当前位置:文档之家› 光纤通信技术

光纤通信技术

空间光通信技术简介

空间光通信技术简介 空间光通信又称为激光无线通信或无线光通信。根据用途又可分为卫星光通信和大气光通信两大类。自从60年代激光器问世开始,人们就开研究激光通信,这时的研究也主要集中在地面大气的传输中,但因各种困难未能进入实际应用。低损耗光纤波导和实用化半导体激光器的诞生为激光通信的实际应用打开了大门,目前光纤通信已经遍布世界各国的各个城市。由于对无线通信的需求的增长,再有卫星激光通信的快速发展,自从90年代开始,人们又开始重新对地面无线光通信感兴趣,进行了大量的研究,并且开发出可以实用的商业化产品。 一、开展空间光通信研究的意义及应用前景 1.作为卫星光通信链路地面模拟系统的技术组成部分 卫星光通信链路系统在上卫星前必须有地面模拟演示系统,以保障电子系统、光学系统、机械自动化控制系统等各子系统的良好工作。在链路捕捉完成以后,与以太网相连的无线光通信系统借助于光链路的桥梁,源源不断地输送以太网上的信息,这是考验光链路稳定性能的重要指标。 2.为低轨道卫星与地面站间的卫星光通信打下良好的技术基础 低轨道卫星与地面站的通信会受到天气的影响,选择干旱少雨地区建立地面站在相当程度上缓解了这一矛盾,再通过地面站之间的光纤网可以把卫星上信息送到所需地点,这从技术上牵涉到空间光通信网与光纤网连接问题,这方面问题已经基本得到解决。 3.空间光通信具有巨大的潜在市场和商业价值 ●可以克服一些通常容易碰到的自然因素障碍 当河流、湖泊、港湾、马路、立交桥和其它自然因素阻碍铺设光纤时,无线光通信系统可跨越宽阔的河谷,繁华的街道,将两岸或者岛屿与陆地连接起来。 ●提供大容量多媒体宽带网接入 用无线光通信系统作为接入解决方案,不需耗资、耗时地铺设光纤就能满足对办公大楼或商业集中区大容量接入的需要。 ●可为大企业、大机关提供部大容量宽带网 无线光通信系统能在企业、机关围为建筑物与建筑物之间的大容量连接提供一种开放空间传送的解决方案。 ●为公安、军队等重要部门提供高速宽带通信。 ●支持灾难抢救的应急系统 无线光通信系统可为灾难抢救提供一种大容量的临时通信解决方案 ●为一时性大规模的重要活动提供临时的大规模通信系统 例如,奥运会和其他体育运动会、音乐会、大型会议以及贸易展览会等专门活动往往需要大容量宽带媒体覆盖。无线光通信系统能提供一种迅速、经济而有效的解决方案,不受原有通信系统的带宽限制,也不用再去办理光纤铺设许可证。 二、空间光通信的优势 1.组网机动灵活 无线光通信设备将来可广泛适用于数据网(Ethernet,Token Ring,Fast Ethernet,FDDI,ATM,STM-x等)、网、微蜂窝及微微蜂窝(E1/T1—E3/T3,OC-3等)、多媒体(图像)通信等领域。可以把这些网上信息加载在光波上,在空气中直接传输出去,这种简便的通信方式对于频率拥挤的环境是非常理想的,例如:城市、大型公司、大学、政府机构、办公楼群等。

光纤通信技术论文

光纤通信技术 光纤即为光导纤维的简称。光纤通信是以光波作为信息载体,以光纤作为传输媒介的一种通信方式。从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。光纤除了按制造工艺、材料组成以及光学特性进行分类外,在应用中,光纤常按用途进行分类,可分为通信用光纤和传感用光纤。传输介质光纤又分为通用与专用两种,而功能器件光纤则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤,并常以某种功能器件的形式出现。 光纤通信就是利用光导纤维传输信号,以实现信息传递的一种通信方式。光导纤维通信简称光纤通信。可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆。光纤通信具有以下特点:(1)通信容量大、传输距离远。 (2)信号串扰小、保密性能好; (3)抗电磁干扰、传输质量佳。 (4)光纤尺寸小、重量轻,便于敷设和运输; (5)材料来源丰富,环境保护好,有利于节约有色金属铜。 (6)无辐射,难于窃听, (7)光缆适应性强,寿命长。 (8)质地脆,机械强度差。 (9)光纤的切断和接续需要一定的工具、设备和技术。 (10)分路、耦合不灵活。 (11)光纤光缆的弯曲半径不能过小(>20cm) (12)有供电困难问题。 就光纤通信技术本身来说,应该包括以下几个主要部分:光纤光缆技术、光交换技术传输技术、光有源器件、光无源器件以及光网络技术等。 光纤光缆技术 光纤技术的进步可以从两个方面来说明: 一是通信系统所用的光纤; 二是特种光纤。早期光纤的传输窗口只有3个,即850nm(第一窗口)、1310nm(第二窗口)以及1550nm(第三窗口)。近几年相继开发出第四窗口(L波段)、第五窗口(全波光纤)以及S波段窗口。其中特别重要的是无水峰的全波窗口。这些窗口开发成功的巨大意义就在于从1280nm到1625nm的广阔的光频范围内,都能实现低损耗、低色散传输,使传输容量几百倍、几千倍甚至上万倍的增长。这一技术成果将带来巨大的经济效益。另一方面是特种光纤的开发及其产业化,这是一个相当活跃的领域。 光复用技术 复用技术是为了提高通信线路的利用率,而采用的在同一传输线路上同时传输多路不同信号而互不干扰的技术。光复用技术种类很多,其中最为重要的是波分复用(WDM)技术和光时分复用(OTDM)技术。光波分复用(WDM)技术是在一芯光纤中同时传输多波长光信号的一项技术。其基本原理是在发送端将不同波长的光信号组合起来,并耦合到光缆线路上的同一根光纤中进行传输,在接收端将组合波长的光信号分开,并作进一步处理,恢复出原信号后送入不同的终端。波分复用当前的商业水平是273个或更多的波长,研究水平是1022个波长(能传输368亿路电话),近期的潜在水平为几千个波长,理论极限约为15000个波长(包括光的偏振模色散复用,OPDM)。而光时分复用(OTDM)技术指利用高速光开关把多路光信号在时域里复用到一路上的技术。光时分复用(OTDM)的原理与电时分复用相同,只不过电时分复用是在电域中完成,而光时分复用是在光域中进行,即将高速的光支路数据流(例如10Gbit/s,甚至40Gbit/s)直接复用进光域,产生极高比特率的合成光数据流。

