当前位置:文档之家› 工程热力学课程教案

工程热力学课程教案

工程热力学课程教案
工程热力学课程教案

工程热力学课程教案

Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

《工程热力学》课程教案

*** 本课程教材及主要参考书目

教材:

沈维道、蒋智敏、童钧耕编,工程热力学(第三版),高等教育出版社,2001.6手册:

严家騄、余晓福着,水和水蒸气热力性质图表,高等教育出版社,1995.5 实验指导书:

华北电力大学动力系编,热力实验指导书,2001

参考书:

曾丹苓、敖越、张新铭、刘朝编,工程热力学(第三版),高等教育出版社,2002.12

王加璇等编着,工程热力学,华北电力大学,1992年。

朱明善、刘颖、林兆庄、彭晓峰合编,工程热力学,清华大学出版,1995年。

曾丹苓等编着,工程热力学(第一版),高教出版社,2002年

全美经典学习指导系列,[美]M.C. 波特尔、C.W. 萨默顿着郭航、孙嗣莹等

译,工程热力学,科学出版社,2002年。

何雅玲编,工程热力学精要分析及典型题精解,西安交通大学出版社,2000.4

概论(2学时)

1. 教学目标及基本要求

从人类用能的历史和能量转换装置的实例中认识理解:热能利用的广泛性和特殊性;工程热力学的研究内容和研究方法;本课程在专业学习中的地位;本课程与后续专业课程乃至专业培养目标的关系。

2. 各节教学内容及学时分配

0-1 热能及其利用(0.5学时)

0-2 热力学及其发展简史(0.5学时)

0-3 能量转换装置的工作过程(0.2学时)

0-4 工程热力学研究的对象及主要内容(0.8学时)

3. 重点难点

工程热力学的主要研究内容;研究内容与本课程四大部分(特别是前三大部分)之联系;工程热力学的研究方法

4. 教学内容的深化和拓宽

热力学基本定律的建立;热力学各分支;本课程与传热学、流体力学等课程各自的任务及联系;有关工程热力学及其应用的网上资源。

5. 教学方式

讲授,讨论,视频片段

6. 教学过程中应注意的问题

特别注意:本课程作为热能与动力工程专业学生进入专业学习的第一门课程(专业基础课),要引导学生的学习兴趣和热情。另,用例应尽量采用较新的事实和数据。

7. 思考题和习题

思考题:工程热力学的宏观研究方法与微观方法的比较

作业: (短文,一、二页即可)网络文献综述——能源利用与工程热力学

8. 师生互动设计

讲授中提问并启发讨论:

从本课程教材的四大部分的标题看,对于工程热力学的研究内容有没有一个初步的认识(可以“猜想”)?

知道热力学第一、第二定律吗?第三、第零定律呢?

请举例并比较:宏观研究方法和微观研究方法。

你认为你(本专业的学生)将来会“干什么”?

9. 讲课提纲、板书设计

绪论

0-1 热能及其利用

★视频片段:人类用能历史

能源——为人类生产与日常生活提供各种能量和动力的物质资源

自然能源——风能,水能,太阳能,地热能,潮汐能,核能,燃料化学能等

可见:从自然能源中获取能量的主要形式是热能(仅风能、水能、潮汐能是机械能形式—指流体的动能和位能)

热能利用的两种基本方式:

——直接利用[举例和请学生举例]

——间接利用[举例和请学生举例]

0-2 热力学及其发展简史

18世纪中叶,蒸气机出现,开始热→功(机械能)研究;

第一类永动机不成功,总结出Law I;

焦耳实验,有了热—功当量概念,开始形成热力学;

第二类永动机不成功,总结出Law II;

1912年,研究低温现象,Law III(“0 K达不

到”);

加上Law 0(关于热平衡概念,温度概念及温标建立)

四个基本定律,构成热力学的理论基础。

随着生产发展,热力学形成已一百多年,作为经典热力学,已很成熟。

分支:理论热力学,工程热力学,统计热力

学,化学热力学,非平衡热力学,生物热力学…甚至用热力学理论于社会学/经济学方面。

0-3 能量转换装置的工作过程图 1

★视频片段:蒸汽发电厂

★热机工作示意图如图1所示

0-4 工程热力学研究的对象及主要内容

一、研究对象

热力学研究热现象—与物质热运动有关的现象。

热运动的广泛性和特殊性:

—热运动无时无处不在,人类利用热能历史悠久(直接,或转换为其它形式)。

—热能为一方,其它所有非热能形式能量为另一方(机、声、光、电、磁等),可相互转换。转换前后数量相等(Law I:能量转换与守恒)。

但机械能等可100%地、无代价地转换为热能,反之则不然(Law II:热过程之方向性)。[例:汽车排尾气;现代火电厂热效率仅40+%]

二、研究内容

1.热能与其它能量间相互转换的基本规律——主要Law I、II,此乃本课程主要内容。

2.工质的热力性质——能量的利用/转换,需通过工作物质即工质及热力设备来完成。

3.提高热力设备效率的途径——从工程实际应用来说,此为最终目的。

** 请学生对照教材的四大部分的标题,体会工程热力学的研究内容(尤其是前三大部分):①热力学基本定律;②工质热力性质;③(热力设备中的)热力过程及循环;④化学热力学基础。

三、研究方法

可有二种研究方法——微观的和宏观的。

工程热力学用宏观的研究方法。

优点——可靠:以大量观察/实验所得经验定律为依据,故只要推论无误,则结论亦可靠。而经验定律是大量经验(观察/实验)之归纳总结,其可靠性体现在至今未有反例。

缺点——①不能说明其所以然(何以“守恒”?何以有“方向性”?);②应用有局限:上不能推广至茫茫宇宙,下不能深入至物质内部个别分子/原子的表现——看不到,去不了,无经验。

统计热力学则恰可弥补其缺点——可说明“所以然”。但也有缺点:与物质结构模型有关,而模型是近似的。

[例:判断人的健康:可宏观—体温等;也可微观—化验等]

四、课程与本专业的关系

热能与动力工程专业培养目标——德智体全面发展,掌握现代能源科学、信息科学和管理科学技术,在热能与动力工程领域从事设计、运行、自动控制、信息处理、环境保护、清洁能源利用和新能源开发等工作的基础扎实、知识面广、创新能力强的复合型人才

工程热力学是本专业(以及其他相关专业)主要的专业基础理论课之一(另二门同类课程:流体力学、传热学)

五、单位制

国际单位制SI。

法定计量单位——以SI为基础。

SI与公制/英制间的换算,也需有所了解/应用。

六、本课程的学习方法建议

根据本课程是一门专业基础理论课程的特点,建议在学习中

掌握几个“基本”:基本概念,基本定律,基本方法,基本应用。

抓好几个环节:预习/听课;笔记/复习;习题/小结。

第一部分热力学基本定律

第一章基本概念及定义(4学时)

1. 教学目标及基本要求

了解热力系的定义;平衡状态的概念、平衡条件;

掌握基本状态参数的定义、计量及不同单位间的换算;

掌握准平衡过程的定义,理解提出准平衡过程概念的意义和作用。

2. 各节教学内容及学时分配

1-1 热力系(0.5学时)

1-2 热力系的描述(0.5学时)

1-3 基本状态参数(1.5学时)

1-4 状态方程,状态参数坐标图(1学时)

1-5 热力过程及循环(0.5学时)

3. 重点难点

热力系统;状态及平衡状态;状态参数及其特性;可测的基本参数;热平衡及热力学第零定律;状态参数坐标图;热力过程和循环;准平衡过程;状态量和过程量;

尺度量和强度量。

4. 教学内容的深化和拓宽

概念和认识:各种实际的正/逆热力循环(动力循环、制冷循环)及其作用。

从教材的“计算机应用、工程设计及问题讨论”中选择一题进行讨论和引导。

5. 教学方式

讲授,讨论,.ppt幻灯

6. 教学过程中应注意的问题

注意:复习《绪论》中关于热力学研究方法的内容,说明热力学状态参数是宏观参数;重点说明准平衡过程概念的理论意义和实用意义。

7. 思考题和习题

思考题:教材的课后自检题(选一、二题在课堂上讨论)

习题:教材习题第一章2~6, 12, 15(可变)

8. 师生互动设计

提问并启发讨论:

观察过某个热力系统的状态变化吗?

