当前位置:文档之家› 多时空脉冲强磁场成形制造基础研究

多时空脉冲强磁场成形制造基础研究

多时空脉冲强磁场成形制造基础研究
多时空脉冲强磁场成形制造基础研究

一、关键科学问题及研究内容

2.1 拟解决的关键科学问题

本项目针对航空航天领域中关键复杂板金构件精确塑性流动控制成形、多层空心板结构的强磁场扩散与胀形、壁板结构强磁场诱导成形、复杂管件成形与连接等共性关键技术问题,以多时空脉冲强磁场的调控规律、耦合高能磁场与温度场条件下的高应变速率对组织结构演变和内应力分布的影响、时空分布的力场-热场-应变场耦合作用及其对材料成形成性控制为探索和认识的突破点,揭示基于多时空脉冲强磁场的成形制造过程的科学规律,建立和发展控形与控性相结合的柔性成形制造新原理和核心技术体系。

1)多级多向脉冲强磁场的时空分布规律及其成形力场的调控

传统电磁成形技术所使用设备存在能量低、磁场低、线圈强度低、线圈结构单一,无法满足复杂结构工件的成形成性要求,为此提出多级多向脉冲强磁场电磁成形系统方案,以实现工件多级加载、分区成形以及模具夹具电磁一体化设计。其面临的主要难点和拟解决的关键科学问题包括:研究多级多向线圈系统磁场与电磁力时空分布,解决电磁场、力场、温度场和位移场间耦合分析难题;研究高场强磁体线圈结构优化设计与增强技术,解决特定空间分布磁场的实现、线圈结构与布局最优化等难题;研究多模块脉冲电源协同充放电与时序控制控制技术,解决模块化电源与多时序控制的难题。在解决上述关键科学的基础上,建立多级多向线圈高速电磁成形系统理论与方法。

2)多时空脉冲强磁场作用下材料流动规律及成形成性控制

在多时空脉冲强磁场作用下,金属材料不仅产生高应变速率变形,同时还存在着时空分布的力场-温度场-应变场间的相互作用,这将使金属材料的塑变流动行为及性能发生显著的变化,并存在着与准静态变形不同的缺陷生成和湮灭机制,是一个高度非线性的瞬态问题。揭示这一过程的科学规律,是实现轻金属材料的成形成性制造的基础。其面临的主要难点和拟解决的关键科学问题包括:材料特性、工件形状、成形力及成形速度等都会影响塑性流动的均匀性,研究金属材料的本构模型、塑变流动规律、金属材料连接的界面扩散机制、以及金属材料成形过程中的缺陷生成和湮灭机制;探讨成形过程中残余应力的分布与控制方法、材料均匀性流动控制方法、以及成形精度控制方法;研究多时空脉冲对成形构件服役性能的影响;构建高应变速率及多场耦合下的金属材料成形过程的物理模型,并通过数值模拟技术,实现电磁成形工艺的优化。

3)脉冲强磁场驱动下材料高速变形的微观结构演变与控制

材料在脉冲强磁场作用下成形是在电磁场、涡流场、温度场和力场的交互作

用下的高速变形,材料的变形行为既不同于准静态下的低速变形,也不同于常规的由单一力场作用的高速变形(如Hopkinson杆实验),特别是对于高温变形,强磁场具有促进固态相变和增强原子固态扩散过程的效应。因此,在多场作用下,金属材料高速变形会将产生不同常规的结构变化,这些结构变化进而影响电磁成形后零部件的服役性能。因此需要研究材料在脉冲强磁场作用下的微结构特征,成形工艺对材料组织结构的影响,如位错的萌生与运动、孪晶、剪切带、亚结构的形成条件与影响因素;研究电磁高速变形下残余应力形成机理、影响因素、及其在服役过程中的稳定性;研究电磁连接过程中的原子扩散行为及异类材料的复合机理;研究电磁成形中材料的断裂行为与失效机制。通过对典型结构件在电磁高速变形下组织结构的系统分析,揭示金属材料在脉冲强磁场作用下的变形机理。通过对在不同工艺下成形,具有不同微结构特征的成形件的力学性能测试,建立电磁成形工艺-微观结构-宏观力学性能三者之间的关系,为脉冲强磁场成形系统设计及成形工艺的优化提供理论指导。

