当前位置:文档之家› 复数经典例题

复数经典例题

复数经典例题
复数经典例题

经典例题透析

类型一:复数的有关概念

Z 分别为:

(1)实数;(2)虚数;(3)纯虚数.

思路点拨:根据复数Z 为实数、虚数及纯虚数的概念,判断实部与虚部取值情况 .利用

它们的充要条件可分别求出相应的

a 值.

解析:

(1)当Z 为实数时,

I a - 5a -6=0

Ia = -1或a — 6— 有 2

= = a =6,

a 2 -1 = 0

a =二 1

???当a = 6时,Z 为实数. (2) 当Z 为虚数时,

I a - 5a - 6 = 0

Ia=-I ^且a = 6 —

有 2

=

= a _1 且 a = 6 ,

a -1=0 a - -1

?当 a ∈(-∞,- 1 )U(— 1, 1 )∪( 1, 6)∪( 6, +∞)时,Z 为虚数.

(3) 当Z 为纯虚数时,

?不存在实数a 使Z 为纯虚数.

总结升华:由于a ∈ R ,所以复数Z 的实部与虚部分为

a

7a 6

与a 2 - 5a - 6.

a 2 -1

① 求解第(1)小题时,仅注重虚部等于零是不够的,还需考虑它的实部是否有意义, 否则本小题将出现增解;

② 求解第(2)小题时,同样要注意实部有意义的问题;

③ 求解第(3)小题时,既要考虑实数为0(当然也要考虑分母不为 0),还需虚部不为0, 两者缺一不可.

例1已知复数

2

a —7a +6 丄 / 2 Z 2

(a

- 5a - 6)i (a - R), 试求实数a 分别取什么值时,

a 2 _5a _6 = 0 a 2 -7a 6 .a 2-1

-0

a =二 _1^且 a ~^ 6 a =6

举一反三:

【变式1】设复数z=a+bi (a 、b ∈ R ),贝U Z 为纯虚数的必要不充分条件是(

)

A . a=0

B . a=0 且 b ≠ 0

C . a ≠0 且 b=0

D . a ≠0 且 b ≠ 0

【答案】A ;由纯虚数概念可知:

a=0且b ≠ 0是复数z=a+bi (a 、b ∈ R )为纯虚数的充

要条件?而题中要选择的是必要不充分条件,对照各选择支的情况,应选择

A.

- - .> , 2

【变式2】若复数(a -3a ? 2) ? (a -1)i 是纯虚数,则实数 a 的值为(

)

A.1

B.2

C.1 或 2

D.-1

2 2

【答案】B ; ?/ (a 2 C 1 i

是纯虚数,??? a -3a ?2=0且a-1 = 0 ,即 a = 2.

【变式3】如果复数(m 2 ?i)(1 ?mi)是实数,则实数 m=(

)

A . 1

B . - 1

C . 、. 2

D .

. 2

【答案】B ;

【变式4】求当实数m 取何值时,复数z = (m 2 - m - 2) ? (m 2 -3m 2)i 分别是:

解析:

同理可得:

(1)实数;

(2)虚数; (3)纯虚数.

【答案】

(1) 2

m -3m 2 =0 即 m=1 或 m=2 时,

复数Z 为实数; (2) 2

m -3m 2=0 即 m 1 且 m = 2 时, 复数Z 为虚数;

(3)

2

m - m -2 = 0

2

即m =—1时,复数

m —3m 2 = 0

Z 为纯虚数.

类型

:复数的代数形式的四则运算

例2. 计算:

(1) i n (n N .);

(1 i)8

⑶(1 2i)P-2i);

(1 - 4i)(1 i) 2 4i

3 4i

⑴??? i 2 ?1 , ? i 3

=i 2 i

i 4 =i 2 i 2 =1,

当 n =4k 1(k N )时, ■ 4k 1 4k 4

、k

=I i =(I ) i = i

当 n =4k 2(k N )时,

.4k

-2 .4k

.2

,

I

I

I LJ

T,

(4)

(I i)3

-(^

i)

2

; (1 i)2 -(^i)2

【答案】

(1) (5 — 6i)+( — 2— i) — (3+4i) =[(5 — 2)+( — 6— 1)i] — (3+4i) =(3 — 7i) — (3+4i)

=(3 — 3)+( — 7— 4)i= — 11i.

(2) (1 2i)(3 -4i)(2 —i) =(11 2i)(2 _i) =24 _7i

当 n =4k 3(k N )时,i 4k J 4k ?i 3 ?i 当 n =4k 4(k? N )时,i 4k =i 4k i 4 =(i 4)k =1,

1

(n = 4k+1, k 壬 N )

(n N)

(2) (1 if =[(1 i)2]4 =(2i)4 =24i 4 =16

(3) (1 2i) “(1 —2i)=匚? =

(I 2i)(I 2i)

1-2i

(1_2i)(1+2i) ,八(1 -4i)(1 i) 2 4i 1

4-3i 2 4i (4)

3+4i

3+4i

21 4 3i -28i

25 -25i 1 -i.

25

25

总结升华:熟练运用常见结论:

1) i n 的“周期性” (n? N .)

2 2

1 (2i) 4i -3 4i 3 4. = ----------------- = --------- =——-T -

— i

12 -(2i)2 5 5 5

7 i (7 i)(3-4i) _ 3 4i _

32 42

2) (仁i)2 = 2i 3)

(a bi)(a -bi) = a 2 b 2

举一反三: 【变式1】计算:

(1) (5 — 6i)+( — 2— i) —

(3+4i)

(1 2i)(3 -4i)(2 -i) (3) 2?3…

.100

Iii

1

(n -4k 2 , k N ) (n

=4k 3, k N ) (n = 4k

4 , k N )

1 2?3 ?100 ?1 2

川-J 100

?5050 4

、1262?2

?2

\3 丿 i i i i 二 i

二 i 二(i ) i 二 i 二一1

)(1 i)3_(1_i)3

(1 i)2 .(1 i) 一(仁i)2(1_i) 2i(1 i) 2i(1-i) 2i 2

(4) 2 2

(1 i) -(^i)

2

【变式2】复数2i(1+i )=(

4i

4i

A. -4

B. 4

C. -4i

D. 4i

1

【答案】A ; 2i 1 i i ; -2i 1 2i -n-2i 2i 【变式3】复数

1

--3i

等于()

√3-i

A. i

B. -i

C.

