当前位置:文档之家› 复变函数复习资料

复变函数复习资料

复变函数复习资料
复变函数复习资料

复变函数期末复习

一 知识点

1第一章主要掌握复数的四则运算,复数的代数形式、三角形式、指数形式及其运算。 2 第二章主要掌握函数的解析性,会判断函数是否是解析函数,会求解析函数的导数。 3 第三章掌握复变函数积分的计算,掌握柯西积分公式,掌握解析函数与调和级数的关系。 4 第四章掌握复数项级数的有关性质,会把一个函数展开成泰勒级数。 5 第五章掌握将函数展开为洛朗级数,掌握孤立奇点的分类及判断。

6 第六章掌握留数的计算,掌握用留数计算积分,掌握利用留数计算三类实积分。 二 例题选讲

1求i

3的值。 知识点:利用定义bLna b

e a

=。

i

3=3

iLn e

=

)

23(ln πk i i e

+=

3

ln 2i k e

+-π=

)3ln sin 3ln (cos 2i e k +-π。 2

设1||=z ,试证:

1___

__

=++b

az a z b 。知识点:复数,复数的模,共轭复数之间的关系。2__

2

__

||||z z z z ==

证明:由1||=z 得,1__

=z z ,

b

az z z a z b b

az a z b ++=

++____________

=

b

az z z a b ++)(_______=

1)()(________

_______=++=

++b

az z az b b

az z z a b

3求

2

sin Arc 的值。知识点:初等函数的定义,函数值的计算,

)1(sin 2z iz iLn z Arc -+-=,

)1(cos 2z i z iLn z Arc -+-=

解:

)

32(2s i n i i i L n A r c ±-= =

i

iLn )32(±-=

i k i i ππ

22

)32[ln(++

±-

=)32ln(2

2±--

i k π

π

,,...2,1,0±±=k

4 证明)|||(|2||||2221221221z z z z z z +=-++。

证明)|||(|2||||

2221221221z z z z z z +=-++。

知识点:复数模的计算,复数模共轭复数的关系__

2

||z z z =。

证明:))(())((||||

________

2121________

21212

212

21z z z z z z z z z z z z --+++=-++

=__

212__

12__

21__

11__

22__

12__

21__

11z z z z z z z z z z z z z z z z +--++++ =)|||(|22221z z +。

5 设

321,,z z z 三点适合条件1||||||,0321321====++z z z z z z ,试证明321,,z z z 三点是一个内接于单位圆周

1||=z 的正三角形的顶点。

知识点:利用平行四边形公式)|||(|2||||2221221221z z z z z z +=-++。

解:由0321=++z z z 得321z z z -=+,2212221212||)|||(|2||z z z z z z +-+=-=31)11(2=-+ 所以3||

12=

-z z ,

同理3||13=-z z ,3||23=-z z ,所以321,,z z z 三点是一个内接于单位圆周1||=z 的

正三角形的顶点。 6 求极限z

z z z z z sin cos lim 0

--→。知识点:这是

型,用洛必达法则。

z

z z z z z sin cos lim

--→=)sin ()cos (lim

'-'-→z z z z z z =z z z z z cos 1sin cos 1lim 0-+-→=)cos 1()sin cos 1(lim 0'-'+-→z z z z z =z

z

z z z sin cos sin 2lim

0+→=3。 7 试证明

y x i y x z f sinh sin cosh cos )(-=在z 平面上解析,并求导其导数。

知识点:利用柯西—黎曼条件,利用双曲函数的定义。

2

sinh ,2

cosh y

y y

y e e y e e y ---=

+=

解:y x y x v y x y x u sinh sin ),(,cosh cos ),(-==,

y x x

u cosh sin -=??,

y x y

u sinh cos =??

y

x x v sinh cos -=??,

y x y

v cosh sin -=??,以上四个偏导数在复平面上连续,且满足柯西—黎曼条件

x v

y u y v x u ??-

=????=

??,,y x i y x z f sinh sin cosh cos )(-=在z 平面上解析,其导数为 )sinh cos cosh sin )(y x i y x y

v i x u z f --=??+??=

'。

8验证233)

,(xy x y x u -=是z 平面上的调和函数,并求以),(y x u 为实部的解析函数)(z f ,使得i f =)0(。知识点:

调和函数的定义,调和函数和解析函数的关系。 解 由2

33)

,(xy x y x u -=得

2

233y

x x

u -=??,

xy y

u 6-=??,

x x u 62

2=??,

x y u 62

2-=??

所以

02

22

2=??+

??y u x u ,所以2

33),(xy x y x u -=是z 平面上的调和函数.由柯西—黎曼条件

x

v

y u y v x

u ??-

=????=

??,得dx y

u dx x

v

y x v ?

???-=??=

),(=

?+=)(362

y y x xydx φ,

)(32y x y

v φ'+=??所以23)(y y -='φ,

C

y y +-=3)(φ,从而

)(z f 233xy x -=)3(32C y y x i +-+,由i f =)0(得1=C ,所以

)(z f 233xy x -=)13(32+-+y y x i 。

9 设函数

)(z f 在区域D 内解析,试证:222

22

2|)(|4|)(|)(

z f z f y

x

'=??+

??

知识点:解析函数的导数的计算。 解:设函数

),(),()(y x iv y x u z f +=,则

),(),(|)(|222y x v y x u z f +=,

x

v y x v x

u y x u z f x

??+??=??)

,(2),(2|)(|2,

y

v y x v y

u y x u z f y ??+??=??),(2)

,(2|)(|2,

2

2

22

2

22

2

2

)

(

22)(22|)(|x

v x v v

x

u x u u

z f x ??+??+??+??=??22

22

2

22

2

)(

22)(

22|)(|y

v y v v y

u y u u z f y ??+??+??+??=??

