当前位置:文档之家› 烟气脱硝工艺

烟气脱硝工艺

烟气脱硝工艺
烟气脱硝工艺

综述燃煤电厂烟气脱硝技术

摘要:人们对空气质量的要求越来越高,氮氧化物污染引起了人们的广泛注意。废气脱硝工艺一直是研究重点。本文通过对比燃煤电厂的脱硝的各种工艺,选出了最优工艺——SCR技术,本文综述了SCR的原理、国内外研究状况、应用情况及运行费用。通过本文可以使人们更好的了解燃煤电厂脱硝工艺。

关键字:烟气脱硝;低NO X燃烧技术;SCR技术

Summary of coal-fired power plant flue gas denitrification technology

Abstract: People on air quality have become increasingly demanding, nitrogen oxide pollution has aroused extensive attention. Exhaust gas denitration process has been a research priority. By contrast coal-fired power plant denitration various processes, optimum process --SCR elected technology, this paper reviews the SCR principle, research status, applications and operating costs. Through this allows people to better understand the coal-fired power plant denitrification process.

Key words: Flue gas denitrification ; Low NO X Combustion Technology ;SCR

氮氧化物是大气主要污染物之一。通常所说的氮氧化物有多种不同形式,如N2O、NO、NO2、N2O3和N2O5等,其中NO和NO2所占比例最大,是最重要的大气污染物[1]。NO X排入大气后,通过物理、化学作用,引发一系列的环境问题。对人体健康和生态环境造成威胁[2]。

氮氧化物的产生途径主要有一下几个方面:1.机动车辆排放的尾气2.工业生产过程中产生了氮氧化物3. 燃烧过程产生的氮氧化物。其中燃烧过程产生的氮氧化物包括热力型、瞬时型和燃料型[3]。

机动车排气量较小,排放源流动分散。主要采用机内净化的方法去除氮氧化物[4]。某些工业生产过程也会排出NO X废气,一般来说,它具有成分相对比较单一和气量小的特点,此类废气在治理中多采用湿法,并且尽量将分离出来的NO返回原生产系统,或者形成新的副产品,或者加以无害化处理[5]。在燃烧过程中,控制NO X的排放有两种途径:一种是在锅炉燃烧中控制燃料的燃烧,减少氮氧化物的生成;另一种是对烟气进行处理,消除烟气中的氮氧化物[6]。

交通运输、电力和火电厂排放的NO X占全部排放量的90%以上[7]。电力工业又是燃煤大户。具预测,到2020年,原煤消耗将达到20.5亿~29.0亿吨,燃煤产生的NO X将急剧增加[8]。由于火电厂燃烧所产生的NO X所生成的含量最多且成分较复杂,所以引起了人们的广泛重视。所以本文主要介绍燃煤电站烟气脱硝技术。

1 烟气脱硝工艺比选

烟气脱硝是指从烟气中去除氮氧化物,是世界各国控制氮氧化物污染、防治酸雨危害的主要措施[9]。据火电厂燃煤锅炉调查,一般采用低氮氧化合物燃烧技术(包括低负荷稳燃改造)的锅炉排烟中氮氧化物的浓度为500~900mg/m3,而未采用低氮氧化合物燃烧技术的锅炉排烟中NO X的质量浓度定700~1300mg/m3之间,平均1000g/m3左右。所以在烟气脱硝之前先采用低NO X燃烧技术,减少氮氧化物的产生,为后续处理减轻负担[10]。

现今形式各异的脱硝工艺,其中SCR 法和SNCR 法在大型燃煤电厂获得商业应用。SCR 技术成熟、脱硝率高、几乎无二次污染,应是国内烟气脱硝引进、消化的重点[11]。除此之外,还有液体吸收法、微生物吸收法、非选择性催化还原法、炽热炭还原法、催化分解法、液膜法、SNRB 工艺脱硝技术、反馈式氧化吸收脱硝技术等,这些方法或已被淘汰,或处于实验室研究阶段,或效率不高,难以投入大规模工业应用[12~14]。

表1 主要烟气脱硝工艺的比较

脱硝工艺适用性及特点优缺点脱硝率投资

SCR 适合排气量大,连续排放源二次污染小,净化效率高,设备投资高,关

键技术难度大

80%~90% 较高

SNCR 适合排气量大,连续排放源不用催化剂,设备运行费用少30%~60% 较低

液体吸收法处理烟气量很小的情况下

可取

工艺简单、投资少;效率低,副产品不易处

效率低较低

微生物法适用范围较大工艺简单、能耗及处理费用低、效率高;仍

处于研究阶段

80% 低

活性炭吸附排气量不大同时脱硫脱硝,吸收剂用量大,设备庞大80%~90% 高电子束法适用范围较大同时脱硫脱硝,无二次污染,运行费用高85 高

前面介绍的多种脱硝工艺中,只有SCR和SNCR在大型燃煤电厂获得了较好的商业应用,其中SCR 在全球范围内有数百台的成功应用业绩和十几年的运行经验,日本和德国95%的烟气脱硝装置采用SCR 技术,由于该方法技术成熟、脱硝率高、几乎无二次污染,是我国烟气脱硝的重点工艺[15]。

通过比选,综合考虑得出结论,SCR技术是最优的控制氮氧化物的方法,所以本文重点阐述SCR脱硝工艺法。

2 脱硝原理及理论研究进展

2.1低NO X燃烧技术

国外从20世纪50年代就开始了燃烧过程中NO X生成机理和控制方法的研究工作。根据已取得的成果,影响NO X形成的主要因素为:1.燃烧中氮的含量2.反应区中氧、氮、一氧化氮和烃根的含量3.燃烧温度的峰值4.可燃物在火焰峰和反应区中的停留时间。目前在实施低NO X燃烧时,主要针对不同的影响因素和具体情况,选用不同的方法[16]。

低NOX燃烧技术的特点是工艺成熟,投资和运行费用低。在对NO X排放要求非常严格的国家(如日本德国),均采用低NO X燃烧器减少一半以上运行费用[17]。进入20世纪90年代,有关电厂锅炉供应商对其发展的低NO X燃烧器做了大量的改进和优化,使其日臻完善。

2.2 SCR原理

选择性催化还原法(Selective Catalytic Reduction,SCR)是指在催化剂的作用下,以NH3作为还原剂,“有选择性”地与烟气中的NOx反应并生成无毒无污染的N2和H2O[18]。还原剂可以是碳氢化合物(如甲醛、丙烯等)、氨、尿素等,工业应用的还原剂主要是氨,其次是尿素。以氨为还原剂,其主要反应方程式为:4NH3+4NO+O2=4N2+6H2O (1) 8NH3+6NO2=7N2+12H2O (2) 或4NH3+2NO2+O2=3N2+6H2O (2a) 上面第一个反应器是主要的,因为烟气中几乎95%的NO X以NO的形式存在。在没有催化剂的情况下,

上述化学反应只在很窄的温度范围内(980℃左右)进行,即选择性非催化还原(SNCR)。通过选择合适的催化剂,反应温度可以降低,并且可以扩展到适合电厂实际使用的290~430℃范围。最常用的金属基催化剂含有氧化钒、氧化钛、氧化铝、氧化钨等[19]。

2.3 SCR脱硝反应过程

SCR 烟气脱硝反应过程是一种典型的气固非均相催化反应,遵循气固相催化反应的一般原理。对于SCR 脱硝催化剂,孔道壁面称为催化剂外表面,壁内分布有数量巨大的肉眼看不见的细孔,细孔的表面称为催化剂内表面,与外表面积相比,这些细孔的总的表面积十分巨大,化学反应主要在内表面上进行。SCR 脱硝反应过程可概括为以下七个步骤:

(a)反应组分从流体主体向固体催化剂外表面传递;

(b)反应组分从催化剂外表面向催化剂内表面传递(细孔内的传质);

(c)反应组分在催化剂表面上进行吸附(Adsorption);

(d)反应组分在催化剂表面上进行化学反应;

(e)反应产物在催化剂表面上进行解吸附(Desorption);

(f)反应产物从催化剂内表面向催化剂外表面传递(细孔内的传质);

