当前位置:文档之家› 输电线路杆塔倾斜智能监测装置技术规范资料

输电线路杆塔倾斜智能监测装置技术规范资料

输电线路杆塔倾斜智能监测装置技术规范资料
输电线路杆塔倾斜智能监测装置技术规范资料

附件10:

智能监测装置技术规范之十

输电线路杆塔倾斜智能监测装置技术规范

国家电网公司生技部

中国电力科学研究院

2010 年9 月

目次

1 范围 (3)

2 规范性引用文件 (3)

3 术语和定义 (4)

4 监测内容及系统组成 (4)

5 功能要求 (4)

6 技术要求 (5)

7 试验项目及方法 (7)

8 安装、调试与验收 (7)

附录A(资料性附录)杆塔倾斜报警值选择原则 (8)

附录B(规范性附录)杆塔倾斜智能监测装置数据输出接口 (9)

输电线路杆塔倾斜智能监测装置技术规范

1范围

本标准规定了架空输电线路杆塔倾斜智能监测装置的功能要求、技术要求、试验项目、试验方法、安装、调试、验收等。

本标准适用于交流66kV~1000kV、直流±400kV~±800kV架空输电线路。

2规范性引用文件

下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注明日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注明日期的引用文件,其最新版本适用于本标准。

GB 191包装储运图示标志

GB 2314电力金具通用技术条件

GB/T 2317.2电力金具电晕和无线电干扰试验

GB/T 2317.3电力金具热循环试验方法

GB/T 2338—2002架空电力线路间隔棒技术条件和试验方法

GB/T 2423.1电工电子产品环境试验第2部分:试验方法试验A:低温

GB/T 2423.2电工电子产品环境试验第2部分:试验方法试验A:高温

GB/T 2423.4—1993电工电子产品基本环境试验规程试验Db:交变湿热试验方法GB/T 2423.5—1995电工电子产品环境试验第二部分:试验方法试验Ea和导则:冲击

GB/T 2423.10—1995电工电子产品环境试验第二部分:试验方法试验Fc和导则:振动(正弦)

GB 2887电子计算站场地通用规范

GB 4208外壳防护等级(IP代码)

GB/T 6587.6电子测量仪器运输试验

GB/T 6593电子测量仪器质量检验规则

GB 9361计算站场地安全要求

GB/T 11463—1989电子测量仪器可靠性试验

GB/T 14436工业产品保证文件总则

GB/T 15844.1—1995移动通信调频无线电话机通用技术条件

GB/T 16611—1996数传电台通用规范

GB/T 16927.1高电压试验技术第一部分:一般试验要求

GB/T 17626.2—1998试验和测量技术静电放电抗扰度试验

GB/T 17626.3—1998试验和测量技术射频电磁场辐射抗扰度试验

GB/T 17626.8—1998试验和测量技术工频磁场抗扰度试验

GB/T 17626.9—1998试验和测量技术脉冲磁场抗扰度试验

YD/T 799—1996通信用阀控式密封铅酸蓄电池技术要求和检验方法

YD/T 1028—1999800MHz CDMA数字蜂窝移动通信系统设备总技术规范:移动台部分

YD/T 1214—2002900/1800MHz TDMA数字蜂窝移动通信网通用分组无线业务

(GPRS)设备技术规范:移动台

JJG414-2003光学经纬仪

Q/GDW 245-2008架空输电线路在线监测系统通用技术条件

国家电力监管委员会5号令电力二次系统安全防护规定

3术语和定义

“架空输电线路在线监测系统通用技术规范”确立的以及下列术语和定义适用于本标准。

3.1

杆塔倾斜智能监测装置

满足测量数字化、输出标准化、通信网络化特征,具备自检、自恢复功能,对架空输电线路杆塔的倾斜度进行在线监测的一种监测装置,并通过信道将数据传送到状态监测代理装置或状态监测系统。

3.2

倾斜度

杆塔偏离中心线的倾斜值与监测点地面高度之比的百分数,也称为综合倾斜度。

3.3

顺线倾斜度

杆塔沿线路方向的倾斜值与监测点地面高度之比的百分数。

3.4

横向倾斜度

杆塔在垂直于线路方向的倾斜值与监测点地面高度之比的百分数。

3.5

偏斜角

倾斜的杆塔在地面水平面内的投影与线路走向之间的夹角。

4监测内容及系统组成

4.1监测内容

顺线倾斜度、横向倾斜度、综合倾斜度。

4.2装置组成

一般由一体化杆塔倾斜监测装置组成。装置结构参见“架空输电线路智能监测装置通用技术规范”附录A。

杆塔倾斜度报警值选择原则可参考附录A。

5功能要求

5.1数据采集要求

a) 能传感、采集杆塔纵向和横向倾斜角度,进行相应存储,并将测量结果通过通信网

络传输到状态监测系统。

b) 具备自动采集功能,按设定时间间隔自动采集杆塔横向与纵向倾斜角度,最小采集间隔宜大于30 分钟,在监测到超过设定阀值时,具备加密采集的功能;

c) 具备受控采集功能,能响应远程指令,按设置采集方式、自动采集时间、采集时间间隔、采集点数启动采集;

d)宜具备电池电压采集功能;

e) 具备网络授时功能。应能够接收状态监测系统的对时命令,每天对时一次,对时误差应不超过5s。单元时钟24h内走时误差应小于1s。

5.2 数据处理与判别

1)具备数据合理性检查分析功能,对采集数据进行预处理,自动识别并剔除干扰数据;

2)具备对原始采集量的一次计算功能,得出直观的杆塔倾斜状态量数据。

5.3 数据存储

应能存储至少30天以上杆塔横向、纵向角度与倾斜度状态量数据。

5.4 数据输出

输出的信息包括:杆塔横向、纵向角度与倾斜度状态量数据、电源电压、工作温度、报警信号、装置心跳包、应答信息、通信连接状态(含信号强度)。

5.5通信功能

满足架空输电线路智能监测装置通用技术规范5.2.5 通信接口部分要求。

5.6硬件与软件管理

具备对装置自身工作状态包括采集、存储、处理、通信等的管理与自检测功能,当判断装置出现运行故障时,能启动相应措施恢复装置的正常运行状态。

5.7 远程更新、配置与调试

a)具备身份认证、远程更新程序的功能,具备完善的更新机制与方式;

b)具备按远程指令修改采集频率、采样时间间隔、IP地址、端口号等参数的能力;

c)具备动态响应远程时间查询/设置、数据请求、重启等指令的能力;

d)应能按远程指令进入远程调试模式,并输出相关调试信息。

5.8其他功能

为了保证测量的准确性,杆塔倾斜监测装置初装时应该具备垂直度、水平度调节功能。

6技术要求

6.1使用环境条件

a)环境温度:-25℃~+45℃或-40℃~+45℃;

b)相对湿度:5%RH~100%RH;

c)大气压力:550hPa~1060hPa。

6.2工作温度

-25℃~+70℃(工业级)或-40℃~+85℃(扩展工业级)。

6.3外观及标记

a)外观应整洁完好,无明显划痕;

b)监测装置上应有型号、名称、出厂编号、出厂日期、制造厂名等标记。

6.4主要技术参数

6.4.1监测范围

杆塔倾斜角测量范围:双轴±10°。

6.4.2准确度

杆塔倾斜角测量误差:≤±0.05°。

6.5基本技术要求

a)应有防雨、防潮、防尘、防腐蚀措施;

b)外壳的防护性能应符合GB 4208规定的IP65级要求;

c)杆塔倾斜监测装置的结构不应对杆塔产生磨损或其他机械伤害;

