当前位置:文档之家› 标贯试验锤击数确定泥岩单桩极限端阻力标准值

标贯试验锤击数确定泥岩单桩极限端阻力标准值

标贯试验锤击数确定泥岩单桩极限端阻力标准值
标贯试验锤击数确定泥岩单桩极限端阻力标准值

标贯试验锤击数确定泥岩单桩极限端阻力标准值

发表时间:2019-06-05T18:01:34.757Z 来源:《建筑学研究前沿》2019年3期作者:李建国[导读] 泥岩中单桩竖向极限承载力,用《建筑桩基技术规范》(JGJ94-2008)中嵌岩桩方法确定,其承载力偏低。

天水建筑设计院甘肃天水 741000

摘要:泥岩中单桩竖向极限承载力,用《建筑桩基技术规范》(JGJ94-2008)中嵌岩桩方法确定,其承载力偏低。经过在泥岩中进行标准贯入试验,建立标准贯入锤击数和桩端极限端阻力的对比关系,经现场单桩静载荷试验验证,其结果较为准确可靠。

关键词:泥岩;极限端阻力标准值;标贯试验锤击数;对比关系 1 前言

泥岩是建筑桩基础理想的持力层,但是用现行《建筑桩基技术规范》(JGJ 94-2008)“5.3.9”条,嵌岩桩单桩竖向极限承载力采用岩石单轴抗压强度进行计算,其承载力偏低。我们经过在泥岩中积累的标贯试验锤击数和单桩竖向极限端阻力值的经验统计对比关系,确定出的单桩极限承载力比规范法有明显提高,经现场单桩静载荷试验验证,其结果较为准确可靠。

2 泥岩的一般特征

泥岩的成岩作用差,被一些专家称为“似岩非岩、似土非土”的特殊岩土,受水浸泡后会崩解、泥化。

甘肃天水地区的泥岩属第三系陆源碎屑沉积物,一般为褐红色,局部呈灰绿色,泥质结构,水平层理构造,表层2.0m左右为强风化层,其下过渡为中等风化,岩石坚硬程度属极软岩,岩体完整程度为较完整~完整,岩体基本质量等级属5级。天然含水量7.14%~24.3%,标准贯入试验锤击数19~52,天然状态单轴抗压强度标准值0.80~3.71,承载力特征值为300~600kPa,钻孔灌注桩极限端阻力标准值1800~3000kP。各个勘察单位尽管各有依据和自己的经验,但差异太大,实际应用中不好把握,甚至造成基础设计中不小的浪费。

3 工程实例

3.1 工程概况

甘肃天水某医院住院楼项目,地上18层,地下2层,剪力墙结构。初步设计拟采用泥浆护壁钻孔灌注桩基础,桩端持力层为④泥岩层,桩径为800㎜,桩身砼强度等级为C35,桩身长度约12.5m,桩端拟进入中等风化的④泥岩层深度≥1.0m,施工前通过单桩竖向抗压静载荷试验确定单桩承载力。

地质概况表

其中4泥岩层,为第三系陆源碎屑沉积物,褐红色,表层1.5m左右呈强风化,其下过渡为中等风化层,岩石坚硬程度属极软岩,岩体完整程度为完整,岩体基本质量等级为Ⅴ级。

场地属非自重湿陷性场地,无可液化土层分布。

3.2 试验过程

依据规范和有关规定,共布置三根试桩(桩径800㎜,桩端进入中等风化的④泥岩层1.0m)进行单桩竖向抗压静载荷试验,每根试桩根据试桩位置设置2根锚桩,锚桩规格尺寸与试桩相同。为了准确测量桩的总极限侧阻力和极限端阻力,采用锚桩横梁—压重平台联合反力装置,锚桩与试桩位置采用偏心布置,桩心距一端为3.3m,另一端为3.9m。试桩顶面高出地面0.3m,锚桩顶面与地面持平。

根据试桩桩型和场地地层条件,试验最大加载5500kN,采用慢速维持荷载法加荷,加荷分级11级,每级加载500kN(第一级加载1000kN);采用分离式油压千斤顶和高压泵站加荷,锚桩横梁—压重平台联合反力装置,大量程百分表进行沉降观测。 1#试桩荷载加至4700kN时锚桩1-1拔起,在锚桩1-1端采用压重平台堆载150t荷载后继续试验,荷载加至第11级5500kN沉降稳定时,其累计沉降量为75.17mm,试桩完好,累计沉降量已超过60㎜,终止试验。 2#试桩荷载加至5300kN时锚桩2-1拔起,在锚桩2-1端采用压重平台堆载50t荷载后继续试验,荷载加至第11级5500kN沉降稳定后,其累计沉降量为64.97mm,试桩完好,累计沉降量已超过60㎜,终止试验。 3#试桩荷载加至4980kN时锚桩3-1拔起,在锚桩3-1端采用压重平台堆载80t荷载后继续试验,荷载加至第11级5500KN沉降稳定时,其累计沉降量为73.34mm,试桩完好,累计沉降量已超过60㎜,终止试验。

标准贯入试验

标准贯入试验 一、原理:试验是采用质量为63.5kg的穿心锤,以76cm 的落距,将一定规格的标准贯入器先打入土中15cm,然后开始记录锤击数目,将标准贯入器再打入土中30cm,用此30cm的锤击数作为标准贯入试验的指标。 二、试验方法:1、用钻机先钻到需要进行标准贯入试验的土层,清孔后,换用标准贯入器,并量得深度尺寸。2、将贯入器垂直打入试验土层中,先打入15cm,不计击数,继续贯入土中30cm,记录其锤击数,此数即为标准贯入击数N。若遇比较密实的砂层,贯入不足30cm的锤击数已超过50击时,应终止试验,并记录实际贯入深度△S和累计锤击数n,按下式换算成贯入30cm的锤击数N: N=30n/△S n----所选取的任意贯入量的锤击数(击) △S------对应锤击数n的贯入量(cm) 3、提出贯入器,将贯入器中土样取出,进行鉴别描述、记录,然后换以钻探工具继续钻进,到下一需要进行试验的深度,再重复上述操作,一般可每隔1.0-2.0m进行了一次试验。 4、在不能保持孔壁稳定的钻孔中进行试验时,应下套管以保护孔壁,但试验深度必须在套管口75cm以下,或采用泥浆护壁。 5、由于钻杆的弹性压缩会引起能量损耗,钻杆过长时传入贯入器的动能降低,因而减少每击的贯入深

