当前位置:文档之家› 力学第二章质点运动学思考题答案

力学第二章质点运动学思考题答案

力学第二章质点运动学思考题答案
力学第二章质点运动学思考题答案

第二章 质点运动学

思考题

2.1质点位置矢量方向不变,质点是否作直线运动?质点沿直线运动,其位置矢量是否一定方向不变?

答:质点位置矢量方向不变,质点沿直线运动。质点沿直线运动,质点位置矢量方向不一定不变。如图所示。

2.2若质点的速度矢量的方向不变仅大小改变,质点作何种运动?速度矢量的大小不变而方向改变作何种运动?

答:质点的速度矢量的方向不变仅大小改变,质点作变速率直线运动;速度矢量的大小不变而方向改变作匀速率曲线运动。

2.3“瞬时速度就是很短时间内的平均速度”这一说法是否正确?如何正确表述瞬时速度的定义?我们是否能按照瞬时速度的定义通过实验测量瞬时速度? 答:“瞬时速度就是很短时间内的平均速度”这一说法不正确。因为瞬时速度与一定的时刻相对应。瞬时速度的定义是质点在t 时刻的

瞬时速度等于t 至t+△t 时间内平均速度t /r ??

,当△t →0时的极

限,即

dt r d t r lim v 0t

=

??=→?。很难直接测量,在技术上常常用很短时间内的平均速度近似地表示瞬时速度,随着技术的进步,测量可以达到很高的精确度。

2.4试就质点直线运动论证:加速度与速度同号时,质点作加速运动;加速度与速度反号时,作减速运动。是否可能存在这样的直线运动,质点速度逐渐增加但加速度却在减小?

答:

,dt dv t v lim a x

x 0

t x =??=→?加速度与速度同号时,就是说,0a ,0v 0a ,0v x x x x <<>>或以0a ,0v x x >>为例,

速度为正表示速度的方向与x 轴正向相同,加速度为正表示速度的

增量为正,

t t ?+时刻的速度大于t 时刻的速度,质点作加速运动。同理可说

,0a ,0v x x <<质点作加速运动。

质点在作直线运动中速度逐渐增加但加速度却在减小是可能存在的。例如初速度为x 0v ,加速度为

t 6a x -=,速度为

2

0t

0x 0x t

2

1t 6v dt )t 6(v v -+=-+=?,

,0v ,0a 6t x x >><时,速度逐渐增加。

2.5设质点直线运动时瞬时加速度=x a 常量,试证明在任意相等的

时间间隔内的平均加速度相等。

答:平均加速度

121

x 2x x t t v v a --=

由瞬时加速度

,

dt a dv ,dt a dv ,dt dv a 2

1

2

x 1

x t

t x v v x x x x x ??===

得,

121x 2x x t t v v a --=,=x a 常量,即121

x 2x x t t v v a --=

为常

量。

2.6在参照系一定的条件下,质点运动的初始条件的具体形式是否与计时起点和坐标系的选择有关?

答:有关。

例子,以地面为参照系,研究物体的自由下落。

2.7中学时曾学过

as

2v v ,at 21t v s ,at v v 2

02t 200t =-+=+=,这几个

匀变速直线运动的公式,你能否指出在怎样的初始条件下,可得出

这几个公式。 答:0s ,v v ,0t 0===

2.8试画出匀变速直线运动公式(2.

3.7)和(2.3.9)的t v x -图

和t a x

-图。

)9.3.2),......(x x (a 2v v )

7.3.2,......(t a 2

1t v x x 0x 2

x

02x 2

x x 00-=-++=

答:(1)t

a v dt dx

v x x 0x +==

(2)

)

x x (2v

v tg a 02

x

02

x x --=

α=

2.9对于抛体运动,就发射角为

2 ;,0 ;0π

±

=απ=απ-α>这几种情况说明它们各

代表何种运动。

解答:①下斜抛;②平抛;③竖直上下抛。

2.10抛体运动的轨迹如图所示,试在图中用矢量表示它在A 、B 、C 、D 、E 各点处的速度和加速度。 答:

2.11质点作上斜抛运动时,在何处的速率最大,在何处的速率最小?

答:

t

sin g v 2t g v v ,

gt sin v v ,cos v v 02

2

2

00y 0x α-+=-α=α=

求极值,

g sin v t 0α=

时,有极小值,即最高点处速率最小。(O 、

A 处速率最大)

2.12试画出斜抛运动的速率—时间曲线。

解答:

t sin g v 2t g v v 02

220α-+=

2.13在利用自然坐标研究曲线运动时,v v v

和、τ三个符号的含

义有什么不同?

解答:τv 为速度在切线单位矢量的投影τ

=τ?v v

,它不同于速率v ,τv 有正负,v v =τ。v 表示的是速度,沿切线方向,有大小

和方向。

2.14质点沿圆周运动,自A 点起,从静止开始作加速运动,经B 点到C 点;从C 点开始作匀速圆周运动,经D 点直到E 点;自E 点以后作减速运动,经F 点又到A 点时速度变成零。用矢量表示出质点在A 、B 、C 、D 、E 、F 各点的法向加速度和切向加速度的方向。

答:

2.15什么是伽利略变换?它所包含的时空观有何特点? 解答:①伽利略变换

;

v v ,v v ,v v v ;z z ,y y ,vt x x z z y y x x ='='-='='='-='

②时空观特点

同时性;等时性;等长性。 相对论中的洛伦兹变换:

,1x

c v t t ,z z ,y y ,1vt x x 222β--='='='β--='

,c /v =β当0→β该变换回到伽利略变换。

时空观特点

同时的相对性;运动的杆缩短;运动的时钟变慢。

(注:可编辑下载,若有不当之处,请指正,谢谢!)