d)杆塔倾斜监测装置应采取防盗、防振、防松措施,保证在运行中不松脱,而且不降低杆塔的机械特性和电气性能;

e)应能经受风霜雨雪等极端气候的考验;

f)杆塔倾斜监测装置应该适应杆塔上强电磁干扰环境;

g)应充分考虑线路人员的高空作业环境,安装简单方便。

6.6供电要求

a)应采用太阳能或高能电池等供电方式。

b)采用太阳能和蓄电池供电方式时,应根据杆塔倾斜监测装置的功耗、区域日照状况和蓄电池备用时间,配置太阳电池板和蓄电池的容量可满足无阳光工作日大于30

天。

c)采用高能电池供电方式时,电池供电时间不少于3年。

6.7电磁兼容性能

6.7.1静电放电抗扰度

应能承受“GB/T 17626.2—1998试验和测量技术静电放电抗扰度试验”中第5章规定的试验等级为4级的静电放电试验。在试验期间及试验后,系统应能正常工作。

6.7.2射频电磁场辐射抗扰度

应能承受“GB/T 17626.3—1998试验和测量技术射频电磁场辐射抗扰度试验”中第5章规定的试验等级为3级的辐射电磁场干扰试验。在试验期间及试验后,系统应能正常工作。

6.7.3脉冲磁场抗扰度

应能承受“GB/T 17626.9—1998试验和测量技术脉冲磁场抗扰度试验”中第5章规定的试验等级为5级的脉冲磁场干扰试验。在试验期间及试验后,系统应能正常工作。6.7.4工频磁场抗扰度

应能承受“GB/T 17626.8—1998试验和测量技术工频磁场抗扰度试验”中第5章表1和表2规定的试验等级为5级的工频磁场干扰试验。在试验期间及试验后,系统应能正常工作。

6.8气候防护性能

6.8.1高温性能

应能承受GB/T 2423.2试验Bb中严酷等级为:温度+70℃或温度+85℃、持续时间16h 的高温试验。在试验期间及试验后,系统应能正常工作。

6.8.2低温性能

应能承受GB/T 2423.1试验Ab中严酷等级为:温度25℃或40℃、持续时间16h的低温试验。在试验期间及试验后,系统应能正常工作。

6.8.3交变湿热性能

按GB/T 2423.4的有关规定进行,高湿温度为55℃,试验周期1d,原地恢复2h。在试验期间及试验后,系统应能正常工作。

6.9机械性能

6.9.1振动性能

在非工作状态下,非包装状态的产品应能通过如下严酷等级的正弦振动试验:

频率范围:10~55Hz;

峰值加速度:10m/s2;

扫频循环次数:5次;

危险频率持续时间:10min±0.5min;

试验后,系统应能正常工作。

6.9.2运输性能

应能承受GB/T 6587.6中组别为Ⅱ的运输试验(包括振动、自由跌落、翻滚试验)。试验后,系统应能正常工作。

6.10可靠性

平均无故障连续工作时间(MTBF)应不低于25000h。

7试验项目及方法

7.1试验条件

除另有规定外,各项检验宜在如下正常试验大气条件下进行:

a)环境温度:+15℃~+35℃;

b)相对湿度:25%RH~75%RH;

c)大气压力:860hPa~1060hPa。

7.2试验项目及方法

表1列出了对杆塔倾斜监测装置的检验项目,包括型式检验、出厂检验和现场检验。本专项标准仅列出了杆塔倾斜监测装置的专项检验方法,有关通用检验方法详见“架空输电线路在线监测系统通用技术规范”。

7.2.1准确度检验

a)在二级及以上法定计量单位进行计量校准/检定。

b)用分度误差小于0.5′的卧式多齿分度台进行检验,检验方法依据说明书给出的方法或参考“JJG414-2003光学经纬仪”6.3.15)一测回垂直角标准偏差的检验方法。

7.2.2可靠性试验

a)按GB/T 11463—1989中表1定时定数截尾试验方案11的规定进行。依据可靠性试验方案主要失效判据的规定,做出可靠性试验判决。

b)也可以在杆塔倾斜监测装置运行或验收移交时进行统计,统计方法参见“架空输电线路在线监测系统通用技术规范”附录B。

表1杆塔倾斜监测装置的检验项目

8安装、调试与验收

8.1安装

8.1.1 监测点的选择原则

a)煤矿采空区、沉降区;

b)不良地质区段,如淤泥区、易滑坡风化岩山区或丘陵等。

8.1.2现场安装位置及要求

a)通常情况下在一个监测点杆塔上安装2台杆塔倾斜监测装置,固定在杆塔中心线上,离地面一定高度,分别位于杆塔2/3 高度处和杆塔顶端;

b)选择的安装位置及装置的外观结构应不影响正常的输电线路检修维护工作;

c) 塔上安装点的选取应方便监测单元的固定和整体角度调整;

d) 安装时,采用适宜的标准角度测量工具对装置安装角度进行预调整;

e)装置的安装应整齐、牢固,应考虑必要的防护措施和防锈处理。

8.2调试

a) 安装结束后,现场检查杆塔倾斜监测装置的安装位置和方向,确保符合装置自身

安装规范,并作相应记录;

b) 撤离安装现场前,应通过短距离现场通信手段或后端数据处理系统,对设备功能进行逐项检查;

c) 系统安装调试完成后,应提供系统安装调试报告。

8.3验收

a) 杆塔倾斜监测装置及系统的验收应遵守《架空输电线路状态监测装置通用技术规

范》中验收部分的规定;

b) 杆塔倾斜监测装置及系统经过三个月试运行期, 所有性能指标达到技术规范的要

求时, 可进行最终验收。

c) 从最终验收完成之后的二年为保修期,在保修期内,如果杆塔倾斜监测装置或系统

发生故障,供货方要调查故障原因并修复直至满足最终验收指标和性能的要求,或

者更换整个或部分有缺陷的部件。

附录A(资料性附录)杆塔倾斜报警值选择原则

杆塔倾斜监测报警值为在无冰、风速5m/s 及年平均气温作用下,对50米及以上高度杆塔,倾斜度不超过杆塔全高的0.5%;对50米以下高度杆塔,倾斜度不超过杆塔全高的1.0%。对钢筋混凝土电杆,倾斜度不超过杆塔全高的1.5%。杆塔横担歪斜度不超过1.0%。

附录B(规范性附录)杆塔倾斜智能监测装置数据输出接口

杆塔倾斜计算(借鉴材料)

1.什么叫杆塔倾斜?什么叫杆塔倾斜率? 由于基础不平引起杆塔中心偏离铅垂位置的现象叫杆塔倾斜。杆塔倾率就是杆塔倾斜值S与杆塔地面上部高度H之比的百分数 2. 杆塔倾斜度。

杆塔顺线路倾斜值S2和横线路倾斜值S1. 另一种计算倾斜度的方法 Gx=tan?x Gy=tan?y Gs=(Gx2+Gy2)1/2 ?x:杆塔在顺线路方向的倾斜角; ?y:杆塔在横线路方向的倾斜角; Gx:杆塔在顺线路方向的倾斜度; Gy:杆塔在横线路方向的倾斜度; Gs:杆塔综合倾斜度。 3. 杆塔倾斜、横担歪斜的最大允许范围怎样计算? 类别钢筋混凝 土杆 铁塔