,3 i D.

【答案】A ;

1

1

'

3i 1

√3-i -i(1 + √3i)

1

【变式4】复数(i --)3等于()

.3-i

A.8

B. — 8

【答案】D; (i _])3 =(j 二I )3 i i

类型三:复数相等的充要条件

-i

诃)3

i ,故选A

C.8i

D. — 8i

=8i 3 - -8i .

例3、已知X 是实数,y 是纯虚数,且满足(2x —1)+(3 — y)i=y — i ,求X 、

y.

思路点拨:因X ∈ R , y 是纯虚数,所以可设 y=bi (b ∈ R 且b ≠ 0),代入原式,由复数相 等的充要条件可得方程组,解之即得所求结果

解析:■/ y 是纯虚数,可设 y=bi (b ∈ R,且b ≠ 0), 则(2x —1)+(3 — y)i = (2x —1)+(3 — bi )i =( 2x — 1+b ) +3i ,

y — i =bi — i= (b — 1) i

由(2x —1)+(3 — y)i=y — i 得(2x — 1+b ) +3i= ( b — 1) i ,

由复数相等的充要条件得

2x-1 b=0 ^4 b 十3

= X 「,

I. 2

3 X , y = 4i .

2

总结升华:

1.复数定义:“形如 ^a bi ( a, b? R )的数叫复数”就意味凡是复数都能写成这

形式,求一个复数,使用一个复数都可通过这一形式将问题化虚为实,

把复数问题转化为

上海市2019届高三数学一轮复习典型题专项训练:复数与行列式

上海市2019届高三数学一轮复习典型题专项训练 复数与行列式 一、复数 1、(2018上海高考)已知复数z 满足117i z i +=-()(i 是虚数单位),则∣z ∣= 2、(2017上海高考)已知复数z 满足3 0z z +=,则||z = 3、(2016上海高考)设i i Z 23+= ,期中i 为虚数单位,则Im z =__________________ 4、(宝山区2018高三上期末)若i z i 23-+= (其中i 为虚数单位),则Imz = . 5、(崇明区2018高三上期末(一模))若复数z 满足iz=1+i (i 为虚数单位),则z= . 6、(奉贤区2018高三上期末)复数 i +12 的虚部是________. 7、(静安区2018高三二模)若复数z 满足(1)2z i i -=(i 是虚数单位),则||z = 8、(普陀区2018高三二模)已知i 为虚数单位,若复数2(i)i a +为正实数,则实数a 的值为……………………………( ) )A (2 ()B 1 ()C 0 ()D 1- 9、(青浦区2018高三二模)若复数z 满足2315i z -=+(i 是虚数单位),则=z _____________. 10、(青浦区2018高三上期末)已知复数i 2i z =+(i 为虚数单位),则z z ?= . 11、(松江、闵行区2018高三二模)设m ∈R ,若复数(1i)(1i)m ++在复平面内对应的点位于实轴 上,则m = . 12、(松江区2018高三上期末)若i -2是关于x 的方程02 =++q px x 的一个根(其中i 为虚数单位,R q p ∈,),则q 的值为 A. 5- B. 5 C. 3- D. 3 13、(杨浦区2018高三上期末)在复平面内,复数2i z i -= 对应的点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 14、(浦东新区2018高三二模)已知方程210x px -+=的两虚根为1x 、2x ,若12||1x x -=,则实数p 的值为( ) A. 3± B. 5± C. 3,5 D. 3±,5± 15、(浦东新区2018高三二模)在复数运算中下列三个式子是正确的:(1)1212||||||z z z z +≤+;(2)1212||||||z z z z ?=?;(3)123123()()z z z z z z ??=??,相应的在向量运算中,下列式子:(1)

复数经典例题百度文库

一、复数选择题 1.在复平面内,复数534i i -(i 为虚数单位)对应的点的坐标为( ) A .()3,4 B .()4,3- C .43,55??- ?? ? D .43,55?? - ??? 2.设复数1i z i =+,则z 的虚部是( ) A .12 B .12 i C .12 - D .12 i - 3. 212i i +=-( ) A .1 B .?1 C .i - D .i 4.若复数(2)z i i =+(其中i 为虚数单位),则复数z 的模为( ) A .5 B C . D .5i 5.若复数1z i i ?=-+,则复数z 的虚部为( ) A .-1 B .1 C .-i D .i 6.若复数()()24z i i =--,则z =( ) A .76i -- B .76-+i C .76i - D .76i + 7.复数z 满足12i z i ?=-,z 是z 的共轭复数,则z z ?=( ) A B C .3 D .5 8.已知i 为虚数单位,若复数()12i z a R a i +=∈+为纯虚数,则z a +=( ) A B .3 C .5 D .9.已知复数()2 11i z i -= +,则z =( ) A .1i -- B .1i -+ C .1i + D .1i - 10.设复数2i 1i z =+,则复数z 的共轭复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 11.复数z 满足22z z i +=,则z 在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 12. 122i i -=+( ) A .1 B .-1 C .i D .-i