而解析函数的实部与虚部是调和函数,

02

22

2=??+??y u x u ,

02

22

2=??+??y v x v 所以有

2

22

22

2|)(|4|)(|)(

z f z f y

x '=??+

??。 11试证

)sin (cos )(y i y e z f x +=在复平面上解析,并求其导数。

知识点:利用柯西—黎曼条件判断函数的可导性与解析性。 证明:

y e y x v y e y x u x x s i n ),(,c o s ),(==,

y

e x

u x cos =??,

y e y

u x sin -=??,

y

e x

v x sin =??,

y e y

v x cos =??,以上四个偏导数在复平面上连续,且满足柯西—黎曼条件

x

v

y u y v x

u ??-

=????=

??,,所以)s in (c o s )(y i y e z f x +=在复平面上解析,其导数为)sin (cos )(y i y e y

v i

x

u z f x +=??+??=

'。

12验证x

y y x v arctan

),(=在右半平面内是调和函数,其中0>x 。

知识点:调和函数的定义,解析函数和调和函数的关系。

解:

222

221y x y

x y x y

x

v +-=+-=??,

222

211

y x x x y x y v +=

+

=??,

2

2

2

2

22

2

2

2

2)

(2,

)

(2y x xy y

v y x xy x

v +-=

??+=

??,于是

02

22

2=??+??y v x v ,因此x

y y x v arctan

),(=在右半平面内是调和函数。

13 设函数

)(z f 在0z 解析,并且它不恒为常数.证明:若0z 为)(z f 的m 阶零点的充要条件是0z 为

)

(1z f 的m 阶极点. 知

识点;极点和零点的关系。 证明:若0z 为

)(z f 的m 阶零点,则()z g z z z f m )()(0-=,其中)(z g 在点0z 的某个邻域内解析且0)(0≠z g ,所以

)

(1

)(1

)

(10z g z z z f m -=

)

(1z g 在点0z 的某个邻域内解析且

0)

(10≠z g ,所以0z 为

)

(1z f 的m 阶极点.

14将

2)

1)(2()(--=

z z z z f 在

1|1|0<-

知识点:利用

1||,111

2<+++++=-z z z z z

n ,以及逐项求导,将分式写成部分分式的和。 解 设

2)1)(2()(--=

z z z z f =

)2

21()1(12)1(12

2-+

-=

--z z z z

z

=

))

1(121()1(1

2

---

-z z =

∑+∞

=-+-0

2

)1(21()1(1n n z z

15 将

5

21)(2

+-=

z z z f 按1-z 的幂展开成幂级数。知识点:把函数展开成泰勒级数和洛朗级数。

解:

521

)(2

+-=

z z z f =2

)

1(41

-+z =

∑+∞

=--=

-+

22

4

)1()1(4

1

4

)1(1141n n

n

n

z z ,2|1|<-z

16将

)

1()2()(2--=

z z z z f 在1||0<

知识点:利用

1||,111

2<+++++=-z z z z z

n ,以及逐项求导,将分式写成部分分式的和。 解 设

)

1()2()(2

--=

z z z z f =

2

)

2(2

1

-+

-+

-z C z B z A ,

去分母得 )1()1)(2()2(2-+--+-=z C z z B z A z , 取1=z ,得1=A

2

=z ,

得2=C , 取0

=z ,

1

-=B ,所以

)1()2()(2

--=

z z z

z f =

2

)

2(22

11

1

--

--

-z z z =∑∑∑∞

=∞

=-∞

=-

+

-

1

1

)2

(21

)2

(21

n n n n

n n

z

n z

z

17

dz z

e z zi ?

=+2

||2

1 知识点:利用留数定理或柯西积分公式。

解;由012=+

z 得i z ±=,这些点都是函数的一阶极点,都在2||=z 内。

dz z

e z zi ?

=+2

||2

1=))(Re )(Re (2z f s z f s i i

z i

z -==+π 而i

e z

e z

f s i z zi i

z 2|2)(Re 1-===

=

i

e z

e

z f s i z zi

i

z 2|2)(Re -

==

-=-=所以

dz z

e z zi ?

=+2

||2

1=

i

e i

e 221-

-

18

?

=1

||sin 1z dz z

z 知识点:利用留数定理或柯西积分公式。

解;由0sin =z z 得0=z ,这是函数的二阶极点,而且在1||=z 内。

?

=1

||sin 1z dz z

z =)(Re 20

z f s

i z =π

z

z

z z z

z z

z f s z z z 20

2

sin cos sin lim

)sin 1(lim )(Re -='=→→=

=0cos sin 2sin cos cos lim 0=+-→z z z z z z z ,所以?=1||sin 1

z dz z

z =0. 19

1,cos 120

>+?

a d a θθ

π

知识点;令θi e z =,则)(2

1cos ),(21sin __

__z z z z i +=-=θθ,

dz iz

d 1=

θ,然后化成复变函数沿闭曲线的积分,用留数定理来计算。

解 令

θi e z =,则

dz

az z i d a z ??

=++=

+1||220

1

21

2

cos 1θθ

π

,被积函数

1

222

++az z 有两个一级极点,

,1,12221---=-+-=a a z a a z 因为只有1||1

1

1|2221

22Re 2

211

-=

+=

++==a ia

z az z s

z z z z ,所以θθ

π

d a I ?

+=

20

cos 1=

1

22

-a π

20 计算积分

?

=-2

||2

1

4sin

z dz z z

π

知识点:利用留数定理或柯西积分公式。 解:被积函数

1

4sin

2-z z π

有两个极点

1,1-==z z ,这两个极点都在圆周内,因此

?=-2||214s i n z dz z z π=))(Re )(Re (211z f s z f s i z z -==+π而)(Re 1z f s z ==)1(lim 1-→z z 14sin 2-z z

π

=

4

2 同理42)(Re 1=-=z f s z ,所以?=-2||214sin

z dz z z

π

=i π2. 21计算积分0,1

cos 02>+?+∞m dx x mx

。 知识点:利用留数定理计算实的积分。 解

2

11

cos 0

2=

+?