杆塔倾斜度(包括挠度) 1.5% 0.5%(适用于50m 及以上高度 的铁塔) 1.0%(适用于50m 以下高度的 铁塔) 横担歪斜度 1.0%1% 铁塔主材相邻接点间弯曲度>0.2% 不同高度的铁塔,不同长度的横担的最大允许倾斜按下式计算 杆塔最大允许倾斜范围△L=杆塔高度(H)×杆塔允许倾斜度 横担最大允许歪斜范围=横担固定间长度(L)×横担允许歪斜度 4.杆塔倾斜测量 ● 1)使用经纬仪测量时,测量横线路方向倾斜,应将仪器支在距杆塔高度约1.5倍的地方, 与前后杆塔对应三点成一线的位置确定测量桩位。 2)经纬仪镜中线瞄准电杆边缘线,俯视电杆根部,测量其偏移的差值,即为电杆的倾斜距 离。 3)经纬仪镜中线瞄准铁塔中线挂线点螺栓1/2处,或铁塔纵向轴线位置,俯视铁塔根部, 做一标志,然后测量铁塔基准根开距离,取根开1/2作基准标点,测量标点与其准标点的差即为铁塔的倾斜距离。 4)顺向倾斜测量法同上。 ●输电线路GSM杆塔倾斜监测仪的应用 测量元件采用加速度传感器,采用增强型的51系列单片机W78E54B作为微控制器,GSM短信模块采用进口工业级短信模块,采用太阳能电池和铅酸阀控型蓄电池(12V/14Ah)混合供电方案,循环检测杆塔顺线路和横线路两个方向的倾斜角度、机箱内温度和内置电池电压,在预定时间以短信方式上报杆塔倾斜测量数据,当杆塔顺线路或横线路倾斜角度超过预定报警值时,按顺序向手机发出报警信息。 名词解释 采空区:指地下矿产被采出后留下的空洞区 杆塔的水平档距:杆塔两侧档距的平均值称为该基杆塔的水平档距

北斗卫星精确定位技术在杆塔倾斜监测中的 应用研究

北斗卫星精确定位技术在杆塔倾斜监测中的应用研究 摘要:输电线路通道运行区域环境复杂,经常受采空区、山体滑坡、外力破坏 等因素影响,杆塔地基容易变形,导致杆塔倾斜、倒塔断线等严重事故发生,严 重时,甚至影响到输电线路的安全稳定运行。研究并利用北斗卫星精确定位技术,替代人工实现全天候、全自动的连续性监测和预警,有助于及时发现并预防杆塔 倾斜事故发生,提高输电线路的精益化运维和可靠供电的保障能力。 关键词:北斗定位;杆塔位移;在线监测 前言:近年来,随着电网建设规模不断扩大,使得高压输电线路随之不断增多,尤其一些输电线路运行工况极其复杂,线路杆塔基础经常受采空区、山体滑坡、外力破坏等因素影响,杆塔地基容易变形,导致杆塔倾斜、倒塔断线等严重 事故发生,严重时,甚至直接影响到输电线路的安全、稳定、可靠和经济运行。 目前,杆塔基础位移或沉降只能通过人工巡视发现,且隐患治理后,无法进行治 理效果的跟踪和评估,对于重要线路的特殊区段,仅靠人工进行特维,其实效性、准确性无法与在线监测系统相比。因此,研究并利用北斗卫星精确定位技术,对 特殊区段杆塔开展全天候、全自动的连续性监测和预警,有助于及时发现并预防 杆塔倾斜事件发生,有利于提高供电企业的应急响应和防灾、减灾能力。 1输电线路运维面临的困难及挑战 近年来,随着电网建设规模不断扩大,使得高压电力设备随之不断增多,大 多输电线路所处区域的地质地貌条件极其复杂,经常受自然现象(如风雨雪、泥 石流等)以及煤矿开采、工程施工、人为破坏等因素影响,容易造成塔体发生位移、倾斜、裂变,沉降等现象时有发生,严重影响着电网的安全稳定运行,而传 统的人工巡视的方法,主要依靠巡视人员定期到达现场进行巡视,巡视周期较长、劳动强度大,而且很多杆塔难于巡视到位,容易出现巡视空档期,一旦杆塔受地 质灾害、人为因素及外力破坏等意外情况影响,运维人员无法及时掌握杆塔受影 响程度及变化趋势,并及时采取有效的预防措施,持续跟踪并消除安全隐患,这 些都将对输电网的安全运行和正常工作造成极大威胁,甚至造成人民财产的巨大 损失。 尤其随着供电企业电网规模的不断扩大以及“减员增效”工作的日益推进,电 网设备的不断增长与人员逐步减少之间的矛盾更加突出,传统的输电线路运行维 护模式在电网、设备、人身风险管控方面面临较大压力,迫切需要借助现代先进 的科学技术,替代人工完成重点线路特殊区段的全天候、连续性的实时在线监测 和预警,为线路运维人员提供精准、可靠的辅助决策支持,从而提高输电网运维 的工作效率和效益,降低电网安全运行风险,同时也减少人工频繁巡视的成本和 降低人身安全风险。 2利用北斗定位导航技术开展杆塔倾斜监测的必要性 在精密工程测量中,变形监测是为了监视地表、工程建筑物及设施等变形体 的位移状况而进行的长期、连续性的测量工作,GNSS(全球导航卫星系统,Global Navigation Satellite System的简称)与其它许多经典的测量方法均在该领域 发挥了重要的作用,但与常规的测量方法相比,GNSS技术具有高精度、高效益、全天候、无需通视等优点,更容易实现变形监测的自动化和实时化,其实用性和 经济价值更高。目前,GNSS技术已经广泛应用于城市地面沉降变形监测、大坝 变形监测、桥梁变形监测、滑坡监测、高层建筑物变形监测、矿区变形监测等多 种变形监测中,并取得了很好的应用效果和效益。

QGDW_559-2010 输电线路杆塔倾斜监测装置技术规范

2009Q/GDW559—2010ICS29.240 Q/GDW 国家电网公司企业标准 Q/GDW559—2010 输电线路杆塔倾斜监测装置技术规范Technical specification for tower inclination monitoring device on overhead transmission lines 2010-12-27发布2010-12-27实施 国家电网公司发布

Q/GDW559—2010 目次 前言...................................................................................................................................................................II 1范围. (1) 2规范性引用文件 (1) 3术语和定义 (2) 4监测内容及装置组成 (2) 5功能要求 (2) 6技术要求 (3) 7试验项目及方法 (4) 8安装、调试与验收 (5) 附录A(规范性附录)杆塔倾斜监测装置数据输出接口 (7) 编制说明 (9) I

Q/GDW559—2010 II 前言 输电线路状态监测系统是智能电网建设输电环节的重要组成部分,是实现输电线路状态运行检修管 理,提升生产运行管理精益化水平的重要技术手段。为科学规范地建设坚强智能电网输电线路状态监测系统,确保输电线路状态监测系统技术标准和平台统一,装置数据有效、稳定可靠、先进适用,特制定本标准。 本标准的附录A为规范性附录。 本标准由国家电网公司生产技术部提出并解释。 本标准由国家电网公司科技部归口。 本标准主要起草单位:中国电力科学研究院。 本标准参加起草单位:华北电网有限公司、山西省电力公司、河南省电力公司、重庆市电力公司。 本标准主要起草人:于钦刚、李红云、郭志广、李红旗、刘亚新、周国华、李峻峰、罗永勤、郑凯、倪康婷、张帆、裴冠荣。

