当前位置:文档之家› 模拟电路的基本放大电路知识汇总

模拟电路的基本放大电路知识汇总

模拟电路的基本放大电路知识汇总
模拟电路的基本放大电路知识汇总

1.2.1 模拟信号的放大

放大是最基本的模拟信号处理功能,它是通过放大电路实现的,大多数模拟电子系统中都应用了不同类型的放大电路。放大电路也是构成其他模拟电路,如滤波、振荡、稳压等功能电路的基本单元电路。

电子技术里的“放大”有两方面的含义:

一是能将微弱的电信号增强到人们所需要的数值(即放大电信号),以便于人们测量和使用;

检测外部物理信号的传感器所输出的电信号通常是很微弱的,例如前面介绍的高温计,其输出电压仅有毫伏量级,而细胞电生理实验中所检测到的细胞膜离子单通道电流甚至只有皮安(pA,10-12A)量级。对这些能量过于微弱的信号,既无法直接显示,一般也很难作进一步分析处理。通常必须把它们放大到数百毫伏量级,才能用数字式仪表或传统的指针式仪表显示出来。若对信号进行数字化处理,则须把信号放大到数伏量级才能被一般的模数转换器所接受。

二是要求放大后的信号波形与放大前的波形的形状相同或基本相同,即信号不能失真,否则就会丢失要传送的信息,失去了放大的意义。

某些电子系统需要输出较大的功率,如家用音响系统往往需要把声频信号功率提高到数瓦或数十瓦。而输入信号的能量较微弱,不足以推动负载,因此需要给放大电路另外提供一个直流能源,通过输入信号的控制,使放大电路能将直流能源的能量转化为较大的输出能量,去推动负载。这种小能量对大能量的控制作用是放大的本质。

针对不同的应用,需要设计不同的放大电路。

1.2.2 放大电路的四种模型

放大电路的一般符号如图1所示,为信号源电压,Rs为信号源内阻,和分别为输入电压和输入电流,RL为负载电阻,和分别为输出电压和输出电流。在实际应用中,根据放大电路输入信号的条件和对输出信号的要求,放大电路可分为四种类型。

电压放大电路

如果只需考虑电路的输出电压和输出电压的关系,则可表达为

式中为电路的电压增益。前述炉温控制系统中对高温计输出电压信号的放大,就是使用了这种放大电路。

电流放大电路

若只考虑图1中放大电路的输出电流和输入电流的关系,则可表达为

式中为电流增益,这种电路称为电流放大电路。

互阻放大电路

当需要把电流信号转换为电压信号,如前述细胞电生理技术中,需要检测细胞膜离子通道的微弱电流时,则可利用互阻放大电路,其表达式为

式中为放大电路的输入电流,为输出电压,为互阻增益,其量纲为W。这里把信号放大的的概念延伸了,与前述无量纲的电压增益和电流增益不同。

互导放大电路

当电路中输入信号取,输出信号取,输出对输入信号的关系可表达为

式中称为放大电路的互导增益,它具有导纳量纲S。相应地,这种放大电路得名为互导放大电路。

一、电压放大模型

如上一知识点所述,根据实际的输入信号和所需的输出信号是电压或者电流,放大电路可分为四种类型,即:电压放大、电流放大、互阻放大和互导放大。为了进一步讨论这四类放大电路的性能指标,可以建立起四种不同的双口网络作为相应类型放大电路模型。这些模型采用一些基本的元件来构成电路,只是为了等效放大电路的输入和输出特

性,而忽略各种实际放大电路的

内部结构。

图1虚线框内的电路是一

般化的电压放大电路模型,它由

输入电阻Ri、输出电阻Ro和受

控电压源三个基本元件构成,其中为输入电压,为输出开路(RL = ¥)时的电压增益。图中放大电路模型与电压信号源、信号源内阻Rs以及负载电阻RL的组合,可在RL两端得到对应的输出信号。

从图1可以看出,由于Ro与RL的分压作用,使负载电阻RL上的电压信号小于受控电压源的信号幅值,即

图1

可见,其电压增益为

的恒定性受到RL变化的影响,随RL的减小而降低。这就要求在电路设计时努力使Ro<

信号衰减的另一个环节在输入电路。信号源内阻Rs和放大电路输入电阻Ri的分压作用,致使到达放大电路输入端的实际电压只有

只有当Ri>>Rs时,才能使Rs对信号的衰减作用大为减小。这就要求设计电路时,应尽量设法提高电压放大电路的输入电阻Ri。理想电压放大电路的输入电阻应为Ri=¥。此时,= ,信号免受衰减。

从上述分析可知,电压放大电路适用于信号源内阻Rs较小且负载电阻RL 较大的场合。

图1中所示电路模型的下部,输入回路和输出回路之间都有一根连线,并标以“^”符号,这是作为电路输入与输出信号的共同端点或参考电位点。这个参考点对于分析电子电路是必要的,而且是很方

便的。图2

然而,当前有许多工业控制设备及医疗

设备,为了提高安全性和抗干扰能力,在前

级信号预放大中,普遍采用所谓的隔离放

大,即放大电路的输入与输出电路(包括供电电源)相互绝缘,输入与输出信号之间不存在任何公共参考点。这种类型的电压放大电路模型如图2所示。输入和输出之间有无公共参考点对本章所有内容的讨论没有影响。

二、电流放大模型

图1的虚线框内是电流放大电路模型。与电压放大电路模型在形式上不同之处在输出回路,它是由受控制电流源和输出电阻Ro并联而成,其中为输入电流,为输出短路(RL=0)的电流增益。受控电流源是另一种受控信号源,本例中控制信号是输入电流。电流放大电路与外电路相连同样存在信号衰减问题。与电压放大电路相对应,衰减发生是由于放大电路输出电阻Ro和信号源内阻Rs分别在电路输出和输入端对信号电流的分流。由图1可知,在输出端,RL和Ro有如下的分流关系

带负载RL时的电流增益为

在电路输入端,Rs和Ri有如下的分流关系

由此可见,只有当Ro>>RL和Ri<

从电路特性可知,电流放大电路一般适用于信号源内阻Rs较大而负载电阻RL较小的场合。

三、互阻与互导放大电路模型

图1(a)和(b)的虚线框内分别为互阻放大和互导放大电路模型。两电路的输出信号分别由受控制电压源和受控制电流源产生。在理想状态下,互阻放大电路要求输入电阻Ri=0且输出电阻Ro=0,而互导放大电路则要求输入电阻Ri=¥,输出电阻Ro=¥。电路中的称为输出开路时的互阻增益,称为输出短路的互导增益。两模型的详细情况读者可自行分析。

(a)

(b)

图1

四、模型的转换

根据信号源的戴维宁-诺顿等效变换原理,上述四种电路模型相互之间可以实现任意转换。例如图1(a)电压放大电路模型的开路输出电压为,而

根据图(b)电流放大电路模型可得开路输出电压为且,令两电路等效,于是有

即可得。

同理可得和两式。

(a)

(b)

图1

这样其他三种电路模型都可转换为电压放大电路模型。同理可实现其他放大电路模型之间的转换。

一个实际的放大电路原则上可以取四类电路模型中任意一种作为它的电路模型,但是根据信号源的性质和负载的要求,一般只有一种模型在电路设计或分析中概念最明确,运用最方便。例如,信号源为低内阻的电压源,要求输出为电压信号时,以选用电压放大电路模型为宜。而某种场合需要将来自高阻抗传感器的电流信号变换为电压信号时,则以采用互阻放大电路模型较合适,如此等等。

