当前位置:文档之家› 单相交流调压电路仿真研究课程设计

单相交流调压电路仿真研究课程设计

单相交流调压电路仿真研究课程设计
单相交流调压电路仿真研究课程设计

目录

前言 (2)

1.主电路设计 (4)

1.1.设计内容及初始条件 (4)

1.2.系统原理框图 (4)

1.3.工作原理 (4)

1.3.1.主电路工作原理 (4)

1.3.2.晶闸管的工作原理 (8)

1.4.负载电流分析 (9)

1.5.单相交流调压电路主电路和触发电路(总电路)图 (11)

1.6.仿真参数设置 (11)

2.仿真 (14)

2.1.电阻性负载仿真波形 (14)

2.1.1.波形分析 (16)

2.2.阻感性负载 (16)

2.2.1.波形分析 (19)

2.3.实验结果分析 (20)

3.控制电路的设计 (20)

4.设计体会 (22)

5.参考文献 (23)

前言

[摘要]深入学习单相调压电路的工作原理,掌握单相调压电路带纯电阻负载和阻感性负载时的工作特性,并利用Matlab的Simulink仿真平台和系统仿真模型库对单相调压电路构造模型并进行电路实验仿真。电路模型由交流电源、反并联的两个晶闸管、触发模块、电阻负载和观测示波器组成。实验结果表明,组建的电路模型能够产生理论上的调压作用。

关键词:调压电路;晶闸管;Simulink

working principle of understanding of the signal-phase voltage regulator circui ts with pure resistance of the work load,the use of Matlab's Simulink simulation pla tform and the Treasury Simulation Model of the signa-phase voltage regulator circuit structure and circuit model simulation experiment.Circuit model from AC power,two anti-parallel thyristor,trigger module,load resistance,and composition of the os cilloscope.The results show that the formation of the circuit to generate-a theoret ical model of the role of the regulator.

Key words:voltage-regulator-circuit;Thyristor;Simulink

引言

交-交变换(AC-AC)包括交流调压和交-交变频。交流调压是指不改变交流电压的频率而只调节电压的大小的方法。过去交流调压使用变压器,在电力电子技术出现后,采用电力电子器件的交流调压器不仅可以对电压进行连续调节,并且体积小、重量轻、控制灵活方便,在灯光控制、家用风扇调速、交流电机的调压调速和软启动以及交流电机的轻载节能运行中得到了广泛的应用。交-交变频是通过电力电子电路的开关控制将工频三相交流电直接转换为其他频率的单项或三相交流电,也称直接变频器和周波变流器,一般交-交变频器在改变频率的同时也调节电压的大小,即实现VVVF控制。交流调压电路可分为单相交流调压电路和三相交流调压电路。

单相交流调压电路是对单相交流电的电压进行调节的电路。该电路主要应用在电热控

制、交流电动机速度控制、交流稳压器等场合,主要有灯光调节(如调光台灯、舞台灯光控制等),温度调节(如工频加热、感应加热、需控制的家用电器等),泵及风机等异步电动机的软起动,交流电机的调压调速(如纺织、造纸、治金等领域的调压调速),随电机负载大小自动调压(对于起动机等有较长时间空载或轻载的电荷,自动调压可以节省电能),变压器初级调压(在高压小电流或低压大电流直流电源中,如采用晶闸管相控整流电路,需要很多晶闸管串联或并联,若采用交流调压电路在变压器初级调压。其电压电流值都比较合理,在变压器初级只要用二极管整流即可,从而达到减少体积、减低成本的目的)。与自耦变压器调压方法相比,交流调压电路控制方便,调节速度快,装置的重量轻、体积小,有色金属消耗也少。

单相交流调压器常用于小功率单相电动机控制、照明和电加热控制。通过用两单相晶闸管反并联组成的交流电压控制器,可以方便地调节输出电压有效值。在使用中,交流调压器的晶闸管控制通常有两种方法:

一是通断控制。即把晶闸管作为开关将负载与交流电源接通几个周期(工频1周期为20ms),然后再断开一定的周期,改变通断时间比值达到调压的目的。这里晶闸管起到一个通断频率可调的快速开关的作用。这种控制方式电路简单,功率因素高,适用于有较大时间常数的负载,缺点是输出的电压或功率调节不平滑。

二是相位控制。它是使晶闸管在电源电压每一周期中、在选定的时刻内将负载与电源接通,改变选定的时刻可达到调压的目的。在交流调压器中,相位控制应用较多,下面主要分析相位控制的交流调压器,并阐述作为基础的单相交流电阻性电路的原理及工作情况。

1.主电路设计

1.1.设计内容及初始条件:

输入为单相交流电源,有效值220V ,要求完成的主要任务:

(1)掌握单相交流调压电路的原理;

(2)设计出系统结构图,并采用Matlab 7.0/Simulink 对单相交流调压电路进行仿真;

(3)采用Protues 设计出单相交流调压主电路及采用KJ004控制电路

1.2.总体电路设计方案

本系统主要设计思想是:采用两个晶闸管反向并联加负载为主电路,外加触发电路;触发电路控制晶闸管的导通,从而控制输出。其系统框图如下所示:

图1-1 系统原理方框图

1.3.工作原理

1.3.1.主电路工作情况

单相交流调压电路带阻感性负载时的电路以及工作波形如下图1-2、1-3、1-4、1-5所示。产生的滞后是因为阻感性负载时电流滞后电压一定角度,再加上移相控制所产生的滞后,使得交流调压电路在阻感性负载时的情况比较复杂,其输出电压,电流与触发角α,负载阻抗角φ都有关系。当两只反并联的晶闸管中的任何一个导通后,其通态压降就成为另一只的反向电压,因此只有当导通的晶闸管关断以后,另一只晶闸管才有可能承受正向电压被触发导通。由于感性负载本身滞后于电压一定角度,再加上相位控制产生的滞后,使得交流调压电路在感性负载下大的工作情况更为复杂,其输出电压、电流波形与控制角α、负载阻抗角φ都有关系。其中负载阻抗角)arctan(R wL =?,相当于在电阻电感负载上加上纯正弦交流电压时,其电流滞后于电压的角度为φ

。为了更好的分析单相交流调压电路在感性负载下的工作情况,此处分φαφαφα<=>,,三种工况分别进行讨论。

图1-2电路图

(1)φα>情况

上图1-2所示为单相反并联交流调压电路带感性负载时的电路图,以及在控制角触发导通时的输出波形图,同电阻负载一样,在i u 的正半周时,在αω=t 时触发Vt1,Vt1导通,输出电压o u =i u ,电流o i 从0开始上升。当电压到达过零点时,由于是感性负载,电流o i 滞后于电压o u ,当电压达到过零点时电流不为0电流不为零,之后o i 继续下降,Vt1仍然导通,输出电压出现负值。直到电流下降到零时,Vt1自然关断,输出电压为零。正半周结束,期间电流o i 从0开始上升到再次下降到0这段区间称为导通角0θ。由后面的分析可知,在φα>工况下, 180<φ因此在2T 脉冲来之前1T 已关断,正负电流不连续。在电源的负半周2T 导通,工作原理与正半周相同,在o i 断续期间,晶闸管两端电压波如下图:

α>情况下的波形)

图 1-3 (φ

α=φ情况

(2)

α=φ时,当正半周Vt1关断时,Vt2恰好触发导通,在一个周期内两只晶闸管当控制角

轮流导通180°。此时负载电流i。临界连续,负载电流是一个滞后电源电压φ角的正弦电流。该工况下两个晶闸管相当于两个二极管,或输入输出直接相连,输出电压及电流连续,相当于晶闸管失去控制,无调压作用。

图1-4α=φ情况下的输出波形

(3) φα<情况

在φα<工况下,阻抗角φ相对较大,相当于负载的电感作用较强,使得负载电流严重滞后于电压,晶闸管的导通时间较长,此时式仍然适用,由于φα<,公式右端小于0,只

有当 180)(>-+φαθ时左端才能小于0,因此 180>θ,如图所示,如果用窄脉冲触发晶闸

管,在α=wt 时刻1T 被触发导通,由于其导通角大于180 ,在负半周)(πα+=wt 时刻为2

T 发出出发脉冲时,1T 还未关断,2T 因受反压不能导通,1T 继续导通直到在)(πα+=wt 时刻因1T 电流过零关断时,2T 的窄脉冲2G u 已撤除,2T 仍然不能导通,直到下一周期1T 再次被触发导通。这样就形成只有一个晶闸管反复通断的不正常情况,这一现象称为“半相半波整流现象”负载电流i 。始终为单一方向,在电路中产生较大的直流分量;因此为了避免这种情况发生,应采用宽脉冲或脉冲列触发方式。

图 1-5 φα<下窄脉冲触发方式时输出波形

1.3.