电力系统无人值守变电站智能视频监控方案

电力系统无人值守变电 站智能视频监控方案 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

电力系统无人值守变电站智能视频监控方案 分布在各地的变电所(站)作为电力传输的重要环节,由于无人值守,重要设备经常被盗窃或破坏,给整个电网的安全运行造成重大隐患,确保各变电所(站)的安全运行非常重要。变电站目前采用的监控系统是基于灯光控制器、云台控制器、视频切换器、数字图像编码器、视频服务器等构成的系统,各变电所的图像信息通过电力专网(E1)上传到监控中心,可以实现现场图像实时浏览和外设控制功能。 变电站监控系统采用传统视频监控技术和红外探测技术,在实际应用中都会产生大量的漏报警和误报警,需要人工进行判别处理,延误处警时机。 代理澳大利亚IQ智能视频分析服务器系列,利用先进的模式识别和人工智能技术,能够实现重要区域的入侵检测、物品盗移和滞留检测,并实时提供预警和现场报警等有用信息,适合各种复杂环境下的安保视频监控。 本方案为解决变电站因数量众多且无人值守的管理难度而提出的机器视觉智能化解决方案。 变电站监控对象主要分为室内和室外两部分,室内主要针对破门或强行开门而入,对室内的各类设施进行偷盗和破坏;室外主要是防范变压器铜芯等设施被偷盗和破坏。防止进入危险区域也是变电站监控的重要目标。此外,变电站的维护也需要有效监控,维护人员进入变电站,需要留下现场证据作为主管部门或科室的备案资料。 具体来说,系统需求主要包括如下几个方面: 1. 防止室外的变压器等设备被盗或被破坏。 2. 防止人或大型动物进入危险区。 3. 防止室内的重要设备被盗或被破坏。 4. 大大提高报警的准确率,减少误报率; 5. 极大的减少甚至消除漏报警; 6. 事件发生前提供实时预警; 7. 事件发生时提供现场报警并及时通知监控中心; 8. 保留事件现场有力证据。 智能视频分析产品针对此类需求提供了全面的解决方案,该产品自动进行运动目标检测、识别和跟踪,并根据预先设定的监控规则进行智能分析和判断,对可能发生的安全事件及时预警,

输电线路杆塔设计复习题

1.22φ14钢筋各符号代表什么?22根一级热轧钢筋公称直径14mm 2.什么叫悬垂绝缘子串风偏角?导线和悬垂绝缘子串在风荷载作用下使悬垂 绝缘子串偏离一定的角度,称为悬垂绝缘子串风偏角φ。 3.什么叫防雷保护角α?防雷保护角是地线与导线的连线在铅直方向的夹角。 4.杆塔纵向水平荷载,杆塔横向水平荷载的定义是什么?纵向水平荷载:垂直 杆塔平面即垂直横担方向。杆塔横向水平荷载:平行杆塔平面即沿横担方向。 5.什么叫直线型杆塔、耐张型杆塔?在正常运行情况下,仅承受导线.地线.绝 缘子和金具等重量的垂直荷载以及横向水平风荷载,而不承受顺线路方向张力的杆塔称为直线型杆塔。除具有与直线型杆塔同样的荷载承载能力外,还能承受更大的顺线路方向的拉力,以支持事故断线时产生纵向不平衡张力,或者承受因施工.检修时锚固导线和地线引起的顺线路方向荷载的杆塔,称为耐张型杆塔。 6.什么叫呼称高度,经济呼称高度?杆塔下横担的下弦边缘线到地面的垂直距 离H称为杆塔呼称高。使得整个线路材料用量最少的最优高度称为经济呼称高度 7.转角杆塔转角大小与角度荷载的关系?一相导线的角度荷载为 Pj=T1sin&1+T2sin&2 T1.T2杆塔前后导线.地线张力。&1.&2导线与杆塔横担垂线间的夹角。转角杆塔及兼有小转角的直线型杆塔在进行荷载计算时,将水平张力分解成横向水平荷载,即为角度荷载.转角杆塔转角越大,角度荷载越大. 8.耐张杆塔的上层拉线和下层拉线的主要作用是什么?上层拉线:断线情况 下,承受断线导线张力,承受全部断地线张力。下层拉线:正常情况时承受所有横向水平荷载;断线情况时,承受断导线张力。 9.导线三角形布置与水平布置的的主要优点?从三相导线的电气对称性来说, 三相导线的三角形排列优于水平排列,从运行的技术条件来说,导线采用水平排列时,防雷较好,且在不同时脱冰或导线舞动时所造成的碰线机会大大减少,这对覆冰区有特殊意义。 10.环形截面钢砼受弯构件计算公式的适应条件是什么?含筋率 w=fyAs/fcA<=0.9 11.刚性基础与柔性基础分别适应什么地质条件?刚性基础底板为阶梯式,底板 不变形,不需要配钢筋,适用较硬地质条件。柔性基础底板较大而薄,基础可随土壤变形,适用较软地质条件,基础埋置浅。 12.杆塔的水平档距和垂直档距的作用是什么?水平档距是用来计算导线传递 给杆塔的水平荷载的。垂直档距表示有多长导线的垂直荷载作用在某杆塔上。 13.荷载、材料强度标准值,荷载、材料强度设计值分别用于什么计算?荷载标 准值用于变形和裂缝计算;荷载设计值用于强度计算 14.偏心距增大系数 的物理意义是什么?偏心距增大系数的物理意义是,考虑 长柱偏心受压后产生的二阶弯矩对受压承载力的影响。 15.猫头型铁塔与酒杯型铁塔有何区别,各有什么优点?猫头塔多了下横担;酒 杯型导线呈水平排列,猫头型呈三角形排列.从三相导线的电气对称性,三角形排列优于水平排列,水平排列防雷较好,且脱冰舞动造成的碰线机会大大减小.猫头型导线水平间距减小,断线时受力性好,耗材少

输电线路杆塔课程设计

三峡大学电气与新能源学院课程设计说明书 学期: 专业:输电线路工程 课程名称:输电杆塔及基础设计 班级学号: 姓名: 指导老师:

《输电杆塔设计》课程设计任务书 一、设计题目: 110KV门型直线电杆设计(自立式带叉梁) 二、设计参数: 电压等级:110kV 避雷线型号:GJ一35 电杆锥度:1/75 电杆根部埋深:3m 顶径:270mm 气象条件:Ⅳ级 绝缘子:7片×一4.5 地质条件:粘土,γs=16 kN/m3,α=20°,β=30°, 三、设计成果要求: 1.设计说明书一份(1.5万字,含设计说明书插图) 2.图纸若干 (1)电杆尺寸布置图 (2)电气间隙效验图 (2)正常运行情况下的抵抗弯矩图 (3)事故时的弯矩图

目录 一、整理设计用相关数据……………………………….……………………..1 1 任务书参数……………………………………………………….………1 2气象条件列表.................................................................... (1) 3导线LGJ-150/35相关参数表..……………………………………..……1 4 导线比载计算................................................................. (1) 5 地线相关参数…………………………………………………………….3 6 地线比载计算…………………………………………………………….3 7 绝缘子串和金选择……………………………………………………….3 8 地质条件………………………………………………………………….4 9 杆塔结构及材料………………………………………………………….4 二、电杆外形尺寸的确定 (4) 1 杆的呼称高度…………………………………………………………….4 2导线水平距离…………………………………………………………….5 3间隙圆校验……………………………………………………………….5 4地线支架高度确定 (6) 5 杆塔总高度……………………………………………………………….7 三、杆塔荷载计算 (7) 1标准荷载………………………………………………………………….7 2设计荷载………………………………………………………………….9 四、电杆杆柱的强度验算及配筋计算......................................... (11) 1配筋计算................... (11) 2 主杆弯矩计算…………..…………………………………………..……11 3 事故情况下的弯矩计算 (12) 4 裂缝计算....................................................... (13) 5单吊点起吊受力计算 (13) 五、基础设计………….……………….………………………………..……..14 1 土壤特性...……………………………………………………………….14 2 抗压承载力计算 (15) 3 底盘强度计算……………………………………………………………15 八、参考文献…………………………………………………………………..16 九、附图 附图1尺寸布置图............ (1) 7 附图2间隙圆校验图 (18) 附图3正常运行最大风情况下的抵抗弯矩图.......................................19附图4事故时弯矩图................................................................... (20)