留意过系统状态变化伴随有系统与外界的能量交换吗?

思考过状态变化与能量交换间的联系吗?

用过压力计、温度计吗?了解温度的概念吗?

对照热力学Law 0,讨论:是否所有事物都有“若A=B且A=C则必有B=C的规

律”?[例:ABC三个班足球或歌咏比赛。引导得出结论:状态量才有此规律]

请学生举例:尺度量,强度量

请学生举例:热力过程、热力循环

如爆炸这样的过程,能不能作准平衡过程处理?为什么?

9. 讲课提纲、板书设计

第一部分热力学基本定律

第一章基本概念及定义

1-1 热力系—热力学分析的对象

★ .ppt图示:热力系统概念

外界(环境)——除热力系以外的外部世界,但一般仅指与热力系有关(有相互作用:W功/Q热/m质交换)的部份。

界面(边界)——可以是实际存在的,亦可是假想的。

分析:

1. 热力系的状态及状态变化(状态——热力状态)

怎样描述?如何变?变的规律?

2. 热力系与外界的相互作用(能/质交换)——交换了什么?谁给谁?数量?

3. 以上二方面的联系——状态变化乃因与外界有作用,反之与外界作用必导致系统改变状态。则其间关系如何?能否通过了解热力系的状态变化,而得知其与外界的能量交换?

分类:

与外界作用情况:开口系,封闭系

热力系内部情况:平衡/非平衡系,均匀(单相)/非均匀,单元/多元,…

特殊:绝热系,独立系;热源(冷源),功源;…

针对不同问题,采用不同系统,可方便分析。

1-2 热力系的描述(描述——说明该热力系的性质)

一、热力系的状态,平衡状态,状态参数

工程热力学 Engineering Thermodynamics 教案

状态(热力(学)状态)——热力系在某瞬间所呈现的宏观物理状况。 状态参数——描述热力系状态的参数。

虽然微观上是与物质微粒热运动——(气体)分子疏密、运动剧烈程度——有关的量,但(记得!)热力学中只用宏观量:p ,V ,T ,U ,…。

有时也引入一些外部参数作为状参如系统整体的速度、高度等。

平衡状态(概念、定义)

★ .ppt 图示:气缸的热、力平衡

** 提示学生不要只背定义,而应着重注意3点:

(1) 热/力平衡,条件是温/力差消失;

(2) 热力系的平衡,意味着所有的不平衡势差已消失;平衡/非平衡热力系,其各状态参数有/无确定值。

(3) 提出“平衡状态”概念的意义,在于易研究(可用确定的参数值描述之,进而可分析/计算之)。

虽然实际工程问题中的热力系很少是平衡状态的——毋宁说正是利用了不平衡(即平衡被破坏,系统发生状态变化)来实现能量交换的——但一定条件下,可视实际状态变化过程中的各点为接近平衡态。有误差可修正。

二、状态参数的特性

★ .ppt 图示:系统的尺度量和强度量;“微团”

状态参数可分为二大类。

尺度量——与系统所含物质数量(m, n )有关的量,具可加性(m, n, U, S, …)

强度量——与系统所含物质数量无关,在“点” 上定义的量,无可加性(p, T,…)

(“点”——含足够分子的微团,非几何上的点)

比参数——尺度量对m (或n )的微商,具强度量性质

比体积 m V δδυ=

均匀系 m

V =υ 比热力学能 m U u δδ= 状态一定,则状态值一定,即状态参数是状态的单值函数。确定状态参数的函数是状态函数(或谓点函数)。

状态参数ξ的数学特征:

与积分路径(状态变化途径)无关。状态函数的微分是全微分。

1-3 基本状态参数

基本参数(5个):p (从力学引入),V (几何),T (热力学Law 0导

出),U (Law I ),S (Law II )。

其中p 、V 、T 是可测的。

一、密度ρ ,比体积v

二、压力

★ .ppt 图示:弹簧管/U 形管压力计;压力测量

1.压力的测量

2.压力的单位及换算

三、温度

1.热力学第零定律,温度的概念

温度:物体的“冷热程度”。但,何为冷/热?不确切。

微观:“分子运动剧热程度的度量”。

热力学:(宏观!)温度概念由“热平衡”概念引出。

热平衡——若二物体热接触时,各自状态均不发生变化,则称此二物体处于热平衡。

★ .ppt图示:Law 0

大量实验、观察表明,关于热平衡,可有如下的经验定律:

热力学第零定律——若A-B,A-C分别处于热平衡,则B-C必处于热平衡

Law 0指出:热力系(B,C)间是否处于热平衡,仅确定于B,C各自的状态,而与其它(A是否真存在;B、C是否真热接触等)无关。

推理:既然热平衡与否只确定于热力系的状态,则可用一状态参数来描述这一性质(即“若与其他热力系热接触,是否可处于热平衡”的性质)。换言之,物系间处于热平衡,则彼此的某一宏观性质必是相同的,描述此宏观性质的参数即温度。

** 初步认识热力学的研究和学习方法:从基本定律出发,经一系列推理演绎,得到结论,并加以应用。

温度的热力学定义——温度是表征物体间热平衡性质的状态参数。处于热平衡的物体,具有相同的温度值;未处于热平衡的物体,具有不同的温度值。

2.温度标尺

Law 0不仅引出了温度的概念,还提供了温度测量和建立温标(温度计)的理论基础。

★ .ppt图示:各种温度计:液体/热电偶/热电阻温度计等,理想气体温度计

(定容)理想气体温标:T=ap

规定以水的三相点(Triple Point)为基准点:T

tp

= 273.16 K(开尔文)

∵T

tp =ap

tp

∴a=273.16/ p

tp

于是测p即可得任意点的温度T = 273.16 p/ p

tp

K

可见上述方法建立的温标是人为的,称“经验温标”。于是产生问题:“标准温度计”何在?

热力学温标:由热力学理论(Law II)可推论出存在一种与具体测温物质性质无关的温标。其分度方法及基准点与理想气体温标一致:T = 273.16 p/ p

tp

K(第三章讨论)。

工程上常用的经验温标——摄氏温标:定义t

tp

= 0.1 ℃,而分度方法与

热力学温标一致,即t = T - 273.15 ℃。可知水的冰点t

0 = 0 ℃,水的汽点t

b

= 100℃。

1-4 状态方程,状态参数坐标图

状态一定(达平衡状态),则系统所有状参均确定(有可知值)。

但(同一问题的三种问法):是否必须确定所有状参才能确定系统状态?各状参间有无依赖关系?系统所有状参中独立参数有几个?