(g)反应产物从催化剂外表面向流体主体传递。

在以上七个步骤中,第一和第七步是气相主体与催化剂外表面进行的物质传递,称为外扩散过程,第二和第六步是催化剂细孔内的物质传递,称为内扩散过程,第三、四、五步统称为表面化学反应过程(Surface Reaction)[20]。

2.4 烟气脱硝催化剂

烟气脱硝催化剂通常有蜂窝状、管状、分子筛和板式结构,而最常用的形状则是蜂窝状,因为它不仅强度好,而且容易清理。几乎所有的催化剂都含有少量的氧化钒和氧化钛,因为它们具有较高的抗SO3的能力[21]。催化剂的结构、形状随它的用途而变化。SCR 催化剂的载体可以是氧化钛、沸石、氧化铁、或活性炭。燃煤锅炉使用的大多数催化剂是由钒和钛混合而成,然而最终的催化剂组分可能是由很多的活泼金属和载体物质构成,从而来满足每个SCR 设备的特殊需要[22]。在催化剂的使用过程中共要保证催化剂活性,防止催化剂中毒和积灰。另外,催化剂的自主研发与工业应用研究还没有完成。而催化剂的成本占脱硝工程总成本的30%~40%,如果能实现催化剂国产化,将使该技术的竞争力迈上更高台阶[23]。

3 国内外烟气脱硝装置的应用情况

SCR法的发明权属于美国,而日本率先与20世纪70年代对其实现了商业化。目前这一技术在发达国家已经得到了比较广泛的应用,欧洲、日本、美国是当今世界上对燃煤电厂NO X排放控制最先进的地区和国家。在这些地区和国家,除了采取燃烧控制之外,都大量使用SCR烟气脱硝技术[24]。德国于20世纪80年代就引入SCR技术,并规定发电量50MW以上的电厂都的配备SCR除NO X系统[25]。其火力发电厂的烟气脱硝装置中SCR法大约占95%。日本和欧洲在应用SCR方面所取得的经验已有大量的文献资料报道[26]。关于氨的逃逸氯、空间速度、NO

的脱除率、空气预热器的设计和运行在日本和欧洲都有很大提高。

X

我国从20世纪80年代就开始了火电厂烟气脱硝的研究工作,取得了一定的成绩。目前,我国已建的燃煤电站脱硝工程如下表所示[27]。

表2 我国已建燃煤电站脱硝工程

建设状态项目技术来源

已建漳州后石电厂6*600MW 中鼎&日立&SCR

已建江苏太仓电厂2*600 江苏苏源环保SCR

已建厦门嵩屿电厂4*300 上海电气集团&IHI SCR

已建广州恒运热电厂2*300 东锅&鲁齐SCR

通过不断的研发和实践,国内采用具有自主主权SCR核心技术的脱硝工程,大大推进了我国今后烟气脱硝事业的发展。

4 运行费用

燃煤烟气脱硝工艺和设备的选择应重视经济分析,应注意一下几点。1、立足长远2、技术成熟,运行可靠并且较多的应用业绩3、节约成本[28]。目前,在世界上各国应该较广泛的脱硝技术主要有SCR法、天然气再燃法、超细煤粉再燃法、低NO X燃烧器、燃烧优化调整等。下表对这几种脱硝技术的经济性进行了模糊的评判。

表3 几种脱硝技术的经济性比较[29]

指标SCR技术天然气再燃法超细煤粉再燃法低NO X燃烧器燃烧优化调整投资成本/(元/kW) 300 160 50 60 60

运行成本/(元/kW) 0.05 0.038 0.01 0.005 0.002 脱硝效率/% >80 60 55 50 40

技术成熟度高中等低高高

从中可以看出SCR 法是效率最高,成本也相对最高的一种脱硝工艺。昂贵的成本成为制约这项技术在我国发展的主要因素。目前随着环境法规的越发严格,并且在这些脱硝技术中,SCR具有占地面积小,脱硝效率高、技术成熟、运行可靠性好、技术进步快等优点SCR 技术已经成为首选。

目前,在美国、欧洲和日本,90%以上的火电机组采用低NO X燃烧器和SCR工艺来脱硝。下表为国外几家电厂运行SCR脱硝技术的经济指标。

表4国外电厂已运行SCR脱硝技术经济指标[30]

机组容量/(MW)未脱硝前NO X含量

/10-6

NO X脱硝率/% 投资成本/(美元/kW)氨逃逸/10-6

540 1700 80 125.2 5

540 570 80 105.2 5

540 430 80 140.2 5

100 660 80 122 2

300 660 80 88 2

300 660 80 83 2

500 660 80 80 2

1000 300 80 76 -

450 250 65 37 -

500 219 60 36 -

710 410 79 57 -

750 395 78 66 - 由上表可以看出,各电厂SCR脱硝成本差异较大,大约在36~140美元/kW的范围内变化。SCR的投资成本主要是由锅炉的结构特性和燃料特性决定的。由美国能源部的统计分析表明,如果锅炉采用前后墙对冲或四角切圆的燃烧方法,机组进行脱硝改造时投资成本大约50~70美元/kW;如果锅炉采用旋风燃烧的方式或者采用液态排渣的方式,机组进行脱硝改造时投资成本大约50~80美元/kW。而新机组在开展脱

硝工程时,投资成本一般少于40美元/kW。对于燃用石油或天然气的锅炉,由于NO X和粉尘的排放浓度都比较低,其脱硝改造的投资成本一般为25~30美元/kW。

脱硝的投资成本受很多因素的影响,除了以上提到的锅炉燃烧方式、燃烧特性以外,还与机组的容量、燃料中微量元素的含量、脱硝率、人口NO X浓度已经催化剂的布置安排等多种因素有关,这需要对SCR 工程进行认真分析以后,才能做出合理的评价。根据工程规模的不同,总费用也存在一定的差距。

5 结论与展望

环境污染的日趋严重越来越显而易见,环境容量的不足已经成为电力发展的瓶颈,国家有关部门发布的资料显示,我国大气环境恶化的形势是极其严峻的[31]。而氮氧化物的治理,不但需要的投资十分巨大,而且技术的复杂程度也比较高,所以,无论从经济上还是从技术上都是我们面临的又一个新的挑战。为了是这一技术在我国尽快得到应用,特提出以下建议。

(1)SCR与其它脱硝技术的联合应用技术方面大量资料说明,SCR和燃烧控制的组合,是世界上脱硝领域领先的国家中应用最多的联合脱硝措施。他们的经验表明,通过采取这些综合技术措施,可以在一定程度上节省投资和运行费用的同时,满足日益严格的NO X排放标准的要求。

(2)研究开发适合我国国情的工艺条件和催化剂品种目前广泛应用的SCR系统,大多是用以V2O5为载体的氧化钛基催化剂,价格较贵,通过研究发现开发以廉价材料为催化剂基础的低温SCR技术,将有可能使整体SCR费用降低。

(3)SCR 烟气脱硝技术作为目前最成熟、效率最高的脱硝技术,我国应加快技术引进、消化吸收,并建立起独立自主的选择性催化还原(SCR)脱硝技术体系。

总之,我国今后除了继续摸索燃烧控制NO X方面的现有技术和跟踪其新动向之外,应该有计划地开展对SCR的学习研究,加快立足于我国的物质基础和技术基础的有关问题的研究和应用试点工作。随着我国环保要求的不断提高,如何降低锅炉燃烧时NO X排放量显得越来越重要,在解决这一问题方面国外许多厂家和研究机构已做了大量的工作,积累了丰富的经验,值得我们学习和借鉴,从而使我国电站锅炉环保水平能够满足新时期社会发展的要求。

