: 1))(t f 的拉式变换; 2)利用拉式变换性质,求的拉式变换和)12()12 1(--t f t f 八、已知如图所示零状态电路,求电压)(t u 。 图a RC 电路

九、已知系统函数1216732)(23++++= s s s s s H 试画出系统的并联模拟框图和级联模拟框图。 十、若描述LTI 系统的微分方程为)()(')('2)(''t f t f t y t y +=+,并已知1)0(=y ,2)0('=y ,激励信号)(t f 如图所示,试求系统的响应)(t y

第1章 信号与系统

第一章信号与系统 本章学习要求 (1)了解信号与系统的基本概念;信号的不同类型与特点;系统的类型与特点; (2)熟悉离散时间信号的基本表示方法; (3)掌握正弦序列周期性的定义和判断; (4)深刻理解能量信号、功率信号的定义和判断; (5)掌握信号的基本运算(变换)方法; (6)深刻理解冲激信号、阶跃信号的定义、特点及相互关系;理解冲激函数的广义函数定义;掌握冲激函数的基本性质;冲激函数的微积分; (7)熟悉系统的数学模型和描述方法 (8)了解系统的基本分析方法;掌握系统的基本特性及其判断 本章重点 (1)离散时间信号的表示; (2)离散周期序列的判断、周期的计算; (3)能量信号的定义、判断;功率信号的定义、判断; (4)信号的加法、乘法;信号的反转、平移;信号的尺度变换; (5)阶跃函数的极限定义、冲激函数的极限定义;阶跃函数与冲激函数的关系; (6)冲激函数的广义函数定义;冲激函数的导数与积分;冲激函数的性质; (7)连续系统和离散系统的数学模型;系统的表示方法; (8)线性时不变系统的基本特性;线性、时不变性的判断。 1.1 绪言 什么是信号?什么是系统?为什么把这两个概念连在一起?信号、系统能不能相互独立而存在? 一、信号的概念 1. 消息(message): 人们常常把来自外界的各种报道统称为消息。 2. 信息(information): 通常把消息中有意义的内容称为信息。 本课程中对“信息”和“消息”两词不加严格区分。 3. 信号(signal): 信号是信息的载体。通过信号传递信息。

为了有效地传播和利用信息,常常需要将信息转换成便于传输和处理的信号,由此再次说明“信号是信息的载体,信息是信号的内涵”。 信号我们并不陌生,如刚才铃声—声信号,表示该上课了;十字路口的红绿灯—光信号,指挥交通;电视机天线接受的电视信息—电信号;广告牌上的文字、图象信号等等。 二、系统的概念 信号的产生、传输和处理需要一定的物理装置,这样的物理装置常称为系统。一般而言,系统(system)是指若干相互关联的事物组合而成具有特定功能的整体。 如手机(可以用手机举例)、电视机、通信网、计算机网等都可以看成系统。它们所传送的语音、音乐、图象、文字等都可以看成信号。信号的概念与系统的概念常常紧密地联系在一起。 系统的基本作用是对输入信号进行加工和处理,将其转换为所需要的输出信号,如图1所示。 图1 从系统的角度出发,系统理论包括系统的分析与综合两个方面。简单地说,系统分析是对已知的系统做各种特性的分析;系统综合又称系统的设计或实现,它是指根据需要去设计构成满足性能要求的系统。 通常,系统分析是针对已有的系统,系统综合往往意味着做出新系统。显然,前者属于认识世界的问题,后者则是改造世界的问题,且是人们追求的最终目的。一般来说,系统分析是系统综合的基础,只有精于分析,才能善于综合。本课程主要侧重于系统分析。 三、信号与系统概念无处不在 信息科学已渗透到所有现代自然科学和社会科学领域,因此可以说信号与系统在当今社会无处不在,大致列举的应用领域如下: ?工业监控、生产调度、质量分析、资源遥感、地震预报 ?人工智能、高效农业、交通监控 ?宇宙探测、军事侦察、武器技术、安全报警、指挥系统 ?经济预测、财务统计、市场信息、股市分析 ?电子出版、新闻传媒、影视制作 ?远程教育、远程医疗、远程会议 ?虚拟仪器、虚拟手术 如对于通讯: ?古老通讯方式:烽火、旗语、信号灯 ?近代通讯方式:电报、电话、无线通讯