1.2.3 放大电路的性能指标

放大电路的性能指标是衡量它的品质优劣的标准,并决定其适用范围。这里主要讨论放大电路的输入电阻、输出电阻、增益、频率响应和非线性失真等几项主要性能指标。

放大电路除上述五种主要性能指标外,针对不同用途的电路,还常会提出一些其他指标,诸如最大输出功率、效率、信号噪声比、抗干扰能力等等,甚至在某些特殊使用场合还会提出体积、重量、工作温度、环境温度等要求。其中有些在通常条件下很容易达到的技术指标,但在特殊条件下往往就变得很难达到,如强背景噪声、高温等恶劣环境下运行,即属这种情况。要想全面达到应用中所要求的性能指标,除合理设计电路外,还要靠选择高质量的元器件及高水平的制造工艺来保证,尤其是后者经常被初学者所忽视。上述问题有些在后续各章中进行讨论,有些则不属于本课程的范围,有兴趣的读者可参考有关资料及在以后工作实践中学习。

一、输入电阻

图1

前述四种放大电路,不论

使用哪种模型,其输入电阻

Ri和输出电阻Ro均可用图1

来表示。如图所示,输入电阻

等于输入电压与输入电流

的比值,

输入电阻Ri的大小决定了放大电路从信号吸取信号幅值的大小。对输入为电压信号的放大电路,即电压放大和互导放大,Ri愈大,则放大电路输入端的

值愈大。反之,输入为电流信号的放大电路,即电流放大和互阻放大,Ri愈小,注入放大电路的输入电流愈大。

当定量分析放大电路的输入电阻Ri时,一般可假定在输入端外加一测试电压,如图2所示,根据放大电路内的各元件参数计算出相应在的测试电流,则

二、输出电阻

放大电路输出电阻Ro的大

小决定它带负载的能力。

图2

图1

当定量分析放大电路的输

出电阻Ro时,可采用图1所示

的方法。在信号源短路(=0,

但保留Rs)和负载开路(RL = ¥)

的条件下,在放大电路的输出端加一测试电压,相应地产生一测试电流,于是可得输出电阻为

根据这个关系,即可算出各种放大电路的输出电阻。

必须注意,以上所讨论的放大电路的输入电阻和输出电阻不是直流电阻,而是在线性运用情况下的交流电阻,用符号R带有小写字母下标i和o来表示。

三、对数增益

如前所述,四种放大电路分别具有不同的增益,如电压增益、电流增益

、互阻增益及互导增益。它们实际反映了放大电路在输入信号控制下,将供电电源能量转换为信号能量的能

力。其中和两种无量纲增益在工程上常用以10为底的对数增益表达,其基本单位为B(贝尔,Bel),平时用它的十分之一单位dB(分贝)。

这样用分贝表示的电压增益和电流增益分别如下式所示:

电压增益=20lg| | dB

电压增益=20lg| | dB

由于功率与电压(或电流)的平方成比例,因而功率增益表示为

功率增益=10lg dB

上述电压增益和电流增益用其幅值。在某些情况下,或也许为负数,这意味着输出与输入之间的相位关系为180°,这与对数增益为负值时的意义不能混淆。在某种情况下,放大电路的增益为-20dB,这表示信号电压衰减到1/10,即||=0.1。

用对数方式表达放大电路的增益之所以在工程上得到广泛的应用是由于:

(1)当用对数坐标表达增益随频率变化的曲线时,可大大扩大增益变化的视野;

(2)计算多级放大电路的总增益时,可将乘法化为加法进行运算。

上述二点有助于简化电路的分析和设计过程。

四、频率响应与带宽

如前所述的放大电路模型是极为简单的模型,实际的放大电路中总是存在一些电抗性元件,如电容、电感、电子器件的极间电容以及接线电容与接线电感等。因此,放大电路的输出和输入之间的关系必然和信号频率有关。放大电路的频率响应所指的是,在输入正弦信号情况下,输出随频率连续变化的稳态响应。

若考虑电抗性元件的作用和信号角频率变量,则放大电路的电压增益可表达为

式中:

ω——信号的角频率;

AV(ω)——表示电压增益的模与角频率之间的关系,称为幅频响应;

j(ω)——表示放大电路输出与输入正弦电压信号的相位差与角频率之间的

关系,称为相频响应。

幅频响应和相频响应综合起来

可全面表征放大电路的频率响应。图1

图1是一个普通音响系统放大

电路的幅频响应。为了符合通常习

惯,横坐标采用频率单位f

=ω/(2p),与角频率ω只存在标尺

倍率之差。值得注意的是,图中的

坐标均采用对数刻度,称为波特

(Bode)图,这样处理不仅把频率和增益变化范围展得很宽,而且在绘制近似频率响应曲线时也十分简便。

图1所示幅频响应的中间一段是平坦的,即增益保持常数60dB,称为中频区。在20Hz和20kHz两点增益分别下降3dB,而在低于20Hz和高于20kHz 的两个区域,增益随频率远离这两点而下降。在输入信号幅值保持不变条件下,增益下降3dB的频率点,其输出功率约等于中频区输出功率的一半,通常称为半功率点。一般把幅频响应的高、低两个半功率点间的频率差定义为放大电路的带宽,

即BW = fH - fL

fH——频率响应的高端半功率点,也称

为上限频率;图2

fL——称为下限频率。

由于通常有fL << fH的关系,故有BW

?fH。

有些放大电路的频率响应,中频区平坦

部分一直延伸到直流,如图2所示。可以认

为它是图1的一种特殊情况,即下限频率为

零。这种放大电路称为直流(直接耦合)放

大电路。现代模拟集成电路大多采用直接耦

合进行放大。

五、频率失真

从信号的频谱一节的讨论可知,理论上许多非正弦信号的频谱范围都延伸到无穷大,而放大电路的带宽却是有限的,并且相频响应也不能保持常数。例如图1中输入信号由基波和二次谐波组成,如果受放大电路带宽所限制,基波增益较大,而二次谐波增益较小,于是输出电压波形产生了失真,这种由于放大电路对不同频率信号的增益不同,产生的失真叫作幅度失真。

同样,当放大电路对不同频率的信号产

生的相移不同时也要产生失真,称为相位失

真,在图2中,如果放大后的二次谐波滞后

了一个相角,输出电压也会变形。由傅里叶

级数或傅里叶反变换也可反映出,无论频谱

函数还是相位谱函数发生变化,相应的时间

函数波形都会由此而失真。幅度失真和相位

失真总称为频率失真,它们都是由于线性电

抗元件所引起的,所以又称为线性失真,以

区别于因为元器件特性的非线性造成的非

线性失真。

为使信号的频率失真限制在容许的程度之内,则要求设计放大电路时正确估计信号的有效带宽(即包含信号主要能量或信息的频谱宽度),以使放大电路带宽与信号带宽相匹配。放大电路带宽过宽,往往造成噪声电平升高或生产成本增加。

上述音响系统放大电路带宽定在20Hz~20kHz,这与人类听觉的生理功能相匹配。由于人耳对声频信号的相位变化不敏感,所以不过多考虑放大电路的相频响应特性。但在有些情况下,特别是对信号的波形形状有严格要求的场合,确定放大电路的带宽还须兼顾其相频响应特性。

六、非线性失真

信号的另一种失真是由放大器件的非线性特性所引起的。放大器件包括分立器件(如半导体三极管等)和集成电路器件(如集成运算放大器等)。对于分立

器件放大电路来说,电子电路设计工作者应设法使它工作在线性放大区。当要求信号的幅值较大,如多级放大电路的末级,特别是功率放大电路,非线性失真难以避免。

对于集成运算放大器,通常是由正、负双电源供电,当输出信号的幅值接近双电源值时,其输出将产生非线性失真,称为饱和失真。有关上述非线性失真的细节,将在后续各章讨论。

向放大电路输入标准的正弦波信号,可以测定输出信号的非线线失真,并用下面定义的非线性失真的系数来衡量。

Vo1——输出电压信号基波分量的有效值;