+∞dx x mx

dx

x mx ?

+∞

-+1

cos 2,而

dx x mx ?

+∞

-+1

cos 2

=m

m imz i

z e

i

e i

z e s

i --===+πππ221

Re 22

,于是有

m e dx x mx -+∞

=

+?

π2

11

cos 0

2

22 计算积分

?

=--2

||2

)

1(25z dz z z z . 知识点:利用留数定理

解:被积函数

2

)1(25)(--=

z z z z f 有两个极点0,1==z z ,这两个极点都在圆周内

因此

?

=--2

||2

)

1(25z dz z z z =))(Re )(Re (21

z f s z f s i z z ==+π,而)(Re 0

z f s z ==)(lim 0

z zf z →=2-

而2|2|)25(

)(Re

12

11

==

'-====z z z z

z

z z f s ,所以?

=--2

||2

)1(25z dz z z z =0。

23计算积分

?

=-2

||2sin 21z dz z

z 知识点:利用留数定理或柯西积分公式。

解;由

0s in 2

12=-z 得4

π±

=k z ,这些点都是函数的一阶极点,而只有

0=k 时奇点才在2

||=z 内。?

=-2

||2s in 2

1z dz

z

z =

))

(Re )(Re (244

z f s z f s i z z π

π

π-

==

+,

4

|

cos sin 2)(Re 4

4

π

π

π

-

=-=

=

=

z z z

z z z f s ,

4

|

cos sin 2)(Re 4

4

π

π

π

-

=-=

-

=-

=z z z

z z z f s ,所以

i i dz z z

z 22

||222sin 2

1πππ-=???

??-=-?

=

24计算积分

dx x x ?

+∞

-+2

2

2)

1( 知识点:利用留数定理计算实的积分。 解:被积函数

2

22

)1()(+=

z z z f 有两个极点i z i z -==,,只有极点i z =在上半平面内

所以

dx x x ?

+∞

-+2

2

2)

1(=)(Re 2z f s i i

z =π,=i z i z z i ='+|))

((22

2π=2

|)

(223

π

π=

+=i z i z zi i

25求方程0137245

=++-+z z z z 在1||

解:设

13)(,7)(254++-==z z z z g z z f ,在)(),(z g z f 在1||

7|7||)(|4==z z f ,61|||3||||13||)(|2525=++-+≤++-=z z z z z z z g ,所以在1||=z 上,

|)(||)(|z g z f >,因此)(z f 与)()(z g z f +,在1||

1||

26 设

)(z f 在1||≤z 内解析, 在边界上1|)(|

复变函数_期末试卷及答案

一、单项选择题(本大题共15小题,每小题2分,共30分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括 号内。错选、多选或未选均无分。 1.下列复数中,位于第三象限的复数是( ) A. 12i + B. 12i -- C. 12i - D. 12i -+ 2.下列等式中,不成立的等式是( ) 3.下列命题中,正确..的是( ) A. 1z >表示圆的内部 B. Re()0z >表示上半平面 C. 0arg 4 z π << 表示角形区域 D. Im()0z <表示上半平面 4.关于0 lim z z z z ω→=+下列命题正确的是( ) A.0ω= B. ω不存在 C.1ω=- D. 1ω= 5.下列函数中,在整个复平面上解析的函数是( ) 6.在复平面上,下列命题中,正确..的是( ) A. cos z 是有界函数 B. 2 2Lnz Lnz = 7 .在下列复数中,使得z e i =成立的是( ) 8.已知3 1z i =+,则下列正确的是( ) 9.积分 ||342z dz z =-??的值为( ) A. 8i π B.2 C. 2i π D. 4i π 10.设C 为正向圆周||4z =, 则10()z C e dz z i π-??等于( ) A. 1 10! B. 210! i π C. 29! i π D. 29! i π- 11.以下关于级数的命题不正确的是( ) A.级数0327n n i ∞ =+?? ?? ?∑是绝对收敛的 B.级数 212 (1)n n i n n ∞ =??+ ?-??∑是收敛的 C. 在收敛圆内,幂级数绝对收敛 D.在收敛圆周上,条件收敛 12.0=z 是函数(1cos ) z e z z -的( ) A. 可去奇点 B.一级极点 C.二级极点 D. 三级极点

中南大学复变函数考试试卷(A)及答案

中南大学考试试卷(A) 2008--2009学年第二学期 时间110分钟 复变函数与积分变换课程40学时2.5学分 考试形式:闭卷 专业年级:教改信息班 总分100分,占总评成绩70 % 注:此页不作答题纸,请将答案写在答题纸上 一、单项选择题(15分,每小题3分) 1. 下列方程中,表示直线的是( )。 ()()()()()()()254(54)54(54)1 12R e 1 A i z i z z z B i z i z C z i z i D z z z -++ =-++=-++= =- 2. 函数222()()(2)f z x y x i xy y =--+-在( )处可导。 ()()()()22A B x C y D ==全平面 处处不可导 3. 下列命题中,不正确的是( )。 ()()()()()()()()()0R e s ,0I m 1.z z A f z f z B f z D z f z D C e i D z e i ωπω∞∞ =-=<<<+如果无穷远点是的可去奇点,那么若在区域内任一点的邻域内展开成泰勒级数 ,则在内解析. 幂级数的和函数在收敛圆内是解析函数.函数将带形域0()映射为单位圆 4. 下列级数绝对收敛的是( )。 ()()()() ()2 2111 1112n n n n n n n i i i A B C i D n n n ∞∞ ∞ ∞ ====?? ++ ?? ?∑ ∑∑∑ 5. 设()f z 在01z <<内解析且()0 lim 1z zf z →=,那么()() Res ,0f z =( )。