烟气脱硝装置( SCR)技术

烟气脱硝装置( SCR)技术 一、SCR装置运行原理如下: 氨气作为脱硝剂被喷入高温烟气脱硝装置中,在催化剂的作用下将烟气中NOx 分解成为N2和H2O,其反应公式如下: 4NO + 4NH3 +O2 →4N2 + 6H2O NO +NO2 + 2NH3 →2N2 + 3H2O 一般通过使用适当的催化剂,上述反应可以在200 ℃~450 ℃的温度范围内有效进行, 在NH3 /NO = 1的情况下,可以达到80~90%的脱硝效率。 烟气中的NOx 浓度通常是低的,但是烟气的体积相对很大,因此用在SCR装置的催化剂一定是高性能。因此用在这种条件下的催化剂一定满足燃煤锅炉高可靠性运行的要求。 二、烟气脱硝技术特点 SCR脱硝技术以其脱除效率高,适应当前环保要求而得到电力行业高度重视和广泛的应用。在环保要求严格的发达国家例如德国,日本,美国,加拿大,荷兰,奥地利,瑞典,丹麦等国SCR脱硝技术已经是应用最多、最成熟的技术之一。根据发达国家的经验, SCR脱硝技术必然会成为我国火力电站燃煤锅炉主要的脱硝技术并得到越来越广泛的应用。 图1为SCR烟气脱硝系统典型工艺流程简图。

三、SCR脱硝系统一般组成 图1为SCR烟气脱硝系统典型工艺流程简图, SCR系统一般由氨的储存系统、氨与空气混合系统、氨气喷入系统、反应器系统、省煤器旁路、SCR旁路、检测控制系统等组成。 液氨从液氨槽车由卸料压缩机送人液氨储槽,再经过蒸发槽蒸发为氨气后通过氨缓冲槽和 输送管道进人锅炉区,通过与空气均匀混合后由分布导阀进入SCR反应器内部反应, SCR反应器设置于空气预热器前,氨气在SCR 反应器的上方,通过一种特殊的喷雾装置和烟气均匀分布混合,混合后烟气通过反应器内催化剂层进行还原反应。

烟气脱硫脱硝行业介绍.docx

1.烟气脱硫技术 由于我国的大部分煤炭、铁矿资源中含硫量较高,因此在火力发电、钢铁、建材生产过程中由于高温、富氧的环境而产生了含有大量二氧化硫的烟气,从而给我国大气污染治理带来了极大的环保压力。 据国家环保部统计,2012年全国二氧化硫排放总量为2117.6万吨,其中工业二氧化硫排放量1911.7万吨,而分解到三个重点行业分别如下:电力和热力生产业为797.0万吨、钢铁为240.6万吨、建材为199.8万吨,三个行业共计1237.4万吨达到整个工业二氧化硫排的64.7%。“十一五”期间,我国全面推行烟气脱硫技术以后,我国烟气脱硫通过近十年的发展,积累了大量的工程实践经验,其中最常用的为湿法、干法以及半干法烟气三种脱硫技术。

1.1湿法脱硫技术 1.1.1石灰石-石膏法 这是一种成熟的烟气脱硫技术,在大型火电厂中,90%以上采用湿式石灰石—石膏法烟气脱硫工艺流程。该工艺采用石灰石(即氧化钙)浆液作为脱硫剂,与烟气中的二氧化硫发生反应生产亚硫酸钙,亚硫酸钙与氧气进一步反应生产硫酸钙。硫酸钙经过过滤、干燥后形成脱硫副产品石膏。 这项工艺的关键在于控制烟气流量和浆液的pH值,在合适的工艺条件下,即使在低钙硫比的情况下,也能保持较高的脱硫效率,通常可以达到95%以上。但是该工艺流程复杂且需要设置废水处理系统,因而工程造价高、占地面积大。同时,由于石灰石浆液的溶解性较低,即使通过调节了浆液pH值提高了石灰石的溶解度,但是在使用喷嘴时由于压力的变化,仍然容易发生堵塞喷嘴的情况并且易磨损设备,因而大幅度增加了脱硫设施后期的运营维修费用。 同时由于脱硫烟气中的粉尘成分复杂,在采用石灰石-石膏法时生成的脱硫石膏的杂质含量较多,在石灰石资源丰富的我国,这种品质有限的脱硫石膏很难具有利用价值,通常只能采用填埋进行处理。为了解决这一问题,有企业采用白云石(即氧化镁)作为脱硫剂来替代石灰石,从而使脱硫副产品由石膏变为了七水硫酸镁,而七水硫酸镁由于其水溶性高易于提纯,因而可以制成为合格品质的化学添加剂或化肥使用,其经济价值要远高于脱硫石膏。但是与其相关对的是脱硫剂白云石的成本也远高于石灰石,给企业后期运营成本也带来较大的压力。

锅炉脱硝改造工程技术要求

腾龙特种树脂(厦门)有限公司3×220 t/h锅炉烟气脱硝工程 技术要求 腾龙特种树脂(厦门)有限公司 2013年10月

一、概述 项目概况 腾龙特种树脂(厦门)有限公司成立于2002年4月,已建成3台220 t/h循环流化床锅炉,一台100MW抽汽式汽轮发电机组。根据福建省及厦门市十二五期间对氮氧化物减排的整体部署和要求,拟对上述3台锅炉进行脱硝改造。 本脱硝工程采用EPC总承包方式建造,本工程包括烟气脱硝装置从设计开始到质保期结束为止所涉及到的所有工作,包括但不仅仅限于工程的工艺系统设计、设备选择、采购、运输及储存、制造及安装、土建建(构)筑物的设计、施工、调试、试验及检查、试运行、考核验收、消缺、培训和最终交付投产,并能满足锅炉正常连续运行需要,通过环保部门验收合格后提供一年内设备易损易耗备件。 在签订总承包合同之后,发包方保留对本技术要求提出补充要求和修改权利,承包方应允诺予以配合。如提出修改,具体项目和条件由双方商定。 主要设备及参数 表1锅炉设计参数

脱硝技术指标要求: 1.3.1 锅炉50%~100%BMCR负荷范围内,脱硝后NOx排放浓度:﹤200mg/Nm3; 1.3.2 氨逃逸量:﹤8mg/Nm3; 1.3.3 锅炉脱硝验收期间将按NOx初始浓度为480毫克/立方米进行排放达标核算验收; 1.3.4脱硝设施投运后锅炉热效率影响:﹤%; 1.3.5 脱硝装置投运后烟气阻力增加﹤300Pa; 说明:

1)脱硝效率定义为 脱硝率=C1-C2 ×100% C1 式中: C1——脱硝系统运行时脱硝入口处烟气中NO X 含量(mg/Nm3)。 C2——脱硝系统运行时脱硝出口处烟气中NO X 含量(mg/Nm3)。 2)氨的逃逸率是指在脱硝装置出口的氨的浓度。 标准与规范 1.4.1 设计规范及要求 投标方提供规范、规程和标准为下列规范、规程和标准的最新版本,但不仅限于此: GB8978-1996 《污水综合排放标准》 GB50187-93 《工业企业总平面设计规范》 DL5028-93 《电力工程制图标准》 SDGJ34-83 《电力勘测设计制图统一规定:综合部分(试行)》 DL5000-2000 《火力发电厂设计技术规程》 DL/T5121-2000 《火力发电厂烟风煤粉管道设计技术规程》 YB9070-92 《压力容器技术管理规定》 GBl50-98 《钢制压力容器》 DL5022-93 《火力发电厂土建结构设计技术规定》 GB4272-92 《设备及管道保温技术通则》 DL/T776-2001 《火力发电厂保温材料技术条件》 DL/T5072-2007 《火力发电厂保温油漆设计规程》 GBZ1-2002 《工业企业设计卫生标准》 DL/T5054-96 《火力发电厂汽水管道设计技术规定》 SDGJ6-90 《火力发电厂汽水管道应力计算技术规定》 GBJ16-1987(2002)《建筑设计防火规范》

脱硝工艺介绍

图6-1 典型火电厂SCR法烟气脱硝工艺流程图 脱硝工艺介绍 1脱硝工艺 图1 LNB、SNCR和SCR在锅炉系统中的位置 目前成熟的燃煤电厂氮氧化物控制技术主要包括燃烧中脱硝技术和烟气脱硝技术,其中燃烧中脱硝技术是指低氮燃烧技术(LNB),烟气脱硝技术包括SCR、SNCR和SNCR/SCR 1.1 联 80~90% 气在SCR催化剂的作用下将烟气中的NOx还原成N 2和H 2 O。SNCR/SCR联用工艺系统复杂,而 且脱硝效率一般只有50~70%。 三种烟气脱硝技术的综合比较见表1。 表1 烟气脱硝技术比较