Vok——高次谐波分量的有效值,k为正整数。

非线性失真对某些放大电路的性能指标,显得比较重要,例如,高保真度的音响系统和广播电视系统即是常见的例子。随着电子技术的进步,目前即使增益较高、输出功率较大的放大电路,非线性失真系数也可做到不超过0.01%。

模拟电路的基本放大电路知识

1.2.1 模拟信号的放大 放大是最基本的模拟信号处理功能,它是通过放大电路实现的,大多数模拟电子系统中都应用了不同类型的放大电路。放大电路也是构成其他模拟电路,如滤波、振荡、稳压等功能电路的基本单元电路。 电子技术里的“放大”有两方面的含义: 一是能将微弱的电信号增强到人们所需要的数值(即放大电信号),以便于人们测量和使用;检测外部物理信号的传感器所输出的电信号通常是很微弱的,例如前面介绍的高温计,其输出电压仅有毫伏量级,而细胞电生理实验中所检测到的细胞膜离子单通道电流甚至只有皮安(pA,10-12A)量级。对这些能量过于微弱的信号,既无法直接显示,一般也很难作进一步分析处理。通常必须把它们放大到数百毫伏量级,才能用数字式仪表或传统的指针式仪表显示出来。若对信号进行数字化处理,则须把信号放大到数伏量级才能被一般的模数转换器所接受。 二是要求放大后的信号波形与放大前的波形的形状相同或基本相同,即信号不能失真,否则就会丢失要传送的信息,失去了放大的意义。 某些电子系统需要输出较大的功率,如家用音响系统往往需要把声频信号功率提高到数瓦或数十瓦。而输入信号的能量较微弱,不足以推动负载,因此需要给放大电路另外提供一个直流能源,通过输入信号的控制,使放大电路能将直流能源的能量转化为较大的输出能量,去推动负载。这种小能量对大能量的控制作用是放大的本质。 针对不同的应用,需要设计不同的放大电路。 1.2.2 放大电路的四种模型 放大电路的一般符号如图1所示,为信号源电压,Rs为信号源内 阻,和分别为输入电压和输入电流,RL为负载电阻,和分别为输出电压和输出电流。在实际应用中,根据放大电路输入信号的条件和对输出信号的要求,放大电路可分为四种类型。 电压放大电路 如果只需考虑电路的输出电压和输出电压的关系,则可表达为 式中为电路的电压增益。前述炉温控制系统中对高温计输出电压信号的放大,就是使用了这种放大电路。 电流放大电路 若只考虑图1中放大电路的输出电流和输入电流的关系,则可表达为 式中为电流增益,这种电路称为电流放大电路。 互阻放大电路 当需要把电流信号转换为电压信号,如前述细胞电生理技术中,需要检测细胞膜离子通道的微弱电流时,则可利用互阻放大电路,其表达式为

模拟电子技术基础知识点总结

模拟电子技术复习资料总结 第一章半导体二极管 一.半导体的基础知识 1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。 2.特性---光敏、热敏和掺杂特性。 3.本征半导体----纯净的具有单晶体结构的半导体。 4.两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。 5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。体现的是半导体的掺杂特性。*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。 *N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。 6.杂质半导体的特性 *载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。 *体电阻---通常把杂质半导体自身的电阻称为体电阻。 *转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。 7. PN结 * PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。 * PN结的单向导电性---正偏导通,反偏截止。 8. PN结的伏安特性 二. 半导体二极管 *单向导电性------正向导通,反向截止。 *二极管伏安特性----同PN结。 *正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。 *死区电压------硅管0.5V,锗管0.1V。 3.分析方法------将二极管断开,分析二极管两端电位的高低: 若V阳>V阴( 正偏),二极管导通(短路); 若V阳

2) 等效电路法 直流等效电路法 *总的解题手段----将二极管断开,分析二极管两端电位的高低: 若V阳>V阴( 正偏),二极管导通(短路); 若V阳

工程师不得不知的20个经典模拟电路(详细图文)

工程师不得不知的20个经典模拟电路(详细图文) 对模拟电路的掌握分为三个层次初级层次:是熟练记住这二十个电路,清楚这二十个电路的作用。只要是电子爱好者,只要是学习自动化、电子等电控类专业的人士都应该且能够记住这二十个基本模拟电路。 中级层次:是能分析这二十个电路中的关键元器件的作用,每个元器件出现故障时电路的功能受到什么影响,测量时参数的变化规律,掌握对故障元器件的处理方法;定性分析电路信号的流向,相位变化;定性分析信号波形的变化过程;定性了解电路输入输出阻抗的大小,信号与阻抗的关系。有了这些电路知识,您极有可能成长为电子产品和工业控制设备的出色的维修维护技师。 高级层次:是能定量计算这二十个电路的输入输出阻抗、输出信号与输入信号的比值、电路中信号电流或电压与电路参数的关系、电路中信号的幅度与频率关系特性、相位与频率关系特性、电路中元器件参数的选择等。达到高级层次后,只要您愿意,受人尊敬的高薪职业--电子产品和工业控制设备的开发设计工程师将是您的首选职业。 1桥式整流电路 注意要点:1、二极管的单向导电性,伏安特性曲

线,理想开关模型和恒压降;2、桥式整流电流流向过程,输入输出波形;3、计算:V o,Io,二极管反向电压。2电源滤波器注意要点:1、电源滤波的过程,波形形成过程;2、计算:滤波电容的容量和耐压值选择。3信号滤波器 注意要点:1、信号滤波器的作用,与电源滤波器的区别和相同点;2、LC 串联和并联电路的阻抗计算,幅频关系和相频关系曲线;3、画出通频带曲线,计算谐振频率。 4微分和积分电路注意要点:1、电路的作用,与滤波器的区别和相同点;2、微分和积分电路电压变化过程分析,画出电压变化波形图;3、计算:时间常数,电压变化方程,电阻和电容参数的选择。 5?共射极放大电路注意要点:1、三极管的结构、三极管各极电流关系、特性曲线、放大条件;2、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图;3、静态工作点的计算、电压放大倍数的计算。 6分压偏置式共射极放大电路注意要点:1、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图;2、电流串联负反馈过程的分析,负反馈对电路参数的影响;3、静态