最新光纤通信资料

光纤通信系统 第一章所谓光纤通信,就是用光作为信息的载体、以光纤作为传输介质的一种通信方式。通信系统的容量通常用比特率—距离积BL 表示,B 为比特率,L 为中继间距。 三种低损耗窗850nm、3dB/km;1310nm、0.4dB/km;1550nm、0.2dB/km 4、PDH和SDH各表示什么?其速率等级标准是什么? 答:PDH表示准同步数字序列,即在低端基群采用同步,高次群复用采用异步;SDH表示同步数字序列。 PDH速率等级标准: SDH速率等级标准: STM-1:155.520Mbit/s STM-4:622.080 Mbit/s STM-16:2.5 Gbit/ STM-64:10 Gbit/s 3、光纤通信有哪些优点? 答:1、频带宽,通信容量大 2、损耗低,中继距离长 3、抗电磁干扰 4、无串音干扰,保密性好 5、光纤线径细、重量轻、柔软 6、光纤的原材料资源丰富,用光纤可节约金属材料 7、光纤具有耐腐蚀力强、抗核幅射、能源消耗小等优点。 5 、图示光纤通信系统,解释系统基本结构。 答: 光纤通信系统由光发送机、光纤光缆与光接收机等基本单元组成。系统中包含一些互连与光信号处理部件,如光纤连接器、隔离器、调制器、滤波器、光开关及路由器等。在长距离系统中还设置有中继器(混合或全光)。

1.光纤由哪几部分构成?从横截面上看由三部分构成:纤芯、包层、涂敷层; 2、光纤中的纤芯折射率与包层折射率的关系?单模光纤和多模光纤中中两者的芯经一般分别为多少? 答:纤芯折射率大于包层折射率; 单模光纤纤芯直径:2a=8μm ~12μm ,包层直径:2b=125μm ;多模光纤纤芯直径:2a=50μm ,包层直径:2b=125μm 。 3、根据芯、包折射率分布及模式传播情况,指出有哪些典型形式光纤? 答:按照折射率: 折射率在纤芯与包层介面突变的光纤称为阶跃光纤;折射率在纤芯内按某种规律逐渐降低的光纤称为渐变光纤。 按照传输模式: 单模光纤和多模光纤。 5、数值孔径NA 的物理意义?表达式是什么? 答:光纤的数值孔径NA,它的含义是反映光纤对光信号的集光能力(接收能力),NA 值越大,对光信号集光(接收)能力越强。 NA =sin θ C ( 0001001sin sin(90)1sin cos c c n n n n n n n n NA n θθθθ=-=======∴=或或

光纤通信技术的发展历史

论文题目:光纤通信技术发展历史 姓名:谢新云 学号:0932002231 专业班级:通信技术(2) 院系:电子通信工程学院 指导老师:彭霞 完成时间:2011年10月22日

概论 目前,在实际运用中相当有前途的一种通信技术之一,即光纤通信技术已成为现代化通信非常重要的支柱。作为全球新一代信息技术革命的重要标志之一,光纤通信技术已经变为当今信息社会中各种多样且复杂的信息的主要传输媒介,并深刻的、广泛的改变了信息网架构的整体面貌,以现代信息社会最坚实的通信基础的身份,向世人展现了其无限美好的发展前景。 自上世纪光纤通信技术在全球问世以来,整个的信息通讯领域发生了本质的、革命性的变革,光纤通信技术以光波作为信息传输的载体,以光纤硬件作为信息传输媒介,因为信息传输频带比较宽,所以它的主要特点是:通信达到了高速率和大容量,且损耗低、体积小、重量轻,还有抗电磁干扰和不易串音等一系列优点,从而备受通信领域专业人士青睐,发展也异常迅猛。 光纤通信不仅可以应用在通信的主干线路中,也可以在电力通信控制系统中发挥作用,进行工业监测、控制,现在在军事上也被广泛应用,基于各领域对信息量的需求不断增长,光纤通信技术的应用发展趋势也备受关注。一条完整的光纤链路除受光纤本身质量影响外,还取决于光纤链路现场的施工工艺和环境。 本文针对光纤通信技术的发展及趋势展开研究,分别介绍了光纤通信技术的发展历史和现状,以及光纤通信技术的发展趋势,对一些先进的光纤通信技术进行了介绍。 关键字:光纤通信技术,发展历史,现状,发展趋势