烟气中,与烟气中的NOx混合后,扩散到催化剂表面,在催化剂作用下,氨气(NH 3 )将烟气 中的NO和NO 2还原成无公害的氮气(N 2 )和水(H 2 O)(图3-6)。这里“选择性”是指氨有选 择的与烟气中的NOx进行还原反应,而不与烟气中大量的O 2 作用。整个反应的控制环节是烟气在催化剂表面层流区和催化剂微孔内的扩散。 图2 SCR反应示意图 SCR反应化学方程式如下: 4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O (3-1)

2NO 2 + 4NH 3 + O 2 → 3N 2 + 6H 2 O (3-2) 在燃煤烟气的NOx中,NO约占95%,NO 2 约占5%,所以化学反应式(3-1)为主要反应,实际氨氮比接近1:1。 SCR技术通常采用V 2O 5 /TiO 2 基催化剂来促进脱硝还原反应。脱硝催化剂使用高比表面积 专用锐钛型TiO 2作为载体,(钒)V 2 O 5 作为主要活性成分,为了提高脱硝催化剂的热稳定性、 机械强度和抗中毒性能,往往还在其中添加适量的WO 3、(钼)MoO 3 、玻璃纤维等作为助添 加剂。 催化剂活性成分V 2O 5 在催化还原NOx 的同时,还会催化氧化烟气中SO 2 转化成SO 3 (反 应 NH 4 。 后处理 2 )以 ?会增加锅炉烟道系统阻力900~1200Pa; ?系统运行会增加空预器入口烟气中SO3浓度,并残留部分未反应的逃逸氨气,两者 在空预器低温换热面上易发生反应形成NH 4HSO 4 ,进而恶化空预器冷端的堵塞和腐蚀,因此 需要对空预器采取抗NH 4HSO 4 堵塞的措施。 2.2S CR技术分类 烟气脱硝SCR工艺根据反应器在烟气系统中的位置主要分为三种类型(图3):高灰型、低灰型和尾部型等。

2 干法烟气脱硝净化技术

2 干法烟气脱硝净化技术 字体[大][中][小]干法脱硝技术反应温度高(与湿法脱硝相比),因而净化后烟气不需再加热,而且反应系统中不采用水洗工艺,省去后续废水处理问题。因此,干法是目前烟气脱硝应用较多的技术。 2.1 干法脱硝基本原理 干法脱硝目前主要包括催化还原法和无催化还原法两种。所谓催化还原法是利用不同的还原剂,在一定温度和催化剂作用下,NO x还原成N2和水。催化还原法的效果如何,关键是选用有效的还原剂,一般多采用甲烷、氨等作还原剂。它们与NO分别反应如下: CH4+4NO→2N2+CO2+2H2O 4NH3+6NO→5N2+6H2O 无催化还原法不用催化剂,但需在高温区进行。 2.2 选择性催化还原法 (SCR) 选择性催化还原法 (selective catalytic reduction) 简称SCR法。 2.2.1 化学原理 所谓选择性是指在催化剂存在条件下,NH3优先与NO发生还原脱除作用,而不与烟气中的氧进行氧化作用,其目的为了降低氨的消耗量。其反应式为 4NH3+4NO+3O2→4N2+6H2O 4NH3+2NO2+O2→3N2+6H2O 同时还发生一些副反应,其反应式如下: NH3的氧化反应 4NH3+5O2→4NO+6H2O NH3热分解反应 4NH3+3O2→2N2+6H2O 在没有催化剂条件下,上述反应只能在980℃左右进行。而采用催化剂时,其反应温度可控制在300~400℃之间。这一温度范围相当于将氨喷入省煤器区域和空气预热器区域的烟道中烟气温度的范围。此法脱硝率可达80%~90%。 2.2.2 工艺及工艺流程

图18-2为氨选择性催化还原法工艺流程示意图。本工艺采用的反应器为平行通道型(类似于平板和管状反应器),以防止磨损和堵塞。图18-3为SCR反应器结构图。 在反应器中,空间速度SV (space velocicy) 是关键参数。在燃煤电厂中,空间速度一般取1 000~3 000m/h。 NH3的输入量应适当,如输入量太少,难以满足脱硝反应需求; NH3输入量过大,造成NH3损失,易产生氨泄漏(带出) 问题。工业上常采用NH3/NO x摩尔比衡量,一般控制在1.4~1.5为宜。氨的泄漏量(带出) 以反应出口处NH3的浓度来控制,一般控制在 5mg/m3以下。 图18-2 选择性催化还原工艺流程 1—锅炉; 2—省煤器; 3—SCR; 4—空气预热器; 5—静电除尘器;6—脱硫系统; 7—烟囱; 8—SCAH;9—液氧储藏箱; 10—氨蒸发器;11 —氮—空气混合用装置

脱硫脱硝工艺概述

石灰石-石膏湿法脱硫工艺概述 烟气脱硫采用技术为石灰石-石膏湿法烟气脱硫工艺。脱硫剂采用石灰石粉(CaCO3), 石灰石由于其良好的化学活性及低廉的价格因素而成为目前世界上湿法脱硫广泛采用的脱硫剂制备原料。SO2与石灰石浆液反应后生成的亚硫酸钙, 就地强制氧化为石膏,石膏经二级脱水处理可作为副产品外售。 本设计方案采用传统的单回路喷淋塔工艺,将含有氧化空气管道的浆池直接布置在吸收塔底部, 塔内上部设置三层喷淋层和二级除雾器。从锅炉来的原烟气中所含的SO2与塔顶喷淋下来的石灰石浆液进行充分的逆流接触反应,从而将烟气中所含的SO2去除,生成亚硫酸钙悬浮。在浆液池中通过鼓入氧化空气,并在搅拌器的不断搅动下,将亚硫酸钙强制氧化生成石膏颗粒。脱硫效率按照不小于90%设计。其他同样有害的物质如飞灰,SO3,HCI 和HF也大部分得到去除。该脱硫工艺技术经广泛应用证明是十分成熟可靠的。 工艺布置采用一炉一塔方案,石灰石制浆、石膏脱水、工艺水、事故浆液系统等两塔公用。#1锅炉来的原烟气由烟道引出,经升压风机(两台静叶可调轴流风机) 增压后, 送至吸收塔,进行脱硫。脱硫后的净烟气经塔顶除雾器除雾后通过烟囱排放至大气。#2炉的烟道系统流程与#1炉相同,布置上与#1炉为对称布置。 脱硫剂采用外购石灰石粉,用滤液水制成30%的浆液后在石灰石浆液箱中贮存,通过石灰石浆液泵不断地补充到吸收塔内。脱硫副产品石膏通过石膏排出泵,从吸收塔浆液池抽出,输送至石膏旋流站(一级脱水系统),经过一级脱水后的底流石膏浆液其含水率约为50%左右,直接送至真空皮带过滤机进行二级过滤脱水。石膏被脱水后含水量降到10%以下。石膏产品的产量为20.42t/h(#1、#2炉设计煤种,石膏含≤10%的水分)。脱硫装置产生的废水经脱硫岛设置的废水处理装置处理后达标排放或回收利用。 脱硝工艺系统描述 3.1 脱硝工艺的原理和流程 本工程采用选择性催化还原法(SCR)脱硝技术。SCR脱硝技术是指在催化剂的作用下,还原剂(液氨)与烟气中的氮氧化物反应生成无害的氮和水,从而去除烟气中的NOx。选择性是指还原剂NH3和烟气中的NOx发生还原反应,而不与烟气中的氧气发生反应。 化学反应原理 4 NO + 4 NH3 + O2 --> 4 N2 + 6 H2O 6 NO2 + 8 NH3 + O2 --> 7 N2 + 12 H2O