铁塔倾斜测量及计算公式

铁塔倾斜测量与计算公式 一、什么叫杆塔倾斜?什么叫杆塔倾斜率? 由于基础立柱顶面高低不平引起杆塔中心偏离铅垂位置的现象叫杆塔倾斜。 杆塔倾斜率就是杆塔倾斜值S杆塔地面上部高度H之比的百分数。 二、杆塔倾斜测量意义: 运行中的线路杆塔因局部环境或外力破坏引起的顺线路或横线路方向的倾斜,是引起倒杆断线的重要因素,确定倾斜的数据,对维护线路安全稳定具有重要的意义。 三、杆塔倾斜测量方法一: 1、使用经纬仪测量时,测量横线路方向倾斜,应将仪器支在距杆塔高度约1.5倍的地方,与前后杆塔对应三点成一线的位置确定测量桩位。 2、经纬仪镜中线瞄准电杆边缘线,俯视电杆根部,测量其偏移的差值,即为电杆的倾斜距离。 3、经纬仪镜中线瞄准铁塔中线挂线点螺栓1/2处,或铁塔纵向轴线位置,俯视铁塔根部,做一标志,然后测量铁塔基准根开距离,取根开1/2作基准标点,测量标点与其准标点的差即为铁塔的倾斜距离。

1、杆塔检查一般主要有杆塔横担水平度检查,水泥杆垂直度检查和铁塔倾斜测量等内容。 2、主要介绍铁塔倾斜的检查,铁塔倾斜的测量主要是对已经组立完成和架线完成后的铁塔进行倾斜度的检查,规范要求一般直线塔倾斜率0.3%,高塔0.5%,转角塔、终端塔不应向受力侧倾斜。 倾斜值:绝对尺寸 = 倾斜率:相对尺寸 = 倾斜值∕视点高 H*0.003 注意:倾斜率测量视点高度应考虑接腿长度的影响 五、杆塔测量方法三: 说明:A 、B 两点应在铁塔的正或者侧面中心线上,以此两点作为观测铁塔的倾斜率。 1、为了测量精确,首先将仪器置于铁塔中心线延长线上(可稍微偏移,但不可偏移过多), 距离为铁塔全高等长以上。 2、测量A 点,得一竖直角∠1,在此将仪器水平制零: 3、在步骤2的基础上(此时水平角度为0°),测量B 点(水平线轴),测得竖直角∠2; 4、在步骤3的基础上,观测铁塔B 点为左或者右偏移,如图测得为右偏移,转动水平制动微调,测得水平角∠3。 铁塔的倾斜率为tan ∠3/tan(∠2-∠1)cos ∠2 铁塔倾斜量=倾斜率*铁塔全高。 tan 3 tan( 21)*cos 2∠∠-∠∠

输电线路铁塔倾斜在线监测

输电铁塔倾斜在线监测 【五年专业输电线路倾斜监测系统研发生产经验】 【通过第三方型式检测报告、2011年浙江电网电力研究院测 试报告】 【2011年配合合作伙伴支撑30余次国网、南网输电线路杆塔 倾斜监测招投标、项目合作】 【输电线路杆塔倾斜监测系统遵循国网《Q/GDW559-2010输电线路杆塔倾斜监测装置技术规范》】 业务联络:何小姐①⑤⑧⑧⑨③⑦〇③⑦④ 期待您的来电合作。 一、系统概述 对于输电铁塔采空区,沉降区和不良地质区,通过对输电铁塔进行角度实时倾斜的监测,计算分析输电铁塔倾斜状况并上报监控中心,为电力安全运行部门提供决策依据。在输电铁杆塔倾斜在线监测系统中,我们采用高精度工业级杆塔倾斜探测器对铁塔倾斜进行监,通过GPRS无线网络将输电铁塔的倾斜数据实时上传至监控中心,同时监控中心可远程对监测前端进行各种参数的设置。 二、系统组成 输电线路铁塔倾斜在线监测系统是由前端的监控设备和监控中心监控软件组成。 前端硬件设备主要由无线倾斜监测主机、倾角探测器、太阳能电池板及蓄电池组成。监控中心监控软件为客户服务端软件。 三、系统各组成部分及功能、参数 3.1、无线倾斜监测主机 系统无线监测主机安装在输电铁塔上,是系统运行的核心。主要完成对输电线路铁塔倾斜数据的处理、传输及储存功能,同时接收监控中心远程参数设置的各种命令。

3.1.1、数据处理模块 内置的数据处理模块是系统的工作核心。主要完成对倾角探测器所探测到的数据进行处理(储存或传输);同时接收监控中心的命令进行前端各种参数的设置。 并完成系统自身整体工作状态的检测并将数据上传至监控中心。 3.1.2、无线传输模块 铁塔上的监测分机通过GPRS/无线传输模块与监控中心进行远距离无线通信。通过优化天线设计,保证数据采集和通信正常运行。对于没有移动信号的地区可采用无线接力方式将信号传输到有移动信号的杆塔,然后再通过GPRS手机网络进行远距离传输。 3.1.3、电源管理模块 安装在输电铁塔上的倾斜监测分机通过太阳能电池进行供电;并采用太阳能对蓄电池进行浮充供电。电源管理模块根据蓄电池特性的特性严格进行充放电控制。 并且防止过压、过流造成对系统各部件的损坏。 3.1.4、蓄电池 内置的蓄电池为新一代高性能聚合物锂电池,具有工作电压高、体积小、重量轻、比能量高,免维护、寿命长等特点,为系统的稳定和持续运行提供了保障。并可根据用户实际需求选配不同类型电池。 3.2、杆塔倾角探测器 系统采用高精度数字型输出倾角传感器对输电铁塔倾斜度进行探测。 3.3、太阳能电池板 系统采用太阳能电池为设备供电。太阳能电池是一种可以把光能转换成电能的一种器件。主体材质为硅。具有转换电率高、取能方便、寿命长、具有清

变电站智能辅助监控系统

变电站智能辅助监控系统

变电站智能辅助监控系统 摘要:介绍了一种变电站智能辅助监控系统,系统以智能控制为核心,对变电站关键设备、安装地点以及周围环境进行全天候的状态监视和智能控制,并能将站端状态、环境数据、火灾报警信息、SF6监测、防盗报警等监测信息传输至调度管理中心。该系统满足了变电站安全生产和安全警卫的需求,具有非常好的推广应用价值。 关键词:智能;监控;网络;变电站 传统的变电站安防智能化系统受传统理念和技术的影响,各个子系统都是孤立的,以至于出现了一种监控“孤岛”现象,无形中降低了系统的实用性、稳定性和安全性,而且增加了投资成本。尤其是现在变电站系统平常的生产过程大量采用无人值守或少人值守的模式。而对于变电站这样的场所来说,远程、实时、多维、自动的智能化综合安保系统是变电站安全运作必备的前提条件。 系统总体设计 根据智能化变电站实际应用需求,把变电站智能辅助控制系统分为三级中心、九大子系统。