2.晶闸管的介绍

晶体闸流管简称晶闸管,也称为可控硅整流元件(SCR),是由三个PN 结构成的一种大功率半导体器件。在性能上,晶闸管不仅具有单向导电性,而且还具有比硅整流元件更为可贵的可控性,它只有导通和关断两种状态。

三、晶体管的工作原理分析

在分析SCR 的工作原理时,常将其等效为两个晶体管V1和V2串级而成。此时, 其工作过程如下:

如果IG(门极电流)注入V2基极,V2导通,产生IC2( β2IG )。它同时为V1的基极电流,使V1导通,且IC1= β 1IC2,IC1加上IG 进一步加大V2的基极电流,从而形成强烈的正反馈,使V1.V2很快进入完全饱和状态。此时SCR 饱和导通,通过SCR 的电流由R 确定为EA/R 。UAK 之间的压降相当于一个PN 结加一个三极管的饱和压降约为1V 。此时,将IG 调整为0,即UGK<0,也不能解除正反馈,G 极失去控制作用。

晶闸管静态工作特性:只有当晶闸管承受正向电压并且有门极触发电流的情况下才能导通。导通后,门极失去控制作用,不论门极触发电流是否存在,都保持导通,只有通过外电路使得流过晶闸管的电流为零才能让晶闸管关断。

R NPN PNP A

G S K E G I G E A

I K I c2I c1I A V 1V 2P 1

A

G K

N 1P 2P 2

N 1

N 2

a)b) 图1-6 晶闸管的双晶体管模型及其工作原理图

a)双晶体管模型 b)工作原理

1.4.负载电流分析

为了分析负载电流o i 的表达式及导通角θ与α、φ之间的关系,假设电压坐标原点如图所示,在αω=t 时刻晶闸管T 1导通,负载电流i 0应满足方程:

L 0Ri d d t

io +=i u =i U 2sin t ω 其初始条件为: i 0|αω=t =0,

解该方程,可以得出负载电流i 0在α≤t ω≤θα+区间内的表达式为:

i 0=])sin()[sin()(2tan /)(2φαωφαφωω-----+t i

e t L R U .

当t ω=θα+时,i 0=0,代入上式得,可求出θ与α、φ之间的关系为:

sin (θα+-φ)=sin (α-φ)e φθtan /-

利用上式,可以把θ与α、φ之间的关系用下图的一簇曲线来表示。

图 1-7θ与α、φ之间的关系曲线

图中以φ为参变量,当φ=00时代表电阻性负载,此时θ=180 -α;若φ为某一特定角度,则当α≤θ时,θ=180 ,当α>φ时,θ随着α的增加而减小。

上述电路在控制角为α时,交流输出电压有效值U O 、负载电流有效值I o 、晶闸管电流有效值I T 分别为:

U o =U i π

θααθ)22sin(2sin +-+

I 0=2I max o I T *

I T =2 I max o I T *

式中,I max o 为当α=0时,负载电流的最大有效值,其值为:

I max

o =22)(l R U i

ω+ I T *

为晶闸管有效值的标玄值,其值为:

I T *

=φπθφαθπθcos 2)2cos(sin 2++- 由上式可以看出,I T *

是α及φ的函数下图给出了以负载阻抗角φ为参变量时,晶闸管电流标幺值与控制角α的关系曲线。

1-8 晶闸管电流标幺值与控制角α的关系曲线

当α、φ已知时,可由该曲线查出晶闸管电流标幺值,进而求出负载电流有效值I 0及晶闸管电流有效值I T 。

1.5.单相交流调压主电路及触发电路(总电路)图如下:

图1-9 Protues IsIs下画的单相交流调压主电路及触发电路图

1.6.仿真参数设置

1.建立一个仿真模型的新文件。在 MATLAB 的菜单栏上新建一个Model文件这时出现一个空白的仿真平台,在这个平台上可以绘制电路的仿真模型。

2.在Simulink菜单下面找到Simpowersystems和Simulink从中找出所需的晶闸管,交流电源,电压表,电流表,示波器,阻感负载等。

3.将找到的模型正确的连接起来,如下图1-10所示

图1-10 仿真模型图 注:上图是截图,示波器所测波形从上至下依次是脉冲1、脉冲2、晶闸管电流、晶闸管电压、负载电流、负载电压波形。

4.参数设置

⑴ 触发脉冲参数设置如下图所示:

其中将周期(period )设置为0.02

触发脉冲宽度(pulse width )设置为5

相位滞后(phase delay )脉冲一触发角可设为A=0-0.01之间的任意数,脉冲二的触发角为B=A+0.01,他们之间的对应关系如下:

触发角α

相位滞后 换算公式 0

0 相位滞后=(触发角/180)×0.01 30

0.0017 60

0.0033 90

0.005 120

0.0067 150

0.0083 180

0.01

⑵负载参数设置

如果负载为电阻性负载,则将电感(inductance )

设为0,电容(capacitance )设为inf,电阻设置为200Ω。如果主电路改接电阻电感负载,R 可以再100~200Ω范围内调节,取R=100,确定阻抗角a 为30 °,

由公式)arctan(R

wL =?计算可得L=0.184H 。 ⑶电源参数设置

电源电压设为220V ,频率设为50Hz,相位角设为0,采样时间设为0。

⑷仿真器设置

为便于观察波形,将仿真时间设为0.06(三个周期)

仿真算法(solver )设为ode23t ,其他参数设为默认,设置好后的参数如下图1-11所示:

图1-11

2.仿真

参数设置好后,点击(Start Simulink)开始仿真,为便于比较,先将负载设为电阻性负载,改变触发角,观察波形变化,不同触发角时的波形如下

2.1电阻性负载仿真波形

图 2-1 R=200,触发角为0°

图2-2 R=200,触发角为60°

图2-3 R=200,触发角为120°图2-4 R=200,触发角为180°

2.1.1波形分析

以上各图分别为电阻性负载触发角A为0°,60°, 120°,180°时所得的仿真波波形,,图中第一个波形为触发脉冲的波形,第二个为晶闸管两端电压的波形,第三个波形为负载电流的波形,第四个波形为负载电压的波形。此时负载为电阻性负载时,阻抗角为零,当α=φ=0时,负载电流时连续的,当触发α>0时,电流不连续。说明α=φ触发角为零时即

为电流连续的临界条件。负载电压和负载电流波形一致,随着触发角的增大,波形的占空比减小,当触发角为度时180°时,负载电压.电流波形为一条直线,由此可以说明单相交流调压电路带电阻性负载时的触发角α的取值范围为0°-180°。