SCR烟气脱硝工艺设计方案

SCR烟气脱硝工艺方案 1. 脱硝工艺的简介 有关NO X的控制方法从燃料的生命周期的三个阶段入手,限燃烧前、燃烧中和燃烧后。当前,燃烧前脱硝的研究很少,几乎所有的脱硝都集中在燃烧中和燃烧后的NO X的控制。所以在国际上把燃烧中NO X的所有控制措施统称为一次措施,把燃烧后的NO X控制措施统称为二次措施,又称为烟气脱硝技术。 目前普遍采用的燃烧中NO X控制技术即为低NO X燃烧技术,主要有低NO X燃烧器、空气分级燃烧和燃料分级燃烧。 应用在燃煤电站锅炉上的成熟烟气脱硝技术主要有选择性催化还原技术(Selective Catalytic Reduction,简称SCR)、选择性非催化还原技术(Selective Non-Catalytic Reduction,简称SNCR)以及SNCR/SCR混合烟气脱硝技术。 2 .SCR烟气脱硝技术 近几年来选择性催化还原烟气脱硝技术(SCR)发展较快,在欧洲和日本得到了广泛的应用,目前催化还原烟气脱硝技术是应用***多的技术。 1)SCR脱硝反应 目前世界上流行的SCR工艺主要分为氨法SCR和尿素法SCR两种。此两种法都是利用氨对NO X的还原功能,在催化剂的作用下将NO X(主要是NO)还原为对大气没有多少影响的N2和水。还原剂为NH3,其不同点则是在尿素法SCR中,先利用一种设备将尿素转化为氨之后输送至SCR触媒反应器,它转换的方法为将尿素注入一分解室中,此分解室提供尿素分解所需之混合时间,驻留时间及温度,由此室分解出来之氨基产物即成为SCR的还原剂通过触媒实施化学反应后生成氨及水。尿素分解室中分解成氨的方法有热解法和水解法,主要化学反应方程式为:

锅炉烟气脱硫脱硝工艺比选

锅炉烟气脱硫脱硝工艺比选 一、烟气脱硫: 根据吸收剂及脱硫产物在脱硫过程中的干湿状态,火力发电行业一般将脱硫技术分为湿法、干法和半干(半湿)法。 (1)湿法烟气脱硫技术是用含有吸收剂的浆液在湿态下脱硫和处理脱硫产物,该方法具有脱硫反应速度快、脱硫效率高、吸收剂利用率高、技术成熟可靠等优点,但也存在初投资大、运行维护费用高、需要处理二次污染等问题。应用最多的湿法烟气脱硫技术为石灰石湿法,如果将脱硫产物处理为石膏并加以回收利用,则为石灰石-石膏湿法,否则为抛弃法。 其他湿法烟气脱硫技术还有氨洗涤脱硫和海水脱硫等。 (2)干法烟气脱硫工艺均在干态下完成,无污水排放,烟气无明显温降,设备腐蚀较轻,但存在脱硫效率低、反应速度慢、石灰石利用率较低等问题,有些方法在设备大型化的进程中困难很大,技术尚不成熟(主要有炉内喷钙等技术)。 半干法通常具有在湿态下进行脱硫反应,在干态下处理脱硫产物的特点,可以兼备干法和湿法的优点。主要包括喷雾干燥法、炉内喷钙尾部增湿活化法、烟气循环流化床脱硫法、电子束辐照烟气脱硫脱氮法等。下表为几种主要脱硫工艺的比较。

目前,在众多的脱硫工艺中,石灰石—石膏湿法烟气脱硫工艺(简称FGD)应用最广。据统计,80%的脱硫装置采用石灰石(石灰)—石膏湿法,10%采用喷雾干燥法(半干法),10%采用其它方法。湿法脱硫工艺是目前世界上应用最多、最为成熟的技术,吸收剂价廉易得、副产物便于利用、煤种适应范围宽,并有较大幅度降低工程造价的可能性。 安徽电力设计院建议采用炉内与炉外湿法脱硫相结合的方法进行脱硫,脱硫效率可达98%。 二、脱硝: 烟气脱硝工艺可以分为湿法和干法两大类。 (1)湿法,是指反应剂为液态的工艺技术。通过氧化剂O2、ClO2、KMnO2把NO x氧化成NO2,然后用水或碱性溶液吸收脱硝。包括臭氧氧化吸收法和ClO2气相氧化吸收法。 (2)干法,是指反应剂为气态的工艺技术。包括氨催化还原法和非催化还原法。 无论是干法还是湿法,依据脱硝反应的化学机理,又可以分为还原法、分解法、吸附法、等离子体活化法和生化法等。 目前,世界上较多使用的湿法有气相氧化液相吸收法和液相氧化吸收法,较多使用的干法有选择性催化还原法(SCR)。 SCR脱硝:

SCR烟气脱硝工艺方案

SCR烟气脱硝工艺 方案

SCR烟气脱硝工艺方案 1. 脱硝工艺的简介 有关NO X的控制方法从燃料的生命周期的三个阶段入手,限燃烧前、燃烧中和燃烧后。当前,燃烧前脱硝的研究很少,几乎所有的脱硝都集中在燃烧中和燃烧后的NO X的控制。因此在国际上把燃烧中NO X的所有控制措施统称为一次措施,把燃烧后的NO X控制措施统称为二次措施,又称为烟气脱硝技术。 当前普遍采用的燃烧中NO X控制技术即为低NO X燃烧技术,主要有低NO X燃烧器、空气分级燃烧和燃料分级燃烧。 应用在燃煤电站锅炉上的成熟烟气脱硝技术主要有选择性催化还原技术(Selective Catalytic Reduction,简称SCR)、选择性非催化还原技术(Selective Non-Catalytic Reduction,简称SNCR)以及SNCR/SCR混合烟气脱硝技术。 2 .SCR烟气脱硝技术 近几年来选择性催化还原烟气脱硝技术(SCR)发展较快,在欧洲和日本得到了广泛的应用,当前催化还原烟气脱硝技术是应用***多的技术。 1)SCR脱硝反应 当前世界上流行的SCR工艺主要分为氨法SCR和尿素法SCR两种。此两种法都是利用氨对NO X的还原功能,在催化剂的作用下将NO X(主要是NO)还原为对大气没有多少影响的N2和水。还原剂为NH3,其不同点则是在尿素法SCR中,先利用一种设备将尿素转化

为氨之后输送至SCR触媒反应器,它转换的方法为将尿素注入一分解室中,此分解室提供尿素分解所需之混合时间,驻留时间及温度,由此室分解出来之氨基产物即成为SCR的还原剂经过触媒实施化学反应后生成氨及水。尿素分解室中分解成氨的方法有热解法和水解法,主要化学反应方程式为: NH2CONH2+H2O→2NH3+CO2 在整个工艺的设计中,一般是先使氨蒸发,然后和稀释空气或烟气混合,***后经过分配格栅喷入SCR反应器上游的烟气中。典型的SCR反应原理示意图如下: 在SCR反应器内,NO经过以下反应被还原: 4NO+4NH3+O2→3N2+6H2O 6NO+4NH3→5N2+6H2O 当烟气中有氧气时,反应第一式优先进行,因此,氨消耗量与NO 还原量有一对一的关系。 在锅炉的烟气中,NO2一般约占总的NO X浓度的5%,NO2参与的反应如下: 2NO2+4NH3+O2→3N2+6H2O 6NO2+8NH3→7N2+12H2O 上面两个反应表明还原NO2比还原NO需要更多的氨。 在绝大多数锅炉烟气中,NO2仅占NO X总量的一小部分,因此NO2的影响并不显著。