2.2 主要研究内容

1)多级多向脉冲强磁场系统结构布局优化及设计准则研究

传统电磁成形能量低、成形能力有限,难以实现大尺度、复杂构件的高精度成形,为此,提出建立多级多向脉冲强磁场电磁成形系统。针对不同成形结构,研究磁场与电磁力时空分布规律,提出磁场与电磁力特定时空分布的实现方法;研究在不同材质与不同结构中,磁场穿透与涡流在工件及模具中的分布规律;揭示工件运动及变形过程中磁能与动能转换关系;研究实现上述功能的多级多向脉冲强磁场系统建模,提出高场强电磁线圈以及高功率密度、高可靠性模块化脉冲电源与时序控制系统设计;建立多级多向线圈高速电磁成形系统理论与方法。具体研究内容包括:

多级多向线圈系统及磁场时空分布与电磁力的调控

复杂结构中磁场穿透、涡流分布以及能量转换规律

多级多向脉冲强磁场系统建模与设计准则

高性能、轻量化构件多时空脉冲强磁场可工程应用的集成科学基础研究

2)多时空脉冲强磁场作用下的材料宏观成形过程的基础问题研究

针对航空航天领域轻质合金板管零件变形量大、材料成形性能差,导致常规成形方法难以精确成形等问题,系统开展轻合金在多时空脉冲强磁场下快速成形的机理、特点、性能影响机制和影响规律等基本问题的研究。围绕关键科学问题,建立金属材料在高速变形下的本构模型,揭示塑变流动规律,掌握金属材料连接的界面扩散机制、以及金属材料成形过程中的缺陷生成和湮灭机制;研究脉冲强

磁场作用下的构件内应力演化及残余应力分布规律,建立壁板脉冲强磁场强化、调形与成形及其路径规划的理论方法;研究多时空脉冲对成形构件服役性能的影响,探索高速成形过程控制方法,实现成形工艺优化。具体研究内容如下: 多时空脉冲强磁场作用下的材料塑性流动行为及其精确成形控制

多时空脉冲强磁场驱动材料超塑性流动及超塑/扩散连接机理

时空脉冲强磁场诱导材料流动的精确调形与调性

多时空脉冲强磁场驱动材料局部流动行为及复合界面控制

3)电磁驱动高速变形下材料的微观结构演变规律及性能研究

针对我国航空航天运载器常用的典型铝合金及钛合金,系统研究这两类材料在电磁高速变形条件下微结构特征及变形机理,以及微观结构对材料力学性能的影响规律。重点研究典型铝合金和钛合金在电磁高速变形作用下不同晶体缺陷(位错、孪晶、绝热剪切带)的形成条件及影响因素,研究电磁驱动下涡流和温度的交互作用对材料的变形行为和微观组织结构的影响;研究电磁高速变形作用下材料的断裂行为失效机制。此外,通过对在不同工艺下成形,具有不同微结构特征的成形件的力学性能测试,建立成形工艺-组织结构-材料性能之间的关系。主要研究内容包括:

电磁驱动高速变形下的材料微结构演变规律及变形机理

电磁驱动高速变形下材料微结构的温度响应规律

电磁驱动高速变形下材料的断裂行为及失效准则

电磁高速成形后材料的力学性能与微观结构的关系

二、预期目标

3.1 总体目标

针对脉冲强磁场成形技术在板管零件制造方面的巨大技术优势和基础薄弱的现状,围绕我国航空航天运载器对高性能、高可靠性板管构件重大需求,通过对多级多向脉冲强磁场成形技术装备原型的创新设计,全面揭示多时空脉冲强磁场作用下的塑性流动、扩散复合及组织结构演变等科学规律,建立以控形与控性相结合的脉冲强磁场柔性成形制造新原理和核心技术体系,实现传统电磁成形的辅助成形向超常能场驱动下的精确塑性流动控制的直接成形的跃升,实现我国板管零件成形制造能力的突破与跨越,适应复杂、高性能、大尺寸以及难变形材料板管零件的成形成性要求,强有力地支撑国家安全与国民经济的可持续发展。

3.2 五年预期目标

1)理论研究方面:

完善并建立多时空脉冲强磁场成形制造的理论体系,解决复杂板管零件成形制造过程的科学问题,揭示电磁驱动高速变形下材料的微观结构演变规律及变形机制,使我国的多时空脉冲强磁场成形制造研究水平跻身国际前列。

(1)建立多时空脉冲电磁力场的设计理论与方法,在多场耦合分析及特定成形力场的设计、高强度磁体设计与结构优化、多模块电源与时序控制等理论分析与设计方面取得突破;