()()()()22 11 A i B i C D ππ-- 二、填空题(15分,每空3分) 1.()Ln 1i -的主值为 。 2.函数()()Re Im f z z z z ()=+仅在点z = 处可导。 3. ()1 sin z z z e z dz =-=? 。 4. 函数()ln 1z +在0z =处的泰勒展开式 。 5. 幂级数()1 1n n z n ∞ =-∑ 的收敛半径为 。 三.(10分)求解析函数f z u iv ()=+,已知22,()1u x y xy f i i =-+=-+。 四.(20分)求下列积分的值 1. () 2 2 4 1z z e dz z z =-? 2. ()2 sin 0x x dx a x a +∞ >+? 五.(15分)若函数()z ?在点解析,试分析在下列情形: 1.为函数()f z 的m 阶零点; 2.为函数()f z 的m 阶极点; 求()()()0Res ,f z z z f z ??? '??? ?。 六.(15分)试求()2 1 1f z z = +以z i =为中心的洛朗级数。 七.(10分)已知单位阶跃函数()0 01 t u t t >?=?

学习复变函数与积分变换的心得

学习复变函数与积分变换的心得 我是一名自考生,通过网络学习这门课程,学习了不少以前书本上学不到的东西。它的应用及延伸远比概率统计广,复杂得多。我从中学到了很多,上课也感受到了这门课程的魅力及授课老师的精彩的讲课。我深深地被复变函数与积分变换这门课程给吸引住了。同时网络学习也带给我了一定的帮助。 关于这门课程,首先,它作为一门工科类各专业的重要基础理论课程,它与工程力学、电工技术、和自动控制等课程的联系十分密切,其理论方法应用广泛。同时,作为一门工程数学的课程,它主要是以工程背景为依托来展开讨论和研究的,其前提就是为了服务于实际工程。其次,复变函数与积分变换作为一门工程数学课程,概念晦涩难懂、计算繁琐和逻辑推理不易理解。它既具有传统数学的一些特点,又具有与实际工程相结合才能理解的特点。传统数学主要注重对于基本概念的理解和对理论的讲解,要求理论推导具有严密的逻辑性,而不太注重其实际应用。而工程数学在推导定理或概念的过程中就会出现一些不完全符合严密逻辑的推理,但在现实中又是实实在在存在的一些特殊情况。复变函数是在实变函数的基础上产生和发展起来的一个分支,复变函数与积分变换中的理论和方法不仅是数学的许多后续课程如数理方程泛函分析多复变函数调和分析等课程的基础,而且在其它自然科学和各种工程技术领域特别是信号处理以及流体力学电磁学热学等的研究方面有着广泛的应用,可以说复变函数与积分变换既是一门理论性较强的课程,又是解决实际问题的有力工具各高校普遍将复变函数与积分变换课程作为工科各专业的一门重要的必修科来开设,尤其作为电子、机电自动化等电力专业的学生而言,该课程更是一门必不可少的专业基础类必修课,它为电路分析信号与系统以及自动控制原理等后续专业课程的学习提供了必要的数学工具因此,学好这门课程非常必要然而,该课程一直是学生较难学的课程之一。 第一、学生普遍认为复变函数的应用性不强我们知道复变函数是建立在复数的基础上的,而复数中是一个虚数单位,从而大家对复数的真实性存在疑虑,所以很难想象它在现实生活和实践中的应用价值另外,在学习这门课程当中,复变函数这部分原理、规律多,内容枯燥、抽象,需要理解的概念和定义也多,学生普遍感觉到理论性偏强,有点抓不住重点;而积分变换这部分所涉及的背景较多,学生所面对的大多是一些抽象枯燥的变换公式这些会让学生们认为这是一门纯理论且没用的课程,也就没有兴趣可言。 第二、复变函数是实变函数在复数域的推广,它的许多概念性质和意义与实变函数有相同之处,同时又与实变函数有着诸多不同不少学生在学习当中往往只注意到相同点,而没有注意到它们的不同点,这让学生感觉可以直接把实变函数当中所学的知识和方法照搬过来即可,觉得这门课程与高等数学没什么区别,感觉是在重复学习,没多大意思。 第三、与后续专业课衔接不够紧密,复变函数与积分变换课程的讲授往往与后续专业课程的使用存在一定的时间差,在后续课程用到时,往往都要花一定得时间去复习,否则学生难于跟上,造成教学重复现象,课时利用率不高。所以网络学习给我们提供了一个后备平台。 们合理利用网络来学习其他课程。 第四、通过网络学习增强了我们对远程教育的了解,提高了我们对这门课程的认真度,同时鼓励同学

复变函数论第一章复数与复变函数

引言 复数理论的产生、发展经历了漫长而又艰难的岁月.复数是16世纪人们在解代数方程时引入的. 1545年,意大利数学物理学家H Cardan (卡丹)在所著《重要的艺术》一书中列出将10分成两部分,使其积为40的问题,即求方程(10)x x -的根,它求出形式的根为 5+525(15)40--=. 但由于这只是单纯从形式上推广而来引进,并且人民原先就已断言负数开平方是没有意义的.因而复数在历史上长期不能为人民所接受.“虚数”这一名词就恰好反映了这一点. 直到十八世纪,,D Alembert (达朗贝尔):L Euler (欧拉)等人逐步阐明了复数的几何意义与物理意义,建立了系统的复数理论,从而使人民终于接受并理解了复数. 复变函数的理论基础是在十九世纪奠定的,主要是围绕..A L Cauchy (柯西),K Weierstrass (魏尔斯特拉斯)和B Riemann (黎曼)三人的工作进行的. 到本世纪,复变函数论是数学的重要分支之一,随着它的领域的不断扩大而发展成庞大的一门学科,在自然科学其它(如空气动力学、流体力学、电学、热学、理论物理等)及数学的其它分支(如微分方程、积分方程、概率论、数论等)中,复变函数论都有着重要应用. 第一章 §1 复数 教学目的与要求:了解复数的概念及复数的模与辐角; 掌握复数的代数运算复数的乘积与商﹑幂与根运算. 重点:德摩弗()DeMoiVre 公式. 难点:德摩弗()DeMoiVre 公式. 课时:2学时. 1. 复数域 形如z x iy =+或z z yi =+的数,称为复数,其中x 和y 均是实数,称为复数z 的 实部和虚部,记为Re x z =,Im y z = i =,称为虚单位. 两个复数111z x iy =+,与222z x iy =+相等,当且仅当它们的实部和虚部分别对应相等,即12x x =且12y y =虚部为零的复数可看作实数,即0x i x +=,特别地,000i +=,因此,全体实数是全体复数的一部分. 实数为零但虚部不为零的复数称为纯虚数,复数x iy +和x iy -称为互为共轭复数,记