模拟数字电路基础知识

第九章 数字电路基础知识 一、 填空题 1、 模拟信号是在时间上和数值上都是 变化 的信号。 2、 脉冲信号则是指极短时间内的 电信号。 3、 广义地凡是 规律变化的,带有突变特点的电信号均称脉冲。 4、 数字信号是指在时间和数值上都是 的信号,是脉冲信号的一种。 5、 常见的脉冲波形有,矩形波、 、三角波、 、阶梯波。 6、 一个脉冲的参数主要有 Vm 、tr 、 Tf 、T P 、T 等。 7、 数字电路研究的对象是电路的输出与输入之间的逻辑关系。 8、 电容器两端的电压不能突变,即外加电压突变瞬间,电容器相当于 。 9、 电容充放电结束时,流过电容的电流为0,电容相当于 。 10、 通常规定,RC 充放电,当t = 时,即认为充放电过程结束。 11、 RC 充放电过程的快慢取决于电路本身的 ,与其它因素无关。 12、 RC 充放电过程中,电压,电流均按 规律变化。 13、 理想二极管正向导通时,其端电压为0,相当于开关的 。 14、 在脉冲与数字电路中,三极管主要工作在 和 。 15、 三极管输出响应输入的变化需要一定的时间,时间越短,开关特性 。 16、 选择题 2 若一个逻辑函数由三个变量组成,则最小项共有( )个。 A 、3 B 、4 C 、8 4 下列各式中哪个是三变量A 、B 、C 的最小项( ) A 、A B C ++ B 、A BC + C 、ABC 5、模拟电路与脉冲电路的不同在于( )。 A 、模拟电路的晶体管多工作在开关状态,脉冲电路的晶体管多工作在放大状态。 B 、模拟电路的晶体管多工作在放大状态,脉冲电路的晶体管多工作在开关状态。 C 、模拟电路的晶体管多工作在截止状态,脉冲电路的晶体管多工作在饱和状态。 D 、模拟电路的晶体管多工作在饱和状态,脉冲电路的晶体管多工作在截止状态。 6、己知一实际矩形脉冲,则其脉冲上升时间( )。 A 、.从0到Vm 所需时间 B 、从0到2 2Vm 所需时间 C 、从0.1Vm 到0.9Vm 所需时间 D 、从0.1Vm 到 22Vm 所需时间 7、硅二极管钳位电压为( ) A 、0.5V B 、0.2V C 、0.7V D 、0.3V 8、二极管限幅电路的限幅电压取决于( )。 A 、二极管的接法 B 、输入的直流电源的电压 C 、负载电阻的大小 D 、上述三项 9、在二极管限幅电路中,决定是上限幅还是下限幅的是( ) A 、二极管的正、反接法 B 、输入的直流电源极性 C 、负载电阻的大小 D 、上述三项 10、下列逻辑代数定律中,和普通代数相似是( ) A 、否定律 B 、反定律 C 、重迭律 D 、分配律

一个硬件电子工程师应掌握二十种基本模拟电路

一个硬件电子工程师应掌握的二十种基本模拟电路一、桥式整流电路 1、二极管的单向导电性: 伏安特性曲线:理想开关模型和恒压降模型: 2、桥式整流电流流向过程:输入输出波形: 3、计算:Vo, Io,二极管反向电压。 二、电源滤波器 1、电源滤波的过程分析:波形形成过程: 2、计算:滤波电容的容量和耐压值选择。 三、信号滤波器 1、信号滤波器的作用:与电源滤波器的区别和相同点: 2、LC 串联和并联电路的阻抗计算,幅频关系和相频关系曲线。 3、画出通频带曲线。 计算谐振频率。

四、微分和积分电路 1、电路的作用,与滤波器的区别和相同点。 2、微分和积分电路电压变化过程分析,画出电压变化波形图。 3、计算:时间常数,电压变化方程,电阻和电容参数的选择。 五、共射极放大电路 1、三极管的结构、三极管各极电流关系、特性曲线、放大条件。

2、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图。 3、静态工作点的计算、电压放大倍数的计算 六、分压偏置式共射极放大电路 1、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图。 2、电流串联负反馈过程的分析,负反馈对电路参数的影响。 3、静态工作点的计算、电压放大倍数的计算。 七、共集电极放大电路(射极跟随器)

1、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图。电路的输入和输出阻抗特点。 2、电流串联负反馈过程的分析,负反馈对电路参数的影响。 3、静态工作点的计算、电压放大倍数的计算 八、电路反馈框图 1、反馈的概念,正负反馈及其判断方法、并联反馈和串联反馈及其判断方法、电流反馈和电压反馈及其判断方法。 2、带负反馈电路的放大增益 九、二极管稳压电路

工程师应该掌握的20个模拟电路

工程师应该掌握的20个模拟电路 电子信息工程系黄有全高级工程师 对模拟电路的掌握分为三个层次。 初级层次 初级层次是熟练记住这二十个电路,清楚这二十个电路的作用。只要是电子爱好者,只要是学习自动化、电子等电控类专业的人士都应该且能够记住这二十个基本模拟电路。 中级层次 中级层次是能分析这二十个电路中的关键元器件的作用,每个元器件出现故障时电路的功能受到什么影响,测量时参数的变化规律,掌握对故障元器件的处理方法;定性分析电路信号的流向,相位变化;定性分析信号波形的变化过程;定性了解电路输入输出阻抗的大小,信号与阻抗的关系。有了这些电路知识,您极有可能成长为电子产品和工业控制设备的出色的维修维护技师 维修维护技师 维修维护技师。 高级层次 高级层次是能定量计算这二十个电路的输入输出阻抗、输出信号与输入信号的比值、电路中信号电流或电压与电路参数的关系、电路中信号的幅度与频率关系特性、相位与频率关系特性、电路中元器件参数的选择等。达到高级层次后,只要您愿意,受人尊敬的高薪职业--电子产品和工业控制设备的开发设计工程师 设计工程师 设计工程师将是您的首选职业。 一、桥式整流电路 1、二极管的单向导电性: 伏安特性曲线: 理想开关模型和恒压降模型:2、桥式整流电流流向过程: 输入输出波形: 3、计算:V o, Io,二极管反向电压。二、电源滤波器 1、电源滤波的过程分析: 波形形成过程: 2、计算:滤波电容的容量和耐压值选择。 三、信号滤波器 1、信号滤波器的作用: 与电源滤波器的区别和相同点: 2、LC串联和并联电路的阻抗计算,幅频关

系和相频关系曲线。 3、画出通频带曲线。 计算谐振频率。 四、微分和积分电路 1、电路的作用,与滤波器的区别和相同点。 2、微分和积分电路电压变化过程分析,画出电压变化波形图。 3、计算:时间常数,电压变化方程,电阻和电容参数的选择。 五、共射极放大电路 1、三极管的结构、三极管各极电流关系、特性曲线、放大条件。 数、输入和输出的信号电压相位关系、交流和直流等效电路图。 3、静态工作点的计算、电压放大倍数的计算。 六、分压偏置式共射极放大电路 1、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图。 2、电流串联负反馈过程的分析,负反馈对电路参数的影响。 3、静态工作点的计算、电压放大倍数的计算。 4、受控源等效电路分析。

模拟电子技术基础中的常用公式必备

模拟电子技术基础中的常用公式 第7章半导体器件 主要内容:半导体基本知识、半导体二极管、二极管的应用、特殊二极管、双极型晶体管、晶闸管。 重点:半导体二极管、二极管的应用、双极型晶体管。难点:双极型晶体管。 教学目标:掌握半导体二极管、二极管的应用、双极型晶体管。了解特殊二极管、晶闸管。 第8章基本放大电路 主要内容:放大电路的工作原理、放大电路的静态分析、共射放大电路、共集放大电路。 重点:放大电路的工作原理、共射放大电路。难点:放大电路的工作原理。 教学目标:掌握放大电路的工作原理、共射放大电路。理解放大电路的静态分析。了解共集放大电路。 第9章集成运算放大器

主要内容:运算放大器的简单介绍、放大电路中的反馈、基本运算电路。 重点:基本运算电路。难点:放大电路中的反馈。 教学目标:掌握运算放大器在信号运算与信号处理方面的应用。了解运算放大器的简单介绍、放大电路中的反馈。 第10章直流稳压电源 主要内容:直流稳压电源的组成、整流电路、滤波电路、稳压电路。 重点和难点:整流电路、滤波电路、稳压电路。 教学目标:掌握直流电源的组成。理解整流、滤波、稳压电路。第11章组合逻辑电路 主要内容:集成基本门电路、集成复合门电路、组合逻辑电路的分析、组合逻辑电路的设计、编码器、译码器与数码显示。 重点:集成复合门电路、组合逻辑电路的分析。难点:组合逻辑电路的设计。 教学目标:掌握集成复合门电路、组合逻辑电路的分析。了解组合逻辑电路的设计、编码器、译码器与数码显示。