度,亦即提高了锤击数,所以需要根据杆长对锤击数进行修正:N=aNo No------实际记录的锤击数 a------修正系数,按3-13选用 N-----修正后的锤击数3-13 6、对于同一层土应进行多次试验,然后取锤击数的平均值。 三、数据整理 1、整理时应有以下资料:钻孔孔径、钻进方式、护孔方式、落锤方式、地下水位等。 2、绘制标贯击数N与深度的关系曲线,或在地质剖面图上标出试验深度处的N值。 3、结合钻探及其他原位试验,依据N值在深度上的变化,对各土层的N值进行统计,统计时要剔除个别异常值。 四、试验结果应用 1、根据N估计砂土的密实度见表3-14 2、根据N估计天然地基的容许承载力,见3-15、3-16

钻孔灌注桩的端阻力qp

桩的端阻力q p (侧阻力q s )特征值(KPa )(用于泵站、闸门、船闸、工民建工程) 钻孔灌注桩 混凝土预制桩 地基土 承载力特征值(f a k) 5≤L <10 10≤L <15 15≤L <30 30≤L L ≤9 9<L ≤16 16<L ≤30 粘 性 土 流塑、淤泥 (12) 9~12 填土、淤泥质土 (20) 9~10 80 软塑0.75<I l ≤1 75~100 (15) 100~130 (15) 130~200 (15) 130~200 (15) 100~350 (20~25) 260~550 (20~25) 500~700 (20~25) 120 可塑0.5<I l ≤0.75 150~200 (25) 200~250 (25) 250~300 (25) 300~375 (25) 350~680 (25~30) 550~850 (25~30) 750~1100 (25~30) 160~200 硬可塑0.25<I l ≤0.5 275~300 (30~35) 300~350 (30~35) 350~400 (30~35) 400~500 (30~35) 600~900 (35~40) 900~1300 (35~40) 1000~1400 (35~40) 220~260 硬塑 0<I l ≤0.25 350~400 (40) 400~500 (40) 500~700 (40) 700~800 (40) 1000~1500 (40~50) 1500~2500 (40~50) 2500~2800 (40~50) 280~300 坚硬 I l ≤0 500(45) 600(45) 700(45) 800(45) 2000(45~50) 2600(45~50) 3200(45~50) 350 粉土 稍密 (12) (12~20) (12~20) (12~20) 120 中密0.75≤e ≤0.9 100~130(22) 150~200(22) 225~275(22) 300~350(22) 350~600(22~30) 500~800(22~30) 700~1000(22~30) 160 密实e <0.75 250~350(35) 300~400(35) 350~450(35) 450~500(35) 550~1000(30~40) 700~1200(30~40) 1000~1500(30~40) 220 粉砂 松散(水下) 稍密10<N ≤15 80(8) 100~150(8) 150~200(8) 200~250(8) 80(8) 300(10~20) 600(10~20) 800(10~20) 0 80 中密~密实N >15 200~280 (20~28) 280~350 (20~28) 350~450 (20~28) 450~500 (20~28) 500~800 (20~40) 700~1200 (20~40) 1200~1800 (20~40) 100~180 细砂 松散 N <10 (水下) 100(8) 150(8) 200(8) 100(8) 150(8) 200(8) 稍密 10<N ≤15 200(11) 250(11) 300(11) 400(11) 400(10~20) 700(10~20) 1000(10~20) 100 中密 15<N ≤30 300(25) 400(25) 550(25) 650(25) 1000(25~30) 1500(25~30) 2000(25~30) 200 密实 N ≥30 400(33) 550(33) 700(33) 750(33) 1800(30~40) 2200(30~40) 2600(30~40) 250 中砂 松散 N <10 200(15) 250(15) 300(15) 300(15) 400(15) 500(15) 150 稍密 10<N ≤15 350(20) 400(20) 500(20) 500(22) 800(22) 1100(22) 200 中密 15<N ≤30 400(28) 550(28) 700(28) 900(28) 1600(25~35) 2500(25~35) 3000(25~35) 250 密实 N ≥30 500(38) 700(38) 850(38) 1000(38) 2500(35~45) 3000(35~45) 3500(35~45) 300 粗砂 稍密 10<N ≤15 400(33) 500(33) 600(33) 600(35) 1000(35) 1300(35) 250 中密 15<N ≤30 700(38) 1000(38) 1100(38) 1250(38) 2500(36~45) 3200(36~45) 3800(36~45) 300 密实 N ≥30 800(48) 1100(48) 1200(48) 1300(48) 3200(50~60) 3800(46~50) 4500(46~50) 350 砾砂 中密N >15 700(55) 850(55) 1000(55) 1250(55) 2600(56) 3200(56) 4000(56) 350 密实N ≥30 850(60) 1000(60) 1250(60) 1600(60) 3800(65) 4500(65) 4800(65) 400 圆砾、角砾 中密~密实N 63.5>10 850~1000(68) 1000~1700(68) 3200~4500 (80~90) 4000~5000 (80~90) 400~600 碎石、卵石 中密~密实N 63.5>10 900~1400(70) 1400~1900(70) 3500~5000 (100~140) 4800~6000 (100~140) 450~800 全风化软质岩30<N ≤50 300~500(40) 1500~2500(50~60) 180~220 全风化硬质岩30<N ≤50 500~900(60) 2000~3500(70~80) 260~300 强风化软质岩N 63.5>10 600~1000(80) 2500~4000(80~110) 500~800 强风化硬质岩N 63.5>10 800~1200(100) 3000~5000(100~140) 1000~2000 注:○1()括号内数据为桩的侧摩阻力特征值q s (kpa)。 ○ 2单桩竖向承载力特征值为单桩竖向极限承载力标准值除以安全系数(k ≈2)。(桩的承载力极限值摘自《建筑桩基技术规范》(JGJ94-2008)) 桩 型 桩 长 范 围 ( m ) 土 的 状 态 岩 土 名 称