一、状态公理(针对纯物质—无化学反应的系统)

推想:一种形式的能量交换,对应存在着一种不平衡势;而限制一种形式的能量交换,则对应着一种不平衡势的消失,此时就有一个描述该种平衡的状态参数不再变化而有确定值。

状态公理:决定热力系平衡状态的独立参数个数,应等于系统与外界可以交换的能量形式的总数。

简单可压缩系n=1(容积变化功),∴N=1+1=2 (“简单”系:仅1种准静功)

故对于简单可压系,诸参数中仅2个独立,其余依其而变。即若此2个参数确定,系统状态即确定,于是其余所有参数必确定。

状态公理指出状态参数间应存在依变关系(函数关系)。描写这种关系的关系式即状态方程。

二、纯物质的状态方程

对于简单系,原则上可任选2个独立参数ξ

1,ξ

2

,而其余任一参数ξ可表

示为

广义地,u = u(T, v),s = s(T, p),…也是状态方程,但一般(窄义地)称由可测量p,v,T组成的函数关系式f(p, v, T) = 0为状态方程。

[例] 理想气体状态方程pv = R

g T 或pV

m

= RT

状态方程反映了系统状态变化时各状态参数间的制约关系(不是随意乱变)。

三、状态参数坐标图

★ .ppt图示:状态参数坐标图

简单可压系(工程上常见、常用)独立变量2个,故可用以构成一直角坐标系,其中一点表一状态(平衡态)。

注意:

(1) 非平衡态,由于状态不确定,故无法在图上表示;

(2) 利用坐标图,可直观表示状态(1、2点及1-2线);

(3) 状态参数坐标图可方便分析计算(一张好图,胜过千言万语)。1-6 热力过程及热力循环

★ .ppt图示:热力过程(坐标图),准平衡过程(活塞气缸:移重物)一、热力过程——与外界相互作用下,热力系发生状态变化的过程

注意:

(1) 过程是外界作用而破坏系统平衡的结果。

(2) 过程的效果:

系统内部——状态发生了变化;

边界上——与外界交换了Q/W。

[例]:对于已有设备、工况,如何计算Q/W ?给定Q/W ,如何设计设备和工艺(过程)?给定工质状态变化,如何设计过程来实现?

实际过程总是以平衡的破坏为前提,为非平衡过程(虚线表示),分析/计算不方便。故引入一概念:

准平衡过程——…

系统状态始终距平衡点不远的过程(实线表示)。理想过程。实际

过程当过程不平衡势→0时的极限。

准平衡过程概念带来方便——可用内部参数(的变化)来表示Q/W ,例如由于Δp = p – p surr = 0,故可用p 而不必用外力p surr 来计算(按物理学“功”定

义)。

好在大多工程中的热力过程,可作准平衡处理,或当误差大时再修正之。

[例] p 波,在气体中以声速传播,而活塞移动速度一般≯100m/s ,这样,新的外力变化传播而到达之前,系统已均为p ,达到新的平衡态。

二、热力循环——封闭的热力过程。热力过程之特例。

★ .ppt 图示:正、逆热力循环的坐标图、示意图(热源,冷源,W,Q 1,Q 2) 常见的工质循环:

(1) 热机循环 热→功(正循环)

[例] 蒸汽发电站,汽车发动机(顺便提示:必须有Q 2放热——

LawII )

循环作功: ?=dW W 循环的经济性指标:热效率1

Q W t =η(收益/代价) (2) 制冷循环 耗功将热从高温→低温(逆循环)

[例] 空调机:制冷机,热泵 循环耗功:?=dW W (此时W 值为负) 21

** 热工科技人员主要任务之一即改善循环,提高经济性,使ηt ,ε,ε'

↑。

最新工程热力学课程 高中其它科目课件教案

高等职业教育教学课程标准工程热力学 适用专业:化工机械 2006年4月

一、课程性质与任务 工程热力学课程是化工机械专业的一门专业基础课,是研究物质的热力性质、热能与其它能量之间相互转换规律的科学,是培养化机专业技术人员的一门重要技术基础课,它以热力学基本作为基础,通过物质的压力、温度、比容等宏观参数和受热、冷却、膨胀、收缩等整体行为,对宏观现象和热力过程进行研究,同时探讨各种热力过程的特性,达到提高热能利用率和热功转换效率的最终目的。 本课程的任务是使学生掌握能量转换与利用的基本定律及其运用,掌握工质的热力性质分析,了解工程中节能技术的热力学原理及其分析方法,以实现能量转换的高效性和经济性,并为学习其他有关课程及从事有关生产技术工作打下必要的基础。 二、课程教学目标 工程热力学是研究热能与其他形式的能量(尤其是机械能)之间相互转换规律的一门学科。通过热能利用在整个能源利用中地位的阐述,使学生认识研究热能利用和学习工程热力学的重要性, 并注意渗透思想教育,逐步培养学生的辩证思维能力,加强学生的职业道德观念,向学生渗透爱课程、爱专业教育。通过对我国能源及其利用现状的介绍,增强学生对我国能源问题的忧患意识和责任意识,激发学生为解决我国能源问题而努力学习的热情。初步形成解决实际问题的能力,为学习专业知识和职业技能打下基础。 三、理论教学内容和要求 1 教学内容体系结构 课程体系结构为: (1) 研究能量转化的宏观规律,即热力学第一定律与第二定律。这是工程热力学的理论基础。其中热力学第一定律从数量上描述了热能和机械能相互转换时的关系;热力

学第二定律从质量上说明了热能和机械能之间的差别,指出能量转换的方向性。 (2) 研究工质(能量转换所凭借的物质)的基本热力性质。 (3) 研究常用典型热工设备中的工作过程。即应用热力学基本定律,分析工质在各种热工设备中经历的状态变化过程和循环,并探讨和分析影响能量转换效果的因素,以其提高转换效果的途径。 从工程应用角度,全部教学内容紧紧围绕热能与机械能的相互转换规律和提高转换效率途径的研究主题。 2 课程要求 通过本课程的学习,学生应达到下列基本要求: (1)掌握热力学基本定律及其运用; (2)理解工质的热力性质及各种机械装置中热力过程和热力循环的基本原理,正确运用各种公式和图表。 (3)从课程内容的角度,学生在学习了热力学第一定律与第二定律,初步了解和掌握了理想气体热力性质和过程基本规律之后,可以应用这些基本知识分析、解决一些实际问题,达到对所学知识的第一次初步理解和应用。然后,在进一步学习了实际气体热力性质和过程之后,更深层次的应用前面所学的基本知识,深入分析实际装置中的热力过程和多种循环,从而达到能在更高的认知层面上进一步综合、灵活应用工程热力学的知识去解决实际问题。(4)从研究方法的角度,像其他学科一样,在工程热力学中,普遍采用抽象、概括、理想化和简化的方法。这种略去细节、抽出共性、抓住主要矛盾的处理问题的方法,这种科学的抽象,不但不脱离实际,而且更深刻地反映了事物的本质,是科学研究的重要方法。 (5) 本课程的教学内容分为基础模块和选学模块两个部分。基础模块是本课程的必修内容,为最低要求必学内容。选学模块是根据学期学时、学生基础好坏以及本届学

工程热力学教案105版

教案 课程名称:工程热力学 所在单位:动力及能源工程学院 课程性质:专业基础课 授课学时:64学时(8学时实验) 授课专业:热能及动力工程,核工程及核技术,轮机工程授课学期:第3(或4)学期

高等教育出版社,2001 严家騄,余晓福著. 水和水蒸汽热力性质图表. 北京:高等教育出版社,1995 主要参考资料: 曾丹苓,敖越,朱克雄等编.工程热力学(第二版)北京:高等教育出版社,1986 朱明善,林兆庄,刘颖等. 工程热力学.北京:.清华大学出版社.1995 严家騄编著.工程热力学(第二版).北京:高等教育出版社,1989朱明善,陈宏芳.热力学分析.北京:高等教育出版社,1992 赵冠春,钱立仑.火用分析及其应用. 北京:高等教育出版社,1984