第12章 时序逻辑电路 主要内容:双稳态触发器、寄存器、计数器。 重点:双稳态触发器。 难点:寄存器、计数器。 教学目标:掌握双稳态触发器。了解寄存器、计数器。 半导体器件基础 GS0101 由理论分析可知,二极管的伏安特性可近似用下面的数学表达式来表示: )1()(-=T D V u sat R D e I i 式中,i D 为流过二极管的电流,u D 。为加在二极管两端的电压,V T 称为温度的电压当量,与热力学温度成正比,表示为V T = kT/q 其中T 为热力学温度,单位是K ;q 是电子的电荷量,q=×10-19 C ;k 为玻耳兹曼常数,k = ×10 -23 J /K 。室温下,可求得V T = 26mV 。I R(sat) 是二极管的反向饱和电流。 GS0102 直流等效电阻R D 直流电阻定义为加在二极管两端的直流电压U D 与流过二极管的直流电流I D 之比,即

模拟电子技术基础教案

《模拟电子技术基础》教案 1、本课程教学目的: 本课程是电气信息类专业的主要技术基础课。其目的与任务是使学生掌握常用半导体器件和典型集成运放的特性与参数,掌握基本放大、负反馈放大、集成运放应用等低频电子线路的组成、工作原理、性能特点、基本分析方法和工程计算方法;使学生具有一定的实践技能和应用能力;培养学生分析问题和解决问题的能力,为后续课程和深入学习这方面的内容打好基础。 2、本课程教学要求: 1.掌握半导体器件的工作原理、外部特性、主要参数、等效电路、分析方法及应用原理。 2.掌握共射、共集、共基、差分、电流源、互补输出级六种基本电路的组成、工作原理、特点及分析,熟悉改进放大电路,理解多级放大电路的耦合方式及分析方法,理解场效应管放大电路的工作原理及分析方法,理解放大电路的频率特性概念及分析。 3.掌握反馈的基本概念和反馈类型的判断方法,理解负反馈对放大电路性能的影响,熟练掌握深度负反馈条件下闭环增益的近似估算,了解负反馈放大电路产生自激振荡的条件及其消除原则。 4.了解集成运算放大器的组成和典型电路,理解理想运放的概念,熟练掌握集成运放的线性和非线性应用原理及典型电路;掌握一般直流电源的组成,理解整流、滤波、稳压的工作原理,了解电路主要指标的估算。

3、使用的教材: 杨栓科编,《模拟电子技术基础》,高教出版社 主要参考书目: 康华光编,《电子技术基础》(模拟部分)第四版,高教出版社 童诗白编,《模拟电子技术基础》,高等教育出版社, 张凤言编,《电子电路基础》第二版,高教出版社, 谢嘉奎编,《电子线路》(线性部分)第四版,高教出版社, 陈大钦编,《模拟电子技术基础问答、例题、试题》,华中理工大学出版社,唐竞新编,《模拟电子技术基础解题指南》,清华大学出版社, 孙肖子编,《电子线路辅导》,西安电子科技大学出版社, 谢自美编,《电子线路设计、实验、测试》(二),华中理工大学出版社, 绪论 本章的教学目标和要求: 要求学生了解放大电路的基本知识;要求了解放大电路的分类及主要性能指标。 本章总体教学内容和学时安排:(采用多媒体教学) §1-1 电子系统与信号0.5 §1-2 放大电路的基本知识0.5

模拟电路基础知识大全

模拟电路基础知识大全 一、填空题:(每空1分共40分) 1、PN结正偏时(导通),反偏时(截止),所以PN结具有(单向)导电性。 2、漂移电流是(反向)电流,它由(少数)载流子形成,其大小与(温度)有关,而与外加电压(无关)。 3、所谓理想二极管,就是当其正偏时,结电阻为(零),等效成一条直线;当其反偏时,结电阻为(无穷大),等效成断开; 4、三极管是(电流)控制元件,场效应管是(电压)控制元件。 5、三极管具有放大作用外部电压条件是发射结(正偏),集电结(反偏)。 6、当温度升高时,晶体三极管集电极电流Ic(增大),发射结压降(减小)。 7、三极管放大电路共有三种组态分别是(共集电极)、(共发射极)、(共基极)放大电路。 8、为了稳定三极管放大电路的静态工作点,采用(直流)负反馈,为了稳定交流输出电流采用(交流)负反馈。 9、负反馈放大电路和放大倍数AF=(A/1+AF),对于深度负反馈放大电路的放大倍数AF= (1/F )。 10、带有负反馈放大电路的频带宽度BWF=(1+AF)BW,其中BW=(fh-fl ), (1+AF )称为反馈深度。

11、差分放大电路输入端加上大小相等、极性相同的两个信号,称为(共模)信号,而加上大小相等、极性相反的两个信号,称为(差模)信号。 12、为了消除乙类互补功率放大器输出波形的(交越)失真,而采用(甲乙)类互补功率放大器。 13、OCL电路是(双)电源互补功率放大电路; OTL电路是(单)电源互补功率放大电路。 14、共集电极放大电路具有电压放大倍数(近似于1 ),输入电阻(大),输出电阻(小)等特点,所以常用在输入级,输出级或缓冲级。 15、差分放大电路能够抑制(零点)漂移,也称(温度)漂移,所以它广泛应用于(集成)电路中。 16、用待传输的低频信号去改变高频信号的幅度称为(调波),未被调制的高频信号是运载信息的工具,称为(载流信号)。 17、模拟乘法器输出与输入的关系式是U0=(KUxUy ) 1、1、P型半导体中空穴为(多数)载流子,自由电子为(少数)载流子。 2、PN结正偏时(导通),反偏时(截止),所以PN结具有(单向)导电性。 3、反向电流是由(少数)载流子形成,其大小与(温度)有关,而与外加电压(无关)。 4、三极管是(电流)控制元件,场效应管是(电压)控制元件。 5、当温度升高时,三极管的等电极电流I(增大),发射结压降UBE(减小)。

电工学下册电子技术知识点总结

电工学下册电子技术知识点总结 模拟电路处理模拟信号,数字电路处理数字信号 第14章半导体器件 1.本征半导体概念 2.N型和P型半导体的元素、多数载流子和少数载流子、“复合”运动 3.PN结的单向导电性,扩散运动,漂移运动 4.二极管的伏安特性、等效电阻(14.3.8) 5.稳压二极管的工作区 6.三极管的放大电流特性(非放大电压)、输出特性曲线(放大区、截止区、 饱和区),判断硅管和锗管、PNP型和NPN型(14.5.1,14.5.2,14.5.3) 第15章基本放大电路 1.共发射极放大电路的组成、静态分析、动态分析,计算电压放大倍数(远大 于1,输入输出电压反相)、输入电阻(高)、输出电阻(低) 2.静态工作点的稳定:分压式偏置放大电路的组成 3.非线性失真:饱和失真(静态工作点高)、截止失真(静态工作点低) 4.射极输出器的组成、静态分析(估算法、图解法)、动态分析(微变等效电 路法、图解法),计算电压放大倍数(接近1,但小于1,输入输出电压同相)、输入电阻(高)、输出电阻(低) 5.多级放大电路的放大倍数,耦合方式三种:变压器耦合、阻容耦合(静态工 作点相对独立)、直接耦合(静态工作点相互影响,零点漂移) 6.差分(差动)放大电路:针对缓慢变化的信号,采用直接耦合,共模信号,差 模信号,抑制零点漂移,电路对称性要好 7.功率放大电路状态:甲类、甲乙类、乙类,为避免交越失真,需工作在甲乙 类状态下 第16章集成运算放大器 1.理想运算放大器的理想化条件:开环电压放大倍数∞,差模输入电阻∞,开 环输出电阻0,共模抑制比∞,工作区:线性区和饱和区 2.虚短、虚断