目录 概论 (1) 目录 (2) 第一章光纤通信技术的形成 (3) 1.1早期的光通信 (3) 1.2 现在光纤通信技术的形成 (3) 1.2.1 光纤通信器件的发展 (3) 1.2.2 光纤 (5) 第二章光纤通信技术的现状 (8) 2.1 光纤光缆 (8) 2.2 光电子器件 (8) 2.3光纤通信系统 (14) 第三章我国光纤通信技术的发展 (15) 参考文献 (16)

1,光纤通信简介与光纤的导光原理介绍。

什么是光纤通信 所谓光纤通信,就是利用光纤来传输携带信息的光波以达到通信之目的。 要使光波成为携带信息的载体,必须对之进行调制,在接收端再把信息从光波中检测出来。然而,由于目前技术水平所限,对光波进行频率调制与相位调制等仍局限在实验室内,尚未达到实用化水平,因此目前大都采用强度调制与直接检波方式(IM-DD)。又因为目前的光源器件与光接收器件的非线性比较严重,所以对光器件的线性度要求比较低的数字光纤通信在光纤通信中占据主要位置。 典型的数字光纤通信系统方框图如图下所示。 从图中可以看出,数字光纤通信系统基本上由光发送机、光纤与光接收机组成。发送端的电端机把信息(如话音)进行模/数转换,用转换后的数字信号去调制发送机中的光源器件LD,则LD 就会发出携带信息的光波。即当数字信号为“1”时,光源器件发送一个“传号”光脉冲;当数字信号为“0”时,光源器件发送一个“空号”(不发光)。光波经低衰耗光纤传输后到达接收端。在接收端,光接收机把数字信号从光波中检测出来送给电端机,而电端机再进行数/模转换,恢复成原来的信息。就这样完成了一次通信的全过程。 光纤的导光原理 光是一种频率极高的电磁波,而光纤本身是一种介质波导,因此光在光纤中的传

输理论是十分复杂的。要想全面地了解它,需要应用电磁场理论、波动光学理论、甚至量子场论方面的知识。但作为一个光纤通信系统工作者,无需对光纤的传输 理论进行深入探讨与学习。 为了便于理解,我们从几何光学的角度来讨论光纤的导光原理,这样会更加直观、形象、易懂。更何况对于多模光纤而言,由于其几何尺寸远远大于光波波长,所以可把光波看作成为一条光线来处理,这正是几何光学的处理问题的基本出发 点。 全反射原理 我们知道,当光线在均匀介质中传播时是以直线方向进行的,但在到达两种不同介质的分界面时,会发生反射与折射现象,如图下所示。

光纤通信技术论文

光纤通信技术论文 论光纤通信技术的特点和发展趋势 摘要:光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。光纤通信技术作为信息技术的重要支撑平台,在未来信息社会中将起到十分重要的作用。本文探讨了光纤通信技术的主要特征及发展趋势。 关键词:光纤通信技术特点发展趋势接入技术 引言 近年来随着传输技术和交换技术的不断进步,核心网已经基本实现了光纤化、数字化和宽带化。同时,随着业务的迅速增长和多媒体业务的日益丰富,使得用户住宅网的业务需求也不只局限于原来的语音业务,数据和多媒体业务的需求已经成为不可阻挡的趋势,现有的语音业务接入网越来越成为制约信息高速公路建设的瓶颈,成为发展宽带综合业务数字网的障碍。 1.光纤通信技术定义 光纤通信是利用光作为信息载体、以光纤作为传输的通信力式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤

通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的中绕非常小,光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听,光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。 2.光纤通信技术的特点 2.1 频带极宽,通信容量大。 光纤的传输带宽比铜线或电缆大得多。对于单波长光纤通信系统,由于终端设备的限制往往发挥不出带宽大的优势。因此需要技术来增加传输的容量,密集波分复用技术就能解决这个问题。 2.2 损耗低,中继距离长。 目前,实用的光纤通信系统使用的光纤多为石英光纤;此类光纤损耗可低于0.20dB/km,这样的传输损耗比其它任何传输介质的损耗都低,因此,由其组成的光纤通信系统的中继距离也较其他介质构成的系统长得多。如果将来使用非石英极低损耗传输介质,理论上传输的损耗还可以降到更低的水平。这就表明通过光纤通信系统可以减少系统的施工成本,带来更好的经济效益。 2.3 抗电磁干扰能力强。