信号与系统试题附答案

信科0801《信号与系统》复习参考练习题 一、单项选择题(2分1题,只有一个正确选项,共20题,40分) 1、已知连续时间信号则信号所占有得频带宽度为(C) A.400rad/sB。200 rad/sC。100 rad/s D。50 rad/s 2、已知信号如下图(a)所示,其反转右移得信号f1(t) 就是( D) 3、已知信号如下图所示,其表达式就是(B) A、ε(t)+2ε(t-2)-ε(t-3)B、ε(t-1)+ε(t-2)-2ε(t-3) C、ε(t)+ε(t-2)-ε(t-3) D、ε(t-1)+ε(t-2)-ε(t-3) 4、如图所示:f(t)为原始信号,f1(t)为变换信号,则f1(t)得表达式就是( D )

A、f(-t+1) B、f(t+1)?C、f(-2t+1)D、 f(-t/2+1) 5、若系统得冲激响应为h(t),输入信号为f(t),系统得零状态响应就是( C) ?6。信号与冲激函数之积为( B ) A、2 B、2 C、3 D、5 7线性时不变系统得冲激响应曲线如图所示,该系统微分方程得特征根就是( B ) A、常数B、实数C、复数 D、实数+复数 8、线性时不变系统零状态响应曲线如图所示,则系统得输入应当就是( A ) A、阶跃信号B、正弦信号C、冲激信号 D、斜升信号 9、积分得结果为( A)?A B C、D、 10卷积得结果为( C)?A、B、C、D、 11零输入响应就是( B )?A、全部自由响应B、部分自由响应?C、部分零状态响应D、全响应与强迫响应之差? 12号〔ε(t)-ε(t-2)〕得拉氏变换得收敛域为( C ) A、Re[s]>0 B、Re[s]>2 C、全S平面 D、不存在 13知连续系统二阶微分方程得零输入响应得形式为,则其2个特征根为( A )?A。-1,-2B。-1,2 C。1,-2 D。1,2 14数就是( A) A.奇函数B。偶函数C。非奇非偶函数D。奇谐函数 15期矩形脉冲序列得频谱得谱线包络线为(B)

信号与系统实验指导书

信号与系统实验指导书 赵欣、王鹏 信息与电气工程学院 2006.6.26

前言 “信号与系统”是无线电技术、自动控制、生物医学电子工程、信号图象处理、空间技术等专业的一门重要的专业基础课,也是国内各院校相应专业的主干课程。 当前,科学技术的发展趋势既高度综合又高度分化,这要求高等院校培养的大学生,既要有坚实的理论基础,又要有严格的工程技术训练,不断提高实验研究能力、分析计算能力、总结归纳能力和解决各种实际问题的能力。21世纪要求培养“创造型、开发型、应用型”人才,即要求培养智力高、能力强、素质好的人才。 由于该课程核心的基本概念、基本理论和分析方法都非常重要,而且系统性、理论性很强,为此在学习本课程时,开设必要的实验,对学生加深理解、深入掌握基本理论和分析方法,培养学生分析问题和解决问题的能力,以及使抽象的概念和理论形象化、具体化,对增强学习的兴趣有极大的好处,做好本课程的实验,是学好本课程的重要教学辅助环节。 在做完每个实验后,请务必写出详细的实验报告,包括实验方法、实验过程与结果、心得和体会等。