二十个基本模拟电路

对模拟电路的掌握分为三个层次 初级层次:是熟练记住这二十个电路,清楚这二十个电路的作用。只要是电子爱好者,只要是学习自动化、电子等电控类专业的人士都应该且能够记住这二十个基本模拟电路。 中级层次:是能分析这二十个电路中的关键元器件的作用,每个元器件出现故障时电路的功能受到什么影响,测量时参数的变化规律,掌握对故障元器件的处理方法;定性分析电路信号的流向,相位变化;定性分析信号波形的变化过程;定性了解电路输入输出阻抗的大小,信号与阻抗的关系。有了这些电路知识,您极有可能成长为电子产品和工业控制设备的出色的维修维护技师。高级层次是能定量计算这二十个电路的输入输出阻抗、输出信号与输入信号的比值、电路中信号电流或电压与电路参数的关系、电路中信号的幅度与频率关系特性、相位与频率关系特性、电路中元器件参数的选择等。达到高级层次后,只要您愿意,受人尊敬的高薪职业--电子产品和工业控制设备的开发设计工程师将是您的首选职业。 一、桥式整流电路 1、二极管的单向导电性: 伏安特性曲线: 理想开关模型和恒压降模型: 2、桥式整流电流流向过程: 输入输出波形: 3、计算:Vo, Io,二极管反向电压。 二、电源滤波器 1、电源滤波的过程分析: 波形形成过程: 2、计算:滤波电容的容量和耐压值选择。 三、信号滤波器 1、信号滤波器的作用: 与电源滤波器的区别和相同点: 2、LC 串联和并联电路的阻抗计算,幅频关系和相频关系曲线。 3、画出通频带曲线。

计算谐振频率。 四、微分和积分电路 1、电路的作用,与滤波器的区别和相同点。 2、微分和积分电路电压变化过程分析,画出电压变化波形图。 3、计算:时间常数,电压变化方程,电阻和电容参数的选择。 五、共射极放大电路 1、三极管的结构、三极管各极电流关系、特性曲线、放大条件。

20个常用模拟电路

一. 桥式整流电路 1二极管的单向导电性:二极管的PN结加正向电压,处于导通状态;加反向电压,处于截止状态。 伏安特性曲线; 理想开关模型和恒压降模型: 理想模型指的是在二极管正向偏置时,其管压降为0,而当其反向偏置时,认为它的电阻为无穷大,电流为零.就是截止。恒压降模型是说当二极管导通以后,其管压降为恒定值,硅管为0.7V,锗管0.5 V 2桥式整流电流流向过程: 当u 2是正半周期时,二极管Vd1和Vd2导通;而夺极管Vd3和Vd4截止,负载R L 是的电流是自上而下流过负载,负载上得到了与u 2正半周期相同的电压;在u 2的负半周,u 2的实际极性是下正上负,二极管Vd3和Vd4导通而Vd1和Vd2 截止,负载R L 上的电流仍是自上而下流过负载,负载上得到了与u 2正半周期相同的电压。 3计算:Vo,Io,二极管反向电压 Uo=0.9U 2, Io=0.9U 2 /R L ,U RM =√2 U 2 二.电源滤波器 1电源滤波的过程分析:电源滤波是在负载R L 两端并联一只较大容量的电容器。由于电容两端电压不能突变,因而负载两端的电压也不会突变,使输出电压得以平滑,达到滤波的目的。 波形形成过程:输出端接负载R L 时,当电源供电时,向负载提供电流的同时也

向电容C充电,充电时间常数为τ 充=(Ri∥R L C)≈RiC,一般Ri〈〈R L, 忽略Ri压 降的影响,电容上电压将随u 2迅速上升,当ωt=ωt 1 时,有u 2=u 0,此后u 2 低于u 0,所有二极管截止,这时电容C通过R L 放电,放电时间常数为R L C,放 电时间慢,u 0变化平缓。当ωt=ωt 2时,u 2=u 0, ωt 2 后u 2又变化到比u 0 大,又开始充电过程,u 0迅速上升。ωt=ωt 3时有u 2=u 0,ωt 3 后,电容通 过R L 放电。如此反复,周期性充放电。由于电容C的储能作用,R L 上的电压波动 大大减小了。电容滤波适合于电流变化不大的场合。LC滤波电路适用于电流较大,要求电压脉动较小的场合。 2计算:滤波电容的容量和耐压值选择 电容滤波整流电路输出电压Uo在√2U 2~0.9U 2 之间,输出电压的平均值取决于 放电时间常数的大小。 电容容量R L C≧(3~5)T/2其中T为交流电源电压的周期。实际中,经常进一步 近似为Uo≈1.2U 2整流管的最大反向峰值电压U RM =√2U 2 ,每个二极管的平均电 流是负载电流的一半。 三.信号滤波器 1信号滤波器的作用:把输入信号中不需要的信号成分衰减到足够小的程度,但同时必须让有用信号顺利通过。 与电源滤波器的区别和相同点:两者区别为:信号滤波器用来过滤信号,其通带是一定的频率范围,而电源滤波器则是用来滤除交流成分,使直流通过,从而保持输出电压稳定;交流电源则是只允许某一特定的频率通过。 相同点:都是用电路的幅频特性来工作。 2LC串联和并联电路的阻抗计算:串联时,电路阻抗为Z=R+j(XL-XC)=R+j(ωL-1/ωC) 并联时电路阻抗为Z=1/jωC∥(R+jωL)= 考滤到实际中,常有R<<ωL,所以有Z≈

模拟电路(基本概念和知识总揽)

模拟电路(基本概念和知识总揽) 1、基本放大电路种类(电压放大器,电流放大器,互导放大器和互阻放大器),优缺点,特别是广泛采用差分结构的原因。 2、负反馈种类(电压并联反馈,电流串联反馈,电压串联反馈和电流并联反馈);负反馈的优点(降低放大器的增益灵敏度,改变输入电阻和输出电阻,改善放大器的线性和非线性失真,有效地扩展放大器的通频带,自动调节作用) 3、基尔霍夫定理的内容是什么? 基尔霍夫定律包括电流定律和电压定律。 电流定律:在集总电路中,任何时刻,对任一节点,所有流出节点的支路电流代数和恒等于零。电压定律:在集总电路中,任何时刻,沿任一回路,所有支路电压的代数和恒等于零。 4、描述反馈电路的概念,列举他们的应用? 反馈,就是在电子系统中,把输出回路中的电量输入到输入回路中去。 反馈的类型有:电压串联负反馈、电流串联负反馈、电压并联负反馈、电流并联负反馈。负反馈的优点:降低放大器的增益灵敏度,改变输入电阻和输出电阻,改善放大器的线性和非线性失真,有效地扩展放大器的通频带,自动调节作用。 电压(流)负反馈的特点:电路的输出电压(流)趋向于维持恒定。 5、有源滤波器和无源滤波器的区别? 无源滤波器:这种电路主要有无源元件R、L和C组成 有源滤波器:集成运放和R、C组成,具有不用电感、体积小、重量轻等优点。 集成运放的开环电压增益和输入阻抗均很高,输出电阻小,构成有源滤波电路后还具有一定的电压放大和缓冲作用。但集成运放带宽有限,所以目前的有源滤波电路的工作频率难以做得很高。 6、基本放大电路的种类及优缺点,广泛采用差分结构的原因。 答:基本放大电路按其接法的不同可以分为共发射极放大电路、共基极放大电路和共集电极放大电路,简称共基、共射、共集放大电路。 共射放大电路既能放大电流又能放大电压,输入电阻在三种电路中居中,输出电阻较大,频带较窄。常做为低频电压放大电路的单元电路。 共基放大电路只能放大电压不能放大电流,输入电阻小,电压放大倍数和输出电阻与共射放