烟气脱硝工艺

综述燃煤电厂烟气脱硝技术 摘要:人们对空气质量的要求越来越高,氮氧化物污染引起了人们的广泛注意。废气脱硝工艺一直是研究重点。本文通过对比燃煤电厂的脱硝的各种工艺,选出了最优工艺——SCR技术,本文综述了SCR的原理、国内外研究状况、应用情况及运行费用。通过本文可以使人们更好的了解燃煤电厂脱硝工艺。 关键字:烟气脱硝;低NO X燃烧技术;SCR技术 Summary of coal-fired power plant flue gas denitrification technology Abstract: People on air quality have become increasingly demanding, nitrogen oxide pollution has aroused extensive attention. Exhaust gas denitration process has been a research priority. By contrast coal-fired power plant denitration various processes, optimum process --SCR elected technology, this paper reviews the SCR principle, research status, applications and operating costs. Through this allows people to better understand the coal-fired power plant denitrification process. Key words: Flue gas denitrification ; Low NO X Combustion Technology ;SCR 氮氧化物是大气主要污染物之一。通常所说的氮氧化物有多种不同形式,如N2O、NO、NO2、N2O3和N2O5等,其中NO和NO2所占比例最大,是最重要的大气污染物[1]。NO X排入大气后,通过物理、化学作用,引发一系列的环境问题。对人体健康和生态环境造成威胁[2]。 氮氧化物的产生途径主要有一下几个方面:1.机动车辆排放的尾气2.工业生产过程中产生了氮氧化物3. 燃烧过程产生的氮氧化物。其中燃烧过程产生的氮氧化物包括热力型、瞬时型和燃料型[3]。 机动车排气量较小,排放源流动分散。主要采用机内净化的方法去除氮氧化物[4]。某些工业生产过程也会排出NO X废气,一般来说,它具有成分相对比较单一和气量小的特点,此类废气在治理中多采用湿法,并且尽量将分离出来的NO返回原生产系统,或者形成新的副产品,或者加以无害化处理[5]。在燃烧过程中,控制NO X的排放有两种途径:一种是在锅炉燃烧中控制燃料的燃烧,减少氮氧化物的生成;另一种是对烟气进行处理,消除烟气中的氮氧化物[6]。 交通运输、电力和火电厂排放的NO X占全部排放量的90%以上[7]。电力工业又是燃煤大户。具预测,到2020年,原煤消耗将达到20.5亿~29.0亿吨,燃煤产生的NO X将急剧增加[8]。由于火电厂燃烧所产生的NO X所生成的含量最多且成分较复杂,所以引起了人们的广泛重视。所以本文主要介绍燃煤电站烟气脱硝技术。 1 烟气脱硝工艺比选 烟气脱硝是指从烟气中去除氮氧化物,是世界各国控制氮氧化物污染、防治酸雨危害的主要措施[9]。据火电厂燃煤锅炉调查,一般采用低氮氧化合物燃烧技术(包括低负荷稳燃改造)的锅炉排烟中氮氧化物的浓度为500~900mg/m3,而未采用低氮氧化合物燃烧技术的锅炉排烟中NO X的质量浓度定700~1300mg/m3之间,平均1000g/m3左右。所以在烟气脱硝之前先采用低NO X燃烧技术,减少氮氧化物的产生,为后续处理减轻负担[10]。

火电厂SCR烟气脱硝工艺系统设计

火电厂SCR烟气脱硝工艺系统设计 摘要:目前国内燃煤电厂已投入使用的SCR 脱硝机组大多数采用国外技术,而我国的脱硝工作现在还处于初步阶段,SCR 脱硝技术的工艺设计和运行控制经验相对缺乏,尚未形成一套完整成熟的自主知识产权技术。SCR 脱硝技术工艺设计和运行控制手段的不断完善和优化,对于SCR 技术的应用和推广具有积极的推动作用,也对改善我国大气环境质量有着深远的意义。因此,本文主要对火电厂SCR烟气脱硝工艺系统设计进行了一系列的探讨和论述。 关键词:火电厂,SCR,烟气脱硝,系统设计 一、引言 SCR技术是当前世界上主流的烟气脱硝工艺,自上世纪70年代在日本燃煤电厂开始正式商业应用以来,目前在全世界范围内得到广泛的应用,也是中国烟气脱硝采用最多的技术,特别是近几年SCR烟气脱硝得到大面积的应用。SCR 烟气脱硝技术具有脱硝效率高,成熟可靠,工艺系统简单,虽然投资费用偏高,但是运行十分稳定。然而在进行火电厂SCR烟气脱硝工艺设计的过程中往往存在一些问题,会产生严重的后果。所以加强火电厂SCR烟气脱硝设计探讨及学习是十分有必要的。 二、SCR脱硝工艺介绍 选择性催化还原法(Selective Catalytic Reduction,SCR)工艺是当今世界各国应用最多且最为成熟的工艺。SCR原理是在催化剂作用下,还原剂NH3在300-420℃下将NO和NO2还原成N2,而几乎不发生NH3的氧化反应,从而提高了N2的选择性,减少了NH3的消耗。烟气脱硝SCR工艺根据反应器在烟气系统中的位置主要分为三种类型:高灰型、低灰型和尾部型等。 1、高灰型SCR工艺:脱硝催化剂布置在省煤器和空预器之间,烟气中粉尘浓度和SO2含量高,工作环境相对恶劣,催化剂活性下降较快,需选用低SO2氧化活性、大节距、大体积催化剂,但烟气温度合适(300-400℃),经济性最高,是目前燃煤电厂烟气脱硝的主流布置形式。 2、低灰型SCR工艺:脱硝催化剂位于除尘器和脱硫设施之间,烟气中粉尘浓度低,但SO2含量高,可选用低SO2氧化活性、小节距、中体积催化剂,但为了满足催化剂反应活性温度要求,需相应配置高温除尘系统,目前此项工艺仅在日本有所应用。 3、尾部型SCR工艺:脱硝催化剂位于脱硫设施后,烟气中粉尘浓度和SO2

一种新型烟气脱硝工艺介绍

一种新型烟气脱硝工艺介绍 发表时间:2017-05-03T17:17:26.717Z 来源:《基层建设》2017年3期作者:林华峰 [导读] 摘要:现行常规的炉后脱硝均为氨基脱硝,在运行上稳定性和工艺副作用上有着不可规避的缺陷。 浙江北高峰环境工程有限公司 310013 摘要:现行常规的炉后脱硝均为氨基脱硝,在运行上稳定性和工艺副作用上有着不可规避的缺陷。浙江大学王智化教授团队新研发的活性分子脱硝工艺比较好的解决了氨基脱硝所存在的问题,为烟气脱硝领域提供了一种全新的思路和处理方法。 关键词:活性分子;新型脱硝;浙江大学 一、脱硝工业现状 我国是世界上主要的煤炭生产和消费国,也是以煤炭为主要一次能源的国家。据统计,2002年,原煤在我国一次能源构成中所占比例为70.7%,而用于发电的煤炭约占煤炭消费量的49.1%。 NOx的排放是酸雨的形成和对大气中臭氧层破坏的重要原因之一,起着非常重要的作用。据有关部门的初步估算:1990年我国NOx的排放量约为910万吨,到2000年和2010年,我国的NOx排放量将分别达到1561万吨和2194万吨,其中近70%来自于煤炭的直接燃烧,以燃煤为主的电力生产是NOx排放的主要来源。鉴于我国的能源消耗量今后将随经济的发展不断增长,NOx排放量也将持续增加,如不加强控制NOx的排放量,NOx将对我国大气环境造成严重的污染。 现今处理NOx排放的主要脱硝工艺为SNCR(选择性非催化还原反应)、SCR(选择性催化还原反应)、SNCR+SCR组合脱硝工艺。主要原理是利用氨气的还原性在850-950℃的温度窗口下自发与烟气中的NOx反应,生成氮气和水。或者在320-400℃的温度区间下在催化剂的作用下与NOx反应,达到脱硝的目的。 二、氨基脱硝缺陷 一般而言SNCR工艺仅适用于循环流化床锅炉,从技术上一般可达到60%的脱除效率,但在其他炉型上效果会大打折扣。实现SNCR 脱硝效果的最重要保障是反应的温度窗口,反应温度超过950℃,喷入的氨气会在高温下被氧化为NOx,起反效果,温度低于850℃,脱硝反应活性会慢慢降低,乃至完全不发生反应,造成喷入氨气的大量逃逸。因此SNCR工艺一般都会面对锅炉低负荷状态运行时,脱硝反应失效的尴尬局面。即使在正常负荷运行状态下,由于炉内气流流场的多变或是氨水喷射位置的不合理性都会导致烟气与氨水不能完全混合反应,一般的SNCR工艺或多或少均存在氨逃逸的情况,无法根治,只能减轻,运行较好的控制氨逃逸在8ppm以内,但国内运行时为了获得好看的脱硝数据,往往会过量喷氨,导致逃逸加剧。 可见单纯的SNCR脱硝工艺适用面较为狭隘,运行稳定性较差,脱硝效率不高,现如今超低排放要求的NOx排放指标在50mg/Nm3,单纯采用SNCR脱硝工艺很难达到超低排放的要求。 SCR工艺是当前最为普遍和稳定的脱硝处理工艺,借助催化剂的作用在合适的温度区间能达到90%以上的脱除效率。SCR一般分为氨区系统、喷射系统和SCR反应器系统,相对SNCR而言工艺体量较大,投资额较高。由于投入了催化剂,在CFD流场优化的帮助下氨气能更快的被捕捉,反应更敏捷,效率更稳定,氨逃有效控制在3ppm以内。但同样也是催化剂的作用一部分SO2被氧化成SO3导致酸腐蚀增加,同时SO3容易和逃逸的氨反应,生成硫酸氢铵。硫酸氢氨的沉积温度在150~230℃,粘度较大,加剧了对空预器换热元件的堵塞和腐蚀。据检测在有催化剂的锅炉尾部烟道中SO3的总量约是没有催化剂SO3总量近2倍,这是SCR工艺的主要存在问题。其次,催化剂本身也有一定的风阻,一般SCR反应器阻力在1000Pa左右,如催化剂的清灰效果不佳,阻力更大,这无疑增加了引风机的运行功耗。而且催化剂的化学使用寿命在2年左右,废弃的催化剂作为微废处理或者化学再生也是一笔不小的费用。 SNCR+SCR联合脱硝工艺是介于两种工艺之间的一种组合工艺,综合了两种工艺的优缺点,实现造价和运行成本的最优化。 三、活性分子脱硝介绍 活性分子脱硝技术是浙江大学王智化教授团队研发的一种新型脱硝技术。2014年底,活性分子多种污染物一体化脱除新技术在杭州富阳中策清泉有限公司6万标方炭黑尾气的工业上首次应用,并顺利通过了168运行考核。实现了烟气NOx由初始浓度800mg/Nm3降至 20mg/Nm3,脱除效果远低于火电厂污染物国家燃煤排放标准(GB13223-2011,重点地区NOx<100mg/Nm3、SO2<50mg/Nm3)。活性分子脱硝技术正是转为工业应用。 活性分子脱硝技术是在不影响现有工艺的前提下,通过低温氧化结合湿法脱硫塔实现NOx排放控制。主要采用的是活性分子分配器和喷嘴喷入高浓度活性分子,与烟气充分混合后实现对NOx的高效氧化,再通过脱硫塔进行污染物的洗涤脱除。 该技术的原理是利用活性分子的强氧化性,它可以将烟气NOx中的不溶性NO氧化成可溶于水的NO2、NO3、N2O5等高价氮氧化物,将零价汞(Hg0)氧化成可溶性二价汞(Hg2+),结合湿法洗涤塔与SO2、HCl、HF等可溶性酸性气体一同去除。