《复变函数》-期末试卷及答案(A卷)

《复变函数》试卷 第1页(共4页) 《复变函数》试卷 第2页(共4页) XXXX 学院2016—2017学年度第一学期期末考试 复变函数 试卷 一、单项选择题(本大题共10小题,每题3分,共30分,请从每题备选项中选出唯一符合题干要求的选项,并将其前面的字母填在题中括号内。) 1. =)i Re(z ( ) A.)i Re(z - B.)i Im(z C.z Im - D.z Im 2. 函数2 ) (z z f =在复平面上 ( ) A.处处不连续 B. 处处连续,处处不可导 C.处处连续,仅在点0= z 处可导 D.处处连续,仅在点0=z 处解析 3.设复数a 与b 有且仅有一个模为1,则b a b a --1的值 ( ) A.大于1 B.等于1 C.小于1 D.无穷大 4. 设x y z f y x z i )(i +-=+=,,则=')(z f ( ) A.i 1+ B.i C.1- D.0 5.设C 是正向圆周 1=z ,i 2sin π=?dz z z C n ,则整数n 等于 ( ) A.1- B.0 C.1 D.2 6.0=z 是2 1 )( z e z f z -=的 ( ) A.1阶极点 B.2阶极点 C. 可去奇点 D.本性奇点 7.幂级数!2)1(0 n z n n n n ∑∞ =-的和函数是 ( ) A.z e - B.2 z e C.2 z e - D.z sin 8.设C 是正向圆周 2=z ,则 =?C z dz 2 ( ) A.0 B.i 2π- C.i π D.i 2π 9.设函数)(z f 在)0( 00+∞≤<<-

复变函数试题汇总

复变函数试题汇总

————————————————————————————————作者: ————————————————————————————————日期: ?

《复变函数》考试试题(一) 一、 判断题(20分): 1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z0解析. ( ) 2. 有 界 整 函 数 必 在 整 个 复 平 面 为 常 数 . ( ) 3 . 若 } {n z 收敛,则 } {Re n z 与 } {Im n z 都收敛. ( ) 4.若f(z)在区域D内解析,且 0)('≡z f ,则C z f ≡)((常数). ( ) 5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 6.若 z 0是 )(z f 的 m 阶零点,则 z 0是 1/ )(z f 的 m 阶极 点. ( ) 7.若 ) (lim 0 z f z z →存在且有限,则z 0 是函数f(z)的可去奇点. ( ) 8.若函数f(z)在是区域 D 内的单叶函数,则)(0)('D z z f ∈?≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=? C dz z f . 10.若函数f (z )在区域D 内的某个圆内恒等于常数,则f (z)在区域D 内恒等于常数.( ) 二.填空题(20分) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 22cos sin _________. 3.函数z sin 的周期为___________.

泛函分析复习提要

泛函分析复习提要 一、填空 1. 设X 是度量空间,E 和M 是X 中两个子集,如果 ,则称集M 在集E 中 稠密。如果X 有一个可数的稠密子集,则称X 是 空间。 2. 设X 是度量空间, M 是X 中子集,若 ,则称M 是第一纲集。 3. 设T 为复Hilbert 空间X 上的有界线性算子,若对任何x X ∈,有*Tx T x =, 则T 为 算子。 ( Hilbert 空间H 上的有界线性算子T 是正常算子的充要条件是 。) 4. 若复Hilbert 空间X 上有界线性算子T 满足对一切x X ∈,,Tx x <>是实数,则 T 为 算子。 ( Hilbert 空间H 上的有界线性算子T 是自伴算子的充要条件是 。) 5.设X 是赋范线性空间,X '是X 的共轭空间,泛函列(1,2,)n f X n '∈= ,如果 存在f X '∈,使得对任意的x X ∈,都有 ,则称{}n f 弱*收敛于f 。 6. 设,X Y 是赋范线性空间,(,)n T B X Y ∈,1,2,n = ,若存在(,)T B X Y ∈使得对任意的x X ∈,有 ,则称{}n T 强收敛于T 。 7. 完备的赋范线性空间称为 空间,完备的内积空间称为 空间 8. 赋范线性空间X 到赋范线性空间Y 上的有界线性算子T 的范数T = 9. 设X 是内积空间,则称 是由内积导出的范数。 10.设X 是赋范空间,X 的范数是由内积引出的充要条件是 。 11. 设Y 是Hilbert 空间的闭子空间,则Y 与Y ⊥⊥满足 。 12.设X 是赋范空间,:()T D T X X ?→的线性算子,当T 满足 时, 则T 是闭算子。 二、叙述下列定义及定理 1. 里斯(Riesz )定理; 2. 实空间上的汉恩-巴拿赫泛函延拓定理;