2.2阻感性负载

(1)将负载设为阻感性,电阻取100Ω,电感值设为0.184H,阻抗角为30°改变触发角,观察仿真波形。用脉冲宽度为10的宽脉冲触发。

图2-5 R=100欧姆,L=0.184H,触发角为0°

图2-6 R=100Ω,L=0.184H,触发角为30°图2-7 R=100Ω,L=0.184H,触发角为150°

(2)负载依然是阻感性,电阻取100Ω,电感取0.551H,此时阻抗角为60°,改变触发角,观察仿真波形,用脉冲宽度为1的窄脉冲触发。

图 2-8 R=100Ω,L=0.551H,触发角为0°

图 2-9 R=100Ω,L=0.551H,触发角为60°

图2-10 R=100Ω,L=0.551H,触发角为120°

2.2.1波形分析

以上(1)中阻抗角为30°,图为触发角α为0°,30°,150°时所得的仿真波波形,(2)中阻抗角为60°,图为触发角α为0°,60°,120°所得的仿真波形。第一个波形为触发脉冲的波形,第二个晶闸管两端电压的波形,第三个波形为负载电流的波形,第四个波形α=φ时电流是连续的,α>φ时电流都不连续,在α<φ的时候,如果为负载电压的波形。

触发脉冲为宽脉冲(如1中),则电流是连续的,如果触发脉冲为窄脉冲,则电流不连续。

α=φ是电流连续的条件,并且在宽脉冲的触发的时候α<φ也可以得到连续的电由此说明

流,其他情况下的电流都是不连续的。

随着触发角的增大,负载两端电流和电压波形的占空比逐渐减小。电流和电压有效值减小,由于电感的影响电流波形滞后于电压波形,这是因为电感的储能作用。当触发脉冲到来时,正向晶闸管导通,电压发生跳变,由于电感的作用,电流只能从零开始变化,同时电感开始储能。当电源电压变为负时正向晶闸管并不能关断,直到电感中的储能释放完,这就是负载两端电压和电流波形不一致的原因。并且可以知道触发角的取值为0-180°。

2.3.实验结果分析

(1)在主电路负载R=200Ω,L=0H的电阻性负载时,触发角为零的时候晶闸管两端电压的波形在在正负半周都是一条靠近X轴的直线,是因为电阻性负载在触发角为零的时候两个晶闸管是轮流导通的,其两端电压就是晶闸管的临界导通电压。

(2)在主电路负载R=100Ω,L=0.551H的阻感性负载时(此时阻抗角为60°),在触发角为零的时候,在窄脉冲的触发下,晶闸管两端电压在正半周时基本为零,电流电压不连续,

α<φ的时候,在窄脉冲的触发下,只有晶闸管VT1导通,晶闸管基本上没有负值,说明在

VT2基本上是一直处于截止状态的。说明晶闸管只有在正向电压下加门极电流触发才能导通。

(3)由以上的工作波形可得晶闸管不仅具有单向导电性,并且晶闸管的导通电压比较小,控制特性好,可以很好的充当开关。

3.控制电路(触发电路)的设计

晶闸管触发电路的作用是产生符合要求的门极触发脉冲,保证晶闸管在需要要的时刻有阻断转为导通。晶闸管触发电路应满足下列要求:1)触发脉冲的宽度应保证晶闸管可靠导通,对反电动势负载的变流器应采用宽脉冲或脉冲列触发; 2)触发脉冲应有足够的幅度,对户外寒冷场合,脉冲电流的幅度应增加为器件最大触发电流的3-5倍,脉冲前沿的陡度也许增加,一般需达1-2A/us;3)所提供的触发脉冲应不超过晶闸管门极的电压、电流和功率定额,且在门极伏安特性的可靠触发区域之内;4)应有的抗干扰性能、温度稳定性及与主电路的电气隔离。

KJ004可控硅移相电路

可控硅移相触发电路适用于单相、三相全控桥式供电装置中作可控硅的双路脉冲移相触发。器件输出两路相差 180 度的移相脉冲可以方便地构成全控桥式触发器线路。电路具有输出负载能力大、移相性能好、正负半周脉冲相位均衡性好、移相范围宽、对同步电压要求低有脉冲列调制输出端等功能与特点。根据以上要求分析,KJ004可控硅移项触发电路适用于单相、三相全控桥式供电装置中,作可控硅的双路脉冲移相触发。

KJ004可控硅移相电路工作原理

电路由同步检测电路、锯齿波形成电路、偏形电压、移相电压及锯齿波电压综合比较放大电路和功率放大电路四部分组成。电原理见下图3-1;锯齿波的斜率决定于外接电阻R6、RW1流出的充电电流和积分电容C1的数值。对不同的移相控制电压VY只有改变权电阻R1、R2的比例调节相应的偏移电压VP。同时调整锯齿波斜率电位器RW1可以使不同的移相控制电压

基于matlab的单相交流调压电路的设计与仿真

目录 前言 (2) 1.主电路设计 (3) 1.1.设计内容及技术要求 (3) 1.2设计内容 (3) 1.3.工作原理 (3) 1.4.建模仿真 (9) 2.仿真 (11) 2.1.电阻性负载仿真波形 (11) 2.1.1.波形分析 (16) 2.2.阻感性负载(H=0.01) (16) 2.2.1.波形分析 (20) 2.3.阻感性负载(H=0.1) (20) 2.3.1.波形分析 (23) 3.触发电路的设计 (23) 4.保护电路的设计 (25) 4.1过电压的产生及过电压保护 (25) 4.2.晶闸管的过电流保护 (26) 5.设计体会 (27) 参考文献 (28)

前言 本次课程设计主要是研究单相交流调压电路的设计。由于交流调压电路的工作情况与负载的性质有很大的关系,交流调压电路可以带电阻性负载,也可以带电感性负载,如感应电动机或其它电阻电感混合负载等。交流调压电路是采用相位控制方式的交流电力控制电路,通常是将两个晶闸管反并联后串联在每相交流电源与负载之间。在电源的每半个周期内触发一次晶闸管,使之导通。与相控整流电路一样,通过控制晶闸管开通时所对应的相位,可以方便的调节交流输出电压的有效值,从而达到交流调压的目的。其晶闸管可以利用电源自然换相,无需强迫关掉电路,并可实现电压的平滑调节,系统响应速度较快,但它也存在深控时功率因数较低,易产生高次谐波等缺点。交流调压电路主要应用在电热控制、交流电动机速度控制、交流稳压器等场合,主要有灯光调节,温度调节(如工频加热、感应加热、需控制的家用电器等),泵及风机等异步电动机的软起动,交流电机的调压调速,随电机负载大小自动调压,变压器初级调压(在高压小电流或低压大电流直流电源中,如采用晶闸管相孔整流电路,需要很多晶闸管串联或并联,若采用交流调压电路在变压器初级调压。其电压电流值都比较合理,在变压器次级只要用二极管整流即可,从而达到减少体积、减低成本的目的)。与自耦变压器调压方法相比,交流调压电路控制方便,调节速度快,装置的重量轻、体积小,有色金属消耗也少。

电力电子课程设计单相交流调压电路

电力电子课程设计单相交流调压电路电力电子 课程设计说明书 题目: 单相交流调压电路课程设计 院系: 水能 专业班级: 学号: 学生姓名: 摘要 交流调压电路广泛用于灯光控制(如调光灯和舞台灯光控制)及异步电动机的软启动,也用于异步电动机调速。在电力系统中,这种电路还常用于对无功功率的连续调节。此外,在高电压小电流或低电压大电流直流电源中,也常采用交流调压电路调节变压器一次电压。在这些电源中如采用晶闸管相控整流电路,高电压小电流可控直流电源就需要很多晶闸管串联;同样,低电压大电流直流电源需要很多晶闸管并联。这都是十分不合理的。采用交流调压电路在变压器一次侧调压,其电压、电流值都比较适中,在变压器二次侧只要用二极管整流就可以了。这样的电路体积小、成本低、易于设计制造。单相交流调压电路是对单相交流电的电压进行调节的电路。用在电热制、交流电动机速度控制、灯光控制和交流稳压器等合。与自耦变压器调压方法相比,交流调压电路控制简便,调节速度快,装置的重量轻、体积小,有色金属耗也少。 目录