大物B课后题02-第二章 质点动力学

习题 2-1 质量为0.25kg 的质点,受力为()F ti SI =的作用,式中t 为时间。0t =时,该质点以 102v jm s -=?的速度通过坐标原点,则该质点任意时刻的位置矢量是_____. 解 因为 40.25 d v F t i ti dt m ===,所以()4d v t i d t =, 于是有()0 4v t v dv ti dt =? ?, 222v t i j =+;又因为 dr v dt =,所以()222dr t i j dt =+,于是有()222dr t i j dt =+??,3 223 r t i tj C = ++,而t=0时质点通过了原点,所以0C =,故该质点在任意时刻的位置矢量为3 223 r t i tj =+。 2-2 一质量为10kg 的物体在力(12040)()f t i SI =+作用下,沿x 轴运动。0t =时,其速度 106v im s -=?,则3t s =时,其速度为( ) A. 1 10im s -? B. 1 66im s -? C. 1 72im s -? D. 1 4im s -? 解 本题正确答案为C 在x 方向,动量定理可写为()3 12040t dt mv mv +=-?,即0660mv mv -= 所以 ()10660660 67210 v v m s m -=+ =+=?。

2-3 一物体质量为10kg 。受到方向不变的力3040()F t SI =+的作用,在开始的2s 内,此力的 冲量大小等于______;若物体的初速度大小为1 10m s -? ,方向与F 同向,则在2s 末物体的 速度大小等于_______. 解 在开始的2s 内,此力的冲量大小为 ()2 3040140()I t dt N s = +=?? 由质点的动量定理得 0I mv mv =- 当物体的初速度大小为1 10m s -?,方向与F 同向时,在2s 末物体速度的大小为 101401024()10 I v v m s m -=+=+=? 2-4 一长为l 、质量均匀的链条,放在光滑的水平桌面上。若使其长度的1/2悬于桌边下,由静 止释放,任其自由滑动,则刚好链条全部离开桌面时的速度为() A. B. C. D. 解 本题正确答案为B 。 根据题意作图2.15.设链条的质量为m ,则单位长度的质量为m l ,若选取桌面为零势能点,则由机械能守恒定律得 21 2422m l l m l g l g mv l l ????????????-???=-???+ ? ? ? ????????????????? 其中v 为链条全部离开桌面时的速度。解之得 v = 2-5 一弹簧原长为0.5m ,劲度系数为k ,上端固定在天花板上,当下端悬挂一盘子时,其长度为0.6m ,然后在盘子中放一物体,弹簧长度变为0.8m,则盘中放入物体后,在弹簧伸长过程中

力学第二章质点运动学思考题答案

第二章 质点运动学 思考题 2.1质点位置矢量方向不变,质点是否作直线运动?质点沿直线运动,其位置矢量是否一定方向不变? 答:质点位置矢量方向不变,质点沿直线运动。质点沿直线运动,质点位置矢量方向不一定不变。如图所示。 2.2若质点的速度矢量的方向不变仅大小改变,质点作何种运动?速度矢量的大小不变而方向改变作何种运动? 答:质点的速度矢量的方向不变仅大小改变,质点作变速率直线运动;速度矢量的大小不变而方向改变作匀速率曲线运动。 2.3“瞬时速度就是很短时间内的平均速度”这一说法是否正确?如何正确表述瞬时速度的定义?我们是否能按照瞬时速度的定义通过实验测量瞬时速度? 答:“瞬时速度就是很短时间内的平均速度”这一说法不正确。因为瞬时速度与一定的时刻相对应。瞬时速度的定义是质点在t 时刻的 瞬时速度等于t 至t+△t 时间内平均速度t /r ?? ,当△t →0时的极 限,即 dt r d t r lim v 0t = ??=→?。很难直接测量,在技术上常常用很短时间内的平均速度近似地表示瞬时速度,随着技术的进步,测量可以达到很高的精确度。 2.4试就质点直线运动论证:加速度与速度同号时,质点作加速运动;加速度与速度反号时,作减速运动。是否可能存在这样的直线运动,质点速度逐渐增加但加速度却在减小? 答: ,dt dv t v lim a x x 0 t x =??=→?加速度与速度同号时,就是说,0a ,0v 0a ,0v x x x x <<>>或以0a ,0v x x >>为例, 速度为正表示速度的方向与x 轴正向相同,加速度为正表示速度的

增量为正, t t ?+时刻的速度大于t 时刻的速度,质点作加速运动。 同理可说明 ,0a ,0v x x <<质点作加速运动。 质点在作直线运动中速度逐渐增加但加速度却在减小是可能存在的。例如初速度为x 0v ,加速度为 t 6a x -=,速度为 2 0t 0x 0x t 2 1t 6v dt )t 6(v v -+=-+=?, ,0v ,0a 6t x x >><时,速度逐渐增加。 2.5设质点直线运动时瞬时加速度=x a 常量,试证明在任意相等的 时间间隔内的平均加速度相等。 答:平均加速度 121 x 2x x t t v v a --= 由瞬时加速度 , dt a dv ,dt a dv ,dt dv a 2 1 2 x 1 x t t x v v x x x x x ??=== 得, 121x 2x x t t v v a --=,=x a 常量,即121 x 2x x t t v v a --= 为常 量。 2.6在参照系一定的条件下,质点运动的初始条件的具体形式是否与计时起点和坐标系的选择有关? 答:有关。 例子,以地面为参照系,研究物体的自由下落。

重点高中物理运动学和力学知识点

重点高中物理运动学和力学知识点

————————————————————————————————作者:————————————————————————————————日期:

A B Ⅰ。力的种类:(13个性质力) 力的种类:(13个性质力) 有18条定律、2条定理 1重力: G = mg (g 随高度、纬度、不同星球上不同) 2弹力:F= Kx 3滑动摩擦力:F 滑= μN 4静摩擦力: O ≤ f 静≤ f m (由运动趋势和平衡方程去判断) 5浮力: F 浮= ρgV 排 6压力: F= PS = ρghs 7万有引力: F 引 =G 2 2 1r m m 8库仑力: F=K 2 2 1r q q (真空中、点电荷) 9电场力: F 电=q E =q d u 10安培力:磁场对电流的作用力 F= BIL (B ⊥I) 方向:左手定则 11洛仑兹力:磁场对运动电荷的作用力 f=BqV (B ⊥V) 方向:左手定则 12分子力:分子间的引力和斥力同时存在,都随距离的增 大而减小,随距离的减小而增大,但斥力变化得快. 。 13核力:只有相邻的核子之间才有核力,是一种短程强力。 5种基本运动模型 1静止或作匀速直线运动(平衡态问题); 2匀变速直、曲线运动(以下均为非平衡态问题); 3类平抛运动; 4匀速圆周运动; 5振动。 1万有引力定律B 2胡克定律B 3滑动摩擦定律B 4牛顿第一定律B 5牛顿第二定律B 力学 6牛顿第三定律B 7动量守恒定律B 8机械能守恒定律B 9能的转化守恒定律. 10电荷守恒定律 11真空中的库仑定律 12欧姆定律 13电阻定律B 电学 14闭合电路的欧姆定律B 15法拉第电磁感应定律 16楞次定律B 17反射定律 18折射定律B 定理: ①动量定理B ②动能定理B 做功跟动能改变的关系 受力分析入手(即力的大小、方向、力的性质与特征,力的变化及做功情况等)。 再分析运动过程(即运动状态及形式,动量变化及能量变化等)。 最后分析做功过程及能量的转化过程; 然后选择适当的力学基本规律进行定性或定量的讨论。 强调:用能量的观点、整体的方法(对象整体,过程整体)、等效的方法(如等效重力)等解决 Ⅱ运动分类:(各种运动产生的力学和运动学条件及运动规律............. )是高中物理的重点、难点 高考中常出现多种运动形式的组合 追及(直线和圆)和碰撞、平抛、竖直上抛、匀速圆周运动等 ①匀速直线运动 F 合=0 a=0 V 0≠0 ②匀变速直线运动:初速为零或初速不为零, ③匀变速直、曲线运动(决于F 合与V 0的方向关系) 但 F 合= 恒力 ④只受重力作用下的几种运动:自由落体,竖直下抛,竖直上抛,平抛,斜抛等 ⑤圆周运动:竖直平面内的圆周运动(最低点和最高点);匀速圆周运动(关键搞清楚是什么力提供作向心力) ⑥简谐运动;单摆运动; ⑦波动及共振;

第二章 质点运动学

第二章质点运动学 习题解答 2.1.1质点的运动学方程为 (1);(2) 求质点的运动轨迹并用图表示。 解: (1) 则 轨迹为 y =5 的直线 (2 ) 则轨迹为 2.1.2质点运动学方程为(1).求质点轨迹。(2)求自t= -1至t= 1质点的位移。 解: (1) z=2 则xy=1 z=2即为轨迹 z=2 平面上的双曲线

(2)t=-1时, z=2 t=1时,,, 则位移 2.1.3质点的运动学方程为。 (1)求质点的轨迹。(2)求自t=0至t=1质点的位移。 解: (1) 轨迹为 (2)时 时 则 大小 方向与x轴夹角为26o36′ 2.2.1雷达站于某瞬时测得飞机位置为,度。

0.75S 后测得, 度,、均在铅直平面内。求飞机瞬时 速率的近似值和飞行方向(α角)。 解: 瞬时速率 飞行方向:由, 2.2.2一小圆柱体沿岸抛物线轨道运动,抛物线轨道为(长度:mm)。第一次观察到圆柱体在x=249米处,经过时间2ms后圆柱体移到x=234米处。求圆柱体瞬时速度的近似值。 解:由轨迹方程, , ,, 瞬时速度的方向: 2.2.3一人在北京音乐厅内听音乐,离演奏者17米,另一人在广州听同一演秦的转播,广州离北京2320km,收听者离收音机2米,问谁先听到声音?声速为340m/s。电磁波的传播速率为30万km/s。 解:

在广州的听众先听到。 2.2.5火车进入弯道时减速,最初列车向北以90km/h.速率行驶,3min后以70km/h速率向北偏西30度方向行驶.求列车的平均加求速度。 解: 方向:(正南 偏西) 2.2.6 (1) ,R为正常数.求(1)t=0,π/2时的速度和加速度。 (2).求t=0,1时的速度和加速度.(写出正交分解式)。 解:由 (1) t = 0 时,

材料力学思考题答案课件.doc

材料力学复习思考题 1.材料力学中涉及到的内力有哪些?通常用什么方法求解内力? 轴力,剪力,弯矩,扭矩。用截面法求解内力 2.什么叫构件的强度、刚度与稳定性?保证构件正常或安全工作的基本要求是 什么?杆件的基本变形形式有哪些? 构件抵抗破坏的能力称为强度。 构件抵抗变形的能力称为刚度。 构件保持原有平衡状态的能力称为稳定性。 基本要求是:强度要求,刚度要求,稳定性要求。 基本变形形式有:拉伸或压缩,剪切,扭转,弯曲。 3.试说出材料力学的基本假设。 连续性假设:物质密实地充满物体所在空间,毫无空隙。 均匀性假设:物体内,各处的力学性质完全相同。 各向同性假设:组成物体的材料沿各方向的力学性质完全相同。 小变形假设:材料力学所研究的构件在载荷作用下的变形或位移, 其大小远小于其原始尺寸。 4.什么叫原始尺寸原理?什么叫小变形?在什么情况下可以使用原始尺寸原 理? 可按结构的变形前的几何形状与尺寸计算支反力与内力叫原始尺寸原理。 可以认为是小到不至于影响内力分布的变形叫小变形。 绝大多数工程构件的变形都极其微小,比构件本身尺寸要小得多,以至在分析构件所受外力(写出静力平衡方程)时可以使用原始尺寸原理。 5.轴向拉伸或压缩有什么受力特点和变形特点。 受力特点:外力的合力作用线与杆的轴线重合。 变形特点:沿轴向伸长或缩短 6.低碳钢在拉伸过程中表现为几个阶段?各有什么特点?画出低碳钢拉伸时 的应力-应变曲线图,各对应什么应力极限。 弹性阶段:试样的变形完全弹性的,此阶段内的直线段材料满足胡克定律E。 比例极限。 p-- e—弹性极限。 屈服阶段:当应力超过 b 点后,试样的荷载基本不 变而变形却急剧增加,这种现象称为屈服。s-- 屈 服极限。 强化阶段:过屈服阶段后,材料又恢复了抵抗变 形的能力,要使它继续变形必须增加拉力. 这种 现象称为材料的强化。b——强度极限 局部变形阶段:过e 点后,试样在某一段内的横截 面面积显箸地收缩,出现颈缩(necking) 现象, 一直到试样被拉断。对应指标为伸长率和断面收缩率。 7.什么叫塑性材料与脆性材料?衡量材料塑性的指标是什么?并会计算延伸 率和断面收缩率。