(2)揭示多时空脉冲强磁场对材料大变形过程的塑性流动及其缺陷形成的影响规律,揭示成形零件形状与质量与电磁成形工艺参数和电磁力场时空分布间规律,发展一种复杂板金构件精确塑性流动控制成形方法。

(3)揭示多时空脉冲强磁场的加载作用与路径对小变形过程的变形几何学规律的影响规律,阐明脉冲强磁场作用下的构件内应力演化及残余应力分布规律,建立基于误差补偿反馈的零件外形调控方法,发展一种基于调形调性的壁板和蒙皮结构的抗疲劳制造方法。

(4)揭示强磁场驱动作用下材料超塑性流动规律和界面扩散行为规律,阐明磁场、温度场和力场耦合作用下的超塑性变形微观组织和缺陷演变规律,揭示多场耦合作用对超塑变形机制和扩散动力学的影响,提出利用强磁场驱动作用下的空心结构制造新方法。

(5)揭示脉冲强磁场对材料局部塑性流动及其缺陷形成的影响规律,提出异型管材零件脉冲强磁场成形制造新方法。

(6)阐明电磁驱动高速变形下材料的微观结构演变规律,揭示材料在多场交互作用下的高速变形机理和断裂失效机制。

2)技术应用方面:

为我国航空航天运载器中的一些关键板管零件的高性能、高效率和高品质制造提供核心技术,建立复杂板管零件多时空脉冲强磁场制造技术体系,取得原创性的研究成果。

(1)建立多级多向电磁成形系统理论与方法,突破多级多向脉冲强磁场设计与制造的关键技术,创建多级多向脉冲强磁场成形技术装备原型,可提供大于40特斯拉的磁场强度,电源能量不低于1000 kJ,能实现三级以上脉冲强磁场的控制,并具有电磁辅助加热、电磁成形、电磁压边和工装一体化功能,实现对高性能复杂板管零件的成形制造试验及控制,为开展脉冲强磁场成形技术研究奠定基础。

(2)突破多时空脉冲强磁场作用下大尺寸、高深径比、强塑性流动的筒形结构零件成形制造的关键技术,并在某导弹蒙皮制造中获得验证。

(3)突破多时空脉冲强磁场作用下大尺寸、小曲率、弱塑性流动的壁板或蒙皮构件成形成性制造的关键技术,并在大型客机机身蒙皮制造中获得验证。

(4)突破强磁场与电场交互作用下多层空心结构制造的关键技术,并在某飞机舱门结构单元件的制造中获得验证。

3)论文、人才方面:

(1)发表论文180篇以上,其中SCI和EI收录100篇以上,撰写专著1~3本,申报专利15~25项。

(2)培养一批在脉冲强磁场成形及相关领域的中青年学术带头人,涌现出一批优秀中青年人才,包括博士后、博士和硕士100名左右,造就一支具有重要国际影响的成形制造研究队伍,在此基础上,争取1个国家创新团队。

2011CB012800-G多时空脉冲强磁场成形制造基础研究解析

项目名称:多时空脉冲强磁场成形制造基础研究首席科学家:李亮华中科技大学 起止年限:2011.11-2016.8 依托部门:教育部

一、关键科学问题及研究内容 2.1 拟解决的关键科学问题 本项目针对航空航天领域中关键复杂板金构件精确塑性流动控制成形、多层空心板结构的强磁场扩散与胀形、壁板结构强磁场诱导成形、复杂管件成形与连接等共性关键技术问题,以多时空脉冲强磁场的调控规律、耦合高能磁场与温度场条件下的高应变速率对组织结构演变和内应力分布的影响、时空分布的力场-热场-应变场耦合作用及其对材料成形成性控制为探索和认识的突破点,揭示基于多时空脉冲强磁场的成形制造过程的科学规律,建立和发展控形与控性相结合的柔性成形制造新原理和核心技术体系。 1)多级多向脉冲强磁场的时空分布规律及其成形力场的调控 传统电磁成形技术所使用设备存在能量低、磁场低、线圈强度低、线圈结构单一,无法满足复杂结构工件的成形成性要求,为此提出多级多向脉冲强磁场电磁成形系统方案,以实现工件多级加载、分区成形以及模具夹具电磁一体化设计。其面临的主要难点和拟解决的关键科学问题包括:研究多级多向线圈系统磁场与电磁力时空分布,解决电磁场、力场、温度场和位移场间耦合分析难题;研究高场强磁体线圈结构优化设计与增强技术,解决特定空间分布磁场的实现、线圈结构与布局最优化等难题;研究多模块脉冲电源协同充放电与时序控制控制技术,解决模块化电源与多时序控制的难题。在解决上述关键科学的基础上,建立多级多向线圈高速电磁成形系统理论与方法。 2)多时空脉冲强磁场作用下材料流动规律及成形成性控制 在多时空脉冲强磁场作用下,金属材料不仅产生高应变速率变形,同时还存在着时空分布的力场-温度场-应变场间的相互作用,这将使金属材料的塑变流动