1、电路设计的目的及任 务 .................................................................... 1 1.1课程设计的目的与要 求 (1) 1.2课程设计的内 容 ..................................................................... (1) 1.3仿真软件的使 用 ..................................................................... (2) 1.4设计方案选 择 ..................................................................... ....... 2 2、单相交流调压主电路设计及分 析 (3) 2.1 电阻性负 载 ..................................................................... (3) 2.1.1 电阻性负载的交流调压器的原理分析 (3) 2.1.2 结果分 析 ..................................................................... (6)

实验三--单相交流调压电路实验

信息科技大学 电力电子技术实验报告 实验项目:单相交流调压电路实验 学院:自动化 专业:自动化(信息与控制系统) /学号:贾鑫玉/2012010541 班级:自控1205班 指导老师:白雪峰 学期: 2014-2015学年第一学期

实验三单相交流调压电路实验 一.实验目的 1.加深理解单相交流调压电路的工作原理。 2.加深理解交流调压感性负载时对移相围要求。 二.实验容 1.单相交流调压器带电阻性负载。 2.单相交流调压器带电阻—电感性负载。 三.实验线路及原理 本实验采用了锯齿波移相触发器。该触发器适用于双向晶闸管或两只反并联晶闸管电路的交流相位控制,具有控制方式简单的优点。 晶闸管交流调压器的主电路由两只反向晶闸管组成。 四.实验设备及仪器 1.教学实验台主控制屏 2.NMCL—33组件 3.NMEL—03组件 4.NMCL-05(A)组件或NMCL—36组件 5.二踪示波器 6.万用表 五.注意事项 在电阻电感负载时,当α

实验三 单相和三相交流调压电路实验(软件仿真)1

实验三单相和三相交流调压电路实验 一、实验目的 (1).加深理解交流调压电路的工作原理。 (2).加深理解单相交流调压感性负载时对移相范围要求。 (2).加深理解三相交流调压阻性负载时的工作情况。 二、实验设备及仪器 (1).计算机 (2).MATLAB软件 三、注意事项 (1)在电阻电感负载时,当α

交流电源:simpowersystem\Electrical sources\AC Voltage Source 晶闸管: simpowersystem\Power Electronics\thyristor 电阻: simpowersystem\Elements\series RLC Branch (b)设置参数 根据已知条件设置电源和负载参数,晶闸管可用默认参数。 图2电阻负载主电路部分 步骤二:搭建触发电路 (a)触发电路利用脉冲发生器实现,如图3所示 图3 脉冲触发电路 触发脉冲提取路径为: simulink\Sources\Pulse Genetator (b)设置参数 脉冲类型:Time based 时间:Use simulation time 脉冲幅值:1.0 脉冲宽度:5 脉冲周期:(自己思考) 脉冲延时:(单位:秒;触发角不同,延时不同。注意:两个触发脉冲的延时是否一样?应差多少?) 步骤三:搭建测量电路

单相交流调压电路

单相交流调压电路 一、工作原理 单相交流调压电路带组感性负载时的电路以及工作波形如下图所示。之所产生的滞后由于阻感性负载时电流滞后电压一定角度,再加上移相控制所产生的滞后,使得交流调压电路在阻感性负载时的情况比较复杂,其输出电压,电流与触发角α,负载阻抗角φ都有关系。当两只反并联的晶闸管中的任何一个导通后,其通态压降就成为另一只的反向电压,因此只有当导通的晶闸管关断以后,另一只晶闸管才有可能承受正向电压被触发导通。由于感性负载本身滞后于电压一定角度,再加上相位控制产生的滞后,使得交流调压电路在感性负载下大的工作情况更为复杂,其输出电压、电流波形与控制角ɑ、负载阻抗角φ都有关系。其中负载阻抗角)arctan(R wL =?,相当于在电阻电感负载上加上纯正弦交流电压时,其电流滞后于电压的角度为φ。为了更好的分析单相交流调压电路在感性负载下的工作情况,此处分φαφαφα<=>,,三种工况分别进行讨论。 (1)φα>情况 图1 电路图(截图) 图2 工作波形图φα>(截图)

上图所示为单相反并联交流调压电路带感性负载时的电路图,以及在控制角 触发导通时的输出波形图,同电阻负载一样,在i u 的正半周α角时, i T 触发导通,输出电压o u 等于电源电压,电流波形o i 从0开始上升。由于是感性负载,电流o i 滞后于电压o u ,当电压达到过零点时电流不为0,之后o i 继续下降,输出电压o u 出现负值,直到电流下降到0时,1T 自然关断,输出电压等于0,正半周结束,期间电流o i 从0开始上升到再次下降到0这段区间称为导通角0θ。由后面的分析可知,在φα>工况下,ο180<φ因此在2T 脉冲到来之前1T 已关断,正负电流不连续。在电源的负半周2T 导通,工作原理与正半周相同,在o i 断续期间,晶闸管两端电压波形如图2所示。 为了分析负载电流o i 的表达式及导通角θ与α、φ之间的关系,假设电压坐标原点如图所示,在αω=t 时刻晶闸管T 1导通,负载电流i 0应满足方程 L 0Ri d d t io +=i u =i U 2sin t ω 其初始条件为: i 0|αω=t =0, 解该方程,可以得出负载电流i 0在α≤t ω≤θα+区间内的表达式为 i 0=])sin()[sin()(2tan /)(2φαωφαφωω-----+t i e t L R U . 当t ω=θα+时,i 0=0,代入上式得,可求出θ与α、φ之间的关系为 sin (θα+-φ)=sin (α-φ)e φθtan /- 利用上式,可以把θ与α、φ之间的关系用下图的一簇曲线来表示。

单相交流调压电路仿真

目录 一、单相交流调压电路(电阻负载) (1) 1 原理图 (1) 2 建立仿真模型 (1) 3 仿真波形 (4) 4 小结 (6) 二、单相交流调压电路(阻感负载) (6) 1 原理图 (6) 2建立仿真模型 (7) 3 仿真波形 (8) 4 小结 (9)

一、 单相交流调压电路(电阻负载) 1 原理图 图1-1为纯电阻负载的单相调压电路。图中晶闸管VT1和VT2反并联连接与负载电阻R 串联接到交流电源U 2上。当电源电压正半周开始时出发VT1,负半周开始时触发VT2,形同一个无触点开关,允许频繁操作,因为无电弧,寿命特长。在交流电源的正半周αω=t 时,触发导通VT1,导通角为1θ= απ-;在负半周αω=t +π时,触发导通VT2,导通角为2θ= απ-。负载端电压U 为下图所示斜线波形。这时负载电压U 为正弦波的一部分,宽度为(απ-),若正负半周以同样的移相角α触发VT1和VT2,则负载电压U 的宽度会发生变化,那么负载电压有效值也将随α角而改变,从而实现交流调压。 图1 -1单相交流调压电路的电路(电阻负载)原理图 2 建立仿真模型 根据原理图用MATLAB 软件画出正确的仿真电路图,如图1-2。

图1-2 单相交流调压电路电路(电阻负载)的MATLAB仿真模型 仿真参数,算法(solver)ode15s,相对误差(relativetolerance)1e-3,开始时间0.0结束时间2.0如图1-3。 图1-3 仿真时间参数 电源参数,如图1-4。

图1-4 交流电源参数触发脉冲参数设置,如图1-5、1-6。 图1-5 触发脉冲参数

单相交流调压电路课程设计完整版

单相交流调压电路课程 设计 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

《电力电子技术》课程设计设计题目: 单相交流调压电路 院(系): 能源工程学院 专业年级: 13级电气二班 姓名: 徐刚刚 学号: 指导教师: 荆红莉 2015年12月 28日