绪论 (课时1) 一、为什么学习“工程热力学” 热力学及专业培养目标的联系,说明学习工程热力学对本学科的重要性。 二、能量 能量的形式:?? ? ???→ ?? ? ???→ ?? ? ???→ ?? ? ???→ ?? ? ?? ????→ ???→ ??←??? ? ?? ?? ?? ??????→ ?? ?? ??????→? ? ????→ 燃烧 光热 转换热机 利用 发电机 聚变 裂变电动机 风 车 水 轮 机 光 电 转 换 化学能热能 太阳能热能 机械能 地热能热能 电能 原子能热能 风 能机械能 水力能机械能 太阳能 ? ? ? ? ? ? ? ?? → ? ? ? ? ? ? ? ???????? ? ????????????→?? 燃 料 电 池 直接应用 电能 化学能电能 由能量的形式,人类面临的能源形式说明工程热力学对于动力工程的重要性。 三、工程热力学的主要内容 热力学基本概念;热力学第一定律;气体和蒸汽的性质和基本热力过程;热力学第二定律;实际气体性质简介;气体和蒸汽的流动;压气机的热力过程;气体动力循环;蒸汽动力装置循环;制冷循环;理想气体混合物及湿空气;化学热力学基础。 四、热力学的研究方法 1. 宏观的研究方法(宏观热力学;经典热力学) 2. 微观的研究方法(微观热力学;统计热力学) 工程热力学主要应用宏观的研究方法,但有时也引用气体分子运

工程热力学与传热学课程总结与体会

工程热力学与传热学课 程总结与体会 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

工程热力学与传热学 题目:工程热力学与传热学课程总结与体 会 院系:水利建筑工程学院给排水科学与工 程 班级:给排水科学与工程一班 姓名:张琦文 指导老师:姚雪东 日期:2016年5月1日 认识看法地位作用存在问题解决措施未来 发展展望 传热学在高新技术领域中的应用 摘要: 热传递现象无时无处不在【2】它的影响几乎遍及现代所有的工业部门【1】也渗透到农业、林业等许多技术部门中。本文介绍了航空航天、核能、微电子、材料、生物

医学工程、环境工程、新能源以及农业工程等诸多高新技术领域在不同程度上应用传热研究的最新成果。可以说除了极个别的情况以外,很难发现一个行业、部门或者工业过程和传热完全没有任何关系。不仅传统工业领域,像能源动力、冶金、化工、交通、建筑建材、机械以及食品、轻工、纺织、医药等要用到许多传热学的有关知识【1】而且诸如航空航天、核能、微电子、材料、生物医学工程、环境工程、新能源以及农业工程等很多高新技术领域也都在不同程度上有赖于应用传热研究的最新成果,并涌现出像相变与多相流传热、(超)低温传热、微尺度传热、生物传热等许多交叉分支学科。在某些环节上,传热技术及相关材料设备的研制开发甚至成为整个系统成败的关键因素。 前言:通过对传热学这门课程的学习,了解了传热的基本知识和理论。发现传热学是一门基础学科应用非常广泛,它会解决许许多多的实际问题更是与机械制造这门学科息息相关。传热学是研究由温度差异引起的热量传递过程的科学。传热现象在我们的日常生活中司空见惯。早在人类文明之初人们就学会了烧火取暖。随着工业革命的到来,蒸汽机、内燃机等热动力机械相继出现,传热研究更是得到了飞速的发展,被广泛地应用于工农业生产与人们的日常生活之中。当今世界国与国之间的竞争是经济竞争,而伴随着经济的高速发展也带来了资源、人口与环境等重大国

工程热力学期末考试试题

一、1.若已知工质的绝对压力P=,环境压力Pa=,则测得的压差为(B)A.真空pv= B.表压力pg=.真空pv= D.表压力p g= 2.简单可压缩热力系的准平衡过程中工质压力降低,则(A) A.技术功为正 B.技术功为负 C.体积功为正 D.体积功为负 3.理想气体可逆定温过程的特点是(B)=0 =>W s>s′>s″>s′s>s″ 16.可逆绝热稳定流动过程中,气流焓的变化与压力变化的关系为(B) ====pdv 17、饱和湿空气的相对湿度(B)A.>1B.=1C.<<<1 18.湿空气的焓h为(D)湿空气的焓湿空气的焓干空气与1kg水蒸汽焓之和干空气的焓与1kg干空气中所含水蒸汽的焓之和 二、多项选择题 1.单位物量的理想气体的热容与_____有关。(ACDE)A.温度B.压力C.气体种类D.物量单位E.过程性质 2.卡诺循环是__AD___的循环。 A.理想化 B.两个定压、两个绝热过程组成 C.效率最高 D.可逆 3.水蒸汽h-s图上的定压线(AD)A.在湿蒸汽区为直线B.在过热蒸汽区为直线C.在湿蒸汽区为曲线 D.在过热蒸汽区为曲线 E.在湿蒸汽区和过热蒸汽区是斜率不同的直线 4.理想气体经绝热节流后,前后稳定截面上的__BD___相等。 5.A.压力B.温度C.比体积D.焓E.熵

工程热力学第七章水蒸气教案

1) 第七章 水蒸汽 ) 水蒸气是工程上应用较广泛的一种工质,例如蒸汽动力装置、压气式 制冷装置都是以水蒸气作为工质来实现热能→机械能相互转化的。这些动力装置也可用燃气或其他工质代替,那为什么要用水蒸汽呢?原因如下 ) 1、水蒸气容易获得,只要通过水的定性加热即可获得。 ) 2、有事宜的热力状态参数,靠卡诺循环、朗肯循环 ) 3、不会污染环境 ) 由于水蒸汽处于离液态较近的状态,常有集态现象而且,物理性质也很复杂,所以不能把它看作是理想气体,理想气体的状态方程式以及由它推导的其他计算公式一般都不能用来分析和计算水蒸汽。所以必须对水蒸汽的性质另行研究。 ) 这章重点研究:1、水蒸汽产生的一般原理 ) 2、水蒸汽状态参数确立 ) 3、水蒸汽图表的结构及应用 ) 4、计算水蒸汽热力过程中的,q w ) ) 7—1 基本概念和术语 ) 1、汽化:物质有液态转化为气态的过程。 ) 蒸发:在液态表面上进行的汽化过程,在任何温度下进行 ) 汽化的形式 沸腾:在液体内部和表面同时进行剧烈的汽化现象。沸腾时温度保持不变 解释:蒸发在任何温度下都可进行,它是由于液体表面总有一些能量较高的分子,克服临近分子的引力而脱离叶面,逸入液体外的空间,t 越高,能量较大的分子越多,蒸发愈激烈,汽化速度取决于温度。 沸腾时,实在液体内部产生大量的汽泡。汽泡上升到液面,破裂而放出大量的蒸汽, 工业上用的蒸汽都是通过沸腾的方式获得,液体在沸腾时温度不变,虽加热也保持不变,且液体和气体的温度相同。沸腾时的温度叫沸点。()ts f p = 2、液化:蒸汽转变为液体的现象,液化和汽化时相反的过程,他取决于(p) 3、饱和状态:当液体和蒸汽处于动平衡的状态 解释:当液体在有限的密闭空间里汽化时,不仅液体表面的液体分子蒸发到空间去,而空间的蒸汽分子也会因分子密度大,压力增大,撞击到液体表面回到液体中, 当液面上空的蒸汽分子密度达到一定程度时,在单位时间内逸出液面和回到液面的分子数相等时,蒸汽和液体的无量保持不变,汽、液两相处于动平衡状态。 4、饱和温度:当汽体和液体处于饱和状态时,液体和汽体温度称饱和温度 5、饱和压力:()s ts f p = 6、饱和蒸汽:处于饱和状态的蒸汽 7、饱和液体:处于饱和状态的液体 8、温饱和蒸汽:饱和液和饱和蒸汽的混合物,称温饱和蒸汽