YS 5213-2000 标准贯入试验

标准贯入试验(YS5213-2000) 1 标准贯入试验 用质量为63.5kg的穿心锤,以76cm的落距,将标准规格的贯入器,自钻孔底部预打15cm,测记再打入30cm的锤击数,判定土的物理学特性。 2 试验设备 标准贯入试验设备应由以下部件组成,其规格和精度应符合表的规定。 带有排水阀的贯入器头组成。 2、落锤系统:由穿心锤、锤垫、导向杆、自动落锤装置组成。 3、钻杆。 2.2 试验设备应符合下列要求: 1、钻杆应平直,当出现弯曲超过1‰时应予调直后再使用; 2、对开式贯入器的对缝应平直、严密,出现扭曲、膨胀、错缝等 变形时应停止使用; 3、贯入器靴的刃口应保持完整,当出现缺口或卷刃等破坏,其单 个长度大于5mm,或总长度大于12mm时,应停止使用; 4、当落锤质量和导向杆的落距误差超过允许范围时,应停止使用; 5、自动落锤装置应保持正常的落锤性能,不得对导向杆产生提拔 作用。 3 试验方法 3.1 试验准备 3.1.1 试验钻孔应符合以下要求: 1、钻孔采用回转钻进,钻孔垂直度应符合钻探规程的规定, 孔径宜为76~150mm; 2、钻具钻进至试验深度以上15cm时,停止钻进,清除孔 底残土,残土厚度不得超过5cm,清孔应避免孔底以下土层被扰动;

s N ?=n 30N N ?=a '3、当在地下水位以下的土层中试验时,应保持孔内水位高 于地下水位;当孔壁不稳定时应采用泥浆或套管护壁;采用套管时, 套管不应推进至试验段内。 3.2.2 试验设备的准备应符合以下要求: 1、贯入器、钻杆、锤垫、导向杆各部件的连接必须牢固, 并保持连接后的垂直度;孔口宜采取导向措施。 2、贯入器应平稳放至孔底,严禁冲击或压入孔底。 3.2 试验步骤 3.2.1 试验必须采用自动落锤装置,并保持钻杆垂直,避免摇晃。 3.2.2 试验时先预打15cm (包括贯入器在其自重下的初始贯入量), 然后开始试验锤击。 3.2.3 将锤提升至规定高度,使锤自动脱勾,自由下落,反复击打, 锤击速率不应超过30击/min 。记录每贯入10cm 的锤击数,累计记录贯入30cm 的锤击数为标准贯入试验锤击数(简称标贯击数)N 。 3.2.4 当锤击数超过50击,而贯入深度尚未达到30cm 时,可终止 试验,记录实际贯入深度,按本规程式换算成相应于贯入30cm 的标贯击数N 。 3.2.5 当在一次试验的30cm 贯入深度内有不同地层时,可根据各 层击数和贯入量按式分别计算其N 值。 式中 s ——实际的贯入深度cm ; N ——贯入s 深度的锤击数(击)。 3.2.6 每一深度的试验锤击过程不应有中间停顿。如因故发生中间停止,应 在记录中注明原因和停止间歇时间。 3.2.7 试验结束提出贯入器后,应打开对开管,对土样进行鉴别和描述,并 根据需要采取扰动土试样。 3.2.8 试验记录的内容应包括钻杆长度、贯入起止深度,每贯入10cm 的击 数和30cm 的累计击数,土的描述和样品编号等;记录表格式宜符合本规程附录A 的有关规定。 5 资料整理 5.1 标准贯入试验成果应绘制标贯击数N 与试验深度h 的关系曲线,或按规定图例标示再工程地质剖面图和柱状图上。当试验在全孔中进行,且试验点间距为1~3m 时,宜绘制N-h 曲线。 5.2 对标贯击数应分层进行统计。当一个地质单元的标贯击数样本不少于6个时应统计平均值、标准差和变异系数,并可按国家现行行业标准《岩土工程勘察报告书编制规程》YS5203第4.2.3条计算其标准值N k 。当样本少于6个时应统计平均值,统计时应剔除异常值。 5.3 当应用标贯锤击数评价试验土层的工程性能时,不宜采用单孔试验值。当应用标贯试验成果需要对贯标击数进行修正时,应按应用要求对标贯击数按规定方法修正。 5.4 当需要进行钻杆长度修正,且钻杆长度不大于21m 时,可采用式计算: 式中 N ’——经杆长修正的标贯击数; ??

单桩竖向极限承载力

1、单桩的竖向极限承载力标准值的基本概念 单桩的竖向极限承载力标准值是基桩承载力的最基本参数,其他如特征值、设计值都是根据竖向极限承载力标准值计算出来的。新旧桩基规范对单桩的竖向极限承载力标准值的定义是一致的,是指单桩在竖向荷载作用下达到破坏状态前或出现不适合继续承载的变形时所对应的最大荷载,它取决于对桩的支承阻力和桩身材料强度。 对单桩竖向极限承载力的影响,一方面是可以人为控制的,包括桩的类型、材料、截面尺寸、入土深度、桩端进入持力层深度、成桩后休止时间以及成桩施工方法等;另一方面由桩端、桩侧土的性质决定,体现为土的极限侧阻力和极限端阻力,是决定承载力的基本因素,但其发挥受一方面因素的影响。 《建筑地基基础设计规范》GB50007-2002和《建筑基桩检测技术规范》均规定了单桩竖向极限承载力标准值确定方法,一般根据以下几点综合分析确定: (1)根据沉降随荷载变化的特征确定:对于陡降型Q-S曲线,取其发生明显陡降的起始点对应的荷载值。 (2)根据沉降随时间变化的特征确定:取s-lgt曲线尾部出现明显向下弯曲的前一级荷载值。 (3)某级荷载作用下,桩顶沉降量大于前一级荷载作用下沉降量的5倍,或桩顶沉降量大于前一级荷载作用下沉降量的2倍,且经24h尚未达到相对稳定标准,或已达到设计要求的最大加载量,取前一级荷载值。 (4)对于缓变型Q-S曲线可根据沉降量确定,宜取s=40mm对应的荷载值;当桩长大于40mm时,宜考虑桩身弹性压缩量;对直径大于或等于800mm的桩,可取s=0.05D(D为桩端直径)对应的荷载值。 对于单桩竖向抗压极限承载力标准值应明确以下几个概念: (1)它是实测值统计的结果; (2)根据规范公式计算的极限承载力标准值为设定极限承载力标准值,实际值应由实测值最后确定; (3)一些工程中,桩的检测没有达到极限承载力,而是根据规范公式计算出的设定值进行检测设计,达到设定值即终止检测,,而没有真正得到桩的极限承载力标准值,造成一定程度的浪费。 2、桩侧阻力和端阻力经验参数的调整背景 2.1 单桩侧阻力和端阻力经验参数的本质