课程设计(论文)任务及评语 院(系):能源工程学院教研室:电气工程及其自动化 : 成 绩 : 平 时 20% 论 文 质 量 60% 答 辩 20% 以 百 分 制 计 算 前 言 电 力 电 子 技 术 是研究采用电力电子器件实现对电能的交换和控制的科学,是20世纪50年代诞生, 70年代迅速发展起来的一门多学科互相渗透的综合性技术学科。这些技术包括以节约 能源、提高照明质量为目的的绿色照明技术;以节约能源、提高运行可靠性并更好地 满足产要求为目的的交流变频调速技术,以提高电力系统运行的稳定性、可控制性为

目的,并可有效节能的灵括(柔性)交流输电技术等等。随着电力半导体制造技求、徽电子技术、汁算机技术,以及控制理论的不断进步。电力电子技求向着大功率、高频化及智能化方向发展,应用的领域将更加广阔。 交流调压电路广泛应用于灯光控制,如调光台灯和舞台灯光控制及其异步电动机的软启动,也应用于异步电机调速。在电力系统中,这种电路也用于对无功功率的调节。 目录

1 单相交流调压电路的设计 设计目的和要求分析 =210伏。要求分设计一个单相交流调压电路,要求触发角为60度。输入交流U 2 析: 1. 单相交流调压主电路设计,原理说明; 2.触发电路设计,每个开关器件触发次序与相位分析; 3.保护电路设计,过电流保护,过电压保护原理分析; 4.参数设定与计算(包括触发角的选择,输出平均电压,输出平均电流,输出有功功率计算,输出波形分析,器件额定参数确定等可自己添加分析的参数); 5. 相关仿真结果。 由以上要求可知该系统设计可分为四个部分:交流调压主电路设计、触发电路设计、保护电路设计及相关计算和波形分析部分。 2 设计方案选择 本系统主要设计思想是:采用两个晶闸管反向并联加负载为主电路,外加触发电路;触发电路控制晶闸管的导通,从而控制输出。其系统框图如下所示: 3 控制电路。在每半个周波内通过对晶间管开通相位的控制,以方便地调节输出电压的有效值,这种电路称为交流调压电路。这种电路还用干对无功功率的连续调节。此外,在高电压小电流或低电压大电流直流电源中,也常采用交流调压电路调节变压器一次电压。采用晶闸管相控整流电路,高电压小电流可控直流电源就需要很多晶闸管串联;同样,低电压大电流直流电源需要很多晶闸管并联,这都是十分不经济的。采用交流调压电路在变压器一次侧调压,其电压电流值都不太大也不太小,在变压器二次侧只要用二极管整流就可以了。但这种交流调压电路控制方便,体积小、投资省计制造简单。因此广泛应用于需调温的工频加热、灯光调节及风机、泵类负载的异步电

无中线星形联结三相交流调压电路

实验报告 实验项目:无中线星形联结三相交流调压电路专业班级: 姓名:学号: 实验室号:402实验组号: 实验时间:2014.12.27 批阅时间: 指导教师:成绩:

1.熟悉 Matlab 仿真软件和 Simulink 模块库。 2.掌握无中线星形联结三相交流调压电路的工作原理、工作情况和工作波形。 二.实验器材: 计算机、matlab 软件。 三.实验原理: 三相交流调压电路有星形联结和三角形联结等多种方案。其中星形联结又有无中线和有中线两种电路,三角形联结有线路控制、支路控制和中点控制的不同电路。无中线星形联结三相交流调压电路的原理图如图所示。 无中线星形联结三相交流调压电路 uc ub ua Uct ut p1p2 pulse56 Uct ut p1p2 pulse34 Uct ut p1p2 pulse12 Continuous pow ergui g1g2m AI A2VT1,3 g1g2m AI A2 VT1,2 g1g2m AI A2VT1,1 v +-v +-v + -U 输出 U 输入 Rc Rb Ra 6 Multimeter (10*u[1]/180) Fcn 30@

无中线星形联结三相交流调压电路的仿真模型如图所示,该模型实际上由三个单相交流调压电路组成,图中VT12、VT34和VT56分别为双向晶闸管开关模块,pulse12、pulse34和pulse56是相应晶闸管的触发模块。为了观察方便,在触发模块的移相控制输入端接入了一个控制角与移相控制电压 Uct 的变化函数Uct = 10u1/180 式中,u1为控制角(度),由常数模块@设定。 五.实验数据: 1.电阻负载α = 30°无中线星形联结三相交流调压电路的输出电压和波形 2.电阻负载α = 60°无中线星形联结三相交流调压电路的输出电压和波形

单相交流调压电路课程设计

新疆工业高等专科学校电气系课程设计说明书 题目:单项交流调压电路(反并联)设计(纯电阻负载) 专业班级: 学生姓名: 指导教师: 完成日期:2012-6-8

新疆工业高等专科学校 电气系课程设计任务书 2012学年2学期2012年6月6日专业供用电技术班级课程名称电力电子应用技术 设计题目单项交流调压电路(反并联)设计(纯电阻 负载) 指导教师 起止时间2012-6-4至2012-6-8周数一周设计地点新疆工程学校设计目的: 设计任务或主要技术指标: 设计进度与要求: 主要参考书及参考资料: 教研室主任(签名)系(部)主任(签名)年月日

新疆工业高等专科学校电气系 课程设计评定意见 设计题目:单相交流调压(反并联)设计(纯电阻负载) 学生姓名:专业班级供电 评定意见: 评定成绩: 指导教师(签名):年月日 评定意见参考提纲: 1.学生完成的工作量与内容是否符合任务书的要求。 2.学生的勤勉态度。 3.设计或说明书的优缺点,包括:学生对理论知识的掌握程度、实践工作能力、表现出的创造性和综合应用能力等。

前言 电力电子线路的基本形式之一,即交流—交流变换电路,它是将一种形式的交流电能变换成另一种形式交流电能电路。在进行交流—交流变换时,可以改变交流电的电压、电流、频率或相位等。用晶闸管组成的交流电压控制电路,可以方便的调节输出电压有效值。可用于电炉温控、灯光调节、异步电动机的启动和调速等,也可用作调节整流变压器一次侧电压,其二次侧为低压大电流或高压小电流负载常用这种方法。采用这种方法,可使变压器二次侧的整流装置避免采用晶闸管,只需要二极管,而且可控级仅在一侧,从而简化结构,降低成本。交流调压器与常规的交流调压变压器相比,它的体积和重量都要小得多。交流调压器的输出仍是交流电压,它不是正弦波,其谐波分量较大,功率因数也较低。

单相交流调功电路正文

1概述 1.1晶闸管交流调功器 交流调功器:是一种以晶闸管为基础,以智能数字控制电路为核心的电源功率控制电器,简称晶闸管调功器,又称可控硅调功器,可控硅调整器,可控硅调压器,晶闸管调整器,晶闸管调压器,电力调整器,电力调压器,功率控制器。具有效率高、无机械噪声和磨损、响应速度快、体积小、重量轻等诸多优点。 1.2 交流调压与调功 交流调功电路的主电路和交流调压电路的形式基本相同,只是控制的方式不同,它不是采用移相控制而采用通断控制方式。交流调压是在交流电源的半个周期内作移相控制,交流调功是以交流电的周期为单位控制晶闸管的通断,即负载与交流电源接通几个周波,再断开几个周波,通过改变接通周波数和断开周波数的比值来调节负载所消耗的平均功率。如图3-21所示,这种电路常用于电炉的温度控制,因为像电炉这样的控制对象,其时间常数往往很大,没有必要对交流电源的各个周期进行频繁的控制。只要大致以周波数为单位控制负载所消耗的平均功率,故称之为交流调功电路。 1.3 过零触发和移相触发 过零触发是在设定时间间隔内,改变晶闸管导通的周波数来实现电压或功率的控制。过零触发的主要缺点是当通断比太小时会出现低频干扰,当电网容量不够大时会出现照明闪烁、电表指针抖动等现象,通常只适用于热惯性较大的电热负载。 移相触发是早期触发可控硅的触发器。它是通过调速电阻值来改变电容的充放电时间再来改变单结晶管的振荡频率,实际改变控制可控硅的触发角。早期可控可是依靠这样改变阻容移相线路来控制。所为移相就是改变可控硅的触发角大小,也叫改变可控硅的初相角。故称移相触发线路。