复数讲义绝对经典

复数 一、复数的概念 1. 虚数单位 i: (1)它的平方等于1-,即21i =-; (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立. (3)i 与-1的关系: i 就是1-的一个平方根,即方程21x =-的一个根,方程21x =-的另一个 根是-i . (4)i 的周期性: 41n i i +=, 421n i +=-, 43n i i +=-, 41n i =. 2. 数系的扩充:复数(0)i i(0) i(0)i(0) a b a b b a a b b a b a =?? +=??+≠??+≠?? 实数纯虚数虚数非纯虚数 3. 复数的定义: 形如i()a b a b +∈R ,的数叫复数,a 叫复数的实部,b 叫复数的虚部.全体复数所成的集合叫做复数集,用字母C 表示 4. 复数的代数形式: 通常用字母z 表示,即()z a bi a b R =+∈,,把复数表示成a bi +的形式,叫做复数的代数形式. 5. 复数与实数、虚数、纯虚数与0的关系: 对于复数()a bi a b R +∈,,当且仅当0b =时,复数()a bi a b R +∈,是实数a ;当0b ≠时,复数z a bi =+叫做虚数;当0a =且0b ≠时,z bi =叫做纯虚数;当且仅当 0a b ==时,z 就是实数0

6. 复数集与其它数集之间的关系:N Z Q R C 7. 两个复数相等的定义: 如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等.这就是说,如果a ,a b d ,,, c ,d ∈R ,那么i i a b c d +=+?a c =,b d = 二、复数的几何意义 1. 复平面、实轴、虚轴: 复数i()z a b a b =+∈R ,与有序实数对()a b ,是一一对应关系.建立一一对应的关系.点Z 的横坐标是a ,纵坐标是b ,复数i()z a b a b =+∈R ,可用点()Z a b , 表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x 轴叫做实轴,y 轴叫做虚轴.实轴上的点都表示实数. 2. .对于虚轴上的点要除原点外,因为原点对应的有序实数对为()00, ,它所确定的复数是00i 0z =+=表示是实数. 除了原点外,虚轴上的点都表示纯虚数. 3. 复数z a bi =+←???→一一对应 复平面内的点()Z a b , 这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方法. 三、复数的四则运算 1. 复数1z 与2z 的和的定义:

福建省莆田第一中学复数经典例题doc

一、复数选择题 1.设复数1i z i =+,则z 的虚部是( ) A . 12 B .12 i C .12 - D .12 i - 2.若20212zi i =+,则z =( ) A .12i -+ B .12i -- C .12i - D .12i + 3.若复数1z i =-,则1z z =-( ) A B .2 C . D .4 4.若(1)2z i i -=,则在复平面内z 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.设复数z 满足方程4z z z z ?+?=,其中z 为复数z 的共轭复数,若z ,则z 为( ) A .1 B C .2 D .4 6.已知复数z 满足2021 22z i i i +=+-+,则复数z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 7.若复数()4 1i 34i z += +,则z =( ) A . 4 5 B . 35 C . 25 D . 5 8.已知复数1z i =+,z 为z 的共轭复数,则()1z z ?+=( ) A B .2 C .10 D 9.复数z 对应的向量OZ 与(3,4)a =共线,对应的点在第三象限,且10z =,则z =( ) A .68i + B .68i - C .68i -- D .68i -+ 10.已知()312++=+a i i bi (,a b ∈R ,i 为虚数单位),则实数+a b 的值为( ) A .3 B .5 C .6 D .8 11.已知i 为虚数单位,则43i i =-( ) A . 2655 i + B . 2655 i - C .2655 i - + D .2655 i - -

复数知识点与历年高考经典题型

数系的扩充与复数的引入知识点(一) 1.复数的概念: (1)虚数单位i ; (2)复数的代数形式z=a+bi ,(a, b ∈R); (3)复数的实部、虚部、虚数与纯虚数。 2.复数集 整 数有 理 数实数(0)分 数复 数(,)无理数(无限不循环 小数)纯 虚 数(0)虚 数(0)非 纯 虚 数(0)b a bi a b R a b a ??????=?????+∈????≠?≠??=?? 3.复数a+bi(a, b ∈R)由两部分组成,实数a 与b 分别称为复数a+bi 的实部与虚部,1与i 分别是实数单位和虚数单位,当b=0时,a+bi 就是实数,当b ≠0时,a+bi 是虚数,其中a=0且b ≠0时称为纯虚数。 应特别注意,a=0仅是复数a+bi 为纯虚数的必要条件,若a=b=0,则a+bi=0是实数。 4.复数的四则运算 若两个复数z1=a1+b1i ,z2=a2+b2i , (1)加法:z1+z2=(a1+a2)+(b1+b2)i ; (2)减法:z1-z2=(a1-a2)+(b1-b2)i ;

(3)乘法:z1·z2=(a1a2-b1b2)+(a1b2+a2b1)i ; (4)除法:11212211222222()()z a a b b a b a b i z a b ++-=+; (5)四则运算的交换率、结合率;分配率都适合于复数的情况。 (6)特殊复数的运算: ① n i (n 为整数)的周期性运算; ②(1±i)2 =±2i ; ③ 若ω=-21+23i ,则ω3=1,1+ω+ω2=0. 5.共轭复数与复数的模 (1)若z=a+bi ,则z a bi =-,z z +为实数,z z -为纯虚数(b ≠0). (2)复数z=a+bi 的模 |Z|=且2||z z z ?==a 2+b 2. 6.根据两个复数相等的定义,设a, b, c, d ∈R ,两个复数a+bi 和c+di 相 等规定为a+bi=c+di a c b d =???=?. 由这个定义得到a+bi=0?00a b =??=?. 两个复数不能比较大小,只能由定义判断它们相等或不相等。 7.复数a+bi 的共轭复数是a -bi ,若两复数是共轭复数,则它们所表示的点关于实轴对称。若b=0,则实数a 与实数a 共轭,表示点落在实轴上。 8.复数的加法、减法、乘法运算与实数的运算基本上没有区别,最主要的是在运算中将i 2=-1结合到实际运算过程中去。 如(a+bi)(a -bi)= a 2+b 2