工程热力学期末总结

《工程热力学》期末总结 一、闭口系能量方程的表达式有以下几种形式: 1kg 工质经过有限过程:w u q +?= (2-1) 1kg 工质经过微元过程:w du q δδ+= (2-2) mkg 工质经过有限过程:W U Q +?= (2-3) mkg 工质经过微元过程:W dU Q δδ+= (2-4) 以上各式,对闭口系各种过程(可逆过程或不可逆过程)及各种工质都适用。 在应用以上各式时,如果是可逆过程的话,体积功可以表达为: pdv w =δ (2-5) ? = 2 1 pdv w (2-6) pdV W =δ (2-7) ? = 2 1 pdV W (2-8) 闭口系经历一个循环时,由于U 是状态参数,?=0dU ,所以 W Q ??= δδ (2-9) 式(2-9)是闭口系统经历循环时的能量方程,即任意一循环的净吸热量与净功量相等。 二、稳定流动能量方程 t s w h w z g c h q +?=+?+?+?=2 21 (2-10) (适用于稳定流动系的任何工质、任何过程) ? - ?=2 1 vdp h q (2-11) (适用于稳定流动系的任何工质、可逆过程) 三、几种功及相互之间的关系(见表一) 表一 几种功及相互之间的关系

四、比热容 1、比热容的种类(见表二) 。 )/3 kg m 2、平均比热容:1 21 1221 20 t t t t c t t c t t c - -= (2-12) 3、利用平均比热容计算热量:11220 t t c t t c q -= (2-13) 4、理想气体的定值比热容(见表三)

其中:M M R R g 83140= = [J/(kg ·K)] M —气体的摩尔质量,如空气的摩尔质量为28.96kg/kmol 。 空气的kmol /kg 96.28K)kmol /(J 83140?= = M R R g =287[J/(kg ·K)],最好记住空气的气体常数。 引入比热容比k 后,结合梅耶公式,又可得: g p R k k c 1 -= (2-14) g V R k c 1 1-= (2-15) 五、理想气体的热力学能、焓、熵(见表四) (焓的定义:pv u h += kJ/kg , 焓是状态参数) 六、气体主要热力过程的基本计算公式(见表五)

工程热力学期末试卷及答案

页脚内容1

页脚内容2

1 n c n κ - = - R =,代入上式得 页脚内容3

页脚内容4

页脚内容 6 及内能的变化,并画出p-v 图,比较两种压缩过程功量的大小。(空气: p c =1.004kJ/(kgK),R=0.287kJ/(kgK))(20分) 2.某热机在T1=1800K 和T2=450K 的热源间进行卡诺循环,若工质从热源吸热1000KJ ,试计算:(A )循环的最大功?(B )如果工质在吸热过程中与高温热源的温差为100K ,在过程中与低温热源的温差为50K ,则该热量中能转变为多少功?热效率是多少?(C )如果循环过程中,不仅存在传热温差,并由于摩擦使循环功减小10KJ ,则热机的热效率是多少?(14分) 3.已知气体燃烧产物的cp=1.089kJ/kg ·K 和k=1.36,并以流量m=45kg/s 流经一喷管,进口p1=1bar 、T1=1100K 、c1=1800m/s 。喷管出口气体的压力p2=0.343bar ,喷管的流量系数cd=0.96;喷管效率为 =0.88。求合适的喉部截 面积、喷管出口的截面积和出口温度。(空气:p c =1.004kJ/(kgK), R=0.287kJ/(kgK))(20分) 一.是非题(10分) 1、√ 2、√ 3、× 4、× 5、√ 6、× 7、× 8、√ 9、×10、√ 二.选择题(10分) 1、B2、C3、B4、B5、A 三.填空题(10分) 1、功W;内能U 2、定温变化过程,定熵变化 3、小,大,0 4、对数曲线,对数曲线 5、 a kpv kRT ==, c M a = 四、名词解释(每题2分,共8分) 孤立系统:系统与外界之间不发生任何能量传递和物质交换的系统。 焓:为简化计算,将流动工质传递的总能量中,取决于工质的热力状态的那部分能量,写在一起,引入一新的物理量,称为焓。 热力学第二定律:克劳修斯(Clausius)说法:不可能把热量从低温物体传到高温物体而不引起其他变化。开尔文一浦朗克(Kelvin —Plank)说法:不可能制造只从一个热源取热使之完全变成机械能而不引起其他变化的循环发动机。 相对湿度:湿空气的绝对湿度v ρ与同温度下饱和空气的饱和绝对湿度s ρ的比值, 称为相对湿度?。 五简答题(8分)

《工程热力学A》(含实验)课程教学大纲.

《工程热力学A》(含实验)课程教学大纲 课程编码:08242025 课程名称:工程热力学A 英文名称:Engineering Thermodynamics A 开课学期:4 学时/学分:54 / 4 (其中实验学时:6 ) 课程类型:学科基础课 开课专业:热能与动力工程(汽车发动机方向)、热能与动力工程(热能方向) 选用教材:陈贵堂《工程热力学》北京理工大学出版社,1998; 陈贵堂王永珍《工程热力学》(第二版)北京理工大学出版社,2008 主要参考书: 1.陈贵堂王永珍《工程热力学学习指导》北京理工大学出版社,2008 2.华自强张忠进《工程热力学》.高等教育出版社.2000 3.沈维道,蒋智敏,童钧耕.工程热力学.第三版.北京:高等教育出版社,2001 4.曾丹苓,敖越,张新铭,刘朝编.工程热力学.第三版.北京:高等教育出版社,2002 5.严家马录.工程热力学.第三版.北京:高等教育出版社,2001 执笔人:王永珍 一、课程性质、目的与任务 该课程是热能与动力工程专业、建筑环境与设备工程专业基础课,是本专业学生未来学习、生活与工作的基石。通过它的认真学习可以可使学生了解并掌握一种新的理论方法体系,了解并掌握关于能量转换规律及能量有效利用的基本理论、树立合理用能思想,并能应用这些理论对热力过程及热力循环进行正确的分析、计算,为学生学习专业课程提供充分的理论准备,同时培养学生对工程中有关热工问题的判断、估算和综合分析的能力,为将来解决生产实际问题和参加科学研究打下必要的理论基础。 二、教学基本要求 通过本课程的学习可使学生了解并掌握关于能量转换规律及能量有效利用的基本理论、树立合理用能思想,并能应用这些理论对热力过程及热力循环进行正确的分析、计算。同时学生还可了解并掌握一种新的理论方法体系——外界分析法(The Surrounding Analysis Method, SAM),有利与开阔学生分析问题、解决问题的思路,有利于培养学生对工程中有关热工问题的判断、估算和综合分析的能力与素质,为将来解决生产实际问题和参加科学研究打下必要的理论基础。 三、各章节内容及学时分配 绪论introduction(1学时) 主要内容是让学生了解工程热力学的研究对象及研究方法、经典热力学理论体系的逻辑结构、SAM体系的逻辑结构及其主要特点。 一、热力学的定义、研究目的及分类Definition, Purpose, Classification 二、本门课的主要内容Contents 三、本门课的理论体系theory systems 第一章基本概念及定义Basic Concepts and Definitions(3学时,重点) 1-1 热力学模型The Thermodynamic Model of the SAM System 让学生了解并掌握热力学系统、边界、外界等概念,了解并重点掌握外界分析法的基本热力学