目录 实验一无源和有源滤波器 (1) 实验二方波信号的分解 (6) 实验三用同时分析法观测方波信号的频谱 (8) 实验四二阶网络状态轨迹的显示 (10) 实验五二阶网络函数的模拟 (14) 实验六抽样定理 (18) 附录 (22)

实验一无源和有源滤波器 一、实验目的 1、了解RC无源和有源滤波器的种类、基本结构及其特性。 2、对比研究无源和有源滤波器的滤波特性。 3、学会列写无源和有源滤波器网络函数的方法。 二、基本原理 1、滤波器是对输入信号的频率具有选择性的一个二端口网络,它允许某些频率(通常是某个频带范围)的信号通过,而其它频率的信号受到衰减或抑制,这些网络可以是由RLC元件或RC元件构成的无源滤波器,也可以是由RC元件和有源器件构成的有源滤波器。 2、根据幅频特性所表示的通过或阻止信号频率范围的不同,滤波器可分为低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)和带阻滤波器(BEF)四种。我们把能够通过的信号频率范围定义为通带,把阻止通过或衰减的信号频率范围定义为阻带。而通带与阻带的分界点的频率f,称为截止频率或称转折频率。图1-1中的A up为通带的电压放大倍数,f0为中心频率,f CL和f CH分别为低端和高端截止频率。 A A up f C f f C f f CL f CH f f CL f CH f 图1-1 各种滤波器的理想幅频特性 四种滤波器的实验线路如图1-2所示:

郑君里信号与系统习题第四章

例4-1 求下列函数的拉氏变换 拉氏变换有单边和双边拉氏变换,为了区别起见,本书以 表示 单边拉氏变换,以 表示 双边拉氏变换.若文字中未作说明,则 指单边拉氏变换.单边拉氏变换只研究 的时间函数,因此,它和傅里叶变换 之间有一些差异,例如在时移定理,微分定理和初值定理等方面.本例只讨论时移 定理.请注意本例各函数间的差异和时移定理的正确应用。 例4-2 求三角脉冲函数 如图4-2(a )所示的象函数 和傅里叶变换类似,求拉氏变换的时,往往要借助基本信号的拉氏变换和拉氏变换的性质,这比按拉氏变换的定义式积分简单,为比较起见,本例用多种方法求解。 方法一:按定义式求解 方法二:利用线性叠加和时移性质求解 方法三:利用微分性质求解 方法四:利用卷积性质求解 方法一:按定义式求解 ()() 1-=t tu t f ()s F ()t f ()s F B ()t f 0≥t ()()[]()()()[]s e s s t u t u t L t tu L s F -??? ??+=-+--=-=1111112()t f ()?????<<-<<=其它 02t 1 21t 0 t t t f ()() ( ) () 2 22222221101010102 1011 1 2221112112s s s s s s s st st st st st st st e s e s e s e s e s s e s e s dt te dt e dt e s e s t dt e t dt te dt e t f s F -------------∞--=-++-+--=-++??? ??-=-+==? ??? ?? --- --

信号与系统试题库史上最全内含答案)

信号与系统 考试方式:闭卷 考试题型:1、简答题(5个小题),占30分;计算题(7个大题),占70分。 一、简答题: 1.dt t df t f x e t y t ) ()()0()(+=-其中x(0)是初始状态, 为全响应,为激励,)()(t y t f 试回答该系统是否是线性的?[答案:非线性] 2.)()(sin )('t f t ty t y =+试判断该微分方程表示的系统是线性的还是非线性的,是时 变的还是非时变的?[答案:线性时变的] 3.已知有限频带信号)(t f 的最高频率为100Hz ,若对)3(*)2(t f t f 进行时域取样, 求最小取样频率s f =?[答案:400s f Hz =] 4.简述无失真传输的理想条件。[答案:系统的幅频特性为一常数,而相频特性为通过原点的直线] 5.求[]?∞ ∞ --+dt t t e t )()('2δδ的值。[答案:3] 6.已知)()(ωj F t f ?,求信号)52(-t f 的傅立叶变换。 [答案:521(25)()22 j f t e F j ωω --?] 7.已知)(t f 的波形图如图所示,画出)2()2(t t f --ε的波形。