最新高中数学《复数》经典考题分类解析

最新高中数学《复数》经典考题分类解析 复数的代数运算年年必考,其题目活而不难,主要考查学生灵活运用知识的能力,复数的几何意义也是考查的一个重点。落实考查特点有利于抓住复习中的关键:(1)复数的概念,包括虚数、纯虚数、复数的实部与虚部、复数的模、复数的相等、共轭复数的概念。(2)复数代数形式基本运算的技能与技巧,特别是 i ±1的计算,注意转化思想的训练,善于将复数向实数转化。 (3)复数的几何意义, 1、复数的概念以及运算 例1i 是虚数单位,238i 2i 3i 8i ++++=L .(用i a b +的形式表示,a b ∈R ,) 解:原式=i -2-3i +4+5i -6-7i +8=4-4i 点评:复数是高中数学的重要内容,是解决数学问题的重要工具,本题考查了复数的概念以及复数的引入原则,主要考查i 12-=的实际应用问题。 例2若a 为实数, =,则a 等于( ) A . B . C . D .-解析:由已知得:等式左边=i a a i ai 3 223223)21)(2(-++=-+ 由复数相等的充要条件知:???????-=-=+23 220322a a ,所以a = 点评:本题考查了复数的基本运算以及复数相等的概念。 例3若复数(1)(2)bi i ++是纯虚数(i 是虚数单位,b 是实数),则b =( ) A .2 B .12 C .12- D .2- 解析:(1)(2)bi i ++=i b b )12()2(++-,因为(1)(2)bi i ++是纯虚数,因此

???≠+=-0 1202b b 所以b =2。 点评:本题考查的复数的乘法运算问题,通过该运算考查了纯虚数的概念。 2、复数的几何意义 复数与复平面上的点,及复平面上从原点出发的向量建立了一一对应关系,这样使得 复数问题可以借助几何图形的性质解决,反之,一些解析几何问题、平面几何问题也可以借助于复数的运算加以解决。 例4若35ππ44θ??∈ ??? ,,则复数(cos sin )(sin cos )i θθθθ++-在复平面内所对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 解析:复数的实部a =)4sin(2sin cos π θθθ+=+,虚部b = )4sin(2cos sin πθθθ-=-,因为4 543πθπ<<,所以 ππθπππθπ<-<<+<42,234,所以0)4sin(<+πθ,0)4 sin(>-πθ,即a<0,b>0,所以复数对应的点在第二象限。 点评:本题以复数的三角形式作为命题背景,考查了复数的三角形式运算以及三角函数的恒等变化,以及复数的几何意义。复数与复平面内的点的对应关系经常出现在考题中,关键是把复数化简成bi a +的形式,并且准确的判断出a 、b 的符号是求解问题的关键。 3、复数的开放性的考查 例4.复数i z a b a b =+∈R ,,,且0b ≠,若24z bz -是实数,则有序实数对()a b ,可以是 .(写出一个有序实数对即可) 解析:因为24z bz -=i b ab ab b a )42()4(222-+--是实数,所以有 0422=-b ab ,因为0≠b ,所以b a 2=,所以答案可以填写(2,1)或(2,4)、(3,6)等等。

复数经典例题

一、复数选择题 1.复数1 1z i =-,则z 的共轭复数为( ) A .1i - B .1i + C . 1122 i + D . 1122 i - 2.已知复数2z i =-,若i 为虚数单位,则1i z +=( ) A . 3155 i + B . 1355i + C .113 i + D . 13 i + 3.已知复数1=-i z i ,其中i 为虚数单位,则||z =( ) A . 12 B . 2 C D .2 4.i =( ) A .i - B .i C i - D i 5. 212i i +=-( ) A .1 B .?1 C .i - D .i 6.已知i 为虚数单位,则复数23i i -+的虚部是( ) A .35 B .35i - C .15 - D .1 5 i - 7. )) 5 5 11-- +=( ) A .1 B .-1 C .2 D .-2 8.若复数1211i z i +=--,则z 在复平面内的对应点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.复数12i z i = +(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 10. 122i i -=+( ) A .1 B .-1 C .i D .-i 11.在复平面内,已知平行四边形OABC 顶点O ,A ,C 分别表示25-+i ,32i +,则点B 对应的复数的共轭复数为( ) A .17i - B .16i - C .16i -- D .17i --

12.复数()()212z i i =-+在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 13.复数21i i +的虚部为( ) A .1- B .1 C .i D .i - 14.已知i 是虚数单位,设11i z i ,则复数2z +对应的点位于复平面( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限15.题 目文件丢失! 二、多选题 16.已知复数12z =-,则下列结论正确的有( ) A .1z z ?= B .2z z = C .31z =- D .2020122 z =- + 17.已知复数(),z x yi x y R =+∈,则( ) A .2 0z B .z 的虚部是yi C .若12z i =+,则1x =,2y = D .z = 18.已知复数012z i =+(i 为虚数单位)在复平面内对应的点为0P ,复数z 满足 |1|||z z i -=-,下列结论正确的是( ) A .0P 点的坐标为(1,2) B .复数0z 的共轭复数对应的点与点0P 关于 虚轴对称 C .复数z 对应的点Z 在一条直线上 D .0P 与z 对应的点Z 间的距离的最小值为 2 19.已知复数122 z =-+(其中i 为虚数单位,,则以下结论正确的是( ). A .2 0z B .2z z = C .31z = D .1z = 20.设复数z 满足1 z i z +=,则下列说法错误的是( ) A .z 为纯虚数 B .z 的虚部为12 i - C .在复平面内,z 对应的点位于第三象限 D .2 z =

复数经典例题百度文库(1)

一、复数选择题 1.复数()1z i i =?+在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.已知复数()123z i i +=- (其中i 是虚数单位),则z 在复平面内对应点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.复数312i z i =-的虚部是( ) A .65i - B .35i C .35 D .65 - 4.如图所示,在复平面内,网格中的每个小正方形的边长都为1,点A ,B 对应的复数分别是1z ,2z ,则12z z -=( ) A 2 B .2 C .2 D .8 5.已知i 是虚数单位,则复数 41i i +在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6.已知i 为虚数单位,复数12i 1i z += -,则复数z 在复平面上的对应点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 7.若复数z 满足421i z i += +,则z =( ) A .13i + B .13i - C .3i + D .3i - 8.若复数z 满足()322i z i i -+= +,则复数z 的虚部为( ) A .35 B .3 5i - C .35 D .35i 9.已知复数()211i z i -=+,则z =( ) A .1i -- B .1i -+ C .1i + D .1i - 10.复数z 的共轭复数记为z ,则下列运算:①z z +;②z z -;③z z ?④ z z ,其结果一定是实数的是( )