2系统总体方案 2.1交流调功电路工作原理 单相交流调功电路方框图如图2.1.1所示。 图2.1.1 交流调功电路的主电路和交流调压电路的形式基本相同,只是控制的方式不同,它不是采用移相控制而采用通断控制方式。交流调压是在交流电源的半个周期内作移相控制,交流调功是以交流电的周期为单位控制晶闸管的通断,即负载与交流电源接通几个周波,再断开几个周波,通过改变接通周波数和断开周波数的比值来调节负载所消耗的平均功率。如图2.1.2所示,这种电路常用于电炉的温度控制,因为像电炉这样的控制对象,其时间常数往往很大,没有必要对交流电源的各个周期进行频繁的控制。只要大致以周波数为单位控制负载所消耗的平均功率,故称之为交流调功电路。 图2.1.2 LO AD BCR TLC336A1 A2 g u 脉宽可调矩形波信号发生器

双闭环三相异步电机调压调速系统实验报告

“运动控制系统”专题实验 实验报告 电子与信息工程学院自动化科学与技术系

(5)可调电阻(NMCL—03) (6)电机导轨及测速发电机(或光电编码器) (7)三相线绕式异步电动机 (8)双踪示波器 (9)万用表 (10)直流发电机M03 四.实验原理 1.系统组成及原理 双闭环三相异步电动机调压调速系统的主电路为三相晶闸管交流电源及三相绕线式异步电动机(转子回路串电阻)。控制系统由电流调节器(ACR),速度调节器(ASR),电流变换器(FBC),速度变换器(FBS),触发器(GT),一组桥脉冲放大器等组成。其系统原理图如图6-1所示。 图6-1 整个调速系统采用了速度,电流两个反馈控制环。这里的速度环作用基本上与直流调速系统相同而电流环的作用则有所不同。在稳定运行情况下,电流环对电网振动仍有较大的抗扰作用,但在起动过程中电流环仅起限制最大电流的作用,不会出现最佳起动的恒流特性,也不可能是恒转矩起动。 异步电机调压调速系统结构简单,采用双闭环系统时静差率较小,且比较容易实现正,反转,反接和能耗制动。但在恒转矩负载下不能长时间低速运行,因低速运行时转差功率 电子与信息工程学院自动化科学与技术系

电子与信息工程学院自动化科学与技术系

电子与信息工程学院自动化科学与技术系

(2)空载电压为200V时 n/(r/min) 1281 1223 1184 1107 1045 I G/A 0.10 0.11 0.12 0.13 0.13 U G/V 182 179 176 166 157 M/(N·m) 0.2265 0.2458 0.2636 0.2814 0.2831 2.闭环系统静特性 n/(r/min) 1420 1415 1418 1415 1416 1412 电子与信息工程学院自动化科学与技术系

实验3三相交流调压电路实验

实验3 三相交流调压电路实验 一、实验目的 (1) 了解三相交流调压触发电路的工作原理。 (2) 加深理解三相交流调压电路的工作原理。 (3) 了解三相交流调压电路带不同负载时的工作特性。 二、实验所需挂件及附件 三、实验线路及原理 交流调压器应采用宽脉冲或双窄脉冲进行触发。实验装置中使用双窄脉冲。实验线路如图3-1所示。

图中晶闸管均在DJK02上,用其正桥,将D42三相可调电阻接成三相负载,其所用的交流表均在DJK01控制屏的面板上。 四、实验内容 (1)三相交流调压器触发电路的调试。 (2)三相交流调压电路带电阻性负载。 (3)三相交流调压电路带电阻电感性负载(选做)。 图3-1三相交流调压实验线路图 五、预习要求 (1)阅读电力电子技术教材中有关交流调压的内容,掌握三相交流调压的工作原理。 (2)如何使三相可控整流的触发电路用于三相交流调压电路。 六、实验方法 (1)DJK02和DJK02-1上的“触发电路”调试

①打开DJK01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。 ②将DJK01“电源控制屏”上“调速电源选择开关”拨至“直流调速”侧。 ③用10芯的扁平电缆,将DJK02的“三相同步信号输出”端和DJK02-1“三相同步信号输入”端相连,打开DJK02-1电源开关,拨动“触发脉冲指示”钮子开关,使“窄”的发光管亮。 ④观察A、B、C三相的锯齿波,并调节A、B、C三相锯齿波斜率调节电位器(在各观测孔左侧),使三相锯齿波斜率尽可能一致。 ⑤将DJK06上的“给定”输出U g直接与DJK02-1上的移相控制电压U ct 相接,将给定开关S2拨到接地位置(即U ct=0),调节DJK02-1上的偏移电压电位器,用双踪示波器观察A相同步电压信号和“双脉冲观察孔”VT1的输出波形,使α=180°。 ⑥适当增加给定U g的正电压输出,观测DJK02-1上“脉冲观察孔”的波形,此时应观测到单窄脉冲和双窄脉冲。 ⑦将DJK02-1面板上的U 端接地,用20芯的扁平电缆,将DJK02-1的 lf “正桥触发脉冲输出”端和DJK02“正桥触发脉冲输入”端相连,并将DJK02“正桥触发脉冲”的六个开关拨至“通”,观察正桥VT1~VT6晶闸管门极和阴极之间的触发脉冲是否正常。 (2)三相交流调压器带电阻性负载 使用正桥晶闸管VT1~VT6,按图3-21连成三相交流调压主电路,其触发脉冲己通过内部连线接好,只要将正桥脉冲的6个开关拨至“接通”,“U lf”端接地即可。接上三相平衡电阻负载,接通电源,用示波器观察并记录α=30°、60°、90°、120°、150°时的输出电压波形,并记录相应的输出电压有效值,填入下表:

完整word版单相交流调压电路Matlab仿真

单相交流调压电路的设计与仿真 一.实验目的 1)单相交流调压电路的结构、工作原理、波形分析。 2) 在仿真软件Matlab中进行单相交流调压电路的建模与仿真,并分析其波形。二.实验内容 (一)单相交流调压电路电路(纯电阻负载) 1电路的结构与工作原理 1.1电路结构 )(截图单相交流调压电路的电路原理图(电阻性负载)1.2 工作原理 电阻负载单相交流调压电路中,VT1和VT2可以用一个双向晶闸管代替,在交流电源的正半周和负半周,分别对晶闸管的开通叫进行控制就可以调节输出电压。正负半周触发角时刻起均为过零时刻。在稳态情况下。应使正负半周的触发角相同。可以看出。负载电压波形是电源电压波形的一部分,负载电流和负载电压的波形相同。 2建模 在MATLAB新建一个Model,同时模型建立如下图所示: - 1 -

MATLAB仿真模型单相交流调压电路的模型参数设置2.1A.Pulse Generator B.Pulse Generator 1

- 2 - C.示波器参数 第一个波形为晶闸管电流的波形,第二个波形为晶闸管电压的波形,第三个波形为负载电流的波形,第四个波形为负载电压的波形,第五个波形为电源电压的波形,第六个波形为触发脉冲的波形。 3仿真结果与分析 °,MATLAB仿真波形如下: a. 触发角α=0