烟气脱硝化学反应及应用

烟气脱硝的化学反应及其应用技术 【摘要】介绍NH3还原剂还原NO x的主要化学反应与相应的副反应。SCR和SNCR等实用技术介绍以及它们之间的比较。 【关键词】NO x、烟气脱硝、SCR、SNCR 【正文】将NO还原成N2,需要加入还原剂,氨(NH3)是目前烟气脱硝最有效的还原剂。在有氧情况下,NH3与烟气中NO x的还原反应如式(1)和式(2): 4NO + 4NH3+ O2→4N2+ 6H2O (1) 2NO2+ 4NH3+ O2→3N2+ 6H2O (2) 由于烟气中绝大多数是NO,在NO/NH3摩尔比接近1、氧气所占比例较小时,反应(1)是主要的,即N2是主要的反应产物,所以N2产生率可反映催化剂的选择性。对于选择性高的催化剂,N2的产生率应近似 于100%。此外,NO和NH3还有一个副反应,生成副产物N2O。N2O是温室气体,式(3)的反应是不希望发生的: 4NO + 4NH3+ 3O2→4N2O + 6H2O (3) 如果NO/ NH3<1,就意味着NH3除了式(1)反应外还有别的反应,一部分被氧气而不是被NO氧化。 NH3可以通过下述3个反应式被氧气氧化[1]: 2NH3+ 3/2O2→N2+ 3H2O (4) 2NH3+ 2O2→N2O + 3H2O (5) 2NH3+ 5/2O2→2NO + 3H2O (6) 近年来式(4)的反应得到了深入的研究,可用它来减少催化反应器

尾部氨的逃逸。 技术介绍:a、SCR技术还原剂以NH3为主,反应温度为320~400℃,催化剂成分主要为TiO2、V2O5、WO3,脱硝效率为70~90。还原剂喷射位置多选择于省煤器与SCR反应器间烟道内,会导致SO2氧化,NH3逃逸体积分数为3×10-6~5×10-6;NH3与SO3易形成铵盐,造成空气预热器堵塞或腐蚀;催化剂会造成系统压力损失;燃料的高灰分会磨耗。催化剂为,碱金属氧化物,会使催化剂钝化;此外,还受省煤器出口烟气温度的影响。 b.SNCR技术还原剂可用NH3或尿素,反应温度为900~1100℃,不使用催化剂,脱硝效率为25~50,还原剂通常在炉膛内喷射,但需与锅炉厂家配合;不会导致SO2氧化,NH3逃逸体积分数为10×10-6~15×10-6;对空气预热器的影响为不导致SO2的氧化,造成堵塞或腐蚀的机会为三者最低,没有系统压力损失;燃料对其无影响,此外,它受炉膛内烟气流速及温度分布的影响。 c.SNCR与SCR混合型技术还原剂可使用NH3或尿素,反应温度前段为900~1100℃,后段为320~400℃,后段加装少量催化剂(成分主要为TiO2,V2O5,WO3);脱硝效率为40~70;锅炉负荷不同还原剂喷射位置也不同,通常位于一次过热器或二次过热器后端;SO2氧化较SCR低,NH3逃逸体积分数为5×10-6~10×10-6;对空气预热器影响为SO2氧化率较SCR低,造成堵塞或腐蚀的机会较SCR低;催化剂用量较SCR小,产生的压力损失相对较低,燃料的影响与SCR相同;受锅炉的影响与SNCR影响相同。通过对以上3

莱烧结烟气脱硫脱硝工艺的比较(标准版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 莱烧结烟气脱硫脱硝工艺的比较 (标准版)

莱烧结烟气脱硫脱硝工艺的比较(标准版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 摘要:烧结机头是钢铁行业SO2和NOx主要排放源。随着环境保护的压力不断加大,烧结烟气脱硫脱硝工艺的选择就显得尤为重要。本文主要介绍了目前国内外主流的烧结烟气脱硫脱硝工艺,并对各种工艺的优缺点进行比较分析。 钢铁生产在国民经济中具有重要作用,同时污染也较为严重。为了降低钢铁行业的污染物排放水平,生态环境部等五部门于2019年4月联合发布了《关于推进实施钢铁行业超低排放的意见》(环大气[2019]35号),在全国范围内推动钢铁行业超低排放改造。钢铁行业是SO2和NOx的排放大户,而烧结机头烟气是SO2和NOx的主要排放源。钢铁行业的超低排放要求烧结烟气SO2和NOx的排放质量浓度小时均值不高于35mg/m3和50mg/m3。因此,钢铁企业烧结烟气为满足达标排放的要求,必须采取脱硫脱硝措施。 1我国烧结烟气脱硫脱硝现状 目前,我国烧结烟气采取脱硫措施较为普遍,大部分烧结机均采