光纤通信中应用的新技术

一﹑光纤通信中应用的新技术 1.1光弧子通信 1844年,苏格兰海军工程师约翰·斯科特·亚瑟对船在河道中运动而形成水的波峰进行观察,发现当船突然停止时,原来在船前被推起的水波依然维护原来的形状、幅度和速度向前运动,经过相当长的时间才消失。这就是著名的孤立波现象。孤立波是一种特殊形态的波,它仅有一个波峰,波长为无限,在很长的传输距离内可保持波形不变。人们从孤立波现象得到启发,引出了孤子的概念,而以光纤为传输媒介,将信息调制到孤子上进行通信的系统则称作光孤子传输系统。 光脉冲在光纤中传播,当光强密度足够大时会引起光脉冲变窄,脉冲宽度不到1个Ps,这是非线性光学中的一种现象,称为光孤子现象。若使用光孤子进行通信可使光纤的带宽增加10~100倍,使通信距离与速度大幅度地提高。于常规的线性光纤通信系统而言,限制其传输容量和距离的主要因素是光纤的损耗和色散。随着光纤制作工艺的提高,光纤的损耗已接近理论极限,因此光纤色散便成为实现超大容量光纤通信亟待解决的问题。光纤的色散,使得光脉冲中不同波长的光传播速度不一致,结果导致光脉冲展宽,限制了传输容量和传输距离。由光纤的非线性所产生的光孤子可抵消光纤色散的作用。因此,利用光孤子进行通信可以很好地解决这个问题。 光纤的群速度色散和光纤的非线性,二者共同作用使得孤子在光纤中能够稳定存在。当工作波长大于1.3¨m时,光纤呈现负的群速度色散,即脉冲中的高频分量传播速度快,低频分量传播速度慢。在强输入光场的作用下,光纤中会产生较强的非线性克尔效应,即光纤的折射率与光场强度成正比,进而使得脉冲相位正比于光场强度,即自相位调制,这造成脉冲前沿频率低,后沿频率高,因此脉冲后沿比脉冲前沿运动得快,引起脉冲压缩效应。当这种压缩效应与色散单独作用引起的脉冲展宽效应平衡时即产生了束缚光脉冲——光孤子,它可以传播得很远而不改变形状与速度。 光孤子通信的关键技术是产生皮秒数量级的光孤子和工作在微波频率的检测器。目前用多模光纤激光器和DFB激光器已能产生几十皮秒的光孤子。但真正要投入使用还有许多问题需要解决。 1.2相干光通信 迄今为止的光纤通信系统,几乎都是采用强度调制一直接检波的方式。这种方式的优点是调制和解调容易,系统的成本较低,但性能还需进一步提高。人们把光通信和无线电通信相比较,发现这种方式与早期无线电通信的直接检波类似。在直接检波以后,无线电通信通过引入外差检波方式,避免了高频放大滤波的困难,得到了混频增益,提高了接收选择性。通过引入相干调制技术,充分利用了无线电波的频率和相位信息,大大地改善了无线电通信系统的性能。类似地,在光通信中利用相干调制和外差检测技术,也可改善光通信的性能,这就是相干光通信。 在相干光通信中主要利用了相干调制和外差检测技术,所谓相干调制,就是利用要传输的信号来改变光载波的频率、相位和振幅(而不像强度检测那样只是改变光的强度),这就需要光信号有确定的频率和相位(而不像自然光那样没有确定的频率和相位),即应是相干光。激光就是一种相干光。所谓外差检测,就是利用一束本机振荡产生的激光与输入的信号光在光混频器中进行混频,得到与信号光的频率、相位和振幅按相同规律变化的中频信号。由于相干光通信具有灵敏度高、选择性好的优点,可以用来做成大容量、长距离的干线网。在光纤有线电视系统中,如果采用相干光通信技术,可以建成光纤到户的系统。由于选择性的提高,可以传输多得多的频道;由于接收机灵敏度的提高,使带动的用户数大大增加;采用可调谐本振接收机,用户可以方便地随时选择信道。相干光通信技术,目前还只是试验阶

光纤通讯基础简介(上)