α=0°单相交流调压电路仿真结果(截图) °,MATLAB仿真波形如下: b. 触发角α=60 )截图°单相交流调压电路仿真结果α =60(- 3 -

°,MATLAB仿真波形如下: c. 触发角α=120 )截图°单相交流调压电路仿真结果(α=1204小结 通过设计可以总结出,ɑ的移相范围为0≤ɑ≤π。ɑ=0时,相当于晶闸管一直导通,输出电压为最大值,U。=U1。随着ɑ的增大,U。逐渐减小。知道ɑ=π时,U。=0。此外,ɑ=0时,功率因数=1,随着ɑ的增大,输入电流滞后于电压且发生畸变,也逐渐降低。 (二)单相交流调压电路(阻感负载) 1电路的结构与工作原理 1.1电路结构 )截图( 单相交流调压电路的电路原理图(阻感性负载) - 4 - 1.2 工作原理

7单相交流调压电路实验报告

实验报告 课程名称:现代电力电子技术 实验项目:单相交流调压电路实验 实验时间: 实验班级: 总份数: 指导教师:朱鹰屏 自动化学院电力电子实验室 二〇〇年月日

广东技术师范学院实验报告 学院:自动化学院专业:电气工程及其自 动化 班级:成绩: 姓名:学号:组别:组员: 实验地点:电力电子实验室实验日期:指导教师签名: 实验(七)项目名称:单相交流调压电路实验 1.实验目的和要求 (1)加深理解单相交流调压电路的工作原理。 (2)加深理解单相交流调压电路带电感性负载对脉冲及移相范围的要求。 (3)了解KC05晶闸管移相触发器的原理和应用。 2.实验原理 三、实验线路及原理 本实验采用KCO5晶闸管集成移相触发器。该触发器适用于双向晶闸管或两个反向并联晶闸管电路的交流相位控制,具有锯齿波线性好、移相范围宽、控制方式简单、易于集中控制、有失交保护、输出电流大等优点。 单相晶闸管交流调压器的主电路由两个反向并联的晶闸管组成,如图3-15所示。 图中电阻R用D42三相可调电阻,将两个900Ω接成并联接法,晶闸管则利用DJK02上的反桥元件,交流电压、电流表由DJK01控制屏上得到,电抗器L d从DJK02上得到,用700mH。 图 3-15 单相交流调压主电路原理图

3.主要仪器设备 1.电路调试

主电路放大电路: (1)KC05集成移相触发电路的调试。 (2)单相交流调压电路带电阻性负载。 (3)单相交流调压电路带电阻电感性负载。 (l)KCO5集成晶闸管移相触发电路调试 将DJK01电源控制屏的电源选择开关打到“直流调速”侧使输出线电压为200V,用两根 导线将200V交流电压接到DJK03的“外接220V”端,按下“启动”按钮,打开DJK03电源开关,

晶闸管单相交流调压及调功电路课程设计

目录 绪论 (1) 1 调压调功原理简介 (2) 2 交流调压电路波形及相控特性分析 (3) 2.1 带电阻性负载 (3) 2.1.1 原理 (3) 2.1.2 计算与分析 (3) 2.2 带阻感性负载 (4) 2.2.1 原理分析 (4) 2.2.2 计算与分析 (4) 2.2.3 α<φ的情况 (6) 3 方案设计 (7) 3.1 主电路的设计 (7) 3.1.1 主电路图 (7) 3.1.2 参数计算 (7) 3.1.3 调功电路的设计 (8) 3.2 触发电路的设计 (9) 3.2.1 芯片介绍 (9) 3.2.2 触发电路图 (10) 3.3 保护电路的设计 (11) 3.3.1 原理 (11) 3.3.2 计算 (12) 3.3.3 保护电路图 (13) 4 电阻炉负载过零控制特性分析 (14) 5 MATLAB仿真 (15) 6个人小结 (17) 参考文献 (18)

绪论 交流-交流变流电路,即把一种形式的交流变成另一种形式交流的电路。在进行交流-交流变流时,可以改变相关的电压(电流)、频率和相数等。交流-交流变流电路可以分为直接方式(无中间直流环节方式)和间接方式(有中间直流环节方式)两种。而间接方式可以看做交流-直流变换电路和直流-交流变换电路的组合,故交-交变流主要指直接方式。其中,只改变电压、电流或对电路的通断进行控制,而不改变频率的电路称为交流电力控制电路,改变频率的电路称为变频电路。采用相位控制的交流电力控制电路,即交流调压电路;采用通断控制的交流电力控制电路,即交流调功电路和交流无触点开关。 交流调压电路广泛用于灯光控制(如调光台灯和舞台灯光控制)及异步电动机的软启动也用于异步电动机调速。在电力系统中,这种电路还常用于对无功功率的连续调节。此外,在高电压小电流或低电压大电流直流电源中,也常采用交流调压电路调节变压器一次电压。在这些电源中如果采用晶闸管相控整流电路,高电压小电流可控直流电源就需要很多晶闸管串联,低电压大电流直流电源需要很多晶闸管并联,十分不合理。采用交流调压电路在变压器一次侧调压,其电压、电流值都比较适中,在变压器二次侧只要用二极管整流就可以了。这样的电路体积小、成本低、易于设计制造。其分为单相和三相交流调压电路,前者是后者基础,这里只讨论单相问题。 交流调功电路常用于电炉的温度控制,其直接调节对象是电路的平均输出功率。像电炉温度这样的控制对象,其时间常数往往很大,没有必要对交流电源的每个周期进行频繁的控制,只要以周波数为单位进行控制就足够了。通常控制晶闸管导通的时刻都是在电源电压过零的时刻,这样,在交流电源接通期间,负载电压电源都是正弦波,不对电网电压电流造成通常意义的谐波污染。

电工电子学实验报告_实验三_三相交流电路

一、实验目的 1.学习三相交流电路中三相负载的连接。 2.了解三相四线制中线的作用。 3.掌握三相电路功率的测量方法。 二、主要仪器设备 1.实验电路板 2.三相交流电源 3.交流电压表或万用表 4.交流电流表 5.功率表 6.单掷刀开关 7.电流插头、插座 三、实验内容 1.三相负载星形联结 按图3-2接线,图中每相负载采用三只白炽灯,电源线电压为220V。 图3-2 三相负载星形联结 (1))。 表3-1 (2)按表3-2内容完成各项测量,并观察实验中各白炽灯的亮度。表中对称负载时为每相开亮三只

表3-2 2.三相负载三角形联结 按图3-3连线。测量功率时可用一只功率表借助电流插头和插座实现一表两用,具体接法见图3-4所示。接好实验电路后,按表3-3内容完成各项测量,并观察实验中白炽灯的亮度。表中对称负载和不对称负载的开灯要求与表3-2中相同。 图3-3 三相负载三角形联结 图3-4 两瓦特表法测功率 表3-3