高中《复数》经典练习题1(含答案)

高中《复数》经典练习题 【编著】黄勇权 一、填空题 1、复数i i ++12的共扼复数是 。 2.设复数z=1+i (i 是虚数单位),则|+z|= 。 3、若复数Z 满足Z (1-i )=2+4i (i 为虚数单位),则Z= 。 4、若复数Z 满足Z+2i =i 2i 55++(i 为虚数单位),则Z= 。 5、z=(m 2-4)+(2-m )i 为纯虚数,则实数m 的值为 。 6、已知m ∈R ,i 是虚数单位,若z=a-2i ,z ?z =6,则m= 。 7、已知z =(x+1)+(x -3)i 在复平面内对应的点在第四象限,则实数m 的取值范围是 。 8、若复数Z 满足2-3i= 3+2Zi (i 为虚数单位),则Z= 。 9、复数Z=i+i 2在复平面对应的点在第 象限。 10、复数Z 满足(Z-1)i=2+i ,则Z 的模为 。 11、若复数Z 满足Z (1-i )= 2+2i (i 为虚数单位),则Z= 。 12、复数Z=i 1i 32++,则Z ?(z -1)= . 13、若复数i 2i a +的实部与虚部相等,则实数a = 。 14、复数 的虚部 。 15、2.若复数(α∈R )是纯虚数,则复数2a+2i 在复平面内对应的点在第 象限。 16、设复数z 满足(z+i )(2+i )=5(i 为虚数单位),则z=______。 17、如果复数z= (i 为虚数单位)的实部与虚部互为相反数,那么|z|=______

18、复数z=﹣2i+ 3-i i ,则复数z 的共轭复数在复平面内对应的点在第 象限。 19、设复数z 满足 i i z i (23)4(+=-?是虚数单位),则z 的实部为 。 20、设复数121,1z i z i =-=+,其中i 是虚数单位,则Z1Z2 的模为 。 二、选择题 1、设a ,b ∈R ,i 为虚数单位,若(a+bi )?i=2﹣5i ,则ab 的值为( )。 A 、-5 B 、5 C 、-10 D 、10 2、若复数z 为纯虚数, 且满足i )i 2(+=-a z (i 为虚数单位),则实数a 的值为 . A 、 12 B 、 13 C 、 14 D 、 16 3、已知复数z 满足(1)2i z i -=,其中i 为虚数单位,则z 的模为( ) A 、 4 2 B 、 3 2 C 、 2 2 D 、 2 4、i 是虚数单位,复数 等于( ) A 、﹣2﹣2i B 、2﹣2i C 、﹣2+2i D 、2+2i 5、若复数()()ai i z -+=11是实数,则实数a 的值是( ) A 、1± B 、1- C 、0 D 、1 6、设i 为虚数单位,已知复数i i z -= 1,则z 的共轭复数在复平面内表示的点位于( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 7、i 是虚数单位, 的值是( )。 A 、 1 B 、 -1 C 、 i D 、-i

河北省盐山中学复数经典例题 百度文库

一、复数选择题 1.复数2 1i =+( ) A .1i -- B .1i -+ C .1i - D .1i + 2.复数3(23)i +(其中i 为虚数单位)的虚部为( ) A .9i B .46i - C .9 D .46- 3.若复数z 为纯虚数,且()373z i m i -=+,则实数m 的值为( ) A .97 - B .7 C . 97 D .7- 4.已知i 为虚数单位,则复数23i i -+的虚部是( ) A .35 B .35i - C .15 - D .15 i - 5.若(1)2z i i -=,则在复平面内z 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6.已知复数()2 11i z i -= +,则z =( ) A .1i -- B .1i -+ C .1i + D .1i - 7.复数z 的共轭复数记为z ,则下列运算:①z z +;②z z -;③z z ?④z z ,其结果一定是实数的是( ) A .①② B .②④ C .②③ D .①③ 8.已知复数z 满足2 2z z =,则复数z 在复平面内对应的点(),x y ( ) A .恒在实轴上 B .恒在虚轴上 C .恒在直线y x =上 D .恒在直线y x =-上 9.已知复数1z i =+,z 为z 的共轭复数,则()1z z ?+=( ) A B .2 C .10 D 10.若复数z 满足213z z i -=+,则z =( ) A .1i + B .1i - C .1i -+ D .1i -- 11.复数()()212z i i =-+在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 12.已知i 是虚数单位,2i z i ?=+,则复数z 的共轭复数的模是( ) A .5 B C D .3

复数经典例题 百度文库(1)

一、复数选择题 1.已知复数2z i =-,若i 为虚数单位,则1i z +=( ) A . 3155 i + B . 1355i + C .113 i + D . 13 i + 2.在复平面内,复数534i i -(i 为虚数单位)对应的点的坐标为( ) A .()3,4 B .()4,3- C .43,55??- ??? D .43,55?? - ?? ? 3.若()2 11z i =-,21z i =+,则1 2 z z 等于( ) A .1i + B .1i -+ C .1i - D .1i -- 4.设复数1i z i =+,则z 的虚部是( ) A . 12 B .12 i C .12 - D .12 i - 5.已知复数1=-i z i ,其中i 为虚数单位,则||z =( ) A . 12 B C D .2 6.复数()1z i i =?+在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 7. 212i i +=-( ) A .1 B .?1 C .i - D .i 8.已知复数()123z i i +=- (其中i 是虚数单位),则z 在复平面内对应点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.已知i 为虚数单位,则复数23i i -+的虚部是( ) A .35 B .35i - C .15- D .15 i - 10.已知i 是虚数单位,则复数41i i +在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 11.若复数()4 1i 34i z += +,则z =( )