复变函数论第三版课后习题答案

第一章习题解答 (一) 1 .设2z =z 及A rcz 。 解:由于32i z e π- = 所以1z =,2,0,1,3 A rcz k k ππ=- +=± 。 2 .设1 21z z = = ,试用指数形式表示12z z 及 12 z z 。 解:由于6 4 12,2i i z e z i e π π - += == = 所以( )646 4 12 12222i i i i z z e e e e π π π π π - - === 54( )14 6 12 2 6 112 2 2i i i i z e e e z e π ππππ+ - = = = 。 3.解二项方程440,(0)z a a +=>。 解:1 244 4 (),0,1,2,3k i i z a e ae k ππ π+= ===。 4.证明2 2 2 1212 122()z z z z z z ++-=+,并说明其几何意义。 证明:由于2 2 2 1212 122Re()z z z z z z +=++ 2 2 2 121 2 122R e () z z z z z z -=+- 所以2 2 2 12 12122()z z z z z z ++-=+ 其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。 5.设z 1,z 2,z 3三点适合条件:0 321=++z z z , 1 321===z z z 。证明z 1,z 2,z 3是内 接于单位圆1 =z 的一个正三角形的顶点。 证 由于 1 321===z z z ,知 3 21z z z ?的三个顶点均在单位圆上。 因为 3 33 3 1z z z == ()[]()[]2 12322112121z z z z z z z z z z z z +++=+-+-= 2 1212z z z z ++= 所以, 12121-=+z z z z , 又 ) ())((1221221121212 2 1z z z z z z z z z z z z z z +-+=--=- ()3 22121=+-=z z z z

重庆大学《复变函数与积分变换》期末考试试卷及答案

得分 得分 ?复变函数与积分变换?期末试题(A ) 一.填空题(每小题3分,共计15分) 1. 2 3 1i -的幅角是( );2.)1(i Ln +-的主值是 ( );3. 2 11)(z z f +=,=)0() 5(f ( ); 4.0=z 是 4 sin z z z -的( )极点;5. z z f 1 )(=,=∞]),([Re z f s ( ) ; 二.选择题(每小题3分,共计15分) 1.解析函数),(),()(y x iv y x u z f +=的导函数为( ); (A ) y x iu u z f +=')(; (B )y x iu u z f -=')(; (C ) y x iv u z f +=')(; (D )x y iv u z f +=')(. 2.C 是正向圆周3=z ,如果函数=)(z f ( ),则0d )(=?C z z f . (A ) 23-z ; (B )2 )1(3--z z ; (C )2)2()1(3--z z ; (D )2)2(3-z . 3.如果级数∑∞ =1 n n n z c 在 2=z 点收敛,则级数在 (A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛; (C )i z +=1点绝对收敛; (D )i z 21+=点一定发散. 4.下列结论正确的是( ) (A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析;

(B) 如果)(z f 在C 所围成的区域内解析,则0)(=? C dz z f (C )如果 0)(=? C dz z f ,则函数)(z f 在C 所围成的区域内一定解析; (D )函数 ),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是 ),(y x u 、),(y x v 在该区域内均为调和函数. 5.下列结论不正确的是( ). (A) 的可去奇点;为z 1 sin ∞(B) 的本性奇点;为z sin ∞ (C) ;1sin 1 的孤立奇点为 z ∞(D) .sin 1的孤立奇点为z ∞ 三.按要求完成下列各题(每小题10分,共计40分) (1)设)()(2 2 2 2 y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a (2).计算? -C z z z z e d ) 1(2 其中C 是正向圆周:2=z ; 得分

复变函数发展历程

复变函数发展历程 复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。 复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。 为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。 后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。 复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。 比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。 复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。 广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象薄壳理论这样的固体力学部门也在应用。因此,近年来这方面的理论发展十分迅速。 从柯西算起,复变函数论已有170多年的历史了。它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。它曾经推动过一些学科的发展,并且常常作为一个有力的工具被应用在实际问题中,它的基础内容已成为理工科很多专业的必修课程。现在,复变函数论中仍然有不少尚待研究的课题,所以它将继续向前发展,并将取得更多应用。 校内发展的历史 《复变函数论》,又称《复分析》,是在《数学分析》的基础上,应用分析与积分方法研究复变量复值解析函数的一门分析数学,它是学习与研究《泛函分析》、《微分方程》等课程的重要基础。复变函数论是数学专业的一门专业必修课程,是数学分析的后续课程。它的理论和方法,对于其它数学学科,对于物理、力学及工程技术中某些二维问题,都有广泛的应用。通过本课程的教学,使学生掌握复变函数论的基本理论和方法,提高分析问题和解决问题的能力,培养学生独立地分析和解决某些有关的理论和实际问题的能力。 随着学校的升本成功,该门课程已在本科层面授课两届。 针对学生普遍基础薄弱的特点,在教学中,着力要求任课教师将基本概念讲解正确清楚,基本理论阐述系统简明,对学生的基本运算能力的训练也严格要求。教材选用了国内较成熟且讲解较为简单明了的钟玉泉的复变函数论(第2版),方便学生学习。 实际教学中注意本课程和其它课程的联系,特别是与数学分析的衔接,相应内容在处理方法上的异同。在基本运算方面,应通过适当的例题和习题,加强习题课和练习,使学

复变函数期末考试题大全(东北师大)