四、实验总结 1.根据实验数据,总结对称负载星形联结时相电压和线电压之间的数值关系,以及三角形联结时相电流和线电流之间的数值关系。 (1).星形连结: 根据表3-1,可得:星形联结情况下,不接负载时,各路之间的线电压和各分电源的相电压都分别相同,即U UV = U VW =U WU =(218+219+220)/3=219V ;U UN =U VN =U WN =127V(本次实验中这三个电压为手动调节所得)。可以计算:219/127=1.7244≈3,即:线电压为相电压的3倍,与理论相符。 根据表3-2,可得:星形联结情况下,接对称负载时,线电压不变,仍为表3-1中的数据;而相电压在有中线都为124V ,在无中线时分别为125V 、125V 、123V ,因此可认为它们是相同的。由此,得到的结论与上文相同,即:有中线时,219/124=1.7661≈3,线电压为相电压的3倍;无中线时,(125+125+123)/3=124.3,219/124.3=1.7619≈3,线电压为相电压的3倍。 综上所述,在对称负载星形联结时,不论是否接上负载(这里指全部接上或全部不接)、是否有中线,线电压都为相电压的3倍。 (2).三角形联结 2.根据表3-2的数据,按比例画出不对称负载星形联结三相四线制(有中线)的电流向量图,并说明中线的作用。 3.根据表3-3的电压、电流数据计算对称、不对称负载三角形联结时的三相总功率,并与两瓦特表法的测量数据进行比较。 根据本实验电路,可知负载电路均为电阻性,不对电流相位产生影响,因此功率因素为1,由此,可得:P= I UV ×U UV +I VW ×U VW +I WU ×U WU 因而据表3-3得: 不对称负载星形联结三相四线制(有中线)电流向量 图如左图所示,根据I U +I V +I W =I N ,且根据对称关系三个 相电流之间的夹角各为120o,因而根据几何关系画出I N 。 可见,I N 在数值的大小上和三个相电流并不成线性关系, 而在角度(相位)上也没有直观的规律。这是因为I N 是由三 个互成120o的相电流合成的电流,是矢量的,与直流电 路的电流有很多不同性质,因而要讲大小与方向结合计算 才有意义。 中线的作用:由左图可知,在不对称负载星形联结(有 中线)电路中,中线电流不为0,因而如若去掉中线必会 改变电路中电流的流向,导致各相负载电压不同(即表3-2 中不对称且无中线的情况),这时部分负载可能会由于电 流过大而烧毁。因此中线起到了电路中作为各相电流的回 路的作用,能够保证各相负载两端的电压相同(据表3-2 也可看出),就能够保证负载正常运行,不致损坏。因此 中线在星形联结中是至关重要的,因而在通常的生产生活 中的星形联结三相电路都是有中线的。

单相交流调压电路

电力电子课程设计 ——单相交流调压电路 学院:工程学院 班级:12电气2班 姓名:

2015年6月 摘要 本次课程设计,先明确了实验的要求和设计目的设计一个单相交流调压电路。然后根据要求进行电路设计,包括主电路、触发电路。排版等等。设计并发现、解决相应的问题。之后对电路进行了实验仿真,通过仿真实验,再发现其中的问题和不足,进行更改和完善。然后确定实验所需的元器件。确定之后,进行器件的购买,之后进行电路板实物的焊接。焊接后要进行调试。发现和排除错误,调试时,发现了问题,然后经过实验仪器的排错,线路元器件的排错,发现了两处问题,更改之后就正常了。接着是对波形的观察和数据的记录。完成这些后,对数据进行处理,整理结论。最后是我们的心得体会和收获。以及完成报告总结。 关键词主电路触发电路波形负载电压调压

目录 一、设计任务及目的 (4) (一)设计要求任务 (4) (二)设计目的 (4) 二、实验器件、设备及所用软件 (4) (一)实验材料的选择 (5) (二)实验所需设备 (5) (三)所用软件 (5) 三、电路设计方案的设计和选择 (5) (一)方案的确立 (5) (二)实验电路的设计 (6) 1、触发电路的设计 (6) 1.1触发信号的种类 (6) 1.2触发电路的设计 (6) 2、主电路的设计 (9) 四、完整电路图及实物图 (11) 五、实验波形及数据 (12) (一)α=30°时 (12) (二)α=60°时 (13) (三)α=90°时 (15) (四)α=120时 (17) 六、实验数据处理 (19)

七、结论总结 (20) 八、心得体会 (21) 参考文献 (22) 单相交流调压电路 前言 电力电子线路的基本形式之一,即交流—交流变换电路,它是将一种形式的交流电能变换成另一种形式交流电能电路。在进行交流—交流变换时,可以改变交流电的电压、电流、频率或相位等。用晶闸管组成的交流电压控制电路,可以方便的调节输出电压有效值。可用于电炉温控、灯光调节、异步电动机的启动和调速等,也可用作调节整流变压器一次侧电压,其二次侧为低压大电流或高压小电流负载常用这种方法。采用这种方法,可使变压器二次侧的整流装置避免采用晶闸管,只需要二极管,而且可控级仅在一侧,从而简化结构,降低成本。交流调压器与常规的交流调压变压器相比,它的体积和重量都要小得多。交流调压器的输出仍是交流电压,它不是正弦波,其谐波分量较大,功率因数也较低。 一、设计任务及目的 (一)设计要求任务 1.设计一个单相交流调压电路。输入电压为36V交流,输出交流电压可变,带 纯电阻性负载。 2.提出电路设计方案,比较不同的方案并选定方案。 3.完成电路的设计和主要元器件的选择及说明。 4.进行实验仿真及电路板的焊接和测试性能。 5.分析实验数据,得出结论。 (二)设计目的 使学生熟悉各种电力电子器件的特性和使用方法;掌握各种电力电子变流电路的结构、工作原理、控制方法、设计计算方法及实验技能;熟悉各种电力电子变流装置的

实验三 单相交流调压电路实验

北京信息科技大学 电力电子技术实验报告 实验项目:单相交流调压电路实验 学院:自动化 专业:自动化(信息与控制系统) 姓名/学号:贾鑫玉/2012010541 班级:自控1205班 指导老师:白雪峰 学期:2014-2015学年第一学期

实验三单相交流调压电路实验 一.实验目的 1.加深理解单相交流调压电路的工作原理。 2.加深理解交流调压感性负载时对移相范围要求。 二.实验内容 1.单相交流调压器带电阻性负载。 2.单相交流调压器带电阻—电感性负载。 三.实验线路及原理 本实验采用了锯齿波移相触发器。该触发器适用于双向晶闸管或两只反并联晶闸管电路的交流相位控制,具有控制方式简单的优点。 晶闸管交流调压器的主电路由两只反向晶闸管组成。 四.实验设备及仪器 1.教学实验台主控制屏 2.NMCL—33组件 3.NMEL—03组件 4.NMCL-05(A)组件或NMCL—36组件 5.二踪示波器 6.万用表 五.注意事项 在电阻电感负载时,当α

三相交流电路-电工电子学实验报告

实验报告 课程名称:电工电子学指导老师:张伯尧成绩:___ _实验名称:三相交流电路 一、实验目的和要求二、实验设备 三、实验内容四、实验结果 五、心得 一、实验目的 一、实验目的 1.学习三相交流电路中三相负载的连接。 2.了解三相四线制中线的作用。 3. 掌握三相电路功率的测量方法。 二、主要仪器设备 1. 实验电路板 2. 三相交流电源(220V) 3. 交流电压表或万用表 4. 交流电流表 5. 功率表 6. 单掷刀开关 7. 电流插头、插座 三、实验内容 1. 三相负载星形联结 按图1接线,图中每相负载采用三只白炽灯,电源线电压为220V。 图1

1) 测量三相四线制电源各电压(注意线电压和相电压的关系)。 U UV/V U VN/V U WU/V U UN/V U VN/V U WN/V 217.0218.0217.0127.0127.0127.3 2)按表2内容完成各项测量,并观察实验中各电灯的亮度。表中对称负载时为每相开亮三 只灯;不对称负载时为U相开亮1只灯,V相开亮2只灯,W相开亮3只灯。 测量值 负载情况相电压相电流中线电 流 中点电 压 U UN’/V U VN’/ V U WN’/ V I U/A I V/A I W/A I N/A U N’N/V 对称负载有中线1241241240.2630.2630.26500无中线126.1126.8126.50.2630.2630.2660 1.1 不对称负载有中线1241251240.0920.1760.2660.1560无中线168144770.1050.1880.216051.9 2. 三相负载三角形联结 按图2接线。测量功率时可用一只功率表借助电流插头和插座实现一表两用,具体接法见图3所示。接好实验电路后,按表3内容完成各项测量,并观察实验中电灯的亮度。 表3中对称负载和不对称负载的开灯要求与表2中相同。 三相负载三角形联结记录数据

相关主题
文本预览
相关文档 最新文档