单桩竖向承载力特征值计算方法

单桩竖向承载力特征值按《建筑桩基技术规范》JGJ94 -2008第5.2.2条公式5.2.2计算: R a=Q uk/K 式中: R a——单桩竖向承载力特征值; Q uk——单桩竖向极限承载力标准值; K——安全系数,取K=2。 1. 一般桩的经验参数法 此方法适用于除预制混凝土管桩以外的单桩。 按JGJ94-2008规范中第5.3.5条公式5.3.5计算: 式中: Q sk——总极限侧阻力标准值; Q pk——总极限端阻力标准值; u——桩身周长; l i——桩周第i 层土的厚度; A p——桩端面积; q sik——桩侧第i 层土的极限侧阻力标准值;参考JGJ94-2008规范表5.3.5-1取值,用户需在地质资料土层参数中设置此值;对于端承桩取q sik=0; q pk——极限端阻力标准值,参考JGJ94-2008规范表5.3.5- 2取值,用户需在地质资料土层参数中设置此值;对于摩擦桩取q pk=0; 2. 大直径人工挖孔桩(d≥800mm)单桩竖向极限承载力标准值的计算 此方法适用于大直径(d≥800mm)非预制混凝土管桩的单桩。按JGJ94-2008规范第5.3.6条公式5.3.6 计算: 式中: Q sk——总极限侧阻力标准值; Q pk——总极限端阻力标准值; q sik——桩侧第i层土的极限侧阻力标准值,可按JGJ94-2008规范中表5.3.5-1取值,用户 需 1取值,用户需在地质资料土层参数中设置此值;对于扩底桩变截面以上2d范围不计侧阻力;对于端承桩取q sik=0; q pk——桩径为800mm极限端阻力标准值,可按JGJ94-2008规范中表5.3.6- 1取值;用户需在地质资料土层参数中设置此值;对于摩擦桩取qpk=0; ψsi,ψp——大直径桩侧阻、端阻尺寸效应系数,按JGJ94-2008表5.3.6-2取值;

钢管桩测摩阻力计算

钢管桩设计与验算 钢管桩选用Ф800,δ=10mm 的钢管,材质为A 3,E=2.1×108 Kpa,I= 64 π (80.04-78.04)=1.936×10-3M 4。依据设计桩高度,钢管桩最大桩长为46.2m 。 1、桩的稳定性验算 桩的失稳临界力Pcr 计算 Pcr= 2 2 l EI π= 3 2 822 .4610 936.1101.2-????π =1878kN >R=658.3 kN 2、桩的强度计算 桩身面积 A=4π(D 2-a 2) =4 π (802-782)=248.18cm 2 钢桩自身重量 P=A.L.r=248.18×46.2×102×7.85*10-3 =90000kg=90kN 桩身荷载 p=658.3+90=748.3 kN б=p /A=748.3×102/248.18=301.5kg /cm 2=30.15Mpa 3、桩的入土深度设计 通过上述计算可知,每根钢管桩的支承力近658.3kN ,按规范取用安全系数k=2.0,设计钢管桩入土深度,则每根钢管桩的承载力为658.3×2=1316.6kN ,管桩周长 U=πD=3.1416×0.8=2.5133m 。依地质勘察报告,河床自上而下各层土的桩侧极限摩擦力标准值为: 第一层 粉质黏土 厚度为3m , τ=120 Kpa

第二层 淤泥粉质黏土 厚度为4m ,τ=60 Kpa 第三层 粉砂 厚度为1.8m ,τ=90Kpa N=∑τi u h i N =120×2.5133×3+60×2.5133×4+90×2.5133×h 3=1316.6 kN =904.7+603.1+226.1 h 2 =1316.6kN 解得 h 3=-0.84m 证明钢管桩不需要进入第三层土,即满足设计承载力。 钢管桩实际入土深度: ∑h=3+4=7 m 4、打桩机选型 拟选用DZ90,查表得知激振动570 kN ,空载振幅≮0.8mm ,桩锤全高4.2 m ,电机功率90kw 。 5、振动沉桩承载力计算 根据所耗机械能量计算桩的容许承载力 []P =m 1 { ()[] v a A f m x 12 231111 βμα+-+Q } m —安全系数,临时结构取1.5 m 1—振动体系的质量 m 1=Q/g=57000/981=58.1 Q 1—振动体系重力 N g —重力加速度=981 cm /s 2 A X —振动沉桩机空转时振幅 A X = 10.3 mm M —振动沉桩机偏心锤的静力矩 N. cm μ—振动沉桩机振幅增大系数 μ= A n / A x