第二章 质点动力学

普通物理
黄 武 英
第二章
一.牛顿第一定律
质点动力学
三.牛顿第三定律
§2.1 牛顿定律
二.牛顿第二定律
§2.2 常见的力
一.万有引力 五.四种基本力 二.重力 三.弹力 四.摩擦力
牛顿定律应用举例
§2.3 单位制和量纲 §2.4 动量定理和动量守恒定律 §2.5 动能定理和功能原理 §2.6 能量守恒定律 §2.7 角动量定理和角动量守恒定律
物理与电子信息学院
§2.4 动量定理和动量守恒定律
一、质点的动量定理 二、动量定理的应用 三、质点系的动量定理 四、质心运动定理 五、质点系的动量守恒定律 六、变质量物体的运动方程
§2.5 动能定理和功能原理
一、动能及功的定义 三、功率 五、保守力和非保守力 六、质点的功能原理 七、质点系的动能定理和功能原理 二、动能定理
四、功的计算举例
§2.6 能量守恒定律
一、机械能守恒定律 二、守恒定律(机械能与动量) 的综合应用 三、能量转化及守恒定律 四、碰撞
§2.7角动量守恒定律
一、力矩 二、角动量 三、角动量守恒定律
四、动能定理
K rb G K 2 2 1 Wab = ∫K f ? dr = 1 2 mVb ? 2 mVa
ra
本章小结 G G dp d (mv ) G 一、牛顿第二定律 = =F dt dt
二、质点系的动量定理
五、质点系的功能原理和机械能守恒定律
Ekb + E pb ? ( Eka + E pa ) = W外 + W非保守内力
则: E kb + E pb = E ka + E pa 六、角动量定理和角动量守恒定律 K K dL 角动量定理 M= G dt 若 M =0 (条件)
功能原理
若外力和非保守内力都不作功或所作的总功为零(条件) 机械能守恒定律
G I =

t2
t1
G G G F合外 dt = ∑ mi vi (t 2 ) ? ∑ mi vi (t1 )
i i
三、质点系的动量守恒定律 若系统不受外力作用,或所受外力的矢量和为零(条件) n K K K K 则: ∑ miVi=m1V1 + m2V2 + " mnVn = 恒量
i =1
G

dL =0 dt
G L = 常矢量
角动量守恒定律

第二章 质点运动学

第二章质点运动学(习题) 2.1.1 质点的运动学方程为 求质点轨迹并用图表示。 解:① . 轨迹方程为 y=5 ② 消去时间参量 t 得: 2.1.2 质点运动学方程为,( 1 ) . 求质点的轨迹;( 2 ) . 求自 t=-1 至 t=1 质点的位移。 解;① 消去 t 得轨迹: xy=1,z=2 ② , ,

2.1.3 质点运动学方程为,( 1 ) . 求质点的轨迹;( 2 ) . 求自 t=0 至t=1 质点的位移。 解:① . 消去 t 得轨迹方程 ② 2.2.1 雷达站于某瞬时测得飞机位置为 , 0.75s 后测得 均在铅直平面内。求飞机瞬时速率的近似值和飞行方向(α角)。 解 :

代入数值得: 利用正弦定理可解出 2.2.2 一小圆柱体沿抛物线轨道运动,抛物线轨道为 (长度 mm )。第一次观察到圆柱体在 x=249mm 处,经过时间 2ms 后圆柱体移到 x=234mm 处。求圆柱体瞬时速度的近似值。 解:

2.2.3 一人在北京音乐厅内听音乐,离演奏者 17m 。另一人在广州听同一演奏的转播,广州离北京2320km ,收听者离收音机 2m ,问谁先听到声音?声速为 340m/s, 电磁波传播的速度为。 解 : 在广州的人先听到声音。 2.2.4 如果不允许你去航空公司问讯处,问你乘波音 747 飞机自北京不着陆飞行到巴黎,你能否估计大约用多少时间?如果能,试估计一下(自己找所需数据)。 解 : 2.2.5 火车进入弯道时减速,最初列车向正北以 90km/h 速率行驶, 3min 后以 70km/h 速率向北 偏西方向行驶。求列车的平均加速度。 解,

材料力学思考题答案

材料力学复习思考题 1. 材料力学中涉及到的内力有哪些?通常用什么方法求解内力? 轴力,剪力,弯矩,扭矩。用截面法求解内力 2. 什么叫构件的强度、刚度与稳定性?保证构件正常或安全工作的基本要求是什么?杆件的基本变形形式有哪些? 构件抵抗破坏的能力称为强度。 构件抵抗变形的能力称为刚度。 构件保持原有平衡状态的能力称为稳定性。 基本要求是:强度要求,刚度要求,稳定性要求。 基本变形形式有:拉伸或压缩,剪切,扭转,弯曲。 3. 试说出材料力学的基本假设。 连续性假设:物质密实地充满物体所在空间,毫无空隙。 均匀性假设:物体内,各处的力学性质完全相同。 各向同性假设:组成物体的材料沿各方向的力学性质完全相同。 小变形假设:材料力学所研究的构件在载荷作用下的变形或位移,其大小远小于其原始尺寸 。 4. 什么叫原始尺寸原理?什么叫小变形?在什么情况下可以使用原始尺寸原理? 可按结构的变形前的几何形状与尺寸计算支反力与内力叫原始尺寸原理。 可以认为是小到不至于影响内力分布的变形叫小变形。 绝大多数工程构件的变形都极其微小,比构件本身尺寸要小得多,以至在分析构件所受外力(写出静力平衡方程)时可以使用原始尺寸原理。 5. 轴向拉伸或压缩有什么受力特点和变形特点。 受力特点:外力的合力作用线与杆的轴线重合。 变形特点:沿轴向伸长或缩短 6. 低碳钢在拉伸过程中表现为几个阶段?各有什么特点?画出低碳钢拉伸时的应力-应变曲线图,各对应什么应力极限。 弹性阶段:试样的变形完全弹性的,此阶段内的直线段材料满足胡克定律εσE =。 p σ --比例极限。 e σ—弹性极限。 屈服阶段:当应力超过b 点后,试样的荷载基本不 变而变形却急剧增加,这种现象称为屈服。s σ--屈 服极限。 强化阶段:过屈服阶段后,材料又恢复了抵抗变形 的能力, 要使它继续变形必须增加拉力.这种现象 称为材料的强化。b σ——强度极限 局部变形阶段:过e 点后,试样在某一段内的横截 面面积显箸地收缩,出现 颈缩 (necking)现象, 一直到试样被拉断。对应指标为伸长率和断面收缩率。 7. 什么叫塑性材料与脆性材料?衡量材料塑性的指标是什么?并会计算延伸率和断面收缩率。