三级中心 变电站智能辅助控制系统(以下简称“辅助系统”)为分层、分区的分布式结构,按变电站智能辅助控制省级监控中心、变电站智能辅助控制地区级监控中心、变电站智能辅助控制区域监控中心系统和变电站智能辅助控制站端系统四 级构建,如图1所示。 变电站智能辅助控制系统从区域上分为三级中心,每级中心从技术上都分为主控中心、客户端和接口系统(预留),用于扩充与其他系统之间的衔接,以及WEB浏览功能。主控中心:包含数据库和管理平台,实现数据存储、权限控制、实时监控、配置管理等全部功能。客户端:在变电站和其他必要的地方电脑上安装客户端,根据权限的不同,操作员可以进行相应的监控、管理和操作。接口系统:系统通过采用IEC61850通信规约与综合自动化等系统的接口和联动。WEB浏览:系统另外提供浏览器的方式,供值班和相关人员实时监控每个变电站区域的环境状态、报警状态、人员进出状态等实时状态。 九大子系统 辅助控制系统必须把环境、视频、火灾消防、SF6、防

输电线路杆塔及基础课程设计说明书

输电线路杆塔基础课程设计说明书 一、设计题目:刚性基础设计 (一)任务书 (二)目录 (三)设计说明书主体 设计计算书是设计计算的整理和总结,是图纸设计的理论依据,也是审核设计的技术文件之一,因此编写设计说明书是设计工作的非常重要的一部分。 1、设计资料整理 (1)土壤参数 (2)基础的材料 (3)柱的尺寸 (4)基础附加分项系数 2、杆塔荷载的计算 (1)各种比载的计算 (2)荷载计算 1)正常大风情况 2)覆冰相应风 3)断边导线情况 要求作出三种情况的塔头荷载图 3、基础作用力计算 计算三种情况荷载作用下基础的作用力,选择大者作为基础设计的条件。 4、基础设计计算 (1)确定基础尺寸 1)基础埋深h0确定 2)基础结构尺寸确定 A、假定阶梯高度H1和刚性角 B、求外伸长度b' C、求底边宽度B D、画出尺寸图 (2)稳定计算 1)上拔稳定计算 2)下压稳定计算 (3)基础强度计算 5、画基础施工图和铁塔单线图 用A3纸(按制图标准画图)见参考图 6、计算可参考例11-3

《输电杆塔及基础设计》课程设计任务书 一、设计的目的。 《输电杆塔及基础设计》课是输电线路专业重要的专业课之一,《输电杆塔及基础设计》课程设计是本门课程教学环节中的重要组成部分。通过课程设计,使学生能系统学习和掌握本门课程中所学的内容,并且能将其它有关先修课程(如材料力学、结构力学、砼结构,线路设计基础、电气技术)等的理论知识在实际的设计工作中得以综合地运用;通过课程设计,能使学生熟悉并掌握如何应用有关资料、手册、规范等,从设计中获得一个工程技术人员设计方面的基本技能;课程设计也是培养和提高学生独立思考、分析问题和解决问题的能力。 二、设计题目钢筋混凝土刚性基础设计 三、设计参数 直线型杆塔:Z1-12铁塔(单线图见资料,铁塔总重56816N,铁塔侧面塔头顶宽度为400mm) 电压等级:110kV 绝缘子: 7片×-4.5 地质条件:粘土,塑性指标I L=0.25,空隙比e=0.7 基础柱的尺寸:600mm×600mm 1.荷载计算(正常情况Ⅰ、Ⅱ,断边导线三种情况) 2.计算基础作用力(三种情况) 3.基础结构尺寸设计 4.计算内容 (1)上拔稳定计算 (2)下压稳定计算 (3)基础强度计算 五、设计要求 1.计算说明书一份(1万字左右) 2.图纸2张 (1)铁塔单线图 (2)基础加工图

输电线路杆塔倾斜在线监测研究及应用

输电线路杆塔倾斜在线监测研究及应用 【摘要】本文探讨了输电线路杆塔倾斜监测问题,从监测系统的组成,硬件系统的构造设计等角度,探讨了监测系统的组成,以及相关的硬件选型等。重点针对输电线路杆塔在线监测系统的总体构架、前端数据处理部分硬件设计选型,数据传输部分的硬件设计选型进行了研究。 【关键词】输电线路;杆塔;倾斜在线监测 1.概述 电网安全运行是社会正常运转的重要保障,一旦出现电网事故,将对工农业生产、居民生活造成极大的影响。在各类电网安全事故中,多数都和输电线路的倒塔、断线等有关。输电杆塔倾斜的成因很多,除了大风、洪水、地质灾害外,还和施工质量不过关、地基不均匀沉降、甚至是意外冲撞等,都可能导致杆塔的倾斜。由于输电网络覆盖范围极广,而且数量众多的输电线路杆塔位于城市周边周边、山地、河流等自然环境更为复杂的区域,靠人力来完成对数量庞大的输电线路杆塔、线路的巡检工作效率低下,因此有必要建立起成套输电设备的在线监测,重点针对输电线路杆塔的工况进行监测,对杆塔正常工作关系密切的倾斜、震动、覆冰等工况进行在线监测,为输电线路的安全运行提供帮助。本文将针对输电杆塔运行工况中的倾斜在线监测为对象来展开研究。 2.输电线路杆塔监测概况 输电线路杆塔监测,从原理上是通过在输电杆塔以及其他附属电力设备上安装传感器来获取杆塔运行工况状态,通过对这些监测量的整合分析,来对输电杆塔的运行工况、潜在故障、安全等级等进行评估。 发达国家对输电设备工况的在线监测开展得比较早,建成的监测系统也较为完善。国内在这方面的工作一般都是在事故发生后才进行检修,定期检修和在线状态监测还处于探索阶段。尤其是针对输电线路杆塔的状态在线监测,是在2008年南方冰冻灾害后才引起了足够的重视,并通过国内一些电力研究机构努力,已经取得了初步成果,在部分电网建立了泄露电流监测系统、输电容量监测系统、视频远程监控系统等在线监测系统。 3.输电杆塔状态监测系统组成 从监测数据的完整性角度看,对输电杆塔的状态监测需要对杆塔受迫振动、倾斜状况、杆塔周围气象数据、电缆温度、塔基应力应变等数据进行全方位的监测。而这些监测数据的获取,都需要在杆塔或其附属设备上加装传感器,并在输电杆塔监测区域安装现场中心基站,各类监测数据通过通信模块将数据汇总并传输至电网监控中心,通过在各类专业分析软件来评估监测数据,寻找可能存在的安全隐患,并进行预警,从而保障电力系统的安全运行。

输电线路在线监测系统

目录 TLMS系列输电线路在线监测系统 (2) 一、TLMS-1000 输电线路图像/视频在线监测系统 (3) 二、TLMS-2000输电线路气象在线监测系统 (4) 三、TLMS-3000输电线路导线温度在线监测系统 (5) 四、TLMS-4000 输电线路杆塔倾斜在线监测系统 (6) 五、TLMS-5000 输电线路覆冰在线监测系统 (7) 六、TLMS-6000 输电线路风偏在线监测系统 (8) 七、TLMS-7000 输电线路导线舞动在线监测系统 (9) 八、TLMS-8000 输电线路微风振动在线监测系统 (10) 九、TLMS-9000 输电线路导线弧垂在线监测系统 (11) 十、TLMS-1100 输电线路绝缘子污秽在线监测系统 (12)