高考数学复数典型例题附答案

1, 已知复数求k的值。 解: ,∴ 由的表示形式得k=2 即所求k=2 点评: (i) 对于两个复数、,只要它们不全是实数,就不能比较大小,因此,、能够比较大小 ,均为实数。 (ii)虚数不能与0比较大小,更无正负之分,因此, 对于任意复数z,且R; 且R。 2, 若方程有实根,求实数m的值,并求出此实根。 解:设为该方程的实根,将其代入方程得 由两复数相等的定义得, 消去m得, 故得 当时得,原方程的实根为; 当时得,原方程的实根为。 点评:对于虚系数一元方程的实根问题,一般解题思路为:设出实根——代入方程——利用两复数相等的充要条件求解。 3, 已知复数z满足,且z的对应点在第二象限,求a的取值范围。

解:设, 。 由得 ① 对应点在第二象限,故有 ② 又由①得③ 由③得, 即, ∴, ∴④ 于是由②,④得,即 再注意到a<0,故得 即所求a的取值范围为 点评:为利用导出关于a的不等式,再次利用①式:由①式中两复数相等切入,导出关于与a的关系式:此为解决这一问题的关键。此外,这里对于有选 择的局部代入以及与的相互转化,都展示了解题的灵活与技巧,请同学们注意领悟,借鉴。4, 求同时满足下列两个条件的所有复数: (1);

(2)z的实部与虚部都是整数。 解:设,则 由题意,∴ ∴y=0或 (Ⅰ)当y=0时,,, ∴由得① 注意到当x<0时,;当x>0时,, 此时①式无解。 (Ⅱ)当时,由得 ∴ 又这里x,y均为整数 ∴x=1,或x=3,, ∴或 于是综合(Ⅰ)(Ⅱ)得所求复数z=1+3i,1-3i,3+i,3-i. 5, (1)关于x的方程在复数集中的一个根为-2i,求a+b的值。 (2)若一元二次方程有虚根,且,试判断a,b,c所成数列的特征。 解: (1) 解法一:

复数经典例题

一、复数选择题 1.若()2 11z i =-,21z i =+,则1 2 z z 等于( ) A .1i + B .1i -+ C .1i - D .1i -- 2.若20212zi i =+,则z =( ) A .12i -+ B .12i -- C .12i - D .12i + 3.已知复数()2m m m i z i --=为纯虚数,则实数m =( ) A .-1 B .0 C .1 D .0或1 4. 212i i +=-( ) A .1 B .?1 C .i - D .i 5.已知,a b ∈R ,若2 ()2a b a b i -+->(i 为虚数单位),则a 的取值范围是( ) A .2a >或1a <- B .1a >或2a <- C .12a -<< D .21a -<< 6.已知复数31i z i -=,则z 的虚部为( ) A .1 B .1- C .i D .i - 7.已知复数21i z i =-,则复数z 在复平面内对应点所在象限为( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 8.已知复数z 满足()3 11z i i +=-,则复数z 对应的点在( )上 A .直线12 y x =- B .直线12y x = C .直线12x =- D .直线12 y 9.复数z 满足12i z i ?=-,z 是z 的共轭复数,则z z ?=( ) A B C .3 D .5 10.已知复数5i 5i 2i z =+-,则z =( ) A B .C .D .11.已知i 为虚数单位,若复数()12i z a R a i +=∈+为纯虚数,则z a +=( ) A B .3 C .5 D .12.设2i z i +=,则||z =( ) A B C .2 D .5 13.在复平面内,复数z 对应的点为(,)x y ,若2 2 (2)4x y ++=,则( )

复数经典例题百度文库

一、复数选择题 1.已知i 是虚数单位,复数2z i =-,则()12z i ?+的模长为( ) A .6 B C .5 D 2.已知,a b ∈R ,若2 ()2a b a b i -+->(i 为虚数单位),则a 的取值范围是( ) A .2a >或1a <- B .1a >或2a <- C .12a -<< D .21a -<< 3.若复数()()24z i i =--,则z =( ) A .76i -- B .76-+i C .76i - D .76i + 4.已知复数5i 5i 2i z =+-,则z =( ) A B .C .D .5.已知i 为虚数单位,若复数()12i z a R a i +=∈+为纯虚数,则z a +=( ) A B .3 C .5 D .6.若复数1211i z i +=--,则z 在复平面内的对应点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 7.满足313i z i ?=-的复数z 的共扼复数是( ) A .3i - B .3i -- C .3i + D .3i -+ 8.复数z 的共轭复数记为z ,则下列运算:①z z +;②z z -;③z z ?④z z ,其结果一定是实数的是( ) A .①② B .②④ C .②③ D .①③ 9.若复数2i 1i a -+(a ∈R )为纯虚数,则1i a -=( ) A B C .3 D .5 10.已知复数1z i =+,z 为z 的共轭复数,则()1z z ?+=( ) A B .2 C .10 D 11.若( )()3 24z i i =+-,则在复平面内,复数z 所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 12.在复平面内,已知平行四边形OABC 顶点O ,A ,C 分别表示25-+i ,32i +,则点B 对应的复数的共轭复数为( ) A .17i - B .16i - C .16i -- D .17i -- 13.复数()()212z i i =-+,则z 的共轭复数z =( ) A .43i + B .34i - C .34i + D .43i -

高三复数总复习知识点经典例题习题

高三复数总复习知识点经 典例题习题 Revised by BLUE on the afternoon of December 12,2020.