烟气脱硫脱硝技术简介

烟气脱硫脱硝技术简介 :烟气脱硫脱硝技术是应用于多氮氧化物、硫氧化物生成化工工业的一项锅炉烟气净化技术。氮氧化物、硫氧化物是空气污染的主要来源之一。故应用此项技术对环境空气净化益处颇多。目前已知的烟气脱硫脱硝技术有PAFP、ACFP、软锰矿法、电子束氨法、脉冲电晕法、石膏湿法、催化氧化法、微生物降解法等技术。 一、磷铵肥法(PAFP)烟气脱硫技术 磷铵肥法(Phosphate Ammoniate Fertilizer Process,简称PAFP),是我校和四川省环科院、西安热工所、大连物化所等单位共同研究开发的烟气脱硫新工艺(国家“七五”(214)项目新技术083号)。其脱硫率≥95%,脱硫副产品为氮硫复合肥料。此技术的特点是将烟气中的SO2脱除并针对我国硫资源短缺的现状,回收SO2取代硫酸生产肥料,在解决污染的同时,又综合利用硫资源,是一项化害为利的烟气脱硫新方法。而且该技术已于1991年通过国家环保局组织的正式鉴定,获国家“七五”攻关重大成果奖,四川省科技进步二等奖等多项奖励。 二、烟气脱硫脱硝技术活性炭纤维法(ACFP)烟气脱硫技术 活性炭纤维法(Activated Carbon FiberProcess,简称ACFP)烟气脱硫技术是采用新材料脱硫活性炭纤维催化剂(DSACF)脱除烟气中SO2并回收利用硫资源生产硫酸或硫酸盐的一项新型脱硫技术。 该技术脱硫率可达95%以上,单位脱硫剂处理能力会高于活性炭脱硫一个数量级以上(一般GAC处理能力为102Nm3/h.t,而ACF可达104Nm3/h.t)。由于工艺过程简单,设备少,操作简单。投资和运行成本低,且能在消除SO2污染同时回收利用硫资源,因而可在电厂锅炉烟气、有色冶炼烟气、钢铁厂烧结烟气及各种大中型工业锅炉的烟气SO2污染控制中采用,改善目前烟气脱硫技术装置“勉强上得起,但运行不起”的状况。该烟气脱硫技术按10万KW机组锅炉机组烟气计,装置投资费用3500万,年产硫酸3万~4万吨。仅用于全国高硫煤电厂脱硫每年约可减少SO2排放240万吨,副产硫酸360万吨,产值可达数十亿元。该技术已获国家发明专利,并已列入国家高新技术产业化项目指南。 三、烟气脱硫脱硝技术软锰矿法烟气脱硫资源化技术 MnO2是一种良好的脱硫剂。在水溶液中,MnO2与SO2发生氧化还原发应,生成了MnSO4。软锰矿法烟气脱硫正是利用这一原理,采用软锰矿浆作为吸收剂,气液固湍动剧烈,矿浆与含SO2烟气充分接触吸收,生成副产品工业硫酸锰。该工艺的脱硫率可达90%,锰矿浸出率为80%,产品硫酸锰达到工业硫酸锰要求(GB1622-86)。 常规生产工业硫酸锰方法是:软锰矿粉与硫酸和硫精沙混合反应,产品净化得到工业硫酸锰。由于我国软锰矿品位不高,硫酸耗量增大,成本上升。该法与常规生产工业硫酸锰相比是,不用硫酸和硫精沙,溶液杂质也降低,原料成本和工艺成本都有降低,比常规生产工业硫酸锰方法节约成本25%以上,加之国家对环保产品在税收上的优惠,竞争力将大大提高。

XXX毕业设计 焦炉烟气脱硝工艺设计

本科毕业设计 第Ⅰ页共Ⅱ页1 绪论 (1) 1.1 设计背景及意义 (1) 1.2设计任务 (1) 1.3国内外烟气脱销技术应用及发展 (2) 1.3.1选择性催化还原法(SCR) (2) 1.3.2选择性非催化还原法(SNCR) (3) 1.3.3液体吸收法 (3) 1.3.4微生物法 (3) 1.3.5活性炭吸附法 (4) 1.3.6电子束法 (4) 2工艺流程设计 (5) 2.1工艺路线的选择 (5) 2.2工艺流程的设计 (6) 2.2.1选择性催化还原法的工艺原理 (6) 2.2.2脱销还原剂的选择 (7) 2.2.3催化剂的选择 (9) 2.2.4反应流程的确定 (10) 2.2.5工艺流程说明 (11) 3物料衡算与能量衡算 (12) 3.1物料衡算 (12) 3.1.1已知条件 (12) 3.1.2数据计算 (12) 3.1.3物料衡算表 (16) 3.2热量衡算 (16) 3.2.1已知条件 (16) 3.2.2数据计算 (17)

3.2.3热量衡算表 (19) 4设备的工艺设计与选型 (19) 4.1反应器的设计 (19) 4.1.1主要设计参数 (19) 4.2液氨储罐 (22) 4.2.1设备结构及选型 (22) 4.3液氨蒸发器 (23) 4.4缓冲罐 (24) 4.4.1圆筒的计算 (24) 4.4.2封头 (25) 4.4.3高度 (25) 4.5喷氨格栅的设计 (26) 5管道计算 (27) 5.1 材料的选取 (27) 5.2 确定管径 (27) 5.3 选择管壁的厚度 (27) 5.4 确定管道的连接方式 (28) 5.5 管道布置 (28) 设计结果 (288) 致谢 (30) 参考文献 (31) 附图 (32)

烟气脱硫脱硝技术大汇总

烟气脱硫脱硝技术大汇总 第一部分 脱硫技术 目前烟气脱硫技术种类达几十种,按脱硫过程是否加水和脱硫产物的干湿形态,烟气脱硫分为:湿法、半干法、干法三大类脱硫工艺。湿法脱硫技术较为成熟,效率高,操作简单。 1湿法烟气脱硫技术 优点:湿法烟气脱硫技术为气液反应,反应速度快,脱硫效率高,一般均高于90%,技术成熟,适用面广。湿法脱硫技术比较成熟,生产运行安全可靠,在众多的脱硫技术中,始终占据主导地位,占脱硫总装机容量的80%以上。 缺点:生成物是液体或淤渣,较难处理,设备腐蚀性严重,洗涤后烟气需再热,能耗高,占地面积大,投资和运行费用高。系统复杂、设备庞大、耗水量大、一次性投资高,一般适用于大型电厂。 分类:常用的湿法烟气脱硫技术有石灰石-石膏法、间接的石灰石-石膏法、柠檬吸收法等。 A石灰石/石灰-石膏法: 原理:是利用石灰石或石灰浆液吸收烟气中的SO2,生成亚硫酸钙,经分离的亚硫酸钙(CaSO3)可以抛弃,也可以氧化为硫酸钙 (CaSO4),以石膏形式回收。是目前世界上技术最成熟、运行状况最稳定的脱硫工艺,脱硫效率达到90%以上。 目前传统的石灰石/石灰—石膏法烟气脱硫工艺在现在的中国市场应用是比较广泛的,其采用钙基脱硫剂吸收二氧化硫后生成的亚硫酸钙、硫酸钙,由于其溶解度较小,极易在脱硫塔内及管道内形成结垢、堵塞现象。对比石灰石法脱硫技术,双碱法烟气脱硫技术则克服了石灰石—石

灰法容易结垢的缺点。 B 间接石灰石-石膏法: 常见的间接石灰石-石膏法有:钠碱双碱法、碱性硫酸铝法和稀硫酸吸收法等。原理:钠碱、碱性氧化铝(Al2O3·nH2O)或稀硫酸(H2SO4)吸收SO2,生成的吸收液与石灰石反应而得以再生,并生成石膏。该法操作简单,二次污染少,无结垢和堵塞问题,脱硫效率高,但是生成的石膏产品质量较差。 C 柠檬吸收法: 原理:柠檬酸(H3C6H5O7·H2O)溶液具有较好的缓冲性能,当SO2气体通过柠檬酸盐液体时,烟气中的SO2与水中H发生反应生成H2SO3络合物,SO2吸收率在99%以上。这种方法仅适于低浓度SO2烟气,而不适于高浓度SO2气体吸收,应用范围比较窄。 另外,还有海水脱硫法、磷铵复肥法、液相催化法等湿法烟气脱硫技术。 2干法烟气脱硫技术 优点:干法烟气脱硫技术为气同反应,相对于湿法脱硫系统来说,设备简单,占地面积小、投资和运行费用较低、操作方便、能耗低、生成物便于处置、无污水处理系统等。 缺点:但反应速度慢,脱硫率低,先进的可达60-80%。但目前此种方法脱硫效率较低,吸收剂利用率低,磨损、结垢现象比较严重,在设备维护方面难度较大,设备运行的稳定性、可靠性不高,且寿命较短,限制了此种方法的应用。 分类:常用的干法烟气脱硫技术有活性碳吸附法、电子束辐射法、荷电干式吸收剂喷射法、金属氧化物脱硫法等。 典型的干法脱硫系统是将脱硫剂(如石灰石、白云石或消石灰)直接喷入炉内。以石灰石为例,在高温下煅烧时,脱硫剂煅烧后形成多孔的氧化

相关主题
文本预览
相关文档 最新文档