数字电子技术基础知识总结

数字电子技术基础知识总结引导语:数字电子技术基础知识有哪些呢?接下来是小编为你带来收集整理的文章,欢迎阅读! 处理模拟信号的电子电路。“模拟”二字主要指电压(或电流)对于真实信号成比例的再现。 其主要特点是: 1、函数的取值为无限多个; 2、当图像信息和声音信息改变时,信号的波形也改变,即模拟信号待传播的信息包含在它的波形之中(信息变化规律直接反映在模拟信号的幅度、频率和相位的变化上)。 3.初级模拟电路主要解决两个大的方面:1放大、2信号源。 4、模拟信号具有连续性。 用数字信号完成对数字量进行算术运算和逻辑运算的电路称为数字电路,或数字系统。由于它具有逻辑运算和逻辑处理功能,所以又称数字逻辑电路。 其主要特点是: 1、同时具有算术运算和逻辑运算功能 数字电路是以二进制逻辑代数为数学基础,使用二进制数字信号,既能进行算术运算又能方便地进行逻辑运算(与、或、非、判断、比较、处理等),因此极其适合于运算、比较、存储、传输、控制、决策等应用。

2、实现简单,系统可靠 以二进制作为基础的数字逻辑电路,可靠性较强。电源电压的小的波动对其没有影响,温度和工艺偏差对其工作的可靠性影响也比模拟电路小得多。 3、集成度高,功能实现容易 集成度高,体积小,功耗低是数字电路突出的优点之一。电路的设计、维修、维护灵活方便,随着集成电路技术的高速发展,数字逻辑电路的集成度越来越高,集成电路块的功能随着小规模集成电路(SSI)、中规模集成电路(MSI)、大规模集成电路(LSI)、超大规模集成电路(VLSI)的发展也从元件级、器件级、部件级、板卡级上升到系统级。电路的设计组成只需采用一些标准的集成电路块单元连接而成。对于非标准的特殊电路还可以使用可编程序逻辑阵列电路,通过编程的方法实现任意的逻辑功能。 模拟电路是处理模拟信号的电路;数字电路是处理数字信号的电路。 模拟信号是关于时间的函数,是一个连续变化的量,数字信号则是离散的量。因为所有的电子系统都是要以具体的电子器件,电子线路为载体的,在一个信号处理中,信号的采集,信号的恢复都是模拟信号,只有中间部分信号的处理是数字处理。具体的说模拟电路主要处理模拟信号,不随时间变化,时间域和值域上均连续的信号,如语音信号。而数

大学模电最新最全题库模拟电路考试试题10套和答案

试卷编号01 ……………………………………………………………………………………………………………… 一、填空(本题共20分,每空1分): 1.整流电路的任务是__将交流电变成脉动直流电________;滤波电路的任务是_滤除脉动直流电中的交流成分_________。 2.在PN结的形成过程中,载流子的扩散运动是由于__载流子的浓度差________而产生的,漂移运动是_______内电场的电场力___作用下产生的。 3.放大器有两种不同性质的失真,分别是____线性______失真和非线性__________失真。 4.在共射阻容耦合放大电路中,使低频区电压增益下降的主要原因是_耦合电容__和旁路电容_______的影响;使高频区电压增益下降的主要原因是__三极管的级间电容________的影响。 5.在交流放大电路中,引入直流负反馈的作用是_稳定静态工作点_________;引入交流负反馈的作用是___稳定增益、抑制非线性失真、___改变输入输出电阻、展宽频带、抑制干扰和噪声__。 6.正弦波振荡电路一般由选频网络__________、__放大电路________、正反馈网络__________、__稳幅电路________这四个部分组成。 7.某多级放大器中各级电压增益为:第一级25dB 、第二级15dB 、第三级60dB ,放大器的总增益为__100________,总的放大倍数为__________。 8.在双端输入、单端输出的差动放大电路中,发射极公共电阻R e对__差模输入________信号的放大无影响,对_共模输入_________信号的放大具有很强的抑制作用。共模抑制比K CMR为_差模增益与共模增益_________之比。 9.某放大电路的对数幅频特性如图1(在第三页上)所示,当信号频率恰好为上限频率时,实际的电压增益为____37______dB。 二、判断(本题共10分,每小题1分,正确的打√,错误的打×): 1、(y )构成各种半导体器件的基础是PN结,它具有单向导电和反向击穿特性。 2、(y )稳定静态工作点的常用方法主要是负反馈法和参数补偿法。 3、(y )在三极管的三种基本组态中,只有电流放大能力而无电压放大能力的是基本共集组态。 4、(n )若放大电路的放大倍数为负值,则引入的一定是负反馈。 5、(yn )通常,甲类功放电路的效率最大只有40%,而乙类和甲乙类功放电路的效率比甲类功放电路的效率要高。 6、(n )一般情况下,差动电路的共模电压放大倍数越大越好,而差模电压放大倍数越小越好。 7、(y n)根据负反馈自动调节原理,交流负反馈可以消除噪声、干扰和非线性失真。 8、(y)要使放大电路的输出电流稳定并使输入电阻增大,则应引入电流串联负反馈。 9、(y)在放大电路中引入电压负反馈可以使输出电阻减小,在放大电路中引入电流负反馈可以使输出电阻增大。 10、(y n)在正弦波振荡电路的应用中,通常,当要求振荡工作频率大于1MHz时,应选用RC正弦波振荡电路。 三、选择(本题共20分,每个选择2分): 1.在放大电路中,测得某三极管的三个电极的静态电位分别为0V,-10V,-9.3V,则此三极管是( A ) A. NPN型硅管; B. NPN型锗管; C. PNP型硅管; D. PNP型锗管; 2.为了使放大电路Q点上移,应使基本放大电路中偏置电阻R b的值(C )。 A. 增大 B.不变 C. 减小 3.典型的差分放大电路中Re( B )。 A.对差模信号起抑制作用 B. 对共模信号起抑制作用 C. 对差模信号和共模信号均无作用 4.在差动电路中,若单端输入的差模输入电压为20V,则其共模输入电压为(C )。 A. 40V B. 20V C. 10V D. 5V 5.电流源的特点是( A )。 A .交流电阻大,直流电阻小; B . 交流电阻小,直流电阻大; C. 交流电阻大,直流电阻大; D. 交流电阻小,直流电阻小。 6.影响放大电路高频特性的主要因素是( D )。 A. 耦合电容和旁路电容的存在; B. 放大电路的静态工作点不合适; C. 半导体管的非线性特性; D. 半导体管极间电容和分布电容的存在; 7.关于理想运算放大器的错误叙述是( A )。 A.输入阻抗为零,输出阻抗也为零;B.输入信号为零时,输出处于零电位; C.频带宽度从零到无穷大;D.开环电压放大倍数无穷大 8.有T1 、T2和T3三只晶体管,T1的β=200,I CEO=200μA;T2的β=100,I CEO=10μA;T3的β=10,I CEO=100μA,其它参数基本相同,则实用中应选( B ) A. T1管; B. T2管; C. T3管 9.交流反馈是指( C ) A.只存在于阻容耦合电路中的负反馈;B.变压器耦合电路中的负反馈; C.交流通路中的负反馈;D.放大正弦信号时才有的负反馈; 10.RC桥式正弦波振荡电路是由两部分组成,即RC串并联选频网络和( D ) A. 基本共射放大电路; B. 基本共集放大电路; C. 反相比例运算电路; D. 同相比例运算电路; 四、分析与计算(本题共50分): 1.(本小题10分) 电路如图2所示,通过分析判断反馈组态,并近似计算其闭环电压增益A usf。 2.(本小题10分) 电路如图3所示,u2=10V,在下列情况下,测得输出电压平均值U o的数值各为多少?(1)正常情况时;(2)电容虚焊时;(3)R L开路时;(4)一只整流管和电容C同时开路时。 3.(本小题12分) 如图4所示电路中,A为理想运放,Vcc=16V,R L=8Ω,R1=10kΩ,R2=100kΩ,三极管的饱和管压降U CES=0V,U o=-10V。(1)合理连接反馈电阻R2;(2)设A输出电压幅值足够大,估算最大输出功率P om;(3)估算单个三极管的最大集电极