[答案: ] 8.已知线性时不变系统,当输入)()()(3t e e t x t t ε--+=时,其零状态响应为 )()22()(4t e e t y t t ε--+=,求系统的频率响应。[答案:()) 4)(2(52)3(++++ωωωωj j j j ] 9.求象函数2 ) 1(3 2)(++=s s s F ,的初值)0(+f 和终值)(∞f 。 [答案:)0(+f =2,0)(=∞f ] 10.若LTI 离散系统的阶跃响应为)(k g ,求其单位序列响应。 其中:)()2 1 ()(k k g k ε=。 [答案:1111 ()()(1)()()()(1)()()(1)222 k k k h k g k g k k k k k εεδε-=--=--=--] 11.已知()1 1 , 0,1,20 , k f k else ==??? ,()2 1 , 0,1,2,3 0 , k k f k else -==??? 设()()()12f k f k f k =*,求()3?f =。[答案:3] 12.描述某离散系统的差分方程为()()()122()y k y k y k f k +---= 求该系统的单位序列响应()h k 。[答案:21()[(2)]()33 k h k k ε=-+] 13.已知函数()f t 的单边拉普拉斯变换为()1 s F s s =+,求函数()()233t y t e f t -=的单边拉普 拉斯变换。[答案:()2 5 Y s s s = ++] 14.已知()()12f t f t 、的波形如下图,求()()()12f t f t f t =*(可直接画出图形)

信号与系统实验二

信号与线性系统实验报告二

一、实验目的 1.学会用MATLAB实现连续时间信号傅里叶变换。 2.学会用MATLAB分析LTI系统的频域特性。 二、实验内容 题目一:验证实验原理中所述的相关程序; 程序1.1: syms t; Fw=fourier(exp(-2*abs(t))) 运行结果: Fw =4/(w^2 + 4) 程序1.2: syms t w; ft=ifourier(1/(1+w^2),t) 运行结果: ft = (pi*exp(-t)*heaviside(t) + pi*heaviside(-t)*exp(t))/(2*pi) 程序1.3: syms t w; Fw=sym('1/(1+w^2)'); ft=ifourier(Fw,w,t) 运行结果: ft = (pi*exp(-t)*heaviside(t) + pi*heaviside(-t)*exp(t))/(2*pi) 程序1.4: ft=sym('4*cos(2*pi*6*t)*(heaviside(t+1/4)-heaviside(t-1/4))'); Fw=fourier(ft); subplot(1,2,1); ezplot(ft,[-0.5,0.5]); grid on; subplot(1,2,2); ezplot(abs(Fw),[-24*pi,24*pi]); grid on; 运行结果:

图1 程序1.5: syms t w; Gt=sym('heaviside(t+1)-heaviside(t-1)'); Fw=fourier(Gt) FFP=abs(Fw); ezplot(FFP,[-10*pi 10*pi]); grid on; axis([-10*pi 10*pi 0 2.2]); 运行结果: Fw = - (cos(w)*i - sin(w))/w + (cos(w)*i + sin(w))/w 图2 程序1.6: w=0:0.025:5; b=[1]; a=[1,2,2,1]; H=freqs(b,a,w); subplot(2,1,1); plot(w,abs(H)); grid on;