TLMS系列输电线路在线监测系统 系统简介: “TLMS系列输电线路在线监测系统”,是基于无线(GPRS/GSM/CDMA/3G)数据传输、采用多种传感器、红外网络高速球机、太阳能供电,实现对高压输变电线路/塔杆情况进行全天实时监测和监控。本系统适用于野外无人职守的高压输电线路、电力铁塔的安全监控。 系统原理示意图: 系统组成: 输电线路在线监测系统包含以下子系统: 输电线路图像/视频在线监测系统、输电线路气象在线监测系统、输电线路导线温度在线监测系统、输电线路杆塔倾斜在线监测系统、输电线路覆冰在线监测系统、输电线路风偏在线监测系统、输电线路导线舞动在线监测系统、输电线路微风振动在线监测系统、输电线路导线弧垂在线监测系统、输电线路绝缘子污秽在线监测等系统。 产品特点: 1.支持3G/GPRS/CDMA网络,通信方式灵活; 2.采用太阳能供电系统供电,安装维护方便; 3.采用工业级产品设计,适合恶劣环境下工作; 4.具有检点自启动、在线自诊断功能; 5.具有数据采集、测量和通信功能,将测量结果传输到后端综合分析软件系统; 6.系统运行参数、报警参数、数据采集密度等可以远程设置; 7.具有数据存储、历史数据查询、报表、打印、曲线图绘制等功能; 8.具有自动分析报警提示值班人员功能;

输电线路杆塔基础设计分析

输电线路杆塔基础设计分析 摘要:电力是现代社会发展中不可或缺的重要能源,输电线路建设情况直接关 系到供电质量。杆塔是输电线路的重要组成部分,根据相关调查显示,在以往诸 多输电线路安全事故中,基础设计不良是一大重要因素,对此必须做好输电线路 杆塔基础设计工作,切实保证整个电力系统的安全稳定运行。 关键词:输电线路;杆塔;塔基;施工 一、高压输电线路杆塔基础选型分析 现浇台阶基础 此类基础属于刚性基础类型,能应用的地质条件非常的广泛,适用于各种类型的铁塔。 该基础类型的主要特点:混凝土方量较多,但钢材的耗费量较少,且施工工艺简单,为工程 施工的质量提供了很好的保障。以往的工程施工中应用较多,但近年来,为减少混凝土的使 用量,限制了该基础型式大范围应用,仅在受力较大的转角塔中应用,或者是在地下水丰富 容易引起塌方问题的地段中应用。 板式直柱基础 此类基础属于柔性板式基础,采用直立式主柱,连接铁塔时需使用塔脚板和地脚螺栓, 同样适用于各种类型的铁塔。按土重法计算,底板厚度由冲切计算和伸出部分宽厚比小于 2.5 控制,板的上部与下部均配置钢筋。其优点是基础混凝土方量较少,开挖方便,可进行浅埋,在较容易出现流砂或者是地下水位较高的地基中应用居多,能避免基坑坍塌的危险,还可降低深挖水坑的工作难度;缺点是基坑土石方开挖量较大,钢材耗量大。 插入式基础 此类基础不需要地螺和塔脚坂连接,将铁塔塔腿的主材直接插入到主柱之中并在端部进 行锚固。该基础受力简单,基础所承受的偏心弯矩和水平方向作用力较小,底板和立柱处于 压受力状态,该种基础改善了受力状况并且节约材料。另外,由于基础水平力减小,故基础 侧向的稳定性有所提高。该基础适用于有无地下水地段、地基土为硬塑情况。在山区塔位, 由于交通运输条件差,插入式基础弥补了交通运输上的缺陷,是一种更为经济实用、施工简 单方便的基础型式。若按铁塔主材形式划分,可分为钢管类插入式基础和角钢类插入式基础,其中角钢类插入式基础应用较为广泛。 二、输电线路杆塔基础施工要点 基坑开挖前的调查工作 基坑开挖施工之前,必须要对基坑开挖处的环境及地下设施做一个全面的分析调查,开 挖的时候不能破坏各类地线管线设施,特别是国防通讯光缆,保证它们不会遭到破坏。 人工挖孔桩技术 从现阶段输电线路杆塔基础施工的实际状况来看,人工挖孔桩施工是一项复杂且涉及施 工内容较多的一项施工技术。应用人工挖孔桩施工技术进行施工前,相关的施工人员需要明 确当前工程施工的实际状况及施工要求,做好相关的工程施工控制工作,为了确保混凝土的 质量,需要合理的控制混凝土浇灌的时间与力度,尽量避免出现裂缝的情况,如果出现裂缝,

杆塔倾斜

随着电网建设的加速和市场经济的推进,输电线路杆塔倾斜对电网安全正常运行的危害越来越大。我国地理分布广泛,地质条件复杂多样,当输电线路经过煤炭开采区、软土质区、山坡地、沙漠地带、河床地带等不良地质区时,在自然环境和外界条件的作用下,杆塔基础市场会发生滑移、倾斜、沉降、开裂等现象,从而引起杆塔的变形、杆塔倾斜、甚至倒塔断线。杆塔倾斜将造成杆塔导地线的不平衡受力,引起杆塔受力发生变化,造成电气安全距离不够,影响线路正常运行,给人们的正常生产和生活带来严重影响,并造成了巨大的经济损失。 我司研发的FH-9001型杆塔倾斜在线监测系统利用最新的MEMS传感器技术和无线通信技术,对位于冰灾、雪灾、泥石流、山体滑坡多发区、煤矿采空区等不良地质区域内电线杆塔,进行双向倾斜角度(平行于线路方向和垂直于线路方向)实时监测。当杆塔倾斜角度超过设定的阈值时,系统能够通过 GSM/CDMA/GPRS/4G网络及时将预/告警信息发送给监控中心,提醒线路运行负责人对线路运行状况予以关注并采取相应处置措施。 该系统采用太阳能电池板+蓄电池供电方式,安装方便。投入运行后,可使运营部门及时掌握杆塔工作情况,以有效防止因杆塔倾斜而引发的事故。 本设备也可应用于桥梁、大坝、建筑物等对象的倾斜监测. 产品特性 采用进口双轴MEMS传感器,测量精度高; 采用太阳能供电系统供电,安装维护方便; 通信方式灵活,支持ZIGBEE/WIFI/GSM/CDMA/GPRS/4G网络;

为工业级产品,采用防水金属外壳,适应于各种恶劣气候的环境; 系统采用低功耗设计,采用动态电源管理策略以满足节电要求; 配备完善的后台软件,具有数据存储、历史数据查询、报表、打印、曲线图绘制等功能,可对杆塔状态进行趋势分析; 支持受控采集方式和自动采集方式,可通过后台软件设置采样间隔(5分钟-24小时),支持采样手机进行数据查询和报警接受; 满足国家电网公司企业标准《输电线路状态监测装置通用技术规范》 (Q/GDW-242-2010)。 技术指标 倾角测量范围:双轴±30°(可选±15°、±60°或±90°); 倾角测量误差:≤±0.1°; 倾角测量分辨率:±0.01°; 工作环境:温度:-40℃~+85℃;相对湿度:≤100%;大气压力:550hPa~1060hPa; 防护等级:IP65; 工作功耗:≤1W;待机功耗≤0.1W; 供电方式:太阳能+蓄电池,输入电压+12~24V; 电池使用寿命:≥3年,无外部充电时最多可连续供电30天以上; 重量:≈3kg;(不包含蓄电池) 适用对象:10KV~500KV输电线、通信铁塔、广告牌、塔吊、建筑物等