常见的20个基本模拟电路

电子电路工程师必备的20种模拟电路 对模拟电路的掌握分为三个层次:初级层次:是熟练记住这二十个电路,清楚这二十个电路的作用。只要是电子爱好者,只要是学习自动化、电子等电控类专业的人士都应该且能够记住这二十个基本模拟 电路。 中级层次:是能分析这二十个电路中的关键元器件的作用,每个元器件出现故障时电路的功能受到什么影响,测量时参数的变化规律,掌握对故障元器件的处理方法;定性分析电路信号的流向,相位变化;定性分析信号波形的变化过程;定性了解电路输入输出阻抗的大小,信号与阻抗的关系。有了这些电路知识,您极有可能成长为电子产品和工业控制设备的出色的维修维护技师。高级层次是能定量计算这二十个电路的输入输出阻抗、输出信号与输入信号的比值、电路中信号电流或电压与电路参数的关系、电路中信号的幅度与频率关系特性、相位与频率关系特性、电路中元器件参数的选择等。达到高级层次后,只要您愿意,受人尊敬的高薪职业--电子产品和工业控制设备的开发设计工程师将是您的首选职业。 一、桥式整流电路 1、二极管的单向导电性:伏安特性曲线:理想开关模型和恒压降模型: 2、桥式整流电流流向过程:输入输出波形: 3、计算:Vo, Io,二极管反向电压。 二、电源滤波器

1、电源滤波的过程分析:波形形成过程: 2、计算:滤波电容的容量和耐压值选择。 三、信号滤波器1、信号滤波器的作用:与电源滤波器的区别和相同点:2、LC 串联和并联电路的阻抗计算,幅频关系和相频关系曲线。3、画出通频带曲线。计算谐振频率。 四、微分和积分电路 1、电路的作用,与滤波器的区别和相同点。 2、微分和积分电路电压变化过程分析,画出电压变化波形图。 3、计算:时间常数,电压变化方程,电阻和电容参数的选择。 五、共射极放大电路 1、三极管的结构、三极管各极电流关系、特性曲线、放大条件。 2、元器件的作用、电路的用途、电压

模拟电路基础试题

模拟电路基础测试题 一:填空题(每题1分,共15分) 1.PN特性。 2.双极型晶体管(BJT)下降为1时的频率。 3.某放大器的电压增益A V =-70.7倍。该增益换算成分贝应为 4.当N沟道结型场效应管(JFET)内的沟道预夹断时,V GS 和V DS 。 5.作负载。 6. 7. 8. 。 9. 10. 11. 12. 13. 14.

15. 当集成放大器内部需要微电流时,采用微电流恒流源要优于采用基本镜像恒流源。原因之一是: 三:单项选择题(每题1分,共10分) 1. 图1所示硅二极管电路中的v i(t)是振幅等于2v的低频正弦电压。该电路中,电阻R L上的电压v o(t)的波形应该为( )。

A. B. C. D. 2. 测得某放大器中一支BJT的三个电极的直流电压为:-0.1v,+7.3v和-0.82v。由此可以判断,该管是( )。 A. NPN硅管 B. NPN锗管 C. PNP硅管 D. PNP锗管 3. 在下面关于放大器的四钟说法中,只有( )是肯定正确的。 A. 放大器有功率放大功能 B. 放大器有电压放大功能 C. 放大器有电流放大功能 D. 放大器的增益带宽积为常数 4. FET共漏(CD)放大器与BJT放大器中的()组态性能相似。 A. CC B.CE C. CB D.CE-CB

5. 图2是OTL功放原理电路,该电路最大输出功率的理论值为()W。 A.18 B.9 C. 4.5 D. 2.25 6. 接上题。在选择功率管T1和T2时,每管的集电极最大耗散功率P CM必须大于()W。 A.3.6 B. 1.8 C. 0.9 D. 0.45 7. 接5题。在静态时,OTL功放中与负载串联的电容中的电压应该为( )伏。 A. 1.5a B. 3 C. 6 a D. 12 8. 将图3电路中的电阻( )换成电容,电路的功能改变为微分电路。 A.R1 B.R2 C.R3 D.R4 9. 如果用电压比表示用信号流图画出的反馈放大器(图4)的环路传输T,则T=( )。 A. v i/ v f B. v f / v i C. v s / v f D. v f /v s 10. 在下面4种基本放大器组态中,电路( )的小信号范围最小。 A. CE放大器 B. CS放大器 C. CE差动放大器 D. CS差动放大器 11.晶体管特性曲线不能用来( )。 A.判断管子的质量 B. 估算晶体管的一些参数 C.分析放大器的频率特性 D.图解分析放大器的指标 12.通用集成运算放大器内部电路不具有( )的特性。 A.开环增益高 B. 输入电阻大 C.深度负反馈 D.输出电阻小 13.在图3所示运放应用电路中,称为“虚地”的点是()点。 A.A B.B C.C D.D 14.在以下关于深负反馈的论述中,( )是错误的。

模拟电子技术基础_知识点总结

第一章半导体二极管 1.本征半导体 ?单质半导体材料是具有4价共价键晶体结构的硅Si和锗Ge。 ?导电能力介于导体和绝缘体之间。 ?特性:光敏、热敏和掺杂特性。 ?本征半导体:纯净的、具有完整晶体结构的半导体。在一定的温度下,本征半导体内的最重要的物理现象是本征激发(又称热激发),产生两种带电性质相反的载流子(空穴和自由电子对),温度越高,本征激发越强。 ◆空穴是半导体中的一种等效+q的载流子。空穴导电的本质是价电子依次填补本征晶体中空位, 使局部显示+q电荷的空位宏观定向运动。 ◆在一定的温度下,自由电子和空穴在热运动中相遇,使一对自由电子和空穴消失的现象称为 复合。当热激发和复合相等时,称为载流子处于动态平衡状态。 2.杂质半导体 ?在本征半导体中掺入微量杂质形成的半导体。体现的是半导体的掺杂特性。 ◆P型半导体:在本征半导体中掺入微量的3价元素(多子是空穴,少子是电子)。 ◆N型半导体:在本征半导体中掺入微量的5价元素(多子是电子,少子是空穴)。 ?杂质半导体的特性 ◆载流子的浓度:多子浓度决定于杂质浓度,几乎与温度无关;少子浓度是温度的敏感函数。 ◆体电阻:通常把杂质半导体自身的电阻称为体电阻。 ◆在半导体中,存在因电场作用产生的载流子漂移电流(与金属导电一致),还才能在因载流子 浓度差而产生的扩散电流。 3.PN结 ?在具有完整晶格的P型和N型半导体的物理界面附近,形成一个特殊的薄层(PN结)。 ?PN结中存在由N区指向P区的内建电场,阻止结外两区的多子的扩散,有利于少子的漂移。 ?PN结具有单向导电性:正偏导通,反偏截止,是构成半导体器件的核心元件。 ◆正偏PN结(P+,N-):具有随电压指数增大的电流,硅材料约为0.6-0.8V,锗材料约为0.2-0.3V。 ◆反偏PN结(P-,N+):在击穿前,只有很小的反向饱和电流Is。 ◆PN结的伏安(曲线)方程: 4.半导体二极管

相关主题
文本预览
相关文档 最新文档