多时空脉冲强磁场成形制造基础研究

一、关键科学问题及研究内容 2.1 拟解决的关键科学问题 本项目针对航空航天领域中关键复杂板金构件精确塑性流动控制成形、多层空心板结构的强磁场扩散与胀形、壁板结构强磁场诱导成形、复杂管件成形与连接等共性关键技术问题,以多时空脉冲强磁场的调控规律、耦合高能磁场与温度场条件下的高应变速率对组织结构演变和内应力分布的影响、时空分布的力场-热场-应变场耦合作用及其对材料成形成性控制为探索和认识的突破点,揭示基于多时空脉冲强磁场的成形制造过程的科学规律,建立和发展控形与控性相结合的柔性成形制造新原理和核心技术体系。 1)多级多向脉冲强磁场的时空分布规律及其成形力场的调控 传统电磁成形技术所使用设备存在能量低、磁场低、线圈强度低、线圈结构单一,无法满足复杂结构工件的成形成性要求,为此提出多级多向脉冲强磁场电磁成形系统方案,以实现工件多级加载、分区成形以及模具夹具电磁一体化设计。其面临的主要难点和拟解决的关键科学问题包括:研究多级多向线圈系统磁场与电磁力时空分布,解决电磁场、力场、温度场和位移场间耦合分析难题;研究高场强磁体线圈结构优化设计与增强技术,解决特定空间分布磁场的实现、线圈结构与布局最优化等难题;研究多模块脉冲电源协同充放电与时序控制控制技术,解决模块化电源与多时序控制的难题。在解决上述关键科学的基础上,建立多级多向线圈高速电磁成形系统理论与方法。 2)多时空脉冲强磁场作用下材料流动规律及成形成性控制 在多时空脉冲强磁场作用下,金属材料不仅产生高应变速率变形,同时还存在着时空分布的力场-温度场-应变场间的相互作用,这将使金属材料的塑变流动行为及性能发生显著的变化,并存在着与准静态变形不同的缺陷生成和湮灭机制,是一个高度非线性的瞬态问题。揭示这一过程的科学规律,是实现轻金属材料的成形成性制造的基础。其面临的主要难点和拟解决的关键科学问题包括:材料特性、工件形状、成形力及成形速度等都会影响塑性流动的均匀性,研究金属材料的本构模型、塑变流动规律、金属材料连接的界面扩散机制、以及金属材料成形过程中的缺陷生成和湮灭机制;探讨成形过程中残余应力的分布与控制方法、材料均匀性流动控制方法、以及成形精度控制方法;研究多时空脉冲对成形构件服役性能的影响;构建高应变速率及多场耦合下的金属材料成形过程的物理模型,并通过数值模拟技术,实现电磁成形工艺的优化。 3)脉冲强磁场驱动下材料高速变形的微观结构演变与控制 材料在脉冲强磁场作用下成形是在电磁场、涡流场、温度场和力场的交互作