桩竖向极限承载力验算

桩竖向极限承载力验算 桩承载力计算依据《建筑桩基技术规范》(JGJ94-94)的第5.2.2-3条; 根据第二步的计算方案可以得到桩的轴向压力设计值,取其中最大值N=856.94kN; 单桩竖向承载力设计值按下面的公式计算: 其中 R──单桩的竖向承载力设计值; Q sk──单桩总极限侧阻力标准值: Q pk──单桩总极限端阻力标准值: Q ck──相应于任一复合基桩的承台底地基土总极限阻力标准值: q ck──承台底1/2承台宽度深度范围(≤5m)内地基土极限阻力标准值,取q ck= 190.000 kPa; A c ---承台底地基土净面积;取Ac=5.000×5.000-4×0.385=23.461m2; n ---桩数量;取n=4; ηc──承台底土阻力群桩效应系数;按下式取值: ηs, ηp, ηc──分别为桩侧阻群桩效应系数,桩端阻群桩效应系数,承台底土阻力群桩效应系数; γs,γp, γc──分别为桩侧阻抗力分项系数,桩端阻抗力分项系数,承台底土阻抗力分项系数; q sik──桩侧第i层土的极限侧阻力标准值; q pk──极限端阻力标准值; u──桩身的周长,u=2.199m; A p──桩端面积,取A p=0.385m2; l i──第i层土层的厚度; 各土层厚度及阻力标准值如下表:

序号土厚度(m) 土侧阻力标准值(kPa) 土端阻力标准值(kPa) 土名称 1 1.4 2 70.00 1750.00 粘性土 2 2.30 36.00 1400.00 粉土或砂土 3 6.50 45.00 2100.00 粉土或砂土 4 4.00 75.00 2850.00 粘性土 由于桩的入土深度为14.00m,所以桩端是在第4层土层。 单桩竖向承载力验算: R=2.20×(1.42×70.00×0.98+2.30×36.00×1.02+6.50×45.00×1.02+3.78×75.00×0.98)/1.67+1.15×2850.00×0.385/1.67+0.37×(190.000× 23.461/4)/1.650=2.01×103kN>N=856.942kN; 上式计算的R的值大于最大压力856.94kN,所以满足要求!

桩周摩阻力

单桩竖向极限承载力 Ⅰ一般规定 5.3.1 设计采用的单桩竖向极限承载力标准值应符合下列规定: 1 设计等级为甲级的建筑桩基,应通过单桩静载试验确定; 2 设计等级为乙级的建筑桩基,当地质条件简单时,可参照地质条件相同的试桩资料, 结合静力触探等原位测试和经验参数综合确定;其余均应通过单桩静载试验确定; 3 设计等级为丙级的建筑桩基,可根据原位测试和经验参数确定。 5.3.2 单桩竖向极限承载力标准值、极限侧阻力标准值和极限端阻力标准值应按下列规定确定: 1单桩竖向静载试验应按现行行业标准《建筑基桩检测技术规范》JGJ 106执行; 2 对于大直径端承型桩,也可通过深层平板(平板直径应与孔径一致)载荷试验确定 极限端阻力; 3 对于嵌岩桩,可通过直径为岩基平板载荷试验确定极限端阻力标准值,也可通过直 径为0.3m 嵌岩短墩载荷试验确定极限侧阻力标准值和极限端阻力标准值; 4 桩的极限侧阻力标准值和极限端阻力标准值宜通过埋设桩身轴力测试元件由静载试 验确定。并通过测试结果建立极限侧阻力标准值和极限端阻力标准值与土层物理指标、岩石饱和单轴抗压强度以及与静力触探等土的原位测试指标间的经验关系,以经验参数法确定单桩竖向极限承载力。 Ⅱ 原位测试法 5.3.3 当根据单桥探头静力触探资料确定混凝土预制桩单桩竖向极限承载力标准值时,如无当地经验,可按下式计算: p sk i sik pk sk uk A p l q u Q Q Q α+=+=∑ (5.3.3-1) 当21sk sk p p ≤时 )(2 1 21sk sk sk p p p ?+=β (5.3.3-2) 当21sk sk p p >时 2sk sk p p = (5.3.3-3) 式中 sk Q 、pk Q ——分别为总极限侧阻力标准值和总极限端阻力标准值; u ——桩身周长; sik q ——用静力触探比贯入阻力值估算的桩周第i 层土的极限侧阻力; i l ——桩周第i 层土的厚度; α——桩端阻力修正系数,可按表5.3.3-1取值; sk p ——桩端附近的静力触探比贯入阻力标准值(平均值); p A ——桩端面积; 1sk p ——桩端全截面以上8倍桩径范围内的比贯入阻力平均值; 2sk p ——桩端全截面以下4倍桩径范围内的比贯入阻力平均值,如桩端持力层为密 实的砂土层,其比贯入阻力平均值s p 超过20MP a 时,则需乘以表5.3.3-2中系数C 予以折减后,再计算2sk p 及1sk p 值; β——折减系数,按表5.3.3-3选用。

单桩承载力特征值与设计值区别

单桩承载力设计值:=单桩极限承载力标准值/抗力分项系数(一般左右) 单桩承载力特征值:=静载试验确定的单桩极限承载力标准值/2 1 、94桩基规范中单桩承载力有两个:单桩极限承载力标准值和单桩承载力设计值。单桩极限承载力标准值由载荷试验(破坏试验)或按94规范估算(端阻、侧阻均取极限承载力标准值),该值除以抗力分项系数(、,不同桩形系数稍有差别)为单桩承载力设计值,确定桩数时荷载取设计值(荷载效应基本组合),荷载设计值一般为荷载标准值(荷载效应标准组合)的倍,这样荷载放大倍,承载力极限值缩小倍,实际上桩安全度还是2()。94规范时荷载都取设计值,为了荷载与设计值对应,引入了单桩承载力设计值,在确保桩基安全度不低于2的前提下,规定桩抗力分项系数取左右。所以,单桩承载力设计值是在当时特定情况下(所有规范荷载均取设计值),人为设定的指标,并没有实际意义。 2、02规范中地基、桩基承载力均为特征值,该值为承载力极限值的1/2(安全度为2),对应荷载标准值。同一桩基设计,分别执行两本规范,结果应该是一样的。 单桩竖向承载力特征值按《建筑桩基技术规范》JGJ94 -2008第条公式计算: R a=Q uk/K 式中: R a——单桩竖向承载力特征值; Q uk——单桩竖向极限承载力标准值; K——安全系数,取K=2。 1. 一般桩的经验参数法 此方法适用于除预制混凝土管桩以外的单桩。 按JGJ94-2008规范中第条公式计算: 式中: Q sk——总极限侧阻力标准值; Q pk——总极限端阻力标准值; u——桩身周长; l i——桩周第i 层土的厚度; A p——桩端面积; q sik——桩侧第i 层土的极限侧阻力标准值;参考JGJ94-2008规范表取值,用户需在地质资料土层参数中设置此值;对于端承桩取q sik=0;