信号与系统考试试题及答案

长沙理工大学拟题纸 课程编号 1 拟题教研室(或老师)签名 教研室主任签名 符号说明:)sgn(t 为符号函数,)(t δ为单位冲击信号,)(k δ为单位脉冲序列,)(t ε为单位阶跃信号,)(k ε为单位 阶跃序列。 一、填空(共30分,每小题3分) 1. 已知 )()4()(2 t t t f ε+=,求_______)("=t f 。)('4)(2)("t t t f δε+ 2. 已知}4,2,4,3{)(},1,2,2,1{)(=-=k h k f ,求______)()(=*k h k f 。}4,6,8,3,4,10,3{)()(-=*k h k f 3. 信号通过系统不失真的条件为系统函数_______)(=ωj H 。0 )(t j Ke j H ωω-= 4. 若)(t f 最高角频率为m ω,则对)4(t f 取样的最大间隔是______。 m T ωπωπ4max max == 5. 信号t t t f ππ30cos 220cos 4)(+=的平均功率为______。 10 1122222 =+++== ∑∞ -∞ =n n F P 6. 已知一系统的输入输出关系为)3()(t f t y =,试判断该系统是否为线性时不变系统 ______。故系统为线性时变系统。 7. 已知信号的拉式变换为 )1)(1(1 )(2-+= s s s F ,求该信号的傅立叶变换)(ωj F =______。故傅立叶变 换)(ωj F 不存在。 8. 已知一离散时间系统的系统函数 2121 )(---+= z z z H ,判断该系统是否稳定______。故系统不稳 定。 9. =+-+?∞ ∞-dt t t t )1()2(2δ______ 。3 10. 已知一信号频谱可写为)(,)()(3ωωωω A e A j F j -=是一实偶函数,试问)(t f 有何种对称性______。关于t=3的偶对称的实信号。 二、计算题(共50分,每小题10分) 1. 已知连续时间系统的单位冲激响应)(t h 与激励信号)(t f 的波形如图A -1所示,试由时域求解该系 统的零状态响应)(t y ,画出)(t y 的波形。 图 A-1 1. 系统的零状态响应)()()(t h t f t y *=,其波形如图A -7所示。

信号与系统试题附答案

信号与系统复习参考练习题 一、单项选择题: 「枳分等于【 】A? S(O B, €(/) C, 2c(t) D* + e(O 2.已知系统徹分方程为也^召+ 2γ(t)^∕(i),? y(0t) ≡ 1,/(t) = si∏2∕ H f) *解得全响 应为y(∣) = y<',i +^sin⑵-曾} , Qth全响应中务I l⑵i45*)为【】 A t零输人响应分議 B.零状态响应分量 G自由响应分蟹D-稳态响应分量 3.系统结构框图如图示.邃系统的单位冲撤响应Λ<()∣W足的方程式为【 】 G ??*2+?(t) = <5(i) CU B.h(t)? χ(;) - yCf) D iΛ( ι) = ^(0- y(O 4.借号Λ<0√a(0波形如图所示?设∕

6.已知信号∕d)如图所示,则其傅里叶变换为 A. ySa(^) + ySa(y^) B rsa(^) ÷ySa(^) C.?ySa(^) + TSa(^) D.rSa(誉)+ τSa(爭) 题6图 7.信号∕l(r)和£仃)分别如图(Q和图(b)所示,已知^[∕1(r)] = F l(jω)t则人仃)的傅里叶变换为 【 】 川)??..a 2 I F 2 I ( I I 1 L- 0; f ?? t ?; 0 b t 2 ?(a) 题7图 (b) A.F l( -jω)e"j,He B. F,(jω)e",α C.F,( -jω)e ja4° D. Γ1(jω)e jβur° 8.有一因果线性时不变系统,其頻率响应H(辺)==r?,对于某一输入力⑺所得输出 jω + 2 信号的傅里叶变换为= 则该输人*仃)为【】 (jω + 2)(j3 + 3) A.- e 5' ε( O B. e ^y'ε( I) C. -e j,c(r) D. e5f e(x) 9./(O = Λ(t)的拉氏变换及收敛域为【】 A -?? RelSl > -2 B?召.Relil < -2 S + Z S 令Z ReUl >2D?订亏,Re∣ι∣ <2

相关主题
文本预览
相关文档 最新文档