光纤通讯基础简介(上) 一、光通讯简介 1、使用光通讯技术的优点︰ 它是以光当作载波,透过光纤当传输介质将信息传递至远方。若以铜质同轴电缆与光纤作一比较,同轴电缆是搭配电磁波以数百MHz至数个GHz频率,以模拟的方式来传递信息,但其载波频率会受到20GHz理论值的限制;若以长距离光纤通讯而言,光的载波频率可达193,000GHz。而传输信息的频宽取决于载波频率,因此,若同轴缆线最大上限可以传输两个10GHz的频道,理论上,光纤则可以传输数以千计的10GHz的频道。此外,光纤质轻直径小,在光缆铺设过程中可以节省空间,加上在传输的过程中的衰减比铜质导线低,以单模光纤而言,每公里衰减约为0.2~0.5dB,且对于光讯号在光纤传输过程中,对于电磁波的干扰较不敏感,因此适合高容量及长距离通讯。 2、应用的层次︰ 光通讯主要应用在电信网络、有线电视及数据传输方面,而电信方面的应用是最早的,例如越洋的通信,因其高容量及可靠度的优点,并可以在长距离(600km以上需要中继器,最大可达9000km)传输时载上数以万计的通话信号,因而有效的提升通话负载量及品质的问题。有线电视方面,因所需求的频宽较高,每个频道的所需的影像频宽约为6MHz(声音频道约为8KHz),以光纤传递模拟影像讯号,可以达到一百个以上的频道,其中包括声音、影像及互动的数据传输。而数据通信(Datacommunication)上面,则是现在最热门的话题,随着信息时代的来临,网际网络需要大量的频宽来传递多媒体的信息,从短距离(1~500m)的Gigabit网络卡、LAN,到中距离(1~20km)的MAN以至于长距离(60~600km以上)的越洋光缆都需要光纤的大容量来解决频宽不足的问题,近年来,因网际网络Interent的盛行及远距教学等实施,对于数据通讯的需求每年以倍数成长,而光纤通信系统架构则是最佳的选择。 3、基本光纤通讯架构︰ 图一为点对点光纤通讯的基本架构,基本上是由光收发模块及光纤所组成,首先我们利用数字或模拟调变的方式将信息载在发射器上,以光波为载波透过光纤将讯号传递至远方,若距离较长,光纤则透过联结器(Connector)或接合器(splice)方式延长,最后到达光传感器端,在注重噪声与讯号比(S/N Ratio)情况下,并用clock recover的方式下将光讯号转回电讯号,而将信息解调回来。

光纤通信技术

光纤通信技术 摘要:光纤通信是利用光波作载波,以光纤作为传输媒质将信息从一处传至另一处的通信方式。1966年英籍华人高锟博士发表了一篇划时代性的论文,他提出利用带有包层材料的石英玻璃光学纤维,能作为通信媒质。从此,开创了光纤通信领域的研究工作。1977年美国在芝加哥相距7000米的两电话局之间,首次用多模光纤成功地进行了光纤通信试验。85微米波段的多模光纤为第一代光纤通信系统。1981年又实现了两电话局间使用1.3微米多模光纤的通信系统,为第二代光纤通信系统。1984年实现了1.3微米单模光纤的通信系统,即第三代光纤通信系统。80年代中后期又实现了1.55微米单模光纤通信系统,即第四代光纤通信系统。用光波分复用提高速率,用光波放大增长传输距离的系统,为第五代光纤通信系统。新系统中,相干光纤通信系统,已达现场实验水平,将得到应用。光孤子通信系统可以获得极高的速率,20世纪末或21世纪初可能达到实用化。在该系统中加上光纤放大器有可能实现极高速率和极长距离的光纤通信。 关键字:光纤;光纤通信器件;传输技术 Abstract: optical fiber communication is the carrier for the use of light, the optical fiber transmission medium as the message from one place to another means of communication. In 1966 the Chinese British doctor Gao Kun made an epoch-making the paper, he presented with cladding material quartz glass optical fibers, can be used as a communication medium. Since then, pioneered the field of optical fiber communication research. In 1977 the United States of America in Chicago being 7000 meters of two Telephone Bureau, first used successfully for multimode optical fiber optical fiber communication test. 85 micron band multimode fibers for the first generation of optical fiber communication system. 1981 has two telephone interoffice using 1.3 microns multimode fiber communication system, as the second generation of optical fiber communication system. In 1984 1.3 micron single-mode optical fiber communication system, namely the third generation of optical fiber communication system. In the late 80 's and 1.55 micron single-mode optical fiber communication system, namely the fourth generation of optical fiber communication system. Using WDM increase rate, light amplification growth propagation distance of the system, as the fifth generation of optical fiber communication system. The new system, the system of coherent optical fiber communication, has reached the field experimental level, will be applied. Optical soliton communication system can achieve extremely high speed, at the end of twentieth Century or the beginning of twenty-first Century may reach utility. In the system with optical fiber amplifier has the potential to achieve high speed and extremely long distance optical fiber communication. Keywords: optical fiber; optical fiber communication device; transmission technique 1 引言 光纤通信的发展极其迅速,至1991年底,全球已敷设光缆563万千米,到1995年已超过1100万千米。光纤通信在单位时间内能传输的信息量大。一对单模光纤可同时开通