桩侧负摩阻力的计算

桩侧负摩阻力的计算 一、 规范对桩侧负摩阻力计算规定 符合下列条件之一的桩基,当桩周土层产生的沉降超过基桩的沉降时,在计算基桩承 载力时应计入桩侧负摩阻力: 1、 桩穿越较厚松散填土、自重湿陷性黄土、欠固结土、液化土层进入相对较硬土层时; 2、 桩周存在软弱土层,邻近桩侧地面承受局部较大的长期荷载,或地面大面积堆载(包括 填土)时; 3、 由于降低地下水位,使桩周土有效应力增大,并产生显著压缩沉降时。 4、 桩周土沉降可能引起桩侧负摩阻力时,应根据工程具体情况考虑负摩阻力对桩基承载力 和沉降的影响;当缺乏可参照的工程经验时,可按下列规定验算。 ① 对于摩擦型基桩,可取桩身计算中性点以上侧阻力为零,并可按下式验算基桩承载力: N k 乞 R a ( 7-9-1) ② 对于端承型基桩,除应满足上式要求外,尚应考虑负摩阻力引起基桩的下拉荷载,并 可按下式验算基桩承载力: N k Q g

桩基(设计、设计极限、极限、承载、终压、复压值)计算确定

桩基(设计、设计极限、极限、承载、终压、复压值)计算确定 一、概述 1、概念 单桩承载力特征值×=单桩承载力设计值; 单桩承载力特征值×2=单桩承载力极限值=桩侧摩阻力+桩端阻力=单桩承载力(设计) 单桩承载力设计值×=单桩承载力极限值。 2、静压桩终压值确定 压桩应控制好终止条件,一般可按以下进行控制: 1)对于摩擦桩,按照设计桩长进行控制,但在施工前应先按设计桩长试压几根桩,待停置24h后,用与桩的设计极限承载力相等的终压力进行复压,如果桩在复压时几乎不动,即可以此进行控制。 2)对于端承摩擦桩或摩擦端承桩,按终压力值进行控制: ①对于桩长大于21m的端承摩擦桩,终压力值一般取桩的设计极限承载力。当桩周土为粘性土且灵敏度较高时,终压力可按设计极限承载力的~倍取值; ②当桩长小于21m,而大于14m时,终压力按设计极限承载力的~倍取值;或桩的设计极限承载力取终压力值的~倍; ③当桩长小于14m时,终压力按设计极限承载力的~倍取值;或设计极限承载力取终压力值~倍,其中对于小于8m的超短桩,按倍取值。

3)超载压桩时,一般不宜采用满载连续复压法,但在必要时可以进行复压,复压的次数不宜超过2次,且每次稳压时间不宜超过10s 。 3、静压桩复压值确定 取终压力值 举例:桩长18~20m , 800kn (单桩竖向承载力特征值) =2×800 kn =1600 kn 单桩承载力(设计)极限值 =1600 kn/=1000 kn (单桩承载力设计值) =1600 kn ×=2000 kn(终压力值、复压力值) ,当桩长小于21m ,而大于14m 时,终压力按设计极限承载力的~倍取值(取)。 二、钢管桩承载力 (5.3.7-1) 当h d /d<5时, (5.3.7-2) 当h d /d ≥5时, (5.3.7-3) 式中:q sik 、q pk 分别按表5.3.5-1、5.3.5-2取与混凝土预制桩相同值; :桩端土塞效应系数;对于闭口钢管桩λ = 1,对于敞口钢管桩按式(5.3.7-2)、(5.3.7-3)取值; p pk p i sik pk sk uk A q l q u Q Q Q λ+=+=∑d h b p /16.0=λ8 .0=p λp λ

桩侧负摩阻力

桩侧负摩阻力 摘要:基桩负摩阻力是桩基础设计中必须考虑的重要问题之一。本文介绍了有关负摩阻力的一些基本概念、其影响因素、计算等。简要介绍了桩基负摩阻力问题的研究现状, 分析了当前负摩阻力研究中存在的问题, 对今后桩基负摩阻力的研究方向提出建议。 关键词:桩基负摩阻力时间效应防治研究问题 引言 自20世纪20年代以来,国外对桩基负摩阻力开展了大量的研究工作,国内对负摩阻力的研究起步稍晚。但至今国际上对负摩阻力的研究尚不深入,许多问题尚待解决。 理论研究方面:比较经典的是有效应力计算负摩阻力方法,但计算结果往往偏大。1969 年Polous 提出了基于Mindlin解的镜像法计算桩的负摩阻力大小,但该方法仅用于端承桩。1972 年在上述基础上并根据太沙基一维固结理论,导出了单桩负摩阻力随时间变化的关系。影响负摩阻力的因素很多,精确确定负摩阻力难度很大,因此很多学者从有效应力法出发,提出经验公式。目前多根据有关资料按经验公式进行估算。 原位测试方面:李光煜利用滑动测微计成功地量测了一根钢管桩的负摩阻力,并用有效应力法进行了一些探讨。陈福全、龚晓南等通过现场试验,给出了中性点的深度。随着计算机的发展,利用有限元计算桩基负摩阻力已经逐渐运用 到工程设计中。但是有限元的计算需要确定大量的参数,且参数不容易确定,同时需要占用较大的计算空间,因此在工程中很难得到广泛应用。 1. 负摩阻力及其成因 桩基础中,如果土给桩体提供向上的摩擦力就称为正摩阻力,有利于桩承载;反之,则为负摩阻力,不利于桩承载。桩侧负摩阻力产生的根本原因是,桩周土的沉降大于桩体的沉降。桩土的相对位移(或者相对位移趋势)是形成摩擦力的原因,地基土沉降过大,桩和土相对位移过大地基土将对桩产生向下的摩擦力拉力,使原来稳定的地基变得不稳定,实际荷载可能超过原来建议的地基承载力。 一般可能由以下原因或组合造成:

标准贯入试验作业指导书20141126

标准贯入试验 作业指导书 文件编号: 发布日期: 版次号: 编写: 审核: 批准:

1使用范围 适用于砂土、粉土和一般粘性土的地基检测 (1)推定沙土、粉土,粘性土、花岗岩残积土等天然地基的地基承载力,鉴别其岩土性状 (2)推定非碎石土换填地基,强夯地基,预压地基。不加填料振冲加密处理地基,注浆处理地基等处理土地基的地基承载力,评价其地基处理效果 (3)评价复合地基增强体的施工质量 2 编制依据 JGJ79-2012 《建筑地基处理技术规范》 GB50021-2001 《岩土工程勘察规范》 DBJ 15-60-2008 《建筑地基基础检测规范》 3 检测仪器及设备 3.1贯入器;米尺 3.2仪器设备每年进行一次全面检修和调试,计量设备按有关规定定期进行检定或校准,其触探性能指 标符合有关的规范、规程、规定的要求。 3.3仪器有严格的使用、检查、维修、检定的记录。 标准贯入试验的设备规格 4 检测数量 单位公工程抽检数量为每200m^2不应少于1个孔,且总数不得少于10孔;每个独立柱基不得少于1孔,基槽每20延米不得少于1孔。 5 基本原理

动力触探试验是利用一定的的锤击动能,将一定规格的探头打入土中,根据打入土中一定的深度的锤击数(或以能量表示)来判定土的性质,并对土进行粗略的力学分层的一种原位测试方法。 动力触探技术在国内外应用极为广泛,是一种主要的土的原位测试技术,这是和它所具有的独特优点分不开的。其优点是:设备简单坚固耐用;操作及测试方法容易;适应性广,砂土、粉土、砾古土、软岩、强风化岩及粘性土均可;快速、经济、能连续测试土层;有些动力触探测试(如标准贯入),可同时取样观察描述。动力触探试验方法可以归为两大类,即圆锥动力触探试验和标准贯入试验。一般将圆锥动力触探试验简称为动力触探或动探,将标准贯入试验简称为标贯。 6标准贯入试验 6.1检测前的准备工作 6.1.1 检测前应收集以下资料:工程名称及建设、设计、施工单位名称;工程地质资料、基础设计资料、 施工原始记录、桩位布置图、编号及相应的试验要求等。 6.1 2 被检测的处理土和复合地基应在合理间歇时间后进行 6.1.3 检测前应对仪器设备进行认真检查,发现问题应及时调整或修理,并要保证其测试性能正常方可 使用。 6.2 检测方法流程如下 6.2.1标准贯入试验孔采用回转钻进,并保持孔内水位略高于地下水位。当孔壁不稳定时,可用泥浆护壁, 钻至试验标高以上15cm 处,清除孔底残土后再进行试验; 6.2.2采用自动脱钩的自由落锤法进行锤击,并减小导向杆与锤间的摩阻力,避免锤击时的偏心和侧向晃 动,保持贯入器、探杆、导向杆联接后的垂直度,锤击速率应小于30击/min; 6.2.3贯入器打入土中15cm 后,开始记录每打入10cm 的锤击数,累计打入30cm 的锤击数为标准贯入 试验锤击数N。当锤击数已达50 击,而贯入深度未达30cm 时,可记录50 击的实际贯入深度(ΔS),按下式换算成相当于30cm 的标准贯入试验锤击数N,并终止试验。 N=30×50/ΔS 式中ΔS-50 击时的贯入度(cm) 6.2.4 贯入器拔出后,应对贯入器中的土样进行鉴别描述 6.2.5每个检测孔的标准贯入试验次数不应少于3次。同一检测孔的标准贯入试验点间距宜为等间距。 深度间距宜为1.0~1.5m

超长钻孔灌注桩桩侧摩阻力发挥特征分析

Hans Journal of Civil Engineering 土木工程, 2015, 4, 56-66 Published Online January 2015 in Hans. https://www.doczj.com/doc/7217366256.html,/journal/hjce https://www.doczj.com/doc/7217366256.html,/10.12677/hjce.2015.41007 Analysis on Pile Shaft Friction Resistance of Ultra-Long Bored Piles Jianguang Li AVIC Geotechnical Engineering Institute Co., Ltd., Beijing Email: lijianguang10@https://www.doczj.com/doc/7217366256.html, Received: Dec. 25th, 2014; accepted: Jan. 15th, 2015; published: Jan. 22nd, 2015 Copyright ? 2015 by author and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/7217366256.html,/licenses/by/4.0/ Abstract Based on the analysis on the results of test piles of typical projects, characteristics of pile shaft friction resistance are summarized for ultra-long bored piles. Pile shaft friction resistance mainly depends on shear strength index (c, φ), effective overlying pressure, and pile-soil relative move-ment. Effective overlying pressure and pile-soil relative movement are should not be neglected to pile shaft friction resistance. Keywords Ultra-Long Bored Pile, Static Load Test, Pile Shaft Friction Resistance 超长钻孔灌注桩桩侧摩阻力发挥特征分析 李建光 中航勘察设计研究院有限公司,北京 Email: lijianguang10@https://www.doczj.com/doc/7217366256.html, 收稿日期:2014年12月25日;录用日期:2015年1月15日;发布日期:2015年1月22日 摘要 本文在分析典型工程超长钻孔灌注桩试桩成果基础上,总结超长钻孔灌注桩桩侧摩阻力的发挥特征,并