工程热力学 教案 第四讲

{复习提问} 1、什么是热力学第一定律? 2、什么事准平衡过程和可逆过程?举例描述。 3、系统储存能包括及部分,各是什么,表示符号和表达式是什么? {导入新课} 第三节系统与外界传递的能量 上一节课我们学习了系统的总储存能,这一节我们来学你系统与外界传递的能量。 在热力过程中,热力系与外界交换的能量包括三部分,分别是功量、热量和工质通过边界时所携带的能量。下面我们分别来学习这三种能量: 一、热量 1、定义:系统和外界之间仅仅由于温度不同(温差)而通过边界传递的能量称 为热量。符号:Q , 单位为J或kJ 2、单位质量工质与外界交换的热量用q表示,单位为J/kg或kJ/kg 。 微元过程中热力系与外界交换的微小热量用δQ或δq表示。 3、热量为在热传递中物体能量改变的量度,是过程量。其数值大小与过程有关, 所以不是状态参数。 4、热量正负规定: 系统吸热,热量取正值,Q(q)>0 ;系统放热,热量取 负值,Q(q)<0 。 5、热量的记算式(推导): 引入新概念【熵】 熵:指热能除以温度所得的商,标志热量转化为功的程度。有温差便有热量的传递,可用熵的变化量作为热力系与外界间有无热量传递以及热量传递方向的标志。 1、符号: S , 单位为J/K 或kJ/K 。 2、单位质量工质所具有的熵称为比熵, 用s 表示, 单位为J/(kg?K) 或kJ/(kg?K)。 用熵计算热量

在微元可逆过程中,系统与外界传递的热量可表示为: δq =Tds δQ =TdS 在可逆过程1-2中,系统吸收的热量可写为: q =?21Tds Q=?2 1TdS 根据熵的变化判断一个可逆过程中系统与外界之 间热量交换的方向:ds >0,δq >0,系统吸热; ds <0,δq <0,系统放热; ds =0,δq =0,系统与外界没有热量交换,是绝热(定熵)过程。 3. 温熵图 (T -s 图) 在可逆过程中单位质量工质与外界交换的热量 q =?21 Tds , 大小等于T -s 图(温熵图)上过程曲线下的面积,因此温熵图也称示热图。对于分析热力过程和热力循环很有用处。 二、功量 我们知道热量是由于温差的作用使系统与外界发生能量交换,顾名思义,功量是在力差作用下,系统与外界发生的能量交换。 1、功量亦为过程量,不是状态参数。 2、有各种形式的功,如电功、磁功、膨胀功、轴功等。工程热力学主要研究 两种功量形式: ⑴体积变化功,⑵轴功。 ⑴体积变化功——由于热力系体积发生变化(增大或缩小)而通过边 界向外界传递的机械功称为体积变化功(膨胀功或压缩功)。 ①符号: W , 单位为J 或kJ 。 ②1kg 工质传递的体积变化功用符号w 表示,单位为J/kg 或kJ/kg 。 ③正负规定: d v > 0 , w > 0 , 热力系对外作膨胀功; d v < 0 , w < 0 , 热力系对外作压缩功。 ④体积变化功的计算式(推导) 课本图2-4 假设质量为1kg 的气体工质在汽缸中进行一个可逆膨胀过程,缸内气体压力p ,活塞截面积A ,活塞在某一瞬间移动微小位移dx 。则整个热力过程工质对活塞所作功量为 : 1→2为可逆过程 (pdv pAdx w ==δ)

工程热力学知识点总结

工程热力学大总结 '

… 第一章基本概念 1.基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。 ) 开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。 绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。 单元系:由一种化学成分组成的系统称为单元系。 多元系:由两种以上不同化学成分组成的系统称为多元系。 } 均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。 非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。 状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。 基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。

同济大学《工程热力学》期末模拟试卷

同济大学《工程热力学》期末模拟试卷 第一部分 选择题(共15分) 一、单项选择题(本大题共15小题,每题只有一个正确答案,答对一题得1分,共15分) 1、压力为10 bar 的气体通过渐缩喷管流入1 bar 的环境中,现将喷管尾部截去一段, 其流速、流量变化为。 【 】 A.流速减小,流量不变 B.流速不变,流量增加 C.流速不变,流量不变 D.流速减小,流量增大 2、某制冷机在热源T 1= 300K ,及冷源T 2= 250K 之间工作,其制冷量为1000 KJ ,消耗功为250 KJ ,此制冷机是 【 】 A.可逆的 B.不可逆的 C.不可能的 D.可逆或不可逆的 3、系统的总储存能为 【 】 A. U B. U pV + C. 2/2f U mc mgz ++ D. 2 /2f U pV mc mgz +++ 4、熵变计算式2121(/)(/)p g s c In T T R In p p ?=-只适用于 【 】 A.一切工质的可逆过程 B.一切工质的不可逆过程 C.理想气体的可逆过程 D.理想气体的一切过程 5、系统进行一个不可逆绝热膨胀过程后,欲使系统回复到初态,系统需要进行一个【】过 程 。 【 】

A.可逆绝热压缩 B.不可逆绝热压缩 C.边压缩边吸热 D.边压缩边放热 6、混合气体的通用气体常数,【】。【】 A.与混合气体的成份有关 B.与混合气体的质量有关 C.与混合气体所处状态有关 D.与混合气体的成份、质量及状态均无关系 7、贮有空气的绝热刚性密闭容器中装有电热丝,通电后如取空气为系统,则【】 A.Q>0,△U>0,W>0 B.Q=0,△U>0,W>0 C.Q>0,△U>0,W=0 D.Q=0,△U=0,W=0 8、未饱和空气具有下列关系【】 A.t>t w>t d B.t>t d>t w. C.t = t d = t w D.t = t w>t d 9、绝热节流过程是【】过程。【】 A.定压 B.定温 C.定熵 D.节流前后焓相等 10、抽汽式热电循环的结果是【】 A.提高循环热效率,提高热能利用率 B.提高循环热效率,降低热能利用率 C.降低循环热效率,提高热能利用率 D.降低循环热效率,降低热能利用率 11、一个橡皮气球在太阳下被照晒,气球在吸热过程中膨胀,气球内的压力正比于气球的容积,则气球内的气球进行的是【】 A.定压过程 B.多变过程 C.定温过程 D.定容过程 12、气体的容积比热是指【】

工程热力学第三版电子教案第7章

第7章水蒸汽 7.1 本章基本要求 (62) 7.2 本章难点 (62) 7.3 例题 (62) 7.4 思考及练习题 (66) 7.5 自测题 (69)

7.1 本章基本要求 理解水蒸汽的产生过程,掌握水蒸汽状态参数的计算,学会查水蒸汽图表和正确使用水蒸汽h-s 图。 掌握水蒸汽热力过程、功量、热量和状态参数的计算方法。 自学水蒸汽基本热力过程(§7-4)。 7.2 本章难点 1.水蒸汽是实际气体,前面章节中适用于理想气体的计算公式,对于水蒸汽不能适用,水蒸汽状态参数的计算,只能使用水蒸汽图表和水蒸汽h-s 图。 2.理想气体的内能、焓只是温度的函数,而实际气体的内能、焓则和温度及压力都有关。 3.查水蒸汽h-s 图,要注意各热力学状态参数的单位。 7.3 例题 例1:容积为0.63 m 的密闭容器内盛有压力为3.6bar 的干饱和蒸汽,问蒸汽的质量为多少,若对蒸汽进行冷却,当压力降低到2bar 时,问蒸汽的干度为多少,冷却过程中由蒸汽向外传出的热量为多少 解:查以压力为序的饱和蒸汽表得: 1p =3.6bar 时,"1v =0.51056kg m /3 "1h =2733.8kJ /kg 蒸汽质量 m=V/"1v =1.1752kg