光纤通信技术介绍

光纤通信技术介绍 光纤通信是利用光波作载波,以光纤作为传输媒质将信息从一处传至另一处的通信方式。1966年英籍华人高锟博士发表了一篇划时代性的论文,他提出利用带有包层材料的石英玻璃光学纤维,能作为通信媒质。从此,开创了光纤通信领域的研究工作。1977年美国在芝加哥相距7000米的两电话局之间,首次用多模光纤成功地进行了光纤通信试验。85微米波段的多模光纤为第一代光纤通信系统。1981年又实现了两电话局间使用1.3微米多模光纤的通信系统,为第二代光纤通信系统。1984年实现了1.3微米单模光纤的通信系统,即第三代光纤通信系统。80年代中后期又实现了1.55微米单模光纤通信系统,即第四代光纤通信系统。用光波分复用提高速率,用光波放大增长传输距离的系统,为第五代光纤通信系统。新系统中,相干光纤通信系统,已达现场实验水平,将得到应用。光孤子通信系统可以获得极高的速率,20世纪末或21世纪初可能达到实用化。在该系统中加上光纤放大器有可能实现极高速率和极长距离的光纤通信。 就光纤通信技术本身来说,应该包括以下几个主要部分:光纤光缆技术、光交换技术传输技术、光有源器件、光无源器件以及光网络技术等。 光纤技术的进步可以从两个方面来说明: 一是通信系统所用的光纤; 二是特种光纤。早期光纤的传输窗口只有3个,即850nm(第一窗口)、1310nm(第二窗口)以及1550nm(第三窗口)。近几年相继开发出第四窗口(L波段)、第五窗口(全波光纤)以及S波段窗口。其中特别重要的是无水峰的全波窗口。这些窗口开发成功的巨大意义就在于从1280nm到1625nm 的广阔的光频范围内,都能实现低损耗、低色散传输,使传输容量几百倍、几千倍甚至上万倍的增长。这一技术成果将带来巨大的经济效益。另一方面是特种光纤的开发及其产业化,这是一个相当活跃的领域。 1. 有源光纤 这类光纤主要是指掺有稀土离子的光纤。如掺铒(Er3+)、掺钕(Nb3+)、掺镨(Pr3+)、掺镱(Yb3+)、掺铥(Tm3+)等,以此构成激光活性物质。这是制造光纤光放大器的核心物质。不同掺杂的光纤放大器应用于不同的工作波段,如掺饵光纤放大器(EDFA)应用于1550nm附近(C、L波段);掺镨光纤放大器(PDFA)主要应用于1310nm波段;掺铥光纤放大器(TDFA)主要应用于S波段等。这些掺杂光纤放大器与喇曼(Raman)光纤放大器一起给光纤通信技术带来了革命性的变化。它的显著作用是:直接放大光信号,延长传输距离;在光纤通信网和有线电视网(CATV网)中作分配损耗补偿;此外,在波分复用(WDM)系统中及光孤子通信系统中是不可缺少的关键元器件。正因为有了光纤放大器,才能实现无中继器的百万公里的光孤子传输。也正是有了光纤放大器,不仅能使WDM传输的距离大幅度延长,而且也使得传输的性能最佳化。 2. 色散补偿光纤(Dispersion Compensation Fiber,DCF) 常规G.652光纤在1550nm波长附近的色散为17ps/nm×km。当速率超过2.5Gb/s时,随着传输距离的增加,会导致误码。若在CATV系统中使用,会使信号失真。其主要原因是正色散值的积累引起色散加剧,从而使传输特性变坏。为了克服这一问题,必须采用色散值为负的光纤,即将反色散光纤串接入系统中以抵消正色散值,从而控制整个系统的色散大小。这里的反色散光纤就是所谓的色散补偿光纤。在1550nm处,反色散光纤的色散值通常在-50~200ps/nm×km。为了得到如此高的负色散值,必须将其芯径做得很小,相对折射率差做得很大,而这种作法往往又会导致光纤的衰耗增加(0.5~1dB/km)。色散补偿光纤是利用基模波导色散来获得高的负色散值,通常将其色散与衰减之比称作质量因数,质量因数当然越大越好。为了能在整个波段均匀补偿常规单模光纤的色散,最近又开发出一种既补偿色散又能补偿色散斜率的"双补偿"光纤(DDCF)。该光纤的特点是色散斜率之比(RDE)与常规光纤相同,

光纤通信的新技术

光纤通信的新技术 班级电信(一)班 学号 姓名 2010年10月

光纤通信的新技术 摘要:光纤通信发展的目标是提高通信能力和通信质量,降低价格,满足社会需要。进入20世纪90年代以后,光纤通信成为一个发展迅速、技术更新快、新技术不断涌现的领域。如光放大技术,光波分复用技术,光交换技术,光孤子通信,相干光通信,光时分复用技术和波长变换技术等。 关键词:光纤通信新技术特点 1光放大技术 1.1光纤放大器光放大器有半导体光放大器和光纤放大器两种类型。半导体光放大器的优点是小型化,容易与其他半导体器件集成;缺点是性能与光偏振方向有关,器件与光纤的耦合损耗大。光纤放大器的性能与光偏振方向无关,器件与光纤的耦合损耗很小,因而得到广泛应用。 1.2掺铒光纤放大器(EDFA)的优点工作波长正好落在光纤通信最佳波段;增益高;噪声系数小;频带宽。 1.3掺铒放大器的应用EDFA的应用可分为三种形式:中继放大器;前置放大器;后置放大器。 2光波分复用技术 随着人类社会信息时代的到来,对通信的需求呈现加速增长的趋势。发展迅速的各种新型业务(特别是高速数据和视频业务)对通信网的带宽(或容量)提出了更高的要求。为了适应通信网传输容量的不断增长和满足网络交互性、灵活性的要求,产生了各种复用技术。在光纤通信系统中除了大家熟知的时分复用(TDM)技术外,还出现了其他的复用技术,例如光时分复用(OTDM)、光波分复用(WDM)、光频分复用(OFDM)以及副载波复用(SCM)技术。 2.1光波分复用原理 2.11WDM的概念光波分复用(WDM: Wavelength Division Multiplexing)技术是在一根光纤中同时传输多个波长光信号的一项技术。 2.12WDM系统的基本形式光波分复用器和解复用器是WDM技术中的关键部件,将不同波长的信号结合在一起经一根光纤输出的器件称为复用器(也叫合波器)。反之,经同一传输光纤送来的多波长信号分解为各个波长分别输出的器件称为解复用器(也叫分波器)。从原理上讲,这种器件是互易的(双向可逆),即只要将解复用器的输出端和输入端反过来使用,就是复用器。WDM系统的基本构成主要有以下两种形式:(1) 双纤单向传输(2) 单纤双向传输。 2.13WDM技术的主要特点充分利用光纤的巨大带宽资源;同时传输多种不同类型的信号;节省线路投资;降低器件的超高速要求;高度的组网灵活性、经济性和可靠性 3光交换技术 在较早的通信网络中,高速光纤通信系统仅充当点对点链路的传输手段。网络节点采用的是电子交换技术,其速率限制了通信网络速率的提高。只有实现光交换才能充分解决速率瓶颈,实现真正的宽带通信网。光交换目前主要有两种方式:空分交换和波分交换。 4光弧子通信 光弧子是经光纤长距离传输后,其宽度保持不变的超短光脉冲。光弧子的形成是光纤的群速度色散和非线性效应相互平衡的结果。利用光弧子作为载体的通信方式称为光弧子通信。光弧子通信系统可使传输速率大幅提高。 5相干光通信