大学物理2-1第二章(质点动力学)习题答案

习 题 二 2-1 质量为m 的子弹以速率0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系; (2)子弹射入沙土的最大深度。 [解] 设任意时刻子弹的速度为v ,子弹进入沙土的最大深度为s ,由题意知,子弹所受的阻力 f = - kv (1) 由牛顿第二定律 t v m ma f d d == 即 t v m kv d d ==- 所以 t m k v v d d -= 对等式两边积分 ??-=t v v t m k v v 0 d d 0 得 t m k v v -=0ln 因此 t m k e v v -=0 (2) 由牛顿第二定律 x v mv t x x v m t v m ma f d d d d d d d d ==== 即 x v mv kv d d =- 所以 v x m k d d =- 对上式两边积分 ??=-00 0d d v s v x m k 得到 0v s m k -=- 即 k mv s 0 = 2-2 质量为m 的小球,在水中受到的浮力为F ,当它从静止开始沉降时,受到水的粘滞阻力为f =kv (k 为常数)。若从沉降开始计时,试证明小球在水中竖直沉降的速率v 与时间的关系为 ??? ? ??--= -m kt e k F mg v 1 [证明] 任意时刻t 小球的受力如图所示,取向下为y 轴的正 方向,开始沉降处为坐标原点。由牛顿第二定律得 t v m ma f F mg d d ==--

即 t v m ma kv F mg d d ==-- 整理得 m t kv F mg v d d =-- 对上式两边积分 ??=--t v m t kv F mg v 00 d d 得 m kt F mg kv F mg -=---ln 即 ??? ? ??--= -m kt e k F mg v 1 2-3 跳伞运动员与装备的质量共为m ,从伞塔上跳出后立即伞,受空气的阻力与速率的平方成正比,即2kv F =。求跳伞员的运动速率v 随时间t 变化的规律和极限速率T v 。 [解] 设运动员在任一时刻的速率为v ,极限速率为T v ,当运动员受的空气阻力等于运动员及装备的重力时,速率达到极限。 此时 2 T kv mg = 即 k mg v = T 有牛顿第二定律 t v m kv mg d d 2=- 整理得 m t kv mg v d d 2= - 对上式两边积分 mgk m t kv mg v t v 21d d 00 2?? =- 得 m t v k mg v k mg = +-ln 整理得 T 22221 111v e e k mg e e v kg m t kg m t kg m t kg m t +-=+-=

材料力学习题答案

材料力学习题答案2 7.3 在图示各单元体中,试用解析法和图解法求斜截面ab 上的应力。应力的单位为MPa 。 解 (a) 如受力图(a)所示 ()70x MPa σ=,()70y MPa σ=-,0xy τ=,30α= (1) 解析法计算(注:P217) () cos 2sin 222 70707070 cos 6003522x y x y xy MPa ασσσσσατα +-=+--+=+-= ()7070sin cos 2sin 60060.622 x y xy MPa ασστατα-+=+=-= (2) 图解法 作O στ坐标系, 取比例1cm=70MPa, 由x σ、xy τ定Dx 点, y σ、yx τ定Dy 点, 连Dx 、Dy , 交τ轴于C 点, 以C 点为圆心, CDx 为半径作应力圆如图(a1)所示。由CDx 起始, 逆时针旋转2α= 60°,得D α点。从图中可量得 D α点的坐标, 便是ασ和ατ数值。 7.4 已知应力状态如图所示,图中 应力单位皆为MPa 。试用解析法及图解 法求: (1) 主应力大小,主平面位置; (2) 在单元体上绘出主平面位置及主应力方向;

(3) 最大切应力。 解 (a) 受力如图(a)所示 ()50x MPa σ=,0y σ=,()20xy MPa τ= (1) 解析法 (数P218) 2max 2min 22x y x y xy σσσσστσ+-?? ? =±+? ?? ?? () ( )2 25750050020722MPa MPa ?+-???=±+=? ?-???? 按照主应力的记号规定 ()157MPa σ=,20σ=,()37MPa σ=- 022 20 tan 20.8500xy x y τασσ?=-=-=---,019.3α=- ()13max 577 3222MPa σστ-+=== (2) 图解法 作应力圆如图(a1)所示。应力圆 与σ轴的两个交点对应着两个主应 力1σ、3σ 的数值。由x CD 顺时针旋 转02α,可确定主平面的方位。应力 圆的半径即为最大切应力的数值。 主应力单元体如图(a2)所示。 (c) 受力如图(c)所示 0x σ=,0y σ=,()25xy MPa τ= (1) 解析法