脉冲发生器工作原理

脉冲发生器工作原理 泥浆流动引起叶轮在其外部旋转。叶轮和脉冲发生器内部的主轴含有强力磁铁。叶轮与主轴之间的磁耦合运动产生两者间的磁力吸引。当叶轮在脉冲发生器外部旋转时,主轴则由于磁耦合作用在脉冲发生器内部旋转。 这是叶轮,这是主轴。把主轴伸入到叶轮里,来讲述这种磁耦合的强度。当试图转动主轴时,而主轴依然粘附在叶轮上。想转到主轴是非常困难的,磁耦合作用是相当强的。 脉冲发生器是一个充满油的密封单元。任何外部压力,象静水压力,可以通过这种活动的橡胶皮囊传递到脉冲发生器内部,或者对于没有橡胶皮囊的脉冲发生器,它是通过这个壳体里的活塞传递的。脉冲发生器内部与外部的压力是平衡的。由于脉冲发生器总与它周围的环境处于压力相等的状态,这样它不易损坏。压力平衡是由脉冲发生器的小直径促成的。脉冲发生器的壁较薄,能够承受足够的机械载荷,由于内外压力平衡,不必承受外部压力。 脉冲发生器内含有一个液压泵,液压泵是由六个柱塞和液缸组成。这六个柱塞随着其下端旋转斜盘的转动,在液缸内交替上下运动。通过六个柱塞的交替运动,把泵下端腔里的油,通过一组单流阀泵入到提升阀活塞液缸里。 这是活塞。在产生脉冲过程中,活塞被向上推入液缸里,使提升阀轴伸出。当活塞向上运动时,打开了液缸壁上的一组小孔,使液流回到液缸里,因此起到限制活塞继续运动和降低内部压力。 在主轴的下端是电磁发电机。它是由六个固定的线圈和八个磁极构成,当主轴旋转时,带动其下端的磁极相对线圈转动,线圈内磁场的变化从而产生电流。 主轴的旋转速度控制液压和产生电量的大小。主轴转动越快,产生电量越大。通常主轴的转速为2800rpm~3500rpm。 现在讲解更复杂的部件。我们怎样控制提升阀轴的运动? 首先,当提升阀轴向下回缩时,让我们描述其液压油流的流动方向。(驱动活塞向上运动时)油从泵下面的腔中直接进入泵里,并通过泵和其出孔进入到活塞缸里。然而回缩活塞时(提升阀向下运动),油顺着中心管向下流入到主阀里。 主阀内部有一个带小孔的活塞,允许一部分油直接流过主阀。流过主阀的油通过中心管向下继续流动,最终流过一个电磁控制阀,然后进入到电磁控制阀下

2019年度国家科学技术进步奖提名项目公示

2019年度国家科学技术进步奖提名项目公示 一、项目名称 脉冲强磁场国家重大科技基础设施 二、奖励种类 国家科学技术进步奖(一等奖) 三、提名意见 专家提名意见1: 项目名称:脉冲强磁场国家重大科技基础设施 提名者:郭剑波院士(责任专家),电气工程 工作单位:中国电力科学研究院有限公司 脉冲强磁场装置是开展物理、化学、材料等领域前沿基础科学研究的重要极端条件实验平台。装置系统结构复杂,涉及多个学科,是一个不断挑战电磁极限的强电磁系统,其研制需攻克极限工况下的磁体系统电磁及结构稳定性设计、磁场波形精确调控和微弱信号精准测量等世界性难题。 十余年来,项目组通过自主创新,突破国外对高强高导材料的封锁,在衡量装置水平的磁场强度、稳定度、重复频率和测量精度等核心指标方面取得全面突破:创造了75T纯铜导线磁体的场强世界纪录,采用仅有国外2/3强度的国产导线、1/10的能量实现了与世界最高水平相当的磁场,使我国科学实验磁场从40T 提高到90T,获得迄今最高单位能量的磁场强度,寿命是美国的2倍;创造了64T 无纹波平顶磁场世界纪录,开启了脉冲场下核磁共振、拉曼光谱和比热精确测量等科学研究方向;实现了峰值45T、极性可调、重复频率世界最高的多种磁场波形;电输运实验站和磁特性实验站测量精度世界领先。 装置于2014年通过国家验收并对外开放运行,结束了我国相关研究长期依赖国外装置的历史,建成国际最先进的脉冲强磁场研究平台。截至2018年底,装置累计开放运行36358小时,已为北京大学、斯坦福大学、剑桥大学等国内外69家单位开展科学研究900余项,在Science、Nature等高水平杂志发表论文672篇,取得了一大批原创成果,包括发现第三种规律的新型量子振荡和最高临界电流密度的二维超导体等,研究成果居国际同类装置同期最好水平。 项目整体处于国际领先水平。 提名该项目参评国家科学技术进步奖一等奖。 专家提名意见2: 项目名称:脉冲强磁场国家重大科技基础设施 提名者:赵宪庚院士,理论物理 工作单位:中国工程院 脉冲强磁场是开展物理、化学、材料等领域前沿基础研究不可替代的手段,是探索物质微观世界的钥匙。我国长期缺乏相关条件,众多急需开展的科学研究只能依赖国外装置。2007年,国家批复在华中科技大学建设脉冲强磁场国家重大科技基础设施,该设施是挑战电磁极限的大型复杂系统,存在磁体冲击载荷大、波形调控难、信号干扰强等问题,其研制极其困难。

相关主题
文本预览
相关文档 最新文档