光纤通信技术论文

光纤通信技术论文 光纤通信技术 光纤即为光导纤维的简称。光纤通信是以光波作为信息载体,以光纤作为传输 媒介的一种通信方式。从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。光纤除了按制造工艺、材料组成以及光学特性进行分类外,在应用中,光纤常按用途进行分类,可分为通信用光纤和传感用光纤。传输介质光纤又分为通用与专用两种,而功能器件光纤则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤,并常以某种功能器件的形式出现。 光纤通信就是利用光导纤维传输信号,以实现信息传递的一种通信方式。光导纤维通信简称光纤通信。可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆。光纤通信具有以下特点: (1)通信容量大、传输距离远。 (2)信号串扰小、保密性能好; (3)抗电磁干扰、传输质量佳。 (4)光纤尺寸小、重量轻,便于敷设和运输; (5)材料来源丰富,环境保护好,有利于节约有色金属铜。 (6)无辐射,难于窃听, (7)光缆适应性强,寿命长。 (8)质地脆,机械强度差。 (9)光纤的切断和接续需要一定的工具、设备和技术。 (10)分路、耦合不灵活。 (11)光纤光缆的弯曲半径不能过小(>20cm) (12)有供电困难问题。 就光纤通信技术本身来说,应该包括以下几个主要部分:光纤光缆技术、光交 换技术传输技术、光有源器件、光无源器件以及光网络技术等。 光纤光缆技术 光纤技术的进步可以从两个方面来说明: 一是通信系统所用的光纤; 二是特种光纤。早期光纤的传输窗口只有3个,即850nm(第一窗口)、1310nm(第二窗口)以及1550nm(第三窗口)。近几年相继开发出第四窗口(L波段)、第五窗口(全波光纤)

光纤通信实验资料报告材料

实验1 数字发送单元指标测试实验 一、实验目的 1.了解数字光发端机平均输出光功率的指标要求 2.掌握数字光发端机平均输出光功率的测试方法 3.了解数字光发端机的消光比的指标要求 4.掌握数字光发端机的消光比的测试方法 二、实验仪器 1.ZYE4301G型光纤通信原理实验箱1台 2.光功率计1台 3.FC/PC-FC/PC单模光跳线1根 4.示波器1台 5.850nm光发端机1个 6.ST/PC-FC/PC多模光跳线1根 三、实验原理 四、实验容 1.测试数字光发端机的平均光功率 2.测试数字光发端机的消光比 3.比较驱动电流的不同对平均光功率和消光比的影响 五、实验步骤 A、1550nm数字光发端机平均光功率及消光比测试 1.伪随机码的产生:伪随机码由CPLD下载模块产生,请参看系统简介中的CPLD下载模块。将PCM编译码模块的4.096MH Z时钟信号输出端T661与CPLD下载模块的NRZ信号产生电路的信号输入端T983连接,NRZ信号输出端T980将产生4M速率24-1位的伪随机信号,用示波器观测此信号。将此信号与1550nm光发模块输入端T151连接,作为信号源接入1550nm光发端机。 2.用FC-FC光纤跳线将光发端机的输出端1550T与光功率计连接,形成平均光功率测试系统,调整光功率计,使适合测1550nm信号。 3.用K60、K90和K15接通PCM编译码模块、CPLD模块和光发模块的电源。 4.用光功率计测量此时光发端机的光功率,即为光发端机的平均光功率。 5.测消光比用数字信号源模块输出的NRZ码作为信号源。用K60接通电源,用用示波器从T504观测此信号,将K511接1、2或2、3可观测到速率的变化,将此信号接到T151,作为伪随机信号接入光发端机。 6.用数字信号源模块的K501、K502、K503将数字信号拨为全“1”,测得此时光功率为P1,将数字信号拨为全“0”,测得此时光功率为P0。 7.将P1,P0代入公式2-1式即得1550nm数字光纤传输系统消光比。 B、1310nm数字发端机平均光功率及消光比测试 8.信号源仍用4M速率24-1位的伪随机信号,与1310nm光发模块输入端T101连接。 9.用FC-FC光纤跳线将1310nm光发模块输出端1310T与光功率计连接,形成平均光功率测试系统,调整光功率计,使适合测1310nm信号。 10.将BM1拨至数字,BM2拨至1310nm。 11.接通PCM编译码模块、CPLD模块和1310nm光发模块(用K10)的电源。 12.用万用表在T103和T104监控R110(阻值为1Ω)两端电压,调节电位器W101,使半导体激光器驱动电流为额定值25mA。 13.用光功率计测量此时光发端机的光功率,即为光发端机的平均光功率。 14.测消光比用数字信号源模块输出的NRZ码作为信号源,请参看系统简介中的数字信号源模块部分。用示波器从T504观测此信号,连接T504与T101,将数字信号拨为全“1”,测得此时光功率为P1,将数字信号拨为全“0”,测得此时光功率为P0。 15.将P1,P0代入公式2-1式即得1310nm数字光纤传输系统消光比。 16.重复9-15步,调节电位器W101,调节驱动电流大小为下表中数值时,测得的平均光功率及消 光比填入下表。