输电线路杆塔基础形式及适用条件

输电线路工程杆塔基础 输电线路基础施工的任务就是按设计进行施工。普通土坑的开挖前都必须做好复测和分坑工作。 输电线路施工复测是指线路施工前,施工单位对设计部门已测定线路中心线上的各直线桩,杆塔位中心桩及转角塔位桩位置,档距和断面高程进行全面复核测量。若偏差超过允许范围时,必须查明原因并予以纠正。其后,根据定位的中心桩位,根据基础类型依照设计图纸规定的尺寸进行坑口放样工作,称次为分坑测量。通常把这两步工作统称为复测分坑。分坑,可用经纬仪及皮尺进行分坑。 基础形式可分为以下几种: 1.岩石嵌固基础 该基础型式适用于覆盖层较浅或无覆盖层的强风化岩石地基,其特点是底板不配筋,基坑全部掏挖。上拔稳定,具有较强的抗拔承载能力。需要时,可将主柱的坡度设置与塔腿主材坡度相同,以减小偏心弯矩,还可省去地脚螺栓。由于该基型充分利用了岩石本身的抗剪强度,混凝土和钢筋的用量都较小,同时减少了基坑土石方量,浇制混凝土不需要模板,施工费用较低。 2.岩石锚杆基础 该基型适用于中等风化以上的整体性好的硬质岩。该基础型式是在岩石中直接钻孔、插入锚杆,然后灌浆,使锚杆与岩石紧密粘结,充分利用了岩石的强度,从而大大降低了基础混凝土和钢材量。但岩

石锚杆基础需逐基鉴定岩石的完整性。 3.掏挖基础 该基型分全掏挖和半掏挖两种,适用无地下水的硬塑粘性土地基。在基坑施工可成型的情况下,开挖基坑时不扰动原状土,避免大开挖后再填土。基础承受上拔荷载时,原状土的内摩擦角和凝聚力得以充分发挥作用。这种基础型式也显示了较高的经济效益和环境效益,根据以往工程的统计,由于各线路地质条件的不同等原因,采用全掏挖基础比用阶梯型基础节约钢材和混凝土分别为3~7%和8~20%。掏挖基础有直柱式和斜插式两种型式。斜插式掏挖基础将主柱的坡度设置与塔腿主材坡度相同,减小了基础水平力产生的偏心弯矩,还可省去地脚螺栓 4.阶梯型基础 该基础是传统的基础型式,适用各类地质、各种塔型,其特点是大开挖,采用模板浇制,成型后再回填土,利用土体与混凝土重量抗拔,基础底板刚性抗压,不配钢筋。由于阶梯型基础混凝土量较大,埋置较深,易塌方及有流砂地区难以达到设计深度,因此在此类地区应尽量少用。 5.大板基础 大板基础的主要设计特点是:底板大、埋深浅、底板较薄,底板双向配筋承担由铁塔上拔、下压和水平力引起的弯矩和剪力,主柱计算与阶梯基础相同。与阶梯基础相比,埋深浅,易开挖成形,混凝土量能适当降低,但钢筋量增加较多。与灌注桩相比,在软弱地基中应

变电站GIS智能监控系统

变电站GIS智能监控系统 技术方案书 常州市人本电气有限公司

一、系统描述 SF6气体以其优异的绝缘和灭弧性能,在电力系统中得到广泛应用,几乎成了中压、高压和超高压开关中所使用的唯一绝缘和灭弧介质。随着我国电力行业的快速发展,SF6技术的广泛应用以及智能电网建设的迫切性,急需解决SF6电气设备的智能监控技术。 GIS 的绝缘性能是确保其安全运行的重要条件。GIS 设备内部中的金属微粒、粉末和水分等导电性杂质是引发GIS 故障的重要原因。因此监测GIS内部的水分和放电情况成为判断GIS运行状态优劣的必要手段。GIS一旦发生泄漏故障,不仅对变电站正常供电输电造成影响,而且对于巡检人员的人生安全都存在很大的隐患,所以检测GIS内部压力和SF6开关室内SF6和氧气含量都成了目前变电站正常运行及人员安全的必要措施。 RBZN 型变电站GIS智能监控系统是本公司根据国家智能电网发展要求而设立的重点项目,该系列产品采用最新遥测遥感技术和后台计算机技术于一体,外观小巧,可实现高精度测量、计算机后台处理、海量的历史数据存储等功能,适用于各种电压等级的SF6断路器、GIS、PASS等设备SF6气体的微水、密度、温度和内部局部放电的在线测量,同时还可以监测SF6开关室内部的SF6和氧气含量,实现安全、实时、远程等先进的动态监控,以满足电力配网自动化和设备状态检修的需要,为电网的智能化建设预留接口。该系列产品技术领先,填补了国内空白,获得多项专利。 二、主要功能 1、在线监测SF6断路器或组合电器中微水、密度、温度、局部放电和室内SF6和氧气含量等参数 2、实现微水的压力与温度补偿、密度的温度补偿,使微水与密度数据真实可靠 3、采集单元内部运用内循环技术,大幅提高采样精度 4、多种阀门接头,安装拆卸方便,节省维护费用

杆塔故障综合智能监测系统

XJGT-3000 杆塔智能监测系统 技 术 方 案 二〇一六年九月

目 录 一、 系统概述 (4) 1.1 必要性 (4) 1.2 项目意义 (5) 1.3 经济效益分析 (5) 1.3.1 直接经济效益 (5) 1.3.2 间接经济效益 (6) 1.3.3 提高人身和设备安全 (6) 二、 系统概述 (7) 三、 系统优势 (8) 3.1 自动数据采集和测量,杆塔状态实时掌控 (8) 3.2 核心数据收集和分析,杆塔安全时刻保障 (8) 3.3 安全报警全过程覆盖,维护人员省时省心 (8) 3.4 数据云端建模和分析,杆塔系统智慧管理 (9) 3.5 绿色资源节能和环保,杆塔资源高效利用 (9) 3.6 监测装置集成度高 (9) 四、 系统主要内容 (10) 4.1 监测方式和内容 (10) 4.1.1 监测方式 (10) 4.1.2 监测内容 (10) 4.2 监测装置安装位置 (12)

4.2.1 安装原则 (12) 五、 系统技术方案 (13) 5.1 系统结构图 (13) 5.2 系统组成及运行环境 (14) 5.2.1 监测装置 (14) 5.2.2 系统软件 (14) 5.2.3 运行环境 (15) 5.3 主要技术参数 (15) 5.4 系统特点 (16) 5.4.1 监测装置特点 (16) 5.4.2 综合分析软件特点 (17) 5.5 监测系统通信、供电和运行方式 (18) 5.5.1 通信方式 (18) 5.5.2 供电方式 (18) 5.5.3 运行方式 (18)

一、系统概述 1.1 必要性 输电线路基本上都采用架空线路,由于线路架设在空中,需要承受自重、风 力、暴雨和冰雪等机械力的作用和风沙等有害气体的侵蚀,运行条件十分恶劣。当输电线路经过沙漠地带、高盐土质区、采空区和山地滑坡区等不良地质区,在自然环境和外界条件的作用下,杆塔地基容易发生滑移、倾斜、开裂等现象,从而引起导致杆塔变形、倾斜、甚至倒塔断线。杆塔倾斜造成杆塔导地线的不均衡受力,引起杆塔受力发生变化,造成电气安全距离不够,影响线路正常运行。倒塔断线将使供电线路陷于瘫痪,严重影响人们的生产生活,造成巨大损失。 在杆塔倾斜现象发生发展的初期,巡线人员很难用肉眼观察到微小的变化。目前迫切需要使用智能化的数据监测装置对输电线路杆塔倾斜进行在线监测与故障分析诊断,及早发现隐患,及时排除隐患,及时排除故障,以提高输电线路运行的可靠性。 XJGT-3000杆塔智能监测系统可以实时监测杆塔的倾斜、震动、雷击电流与极性、工频闪络、环境温湿度等,及时了解运行杆塔的安全、可靠状况,根据倾斜监测数据发展趋势,对超标杆塔倾斜状况及时进行多种方式预报警,指导检修和维护,提醒运行维护人员加固地基,防止倒塔事故发生。

相关主题
文本预览
相关文档 最新文档