复 数 一.基本知识 【1】复数的基本概念 (1)形如a + b i 的数叫做复数(其中R b a ∈,);复数的单位为i ,它的平方等 于-1,即1i 2-=.其中a 叫做复数的实部,b 叫做虚部 实数:当b = 0时复数a + b i 为实数 虚数:当0≠b 时的复数a + b i 为虚数; 纯虚数:当a = 0且0≠b 时的复数a + b i 为纯虚数 (2)两个复数相等的定义: (3)共轭复数:z a bi =+的共轭记作z a bi =-; (4)复平面:建立直角坐标系来表示复数的平面叫复平面;z a bi =+,对应点坐标 为(),p a b ;(象限的复习) (5)复数的模:对于复数z a bi =+,把z =叫做复数z 的模; 【2】复数的基本运算 设111z a b i =+,222z a b i =+ (1) 加法:()()121212z z a a b b i +=+++; (2) 减法:()()121212z z a a b b i -=-+-; (3) 乘法:()()1212122112z z a a b b a b a b i ?=-++ 特别22z z a b ?=+。 (4)幂运算:1i i =21i =-3i i =-41i =5i i =61i =-?????? 【3】复数的化简 c di z a bi +=+(,a b 是均不为0的实数);的化简就是通过分母实数化的方法将分母化为实数:()()22 ac bd ad bc i c di c di a bi z a bi a bi a bi a b ++-++-==?=++-+

复数问题的题型与方法

复数问题的题型与方法 复数一节的题型主要是讨论复数的概念,复数相等,复数的几何表示,计算复数模,共轭复数,解复数方程等. 一、数学规律: 1.共轭复数规律, 2.复数的代数运算规律i4n 1=i,i4n 2= 1,i4n 3= i; 1)i 4n=1 n n 1 n 2 n 3 n n 1 n 2 n 3 (3)i · i · i ·i = 1,i +i +i +i =0; ; 3.辐角的运算规律 (1)Arg(z1·z2)=Argz1+Argz 2 3)Argzn=nArgz (n∈N) ?,n 1。 或z∈R 。 要条件是|z|=|a|。

(6)z 1·z 2 ≠0,则 4.根的规律 复系数一元 n 次方程有且只有 n 个根,实系数一元 n 次方程的虚根成对共轭出现。 5.求最值 时,除了代数、三角的常规方法外,还需注意几何法及不等式 ||z 1| |z 2 ||≤|z 1± z 2 |≤ |z 1 |+|z 2 |的运用。 即|z 1±z 2 |≤ |z 1 |+|z 2 |等号成立的条件是: z 1 , z 2所对应的向量共线且同向。 |z 1±z 2 |≥|z 1| |z 2 |等号成立的条件是: z 1,z 2 所对立的向量共线且异向。 二、 主要的思想方法和典型例题分析: 1.化归思想 复数的代数、几何、向量及三角表示,把复数与实数、三角、平面几何和解析几何有 机地联系在一起,这就保证了可将复数问题化归为实数、三角、几何问题。反之亦然。这 种化归的思想方法应贯穿复数的始终。 分析】这是解答题,由于出现了复数 z 和 z ,宜统一形式,正面求解。 解】解法一 设 z =x +yi ( x , y ∈R ),原方程即为 x 2 y 2 3y 3xi 1 3i 用复数相等的定义得: ∴ z 1= 1, z 2 = 1+3i.

典型例题:复数的代数形式及其运算

复数的代数形式及其运算 例1.计算: i i i i i 2 1 2 1 ) 1( ) 1( 2005 40 40 + + - + + - - + 解:提示:利用i i i i= ± = ±2005 2,2 ) 1( 原式=0 变式训练1: 2 = (A)1 -(B) 1 22 +(C) 1 22 -+(D)1 解:21 2 ===-+故选C; 例2. 若0 1 2= + +z z,求2006 2005 2003 2002z z z z+ + + 解:提示:利用z z z= =4 3,1 原式=2 ) 1(4 3 2002- = + + +z z z z 变式训练2:已知复数z满足z2+1=0,则(z6+i)(z6-i)=▲ . 解:2 例3. 已知4, a a R >∈,问是否存在复数z,使其满足ai z i z z+ = + ?3 2(a∈R),如果存在,求出z的值,如果不存在,说明理由 解:提示:设) , (R y x yi x z∈ + =利用复数相等的概念有 ? ? ? = = + + a x y y x 2 3 2 2 2 3 4 2 2 2> ? ? = - + + ? a y y i a a z a 2 16 2 2 4 | | 2 - ± - + = ? ≤ ? 变式训练3:若 (2) a i i b i -=+,其中i R b a, ,∈是虚数单位,则a+b= __________

解:3 例4. 证明:在复数范围内,方程255||(1)(1)2i z i z i z i -+--+=+(i 为虚数单位)无解. 证明:原方程化简为 2||(1)(1)1 3.z i z i z i +--+=-设 yi x z += (x 、y∈R,代入上述方程得22221 3.x y xi yi i +--=- 221(1)223(2)x y x y ?+=?∴?+=?? 将(2)代入(1) ,整理得281250. x x -+=160,()f x ?=-<∴方程无实数解,∴原方程在复数范围内无解. 变式训练4:已知复数z 1满足(1+i)z 1=-1+5i ,z 2=a -2-i ,其中i 为虚数单位,a∈R, 若12z z -<1z ,求a 的取值范围. 解:由题意得 z 1=151i i -++=2+3i, 于是12z z -=42a i -+1z =13. 13,得a 2-8a +7<0,1

高中数学 典型例题 复数加减 新课标

复数的加减运算 例 计算 (1))43()53(i i -++; (2))54()23(i i --+-; (3))33()22()65(i i i +---+- 分析:根据复数加、减法运算法则进行运算。 解:(1).6)45()33()43()53(i i i i +=-++=-++ (2).77)]5(2[)43()54()23(i i i i +-=--+--=--+- (3))33()22()65(i i i +---+-i )326()325(---+--=.11i -= 确定向量所表示的复数 例 如图,平行四边形OABC ,顶点O 、A 、C 分别表 示0,i 23+,i 42+-,试求: (1)AO 所表示的复数,BC 所表示的复数. (2)对角线CA 所表示的复数. (3)对角线OB 所表示的复数及OB 的长度. 分析:要求某个向量对应的复数,只要找出所求的向量的始点和终点。或者用向量的相等直接给出所求的结论. 解:(1)OA AO -= AO ∴所表示的复数为i 23--. AO BC =Θ, BC ∴所表示的复数为i 23--. (2)OC OA CA -=, CA ∴所表示的复数为i i i 25)42()23(-=+--+ (3)对角线OC OA AB OA OB +=+=,它所对应的复数为 i i i 61)42()23(+=+-++ 3761||22=+=OB