力学第二章质点运动学思考题答案

第二章质点运动学 思考题 质点位置矢量方向不变,质点是否作直线运动质点沿直线运动,其 位置矢量是否一定方向不变答:质点位置矢量方向不变,质点沿直线运动。质点沿直线运动, 质点位置矢量方向不一定不变。如图所示。 若质点的速度矢量的方向不变仅大小改变,质点作何种运动速度矢量的大小不变而方向改变作何种运动答:质点的速度矢量的方向不变仅大小改变,质点作变速率直线运 动;速度矢量的大小不变而方向改变作匀速率曲线运动。 “瞬时速度就是很短时间内的平均速度”这一说法是否正确如何正 确表述瞬时速度的定义我们是否能按照瞬时速度的定义通过实验测 量瞬时速度 答:“瞬时速度就是很短时间内的平均速度”这一说法不正确。因为瞬时速度与一定的时刻相对应。瞬时速度的定义是质点在t时刻的瞬时速度等于t至t+ △ t时间内平均速度r / t,当△ t-0时的极限,即卩 r dr v lim t 0t dt。很难直接测量,在技术上常常用很短时间内的平均速度近似地表示瞬时速度,随着技术的进步,测量可以达到很高

的精确度。 试就质点直线运动论证:加速度与速度同号时,质点作加速运动; 加速度与速度反号时,作减速运动。是否可能存在这样的直线运动, 质点速度逐渐增加但加速度却在减小 V x 0,a x 0或 V x Oa 0,以 V x 0,a x 0 为例, 速度为正表示速度 的方向与 x 轴正向相同,加速度为正表示速度的 增量为正,t t 时刻的速度 大于t 时刻的速度,质点作加速运动, 同理可说明 V x , a x 0 ,质点作加速运动。 质点在作直线运动中速度逐渐增加但加速度却在减小是可能存在 的。例如初速度为V 0x ,加速度为 a x 6 t ,速度为 t 1 2 V x v °x (6 t)dt v 。6t 2t t 6 时, a x , V x ,速度逐渐增加。 设质点直线运动时瞬时加速度 a x 间隔内的平均加速度相等。 常量,试证明在任意相等的时间 a x lim 丄 d- 答: 七0 t dt '加速度与速度同号时,就是说

力学第二章质点运动学思考题答案

第二章 质点运动学 思考题 2、1质点位置矢量方向不变,质点就是否作直线运动?质点沿直线运动,其位置矢量就是否一定方向不变? 答:质点位置矢量方向不变,质点沿直线运动。质点沿直线运动,质点位置矢量方向不一定不变。如图所示。 2、2若质点的速度矢量的方向不变仅大小改变,质点作何种运动?速度矢量的大小不变而方向改变作何种运动? 答:质点的速度矢量的方向不变仅大小改变,质点作变速率直线运动;速度矢量的大小不变而方向改变作匀速率曲线运动。 2、3“瞬时速度就就是很短时间内的平均速度”这一说法就是否正确?如何正确表述瞬时速度的定义?我们就是否能按照瞬时速度的定义通过实验测量瞬时速度? 答:“瞬时速度就就是很短时间内的平均速度”这一说法不正确。因为瞬时速度与一定的时刻相对应。瞬时速度的定义就是质点在t 时 刻的瞬时速度等于t 至t+△t 时间内平均速度t /r ??ρ ,当△t →0时 的极限,即 dt r d t r lim v 0t ρρρ = ??=→?。很难直接测量,在技术上常常用很短时间内的平均速度近似地表示瞬时速度,随着技术的进步,测量可以达到很高的精确度。 2、4试就质点直线运动论证:加速度与速度同号时,质点作加速运动;加速度与速度反号时,作减速运动。就是否可能存在这样的直线运动,质点速度逐渐增加但加速度却在减小? 答: ,dt dv t v lim a x x 0 t x =??=→?加速度与速度同号时,就就是说,0a ,0v 0a ,0v x x x x <<>>或以0a ,0v x x >>为例, 速度为正表示速度的方向与x 轴正向相同,加速度为正表示速度的增量为正,t t ?+时刻的速度大于t 时刻的速度,质点作加速运动。同 理可说明 ,0a ,0v x x <<质点作加速运动。 质点在作直线运动中速度逐渐增加但加速度却在减小就是可能存在

材料力学习题与答案

材料力学习题一 一、计算题 1.(12分)图示水平放置圆截面直角钢杆(2 ABC π = ∠),直径mm 100d =,m l 2=, m N k 1q =,[]MPa 160=σ,试校核该杆的强度。 2.(12分)悬臂梁受力如图,试作出其剪力图与弯矩图。 3.(10分)图示三角架受力P 作用,杆的截面积为A ,弹性模量为E ,试求杆的力和A 点的铅垂位移Ay δ。 4.(15分)图示结构中CD 为刚性杆,C ,D 处为铰接,AB 与DE 梁的EI 相同,试求E 端约束反力。 5. (15分) 作用于图示矩形截面悬臂木梁上的载荷为:在水平平面P 1=800N ,在垂直平面 P 2=1650N 。木材的许用应力[σ]=10MPa 。若矩形截面h/b=2,试确定其尺寸。

三.填空题 (23分) 1.(4分)设单元体的主应力为321σσσ、、,则单元体只有体积改变而无形状改变的条件是__________;单元体只有形状改变而无体积改变的条件是__________________________。 2.(6分)杆件的基本变形一般有______、________、_________、________四种;而应变只有________、________两种。 3.(6分)影响实际构件持久极限的因素通常有_________、_________、_________,它们分别用__________、_____________、______________来加以修正。 4.(5分)平面弯曲的定义为______________________________________。 5.(2分)低碳钢圆截面试件受扭时,沿 ____________ 截面破 坏;铸铁圆截面试件受扭时,沿 ____________ 面破坏。 四、选择题(共2题,9分) 2.(5分)图示四根压杆的材料与横截面均相同,试判断哪一根最容易失稳。答案:( ) 材料力学习题二 二、选择题:(每小题3分,共24分) 1、危险截面是______所在的截面。 A.最大面积; B .最小面积; C . 最大应力; D . 最大力。 2、低碳钢整个拉伸过程中,材料只发生弹性变形的应力围是σ不超过______。 A .σb ; B .σe ; C .σp ; D .σs