____________________________________________________________________________________________________ 一、填空题(每小题2分) 1、复数i 212--的指数形式是 2、函数w = z 1将Z S 上的曲线()1122 =+-y x 变成W S (iv u w +=)上 的曲线是 3、若01=+z e ,则z = 4、()i i +1= 5、积分()? +--+i dz z 22 22= 6、积分?==1sin 21z dz z z i π 7、幂级数()∑∞ =+0 1n n n z i 的收敛半径R= 8、0=z 是函数 z e z 1 11- -的 奇点 9、=??? ? ??-=1Re 21z e s z z 10、将点∞,i,0分别变成0,i,∞的分式线性变换=w 二、单选题(每小题2分) 1、设α为任意实数,则α 1=( ) A 无意义 B 等于1 C 是复数其实部等于1 D 是复数其模等于1 2、下列命题正确的是( ) A i i 2< B 零的辐角是零 C 仅存在一个数z,使得z z -=1 D iz z i =1 3、下列命题正确的是( ) A 函数()z z f =在z 平面上处处连续 B 如果()a f '存在,那么()z f '在a 解析 C 每一个幂级数在它的收敛圆周上处处收敛 D 如果v 是u 的共轭调和函数,则u 也是v 的共轭调和函数 4、根式31-的值之一是( ) A i 2321- B 223i - C 223i +- D i 2 321+- 5、下列函数在0=z 的去心邻域内可展成洛朗级数的是( ) A z 1sin 1 B z 1cos C z ctg e 1 D Lnz 6、下列积分之值不等于0的是( ) A ?=-123z z dz B ?=-12 1z z dz C ?=++1242z z z dz D ?=1 cos z z dz 7、函数()z z f arctan =在0=z 处的泰勒展式为( ) A ()∑∞ =+-02121n n n n z (z <1) B ()∑∞ =+-0 1221n n n n z (z <1) C ()∑∞ =++-012121n n n n z (z <1) D ()∑∞=-0 221n n n n z (z <1) 8、幂级数n n n z 20 1)1(∑∞ =+-在1w 的分式线性变换是( ) A )1(1>--=a z a a z e w i β B )1(1<--=a z a a z e w i β

泛函分析论文

泛函分析作业 数学系08级5班 08020170 赵英杰

泛函分析主要内容 泛函分析是20世纪30年代形成的数学分科。是从变分问题,积分方程和理论物理的研究中发展起来的。它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的函数,算子和极限理论。它可以看作无限维向量空间的解析几何及数学分析。主要内容有拓扑线性空间等。泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科。 泛函分析是分析数学中最“年轻”的分支,它是古典分析观点的推广,它综合函数论、几何和代数的观点研究无穷维向量空间上的函数、算子、和极限理论。他在二十世纪四十到五十年代就已经成为一门理论完备、内容丰富的数学学科了。 一、度量空间和赋范线性空间 1、度量空间 现代数学中一种基本的、重要的、最接近于欧几里得空间的抽象空间。19世纪末叶,德国数学家G.康托尔创立了集合论,为各种抽象空间的建立奠定了基础。20世纪初期,法国数学家M.-R.弗雷歇发现许多分析学的成果从更抽象的观点看来,都涉及函数间的距离关系,从而抽象出度量空间的概念。 度量空间中最符合我们对于现实直观理解的是三维欧氏空间。这个空

间中的欧几里德度量定义两点之间距离为连接这两点的直线的长度。 定义:设X为一个集合,一个映射d:X×X→R。若对于任何x,y,z属于X,有 (I)(正定性)d(x,y)≥0,且d(x,y)=0当且仅当 x = y; (II)(对称性)d(x,y)=d(y,x); (III)(三角不等式)d(x,z)≤d(x,y)+d(y,z) 则称d为集合X的一个度量(或距离)。称偶对(X,d)为一个度量空间,或者称X为一个对于度量d而言的度量空间。 2、赋范线性空间 泛函分析研究的主要是实数域或复数域上的完备赋范线性空间。这类空间被称为巴拿赫空间,巴拿赫空间中最重要的特例被称为希尔伯特空间。 (一)、希尔伯特空间 希尔伯特空间可以利用以下结论完全分类,即对于任意两个希尔伯特空间,若其基的基数相等,则它们必彼此同构。对于有限维希尔伯特空间而言,其上的连续线性算子即是线性代数中所研究的线性变换。对于无穷维希尔伯特空间而言,其上的任何态射均可以分解为可数维度(基的基数为50)上的态射,所以泛函分析主要研究可数维度上的希尔伯特空间及其态射。希尔伯特空间中的一个尚未完全解决的问题是,是否对于每个希尔伯特空间上的算子,都存在一个真不变子空间。该问题在某些特定情况下的答案是肯定的。 (二)、巴拿赫空间

第一章-复数与复变函数

复变函数教案 2012—2013学年度第二学期 任课教师郭城 课程名称复变函数 采用教材高教三版(钟玉泉编) 周课时数 4 数统学院数学教育专业2010 年级1班

引言 数学从产生、有发展到现在,已成为分支众多的学科了,复变函数是其中一个非常重要的分支。以复数作为自变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论,简称函数论。 我们知道,在解实系数一元二次方程ax2+bx+x=O(a≠o1时,如果判别式b2-4 ac

复变函数测试题及答案-精品

第一章 复变函数测试题及答案-精品 2020-12-12 【关键字】条件、充分、关系、满足、方向、中心 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2 123+- 3.复数)2 (tan πθπ θ<<-=i z 的三角表示式是( ) (A ))]2sin()2[cos( sec θπθπ θ+++i (B ))]2 3sin()23[cos(sec θπ θπθ+++i (C ))]23sin()23[cos( sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点) ,(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为

i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3 7.使得2 2 z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -43 (D )i --4 3 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232= -+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z (C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.0 0) Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i - (C )等于0 (D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( )