查饱和蒸汽表得: 2p =2bar 时,'2v =0.0010608kg m /3 "2v =0.88592kg m /3 '2h =504.7kJ /kg ''2h =2706.9kJ /kg 在冷却过程中,工质的容积、质量不变,故冷却前干饱和蒸汽的比容等于冷却后湿蒸 汽的比容即: "1v =2x v 或"1v =''22'22)1(v x v x +- 由于"1v ≈''22v x =≈"2"12v v x 0.5763 取蒸汽为闭系,由闭系能量方程 w u q +?= 由于是定容放热过程,故0=w 所以 1212u u u q -=?= 而u=h-pv 故 )()("11"1222v p h v p h q x x ---= 其中:2x h =''22'22)1(h x h x +-=1773.8kJ /kg 则 3.878-=q kJ /kg Q=mq=1.1752?(-878.3) =-1032.2kJ 例2:1p =50bar C t 01 400=的蒸汽进入汽轮机绝热膨胀至2p =0.04bar 。设环境温度C t 0020=求: (1)若过程是可逆的,1kg 蒸汽所做的膨胀功及技术功各为多少。 (2)若汽轮机的相对内效率为0.88时,其作功能力损失为多少 解:用h-s 图确定初、终参数 初态参数:1p =50bar C t 01400=时,1h =3197kJ /kg 1v =0.058 kg m /3 1s =6.65kJ /kgK

工程热力学期末试卷及答案

一.就是非题 1.两种湿空气的相对湿度相等,则吸收水蒸汽的能力也相等。() 2.闭口系统进行一放热过程,其熵一定减少() 3.容器中气体的压力不变,则压力表的读数也绝对不会改变。() 4.理想气体在绝热容器中作自由膨胀,则气体温度与压力的表达式为 k k p p T T 11212-??? ? ??=() 5.对所研究的各种热力现象都可以按闭口系统、开口系统或孤立系统进行分析,其结果与所取系统的形式无关。() 6.工质在相同的初、终态之间进行可逆与不可逆过程,则工质熵的变化就是一样的。() 7.对于过热水蒸气,干度1>x () 8.对于渐缩喷管,若气流的初参数一定,那么随着背压的降低,流量将增大,但最多增大到临界流量。() 9.膨胀功、流动功与技术功都就是与过程的路径有关的过程量() 10.已知露点温度d t 、含湿量d 即能确定湿空气的状态。() 二.选择题(10分) 1.如果热机从热源吸热100kJ,对外作功100kJ,则()。 (A)违反热力学第一定律;(B)违反热力学第二定律; (C)不违反第一、第二定律;(D)A 与B 。 2.压力为10bar 的气体通过渐缩喷管流入1bar 的环境中,现将喷管尾部截去一小段,其流速、流量变化为()。 A 流速减小,流量不变(B)流速不变,流量增加 C 流速不变,流量不变(D)流速减小,流量增大 3.系统在可逆过程中与外界传递的热量,其数值大小取决于()。 (A)系统的初、终态;(B)系统所经历的过程; (C)(A)与(B);(D)系统的熵变。 4.不断对密闭刚性容器中的汽水混合物加热之后,其结果只能就是()。 (A)全部水变成水蒸汽(B)部分水变成水蒸汽 (C)部分或全部水变成水蒸汽(D)不能确定 5.()过程就是可逆过程。 (A)、可以从终态回复到初态的(B)、没有摩擦的 (C)、没有摩擦的准静态过程(D)、没有温差的 三.填空题(10分) 1.理想气体多变过程中,工质放热压缩升温的多变指数的范围_________ 2.蒸汽的干度定义为_________。 3.水蒸汽的汽化潜热在低温时较__________,在高温时较__________,在临界温度为__________。 4.理想气体的多变比热公式为_________ 5.采用Z 级冷却的压气机,其最佳压力比公式为_________ 四、名词解释(每题2分,共8分) 1.卡诺定理: 2..理想气体 3.水蒸气的汽化潜热 5.含湿量 五简答题(8分) 1、证明绝热过程方程式 2、已知房间内湿空气的d t 、wet t 温度,试用H —d 图定性的确定湿空气状态。 六.计算题(共54分) 1.质量为2kg 的某理想气体,在可逆多变过程中,压力从0、5MPa 降至0、1MPa,温度从162℃降至27℃,作出膨胀功267kJ,从外界吸收热量66、8kJ 。试求该理想气体的定 值比热容p c 与V c [kJ/(kg ·K)],并将此多变过程表示在v p -图与s T -图上(图上 先画出4个基本热力过程线)。(14分) 2.某蒸汽动力循环。汽轮机进口蒸汽参数为p1=13、5bar,t1=370℃,汽轮机出口蒸汽参数为p2=0、08bar 的干饱与蒸汽,设环境温度t0=20℃,试求:汽轮机的实际功量、理想功量、相对内效率(15分) 3.压气机产生压力为6bar,流量为20kg/s 的压缩空气,已知压气机进口状态1p =1bar,1t =20℃,如为不可逆绝热压缩,实际消耗功就是理论轴功的1、 15倍,求压气 机出口温度2t 及实际消耗功率P 。(已知:空气p c =1、004kJ/(kgK),气体常数R=0、287kJ/(kgK))。(15分) 4.一卡诺循环,已知两热源的温度t1=527℃、T2=27℃,循环吸热量Q1=2500KJ,试求:(A)循环的作功量。(B)排放给冷源的热量及冷源熵的增加。(10分) 一.就是非题(10分) 1、× 2、× 3、× 4、√ 5、√ 6、× 7、× 8、√ 9、×10、× 二.选择题(10分) 1、B 2、A3、A4、A5、C 三.填空题(10分)

工程热力学教案

《工程热力学》教案 课程名称:工程热力学 学分:2或3 学时:32或48 课程教材:李永,宋健. 工程热力学[M]. 北京:机械工业出版社,2017 专业年级:工科类相关专业本科生 一、目的与任务 工程热力学基本定律反映了自然界的客观规律,以这些定律为基础进行演绎、逻辑推理而得到的工程热力学方法、关系与结论,具有高度的普遍性、可行性、可靠性与实用性,可以应用于力学、宇航工程、机械与车辆工程等各个领域。工程热力学目的是研究和讲授热力学系统、热能动力装置中工作介质的基本热力学性质、热力学定律、热力学各种装置的工作过程以及提高能量转化效率的途径等,使学生熟练掌握解决工程热力学问题的基本方法,培养学生灵活应用热力学定律合理分析热力学系统的基本能力。 工程热力学任务是研究和传授热力系统能量、能量转换以及与能量转换有关的物性间相互关系和基本研究方法,培养学生对热力学的基本概念、基本理论的熟练掌握,分析求解热力学基本问题的能力。工程热力学起源于对热机和工质等的研究,热力学定律条理清楚,推理严格。工程热力学的内容多、概念多、公式多与方法多,工程热力学广泛联系热力工程和能源工程等领域。 二、主要教学内容与学时分配 绪论(2 学时) 第一节热力学的发展意义 第二节热力学的历史沿革 第三节热力学的基本定律