第2章 质点动力学

第2章质点动力学 一、质点: 是物体的理想模型。它只有质量而没有大小。平动物体可作为质点运动来处理,或物体的形状大小对物体运动状态的影响可忽略不计是也可近似为质点。 二、力: 是物体间的相互作用。分为接触作用与场作用。在经典力学中,场作用主要为万有引力(重力),接触作用主要为弹性力与摩擦力。 1、弹性力:(为形变量) 2、摩擦力:摩擦力的方向永远与相对运动方向(或趋势)相反。 固体间的静摩擦力:(最大值) 固体间的滑动摩擦力: 3、流体阻力:或。 4、万有引力: 特例:在地球引力场中,在地球表面附近:。 式中R为地球半径,M为地球质量。 在地球上方(较大),。 在地球内部(),。 三、惯性参考系中的力学规律牛顿三定律 牛顿第一定律:时,。牛顿第一定律阐明了惯性与力的概念,定义了

惯性系。 牛顿第二定律: 普遍形式:; 经典形式:(为恒量) 牛顿第三定律:。 牛顿运动定律是物体低速运动()时所遵循的动力学基本规律,是经典力学的基础。 四、非惯性参考系中的力学规律 1、惯性力: 惯性力没有施力物体,因此它也不存在反作用力。但惯性力同样能改变物体相对于参考系 的运动状态,这体现了惯性力就是参考系的加速度效应。 2、引入惯性力后,非惯性系中力学规律: 五、求解动力学问题的主要步骤 恒力作用下的连接体约束运动:选取研究对象,分析运动趋势,画出隔离体示力图,列出 分量式的运动方程。 变力作用下的单质点运动:分析力函数,选取坐标系,列运动方程,用积分法求解。 第2章质点动力学 二、解题示例 【例2-1】如题图2-1a所示一倾角为的斜面放在水平面上,斜面上放一木块,两者间摩擦

材料力学课后习题答案

8-1 试求图示各杆的轴力,并指出轴力的最大值。 解:(a) (1) 用截面法求内力,取1-1、2-2截面; (2) 取1-1截面的左段; 110 0 x N N F F F F F =-==∑ (3) 取2-2截面的右段; (a (b) (c (d

220 0 0x N N F F F =-==∑ (4) 轴力最大值: max N F F = (b) (1) 求固定端的约束反力; 0 20 x R R F F F F F F =-+-==∑ (2) 取1-1截面的左段; 110 0 x N N F F F F F =-==∑ (3) 取2-2截面的右段; 1 1 2

220 0 x N R N R F F F F F F =--==-=-∑ (4) 轴力最大值: max N F F = (c) (1) 用截面法求内力,取1-1、2-2、3-3截面; (2) 取1-1截面的左段; 110 20 2 x N N F F F kN =+==-∑ (3) 取2-2截面的左段; 220 230 1 x N N F F F kN =-+==∑ (4) 取3-3截面的右段; 1 1

330 30 3 x N N F F F kN =-==∑ (5) 轴力最大值: max 3 N F kN = (d) (1) 用截面法求内力,取1-1、2-2截面; (2) 取1-1截面的右段; 110 210 1 x N N F F F kN =--==∑ (2) 取2-2截面的右段; 3 1 2

220 10 1 x N N F F F kN =--==-∑ (5) 轴力最大值: max 1 N F kN = 8-2 试画出8-1所示各杆的轴力图。 解:(a) (b) (c) F

大学物理习题精选-答案——第2章 质点动力学之欧阳语创编

质点 动力学习题答案 2-1一个质量为P 的质点,在光滑的固定斜面(倾角为α) 上以初速度0v 运动,0v 的方向与斜面底边的水平线AB 平行,如图所示,求这质点的运动轨道. 解: 物体置于斜面上受到重力mg ,斜面支持力N .建立坐标:取0v 方向为X 轴,平行斜面与X 轴垂直方向为Y 轴.如图2-1. 图2-1 X 方向: 0=x F t v x 0=① Y 方向: y y ma mg F ==αsin ② 0=t 时 0=y 0=y v 由①、②式消去t ,得 2-2 质量为m 的物体被竖直上抛,初速度为0v ,物体受到的空气阻力数值为f KV =,K 为常数.求物体升高到最高点 时所用时间及上升的最大高度. 解:⑴研究对象:m ⑵受力分析:m 受两个力,重力P 及空气阻力f ⑶牛顿第二定律: 合力:f P F += y 分量:dt dV m KV mg =-- 即dt m KV mg dV 1-=+ mg K e KV mg K V t m K 1)(10-+=?-①

0=V 时,物体达到了最高点,可有0t 为 )1ln(ln 000mg KV K m mg KV mg K m t +=+=② ∵dt dy V = ∴Vdt dy = 021()1K t m m mg KV e mgt K K -+--??=????③ 0t t =时,max y y =, 2-3 一条质量为m ,长为l 的匀质链条,放在一光滑的水平 桌面,链子的一端由极小的一段长度被推出桌子边 缘,在重力作用下开始下落,试求链条刚刚离开桌 面时的速度. 解:链条在运动过程中,其部分的速度、加速度均相同, 沿链条方向,受力为 m xg l ,根据牛顿定律,有 图2-4 通过变量替换有 m dv xg mv l dx = 0,0x v ==,积分00 l v m xg mvdv l =?? 由上式可得链条刚离开桌面时的速度为v gl = 2-5 升降机内有两物体,质量分别为1m 和2m ,且2m =21m .用 细绳连接,跨过滑轮,绳子不可伸长,滑轮质量及一切摩擦都忽略不计,当升降机以匀加速a = 12 g 上升时,求:(1) 1m 和2m 相对升降机的加速度.(2)在地面上观察1m 和 2m 的加速度各为多少? 解: 分别以1m ,2m 为研究对象,其受力图如图所示. (1)设2m 相对滑轮(即升降机)的加速度为a ',则2m 对地加速