泛函分析在数值分析中的应用

泛函分析在数值分析中 的应用 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

泛函分析在数值分析中的应用 刘肖廷工程力学 一、数学概述 数学是一门从集合概念角度去研究物质世界数量关系与空间形式的基础的自 然学科。它从应用的角度可以分为基础数学与应用数学两大范畴,而基础数学 又可以划分为纯数学和基础应用数学两大范畴。其中,纯数学是建立在基础应 用数学基础上进行的单纯的数学研究。可见基础应用数学是数学学科的基础。 基础应用数学以代数学,几何学,分析学与拓扑学为基础研究物质世界的数 学关系与空间形式。分而言之,代数学主要是从集合概念角度去研究物质世界 的数量关系;几何学主要是从集合概念的角度去研究物质世界的空间形式;分 析学则主要研究集合间的映射关系及其运算;而拓扑学则包含点集拓扑,代数 拓扑,微分拓扑,辛拓普等几个分支,融合与代数学与几何学之中。 应用数学则是以基础数学的基本方法(代数,几何,分析)为基础,去探讨 物质世界不同类型的数量关系与空间形式的。它主要包括三角学,概率论,数 理统计,随机过程,积分变换,运筹学,微分方程,积分方程,模糊数学,数 值分析,数值代数,矩阵论,测度论,李群与李代数等领域。当然,我们同样 不能忽视应用数学对基础数学在理论上的支持与贡献。 由此可见,集合概念是数学的核心概念,代数、几何与分析是是数学的三大 基本方法,代数学、几何学、分析学与拓扑学是支撑数学大厦的四根最紧要的 支柱,此四者同时又是相互联系,不可分割的。这一点印证了一句名言,数学 的魅力正在于其中各个分支之间的相互联系。 泛函分析的基本内容和基本特征 (一)度量空间和赋范线性空间 1、度量空间是现代数学中一种基本的、重要的、最接近于欧几里得空间的抽 象空间。19 世纪末,德国数学家G.康托尔创立了集合论,为各种抽象空间的 建立奠定了基础。20 世纪初期,法国数学家M. R. 弗雷歇发现许多分析学的 成果从更抽象的观点看来,都涉及函数间的距离关系,从而抽象出度盘空间的 d?→。若对于任何x, 概念。定义:设x 为一个集合,一个映射: X X R y,z属于x,有(1) (正定性)(x,y)0 d=。当且仅当x y d≥,且(x,y)0 =; (2)

复变函数与积分变换期末试题(附有答案)

复变函数与积分变换期末试题 一.填空题(每小题3分,共计15分) 1. 2 3 1i -的幅角是( 2,1,0,23±±=+-k k ππ);2. )1(i Ln +-的主值是 ( i 4 32ln 21π + );3. 211)(z z f +=,=)0() 5(f ( 0 ),4.0=z 是 4sin z z z -的( 一级 )极点;5. z z f 1 )(=,=∞]),([Re z f s (-1 ); 二.选择题(每题3分,共15分) 1.解析函数),(),()(y x iv y x u z f +=的导函数为( ); (A ) y x iu u z f +=')(; (B )y x iu u z f -=')(; (C ) y x iv u z f +=')(; (D )x y iv u z f +=')(. 2.C 是正向圆周3=z ,如果函数=)(z f ( ),则0d )(=?C z z f . (A ) 23-z ; (B )2)1(3--z z ; (C )2)2()1(3--z z ; (D )2 ) 2(3 -z . 3.如果级数∑∞ =1 n n n z c 在2=z 点收敛,则级数在 (A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛;

(C )i z +=1点绝对收敛; (D )i z 21+=点一定发散. 4.下列结论正确的是( ) (A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析; (B) 如果)(z f 在C 所围成的区域内解析,则 0)(=? C dz z f (C )如果 0)(=? C dz z f ,则函数)(z f 在C 所围成的区域内一定解析; (D )函数 ),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是 ),(y x u 、),(y x v 在该区域内均为调和函数. 5.下列结论不正确的是( ). (A) 的可去奇点;为z 1 sin ∞(B) 的本性奇点;为z sin ∞ (C) ;1sin 1 的孤立奇点为 z ∞(D) .sin 1的孤立奇点为z ∞ 三.按要求完成下列各题(每小题10分,共40分) (1).设)()(2 2 2 2 y dxy cx i by axy x z f +++++=是解析函数,求 .,,,d c b a 解:因为)(z f 解析,由C-R 条件

泛函分析论文

浅谈泛函分析 数学科学学院 张健 20111101710 2011级数学与应用数学汉班 摘 要 泛函分析是分析数学中最“年轻”的分支,它是古典分析观点的推广,它综合函数论、几何和代数的观点研究无穷维向量空间上的函数、算子、和极限理论。它在二十世纪四十到五十年代就已经成为一门理论完备、内容丰富的数学学科了。 关键词 泛函分析、空间、度量、算子 泛函分析是20世纪30年代形成的数学分科,是从变分问题、积分方程和理论物理的研究中发展起来的。它综合运用函数论、几何学、现代数学的观点来研究无限维向量空间上的函数、算子和极限理论。它可以看作无限维向量空间的解析几何及数学分析。主要内容有拓扑线性空间等。泛函分析在数学物理方程、概率论、计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科。 .1度量空间和赋范线性空间 1.1度量空间 现代数学中一种基本的、重要的、最接近于欧几里得空间的抽象空间。19世纪末叶,德国数学家.G 康托尔创立了集合论,为各种抽象空间的建立奠定了基础。20世纪初期,法国数学家..R M -弗雷歇发现许多分析学的成果从更抽象的观点看来,都涉及函数间的距离关系,从而抽象出度量空间的概念。 度量空间中最符合我们对于现实直观理解的是三维欧氏空间。这个空间中的欧几里德度量定义两点之间距离为连接这两点的直线的长度。 定义:设X 为一个集合,一个映射d :R X X →?。若对于任何z y x ,,属于X ,有 ()1(正定性)(),0,≥y x d 且(),0,=y x d 当且仅当y x = ()2(对称性)()()x y d y x d ,,= ()3(三角不等式)()()()z y d y x d z x d ,,,+≤ 则称d 为集合X 的一个度量(或距离)。称偶对()X d ,为一个度量空间,或者称X 为一个对于度量d 而言的度量空间。 2.1赋范线性空间

相关主题
文本预览
相关文档 最新文档