标贯试验锤击数确定泥岩单桩极限端阻力标准值

标贯试验锤击数确定泥岩单桩极限端阻力标准值 发表时间:2019-06-05T18:01:34.757Z 来源:《建筑学研究前沿》2019年3期作者:李建国[导读] 泥岩中单桩竖向极限承载力,用《建筑桩基技术规范》(JGJ94-2008)中嵌岩桩方法确定,其承载力偏低。 天水建筑设计院甘肃天水 741000 摘要:泥岩中单桩竖向极限承载力,用《建筑桩基技术规范》(JGJ94-2008)中嵌岩桩方法确定,其承载力偏低。经过在泥岩中进行标准贯入试验,建立标准贯入锤击数和桩端极限端阻力的对比关系,经现场单桩静载荷试验验证,其结果较为准确可靠。 关键词:泥岩;极限端阻力标准值;标贯试验锤击数;对比关系 1 前言 泥岩是建筑桩基础理想的持力层,但是用现行《建筑桩基技术规范》(JGJ 94-2008)“5.3.9”条,嵌岩桩单桩竖向极限承载力采用岩石单轴抗压强度进行计算,其承载力偏低。我们经过在泥岩中积累的标贯试验锤击数和单桩竖向极限端阻力值的经验统计对比关系,确定出的单桩极限承载力比规范法有明显提高,经现场单桩静载荷试验验证,其结果较为准确可靠。 2 泥岩的一般特征 泥岩的成岩作用差,被一些专家称为“似岩非岩、似土非土”的特殊岩土,受水浸泡后会崩解、泥化。 甘肃天水地区的泥岩属第三系陆源碎屑沉积物,一般为褐红色,局部呈灰绿色,泥质结构,水平层理构造,表层2.0m左右为强风化层,其下过渡为中等风化,岩石坚硬程度属极软岩,岩体完整程度为较完整~完整,岩体基本质量等级属5级。天然含水量7.14%~24.3%,标准贯入试验锤击数19~52,天然状态单轴抗压强度标准值0.80~3.71,承载力特征值为300~600kPa,钻孔灌注桩极限端阻力标准值1800~3000kP。各个勘察单位尽管各有依据和自己的经验,但差异太大,实际应用中不好把握,甚至造成基础设计中不小的浪费。 3 工程实例 3.1 工程概况 甘肃天水某医院住院楼项目,地上18层,地下2层,剪力墙结构。初步设计拟采用泥浆护壁钻孔灌注桩基础,桩端持力层为④泥岩层,桩径为800㎜,桩身砼强度等级为C35,桩身长度约12.5m,桩端拟进入中等风化的④泥岩层深度≥1.0m,施工前通过单桩竖向抗压静载荷试验确定单桩承载力。 地质概况表 其中4泥岩层,为第三系陆源碎屑沉积物,褐红色,表层1.5m左右呈强风化,其下过渡为中等风化层,岩石坚硬程度属极软岩,岩体完整程度为完整,岩体基本质量等级为Ⅴ级。 场地属非自重湿陷性场地,无可液化土层分布。 3.2 试验过程 依据规范和有关规定,共布置三根试桩(桩径800㎜,桩端进入中等风化的④泥岩层1.0m)进行单桩竖向抗压静载荷试验,每根试桩根据试桩位置设置2根锚桩,锚桩规格尺寸与试桩相同。为了准确测量桩的总极限侧阻力和极限端阻力,采用锚桩横梁—压重平台联合反力装置,锚桩与试桩位置采用偏心布置,桩心距一端为3.3m,另一端为3.9m。试桩顶面高出地面0.3m,锚桩顶面与地面持平。 根据试桩桩型和场地地层条件,试验最大加载5500kN,采用慢速维持荷载法加荷,加荷分级11级,每级加载500kN(第一级加载1000kN);采用分离式油压千斤顶和高压泵站加荷,锚桩横梁—压重平台联合反力装置,大量程百分表进行沉降观测。 1#试桩荷载加至4700kN时锚桩1-1拔起,在锚桩1-1端采用压重平台堆载150t荷载后继续试验,荷载加至第11级5500kN沉降稳定时,其累计沉降量为75.17mm,试桩完好,累计沉降量已超过60㎜,终止试验。 2#试桩荷载加至5300kN时锚桩2-1拔起,在锚桩2-1端采用压重平台堆载50t荷载后继续试验,荷载加至第11级5500kN沉降稳定后,其累计沉降量为64.97mm,试桩完好,累计沉降量已超过60㎜,终止试验。 3#试桩荷载加至4980kN时锚桩3-1拔起,在锚桩3-1端采用压重平台堆载80t荷载后继续试验,荷载加至第11级5500KN沉降稳定时,其累计沉降量为73.34mm,试桩完好,累计沉降量已超过60㎜,终止试验。

极限侧摩阻力标准贯入试验报告

*****二期强夯地基 各土层桩的极限侧摩阻力标准值试验报告 ********测绘有限公司 2013 年8 月16 日

*******二期工程强夯地基 各土层桩的极限侧摩阻力标准值试验报告 报告编写: 核定: 审查: 批准: *******测绘有限公司 2013年8月16日

试验声明 1、试验报告涂改无效。 2、试验报告无“检测专用章”或单位公章无效。 3、试验报告无主检、审核、批准人签字或等同标识无效。 4、未经本单位书面批准,不得全部或部分复制本检测报告。 5、试验数量达不到抽检比例时,仅对被试验点负责;一般情况下,仅对来样负 责。 6、对试验报告若有异议,应于收到报告之日起15日内向本单位书面提请复议。 地址:邮编:255086 电话:传真:

目录 首页 (1) 1 前言 ···············································································································2 2 工程地质状况································································································2 3 试验目的、试验方法、试验依据及主要仪器设备 ·····································5 3.1试验目的································································································5 3.2试验方法································································································5 3.3 试验依据·······························································································7 3.4 主要仪器设备·······················································································8 4 试验结果的整理与分析 ················································································8 4.1资料整理································································································8 4.2 桩身极限侧摩阻力标准值计算····························································8 5 试验结论........................................................................................................9附录1试验点位平面图 (10) 附录2标贯试验曲线图 (11)

相关主题
文本预览
相关文档 最新文档