第一篇力学第一章 质点运动学

第一篇力 学 第一章质点运动学 1-1-1选择题: 1、用来描写质点运动状态的物理量是: (A )位置和速度。 (B )位置、速度和加速度。 (C )位置和位移。 (D )位置、位移、速度和加速度。 2、.一质点在平面上运动,已知质点位置矢量的表达式为 j bt i at r ??22+=ρ (其中a 、b 为常量), 则该质点作: (A) 匀速直线运动。 (B) 变速直线运动。 (C) 抛物线运动。 (D) 一般曲线运动. 3、质点在XOY 平面内作曲线运动,则对与质点速率有关的下列式子中: (1) dt dr v = (2) dt r d v ρ= (3)dt r d v ρ = (4) dt ds v = (5) 2 2?? ? ??+??? ??=dt dy dt dx v 正确的是: (A )(1),(2)和(3)。 (B )(2),(3)和(4)。 (C )(3),(4)和(5)。 (D )(2),(4)和(5)。 4、一小球沿斜面向上运动,其运动方程为:2 45t t s -+=(SI )。小球运动到最高点 的时刻是: (A )t = 4 s (B )t = 2 s (C ) t = 8 s (D) t = 6 s 5、在质点的下列运动中,说法正确的是: (A )匀加速运动一定是直线运动。 (B )在直线运动中,加速度为负,质点必作减速运动。 (C )在圆周运动中,加速度方向总指向圆心。 (D )在曲线运动过程中,法向加速度必不为零(拐点除外)。 6、质点作半径为R 的变速圆周运动时加速度大小为 (v 表示任一时刻质点的速率): (A)dt dv (B) R v 2 (C) R v dt dv 2 + (D) 242 R v dt dv +?? ? ??

大学物理_第2章_质点动力学_习题答案

大学物理_第2章_质 点动力学_习题答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第二章 质点动力学 2-1一物体从一倾角为30的斜面底部以初速v 0=10m·s 1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s 1,求该物体与斜面间的摩擦系数。 解:物体与斜面间的摩擦力f =uN =umgcos30 物体向斜面上方冲去又回到斜面底部的过程由动能定理得 22011 2(1)22mv mv f s -=-? 物体向斜面上方冲到最高点的过程由动能定理得 201 0sin 302mv f s mgh f s mgs -=-?-=-?- 2 (2)(31) s g u ∴= - 把式(2)代入式(1)得, () 22 2 20 0.198 3u v v = + 2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r 。 解:小球在运动的过程中受到重力G 和轨道对它的支持力T .取如图所示的自然坐标系,由牛顿定律得 2 2 sin (1) cos (2) t n dv F mg m dt v F T mg m R αα=-==-= 由,,1ds rd rd v dt dt dt v αα= ==得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有, 习题2-2 A o B r D C T

90 2 n (sin )m cos 3cos '3cos ,e v vdv rg d v v r v mg mg r mg α αα ωαα α=-===+==-=-? ?得则小球在点C 的角速度为 =由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向 2-3如本题图,一倾角为θ的斜面置于光滑桌面上,斜面上放一质量为m 的木块,两者间摩擦系数为μ,为使木块相对斜面静止,求斜面的加速度a 应满足的条件。 解:如图所示 () 1212min max sin ,cos cos sin (1) sin cos 2(1)(2)(sin cos )(cos sin ) (sin cos )() (cos sin )1(2)(1)(sin cos )(cos sin )(sin cos a a a a N mg ma ma mg uN m a ma u g u a u g u g tg u a u utg u g u a u g u a θθθθθθ θθθθθθθθθθ θθθθθ==∴-==±==?+-=+--∴= = ++-?+=-+∴=得,得,)() (cos sin )1()()11g tg u u utg g tg u g tg u a utg utg θθθθθ θθθθ += ---+∴≤≤+- 2-4如本题图,A 、B 两物体质量均为m ,用质量不计的滑轮和细绳连接,并不计摩擦,则A 和B 的加速度大小各为多少 。 解:如图由受力分析得 习题2-3图

第二章 质点运动学

教学时数:10 教学目的与要求: (1)使学生牢固掌握即时速度和即时加速度的概念。 (2)要区分时刻与时间间隔以及位置坐标、位置矢量、位移和路等概念。 (3)要求掌握位移图线与速度图线,并能应用它们来计算位移及速度、加速度。 (4)要熟练掌握匀加速直线运动规律并能灵活运用,重点研究自由落体及竖直上抛运动。 (5)掌握好位移、速度及加速度的矢量性,能正确进行速度的合成分解。仅讲授动坐标系作平移的情况下的相对运动。 (6)要熟练掌握圆周运动及切向加速度、法向加速度的意义。 (7)通过抛体运动的学习,使学生对运动的独立性及运动的合成有明确的认识。 (8)在圆周运动基础上介绍一般曲线运动,但不作深入研究。 (9)熟练掌握在不同坐标系下,速度、加速度的表达形式。 教学重点: 参照系和坐标系;质点;时间和时刻,位置矢量,位移、速度、加速度;运动方程,运动迭加原理,切向加速度和法向加速度。角位移、角速度、角加速度;角量与线量的关系,相对运动. 教学难点: 运动方程, 相对运动 本章主要阅读文献资料: 顾建中编《力学教程》人民教育出版社 赵景员、王淑贤编《力学》人民教育出版社 漆安慎杜婵英《〈力学基础〉学习指导》高等教育出版社 质点运动学方程 一、质点的位置矢量与运动学方程 位置矢量的引入,例:研究某时刻直升飞机在空中的位置。 首先选择参考系如图:设地面上的某一点为参考点,飞机视为质点。 仅由飞机和参考点的距离并不能确定飞机的方位(飞机可以位 于以参考点为球心的球面上的任何位置),只有确定飞机的方位, 才能完全唯一的确定飞机的位置。 1.位置矢量的定义: 由参考点指向质点所在位置的矢量为质点的位置矢量,简称“位 矢”。如图中的,即是P点的位矢:通常用表示。 若建立如图所示的直角坐标系,令坐标原点和参考点重合,则有位矢的正交分量形式: (1) 上式中的称为位置坐标,即:位矢在坐标轴上的投影。 有上述定义可知:“位矢”可以描述质点的位置。同样:建立坐标系后的“位置坐标”也可以描述质点位置。 位矢的大小: 位矢的方向(用方向余弦表示):

相关主题
文本预览
相关文档 最新文档