求正方形的第四个顶点对应的复数 例 复数i z 211+=,i z +-=22,i z 213--=,它们在复平面上的对应点是一个正方形的三个顶点,求这个正方形的第四个顶点对应的复数。 分析1:利用BC AD =或者DC AB =求点D 对应的复数。 解法1:设复数1z ,2z ,3z 所对应的点分别为A 、B 、C ,正方形的第四个顶点D 对应的复数为yi x +(R y x ∈,)则 OA OD AD -=)21()(i yi x +-+= i y x )2()1(-+-= OB OC BC -=i i i 31)2()21(-=+----= ∵ BC AD =, ∴.31)2()1(i i y x -=-+- ∴ ???-=-=-3211y x 解得? ??-==12y x 故点D 对应的复数.2i - 分析2:利用正方形的性质,对角钱相等且互相平分,相对顶点连线段的 中点重合,即利用正方形的两条对角线交点是其对称中心求解. 解法2:设复数1z ,2z ,3z 所对应的点分别为A 、B 、C ,正方形的第四个顶点D 对应的复数为yi x +(R y x ∈,) 因为点A 与点C 关于原点对称,所以原点O 为正方形的中心. ∴ 点O 也是B 与D 点的中点,于是由0)()2(=+++-yi x i ∴ .1,2-==y x 故D 对应的复数为.2i - 小结:解题1一定要善于发现问题中可能被利用的条件,寻找最佳的解题方法,解法2利用正方形是如C 对称固形,解题思路较巧. 根据条件求参数的值 例 已知i a a z )5(321++-=,i a a a z )12(12 2-++-=(R a ∈)分别对应向量, 21,OZ OZ (O 为原点) ,若向量12Z Z 对应的复数为纯虚数,求a 的值. 分析:12Z Z 对应的复数为纯虚数,利用复数减法先求出12Z Z 对应的复数,再利用复

复数经典例题

经典例题透析 类型一:复数的有关概念 Z 分别为: (1)实数;(2)虚数;(3)纯虚数. 思路点拨:根据复数Z 为实数、虚数及纯虚数的概念,判断实部与虚部取值情况 .利用 它们的充要条件可分别求出相应的 a 值. 解析: (1)当Z 为实数时, I a - 5a -6=0 Ia = -1或a — 6— 有 2 = = a =6, a 2 -1 = 0 a =二 1 ???当a = 6时,Z 为实数. (2) 当Z 为虚数时, I a - 5a - 6 = 0 Ia=-I ^且a = 6 — 有 2 = = a _1 且 a = 6 , a -1=0 a - -1 ?当 a ∈(-∞,- 1 )U(— 1, 1 )∪( 1, 6)∪( 6, +∞)时,Z 为虚数. (3) 当Z 为纯虚数时, ?不存在实数a 使Z 为纯虚数. 总结升华:由于a ∈ R ,所以复数Z 的实部与虚部分为 a : 7a 6 与a 2 - 5a - 6. a 2 -1 ① 求解第(1)小题时,仅注重虚部等于零是不够的,还需考虑它的实部是否有意义, 否则本小题将出现增解; ② 求解第(2)小题时,同样要注意实部有意义的问题; ③ 求解第(3)小题时,既要考虑实数为0(当然也要考虑分母不为 0),还需虚部不为0, 两者缺一不可. 例1已知复数 2 a —7a +6 丄 / 2 Z 2 (a - 5a - 6)i (a - R), 试求实数a 分别取什么值时, a 2 _5a _6 = 0 a 2 -7a 6 .a 2-1 -0 a =二 _1^且 a ~^ 6 a =6

举一反三:

【变式1】设复数z=a+bi (a 、b ∈ R ),贝U Z 为纯虚数的必要不充分条件是( ) A . a=0 B . a=0 且 b ≠ 0 C . a ≠0 且 b=0 D . a ≠0 且 b ≠ 0 【答案】A ;由纯虚数概念可知: a=0且b ≠ 0是复数z=a+bi (a 、b ∈ R )为纯虚数的充 要条件?而题中要选择的是必要不充分条件,对照各选择支的情况,应选择 A. - - .> , 2 【变式2】若复数(a -3a ? 2) ? (a -1)i 是纯虚数,则实数 a 的值为( ) A.1 B.2 C.1 或 2 D.-1 2 2 【答案】B ; ?/ (a 2 C 1 i 是纯虚数,??? a -3a ?2=0且a-1 = 0 ,即 a = 2. 【变式3】如果复数(m 2 ?i)(1 ?mi)是实数,则实数 m=( ) A . 1 B . - 1 C . 、. 2 D . . 2 【答案】B ; 【变式4】求当实数m 取何值时,复数z = (m 2 - m - 2) ? (m 2 -3m 2)i 分别是: 解析: 同理可得: (1)实数; (2)虚数; (3)纯虚数. 【答案】 (1) 2 m -3m 2 =0 即 m=1 或 m=2 时, 复数Z 为实数; (2) 2 m -3m 2=0 即 m 1 且 m = 2 时, 复数Z 为虚数; (3) 2 m - m -2 = 0 2 即m =—1时,复数 m —3m 2 = 0 Z 为纯虚数. 类型 :复数的代数形式的四则运算 例2. 计算: (1) i n (n N .); (1 i)8 ⑶(1 2i)P-2i); (1 - 4i)(1 i) 2 4i 3 4i ⑴??? i 2 ?1 , ? i 3 =i 2 i i 4 =i 2 i 2 =1,

相关主题
文本预览
相关文档 最新文档