第四节熵与能源 第一章基本概念(2学时) 第一节热能、热力系统、状态及状态参数 第二节热力过程、功量及热量 第三节热力循环 第二章热力学第一定律及其应用(2学时) 第一节热力学第一定律及其表达 第二节热力学能和总储存能 第三节热力学第一定律的实质(2学时) 第四节能量方程式 第五节稳定流动系统的能量方程(2学时) 第六节能量方程的应用 第七节循环过程 第三章理想气体的性质(2学时) 理想气体及其状态方程 理想气体的比热容、比热力学能、比焓及比熵 理想气体的混合物 第四章理想气体的热力过程(2学时) 第一节热力过程的方法概述 热力过程的基本分析方法 第二节理想气体的基本热力过程(2学时) 第三节理想气体的多变过程(2学时) 第四节压气机的理论压缩功(2学时) 第五章热力学第二定律(2学时) 第一节热力过程的方向性

工程热力学期末考试试题

建筑环境与设备工程专业 一、选择题(每小题3分,共分) 1.若已知工质的绝对压力P=0.18MPa,环境压力Pa=0.1MPa,则测得的压差为( B ) A.真空pv=0.08Mpa B.表压力pg=0.08MPa C.真空pv=0.28Mpa D.表压力pg=0.28MPa 2.简单可压缩热力系的准平衡过程中工质压力降低,则( A ) A.技术功为正 B.技术功为负 C.体积功为正 D.体积功为负 3.理想气体可逆定温过程的特点是( B ) A.q=0 B. Wt=W C. Wt>W D. Wt

A.焓值增加 B.焓值减少 C.熵增加 D.熵减少 7.空气在渐缩喷管内可逆绝热稳定流动,其滞止压力为0.8MPa,喷管后的压力为0.2MPa,若喷管因出口磨损截去一段,则喷管出口空气的参数变化为( C ) A.流速不变,流量不变 B.流速降低,流量减小 C.流速不变,流量增大 D.流速降低,流量不变 8.把同样数量的气体由同一初态压缩到相同的终压,经( A )过程气体终温最高。 A.绝热压缩 B.定温压缩 C.多变压缩 D.多级压缩 9._________过程是可逆过程。( C ) A.可以从终态回复到初态的 B.没有摩擦的 C.没有摩擦的准平衡 D.没有温差的 10.绝对压力p, 真空pv,环境压力Pa 间的关系为( D ) A.p+pv+pa=0 B.p+pa-pv=0 C.p-pa-pv=0 D.pa-pv-p=0 11 Q.闭口系能量方程为( D ) A. +△U+W=0 B.Q+△U-W=0 C.Q-△U+W=0 D.Q-△U-W=0 12.气体常量Rr( A )

工程热力学课程教案完整版

工程热力学课程教案 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

《工程热力学》课程教案 *** 本课程教材及主要参考书目 教材: 沈维道、蒋智敏、童钧耕编,工程热力学(第三版),高等教育出版社,2001.6手册: 严家騄、余晓福着,水和水蒸气热力性质图表,高等教育出版社,1995.5 实验指导书: 华北电力大学动力系编,热力实验指导书,2001 参考书: 曾丹苓、敖越、张新铭、刘朝编,工程热力学(第三版),高等教育出版社,2002.12 王加璇等编着,工程热力学,华北电力大学,1992年。 朱明善、刘颖、林兆庄、彭晓峰合编,工程热力学,清华大学出版,1995年。 曾丹苓等编着,工程热力学(第一版),高教出版社,2002年 全美经典学习指导系列,[美]M.C. 波特尔、C.W. 萨默顿着郭航、孙嗣莹等 译,工程热力学,科学出版社,2002年。 何雅玲编,工程热力学精要分析及典型题精解,西安交通大学出版社,2000.4 概论(2学时) 1. 教学目标及基本要求 从人类用能的历史和能量转换装置的实例中认识理解:热能利用的广泛性和特殊性;工程热力学的研究内容和研究方法;本课程在专业学习中的地位;本课程与后续专业课程乃至专业培养目标的关系。 2. 各节教学内容及学时分配 0-1 热能及其利用(0.5学时) 0-2 热力学及其发展简史(0.5学时) 0-3 能量转换装置的工作过程(0.2学时) 0-4 工程热力学研究的对象及主要内容(0.8学时) 3. 重点难点 工程热力学的主要研究内容;研究内容与本课程四大部分(特别是前三大部分)之联系;工程热力学的研究方法 4. 教学内容的深化和拓宽 热力学基本定律的建立;热力学各分支;本课程与传热学、流体力学等课程各自的任务及联系;有关工程热力学及其应用的网上资源。 5. 教学方式 讲授,讨论,视频片段 6. 教学过程中应注意的问题

工程热力学总结

第一部分 (第一章~第五章) 一、概念 (一)基本概念、基本术语 1、工程热力学:工程热力学是从工程的观点出发,研究物质的热力性质、能量转换以及热能的直接利用 等问题。 2、热力系统:通常根据所研究问题的需要,人为地划定一个或多个任意几何面所围成的空间作为热力学 研究对象。这种空间内的物质的总和称为热力系统,简称系统。 3、闭口系统:没有物质穿过边界的系统称为闭口系统。系统内包含的物质质量为一不变的常量,所以有 时又称为控制质量系统。 4、开口系统:有物质流穿过边界的系统称为开口系统。开口系统总是一种相对固定的空间,故又称开口 系统为控制体积系统,简称控制体。 5、绝热系统:系统与外界之间没有热量传递的系统,称为绝热系统。 6、孤立系统:系统与外界之间不发生任何能量传递和物质交换的系统,称为孤立系统。 7、热力状态:我们把系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 8、状态参数:我们把描述工质状态特性的各种物理量称为工质的状态参数。 9、强度性状态参数:在给定的状态下,凡系统中单元体的参数值与整个系统的参数值相同,与质量多少 无关,没有可加性的状态参数称为强度性参数。 10、广延性状态参数:在给定的状态下,凡与系统内所含物质的数量有关的状态参数称为广延性参数。 11、平衡状态:在不受外界影响(重力场除外)的条件下,如果系统的状态参数不随时间变化,则该系统 所处的状态称为平衡状态。 12、热力过程:把工质从某一状态过渡到另一状态所经历的全部状态变化称为热力过程。 13、准静态过程:理论研究可以设想一种过程,这种过程进行得非常缓慢,使过程中系统内部被破坏了的 平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近平衡状态,于是整个过程就可看作是由一系列非常接近平衡态的状态所组成,并称之为准静态过程。14、可逆过程:当系统进行正、反两个过程后,系统与外界均能完全回复到初始状态,而不留下任何痕迹, 这样的过程称为可逆过程。 15、热力循环:把工质从某一初态开始,经历一系列状态变化,最后又回复到初始状态的全部过程称为热 力循环,简称循环。 16、循环热效率:正循环中热转换功的经济性指标用循环热效率表示,循环热效率等于循环中转换为功的 热量除以工质从热源吸收的总热量。 17、卡诺循环:由两个可逆定温过程与两个可逆绝热过程组成的,我们称之为卡诺循环。 18、卡诺定理:卡诺定理可表达为:①所有工作于同温热源与同温冷源之间的一切热机,以可逆热机的热 效率为最高。②在同温热源与同温冷源之间的一切可逆热机,其热效率均相等。 19、孤立系统熵增原理:孤立系统的熵只能增大(不可逆过程)或不变(可逆过程),决不可能减小,此 为孤立系统熵增原理,简称熵增原理。 (二)与工质性质有关的概念

相关主题
文本预览
相关文档 最新文档