光纤通信技术特点分析论文

光纤通信技术特点分析论文 论文关键词:光纤通信技术,特点,应用 论文摘要:光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。本文探讨了光纤通信技术的主要特征及应用。 1.光纤通信技术 光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的串绕非常小;光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听;光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。 光纤通信在技术功能构成上主要分为:(1)信号的发射;(2)信号的合波;(3)信号的传输和放大;(4)信号的分离;(5)信号的接收。 2.光纤通信技术的特点 (1)频带极宽,通信容量大。光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到1OGbps。 (2)损耗低,中继距离长。目前,商品石英光纤损耗可低于0~20dB/km,这样的传输损耗比其它任何传输介质的损耗都低;若将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。 (3)抗电磁干扰能力强。光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不

光纤通信技术的特征

光纤通信技术的特征 光纤通信技术(opticalfibercommunications)从光通信中脱颖而出, 己成为现代通信的主要支柱之一,在现代电信网中起着举足轻重的作用。光纤通信作为一门新兴技术,其近年来发展速度之快、应用面之广是通信史上罕见的,也是世界新技术革命的重要标志和未来信息社会中各种信息的主要传送工具。 一、光纤通信技术 光纤即为光导纤维的简称,光纤通信是利用光作为信息载体、以光纤作为传输媒介的一种通信方式。光纤通信的原理是:在发送端首先要把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的串绕非常小;光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听;光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤

的问题。 光纤通信在技术功能构成上主要分为:(1)信号的发射;(2)信号的合波;⑶信号的传输和放大;(4)信号的分离;⑸信号的接收。 二、光纤通信技术的特点 (2)频带极宽,通信容量大。光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。 对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量, 特别是现在的密集波分复用技术极大地增加了光纤的传输容量。 (2)损耗低,中继距离长。在同轴电缆组成的系统中,最好的电缆 在传输800MHz信号时,每公里的损耗都在40dB以上。相比之下,光导纤维的损耗则要小得多,传输l.Blum的光,每公里损耗在0.35dB 以下。 若传输1.55um的光,每公里损耗更小,可达0.2dB以下。这就比同轴电缆的功率损耗要小一亿倍,使其能传输的距离要远得多。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。此 外,光纤传输损耗还有两个特点,一是在全部有线电视频道内具有相

关于光纤通信的论文 精品

本科学生毕业论文 论文题目:波分复用的光纤通信技术 学院:电子工程学院 年级:2009级 专业:通信工程 姓名:张琦 学号:20091400 指导教师:刘勇 2012 年 5 月 7日

摘要 近年来,通信行业发展迅速,大量的通信新业务不断涌现,信息高速公路正在全球范围内以惊人的速度发展建立起来。所有这些应用都对大容量通信提出了越来越高的要求,使得光纤通信技术向着速度高、容量大、可伸缩性好的方向发展。 波分复用(WDM)系统的发展正是适应了这一时代潮流。应用这种技术可以在同一根光纤上传输多路信道,从而使通信容量成倍的扩大。不过,随着掺铒放大器(EDFA)在系统中的大量使用,也会带来一系列相关问题,如:色散、增益失衡、非线性效应等等。在建立一个WDM光纤通信系统的时候,必须很好地解决这些问题。在本文中,将讨论这些WDM系统的关键技术,并给出一个WDM光纤通信系统的总体设计。主要工作如下:1.在对国内外WDM系统理论和实验研究进展进行广泛研究的基础上,重点讨论实现WDM 系统的关键技术和如何克服色散、增益失衡和非线性等影响性能的因素。 2.基于国际电联的ITU-T系列参考标准和信息产业部的相关标准,进行32×10 Gbit /s480km的WDM光纤通信系统总体设计和规划。给出系统的详细参数并对系统性能进行相关计算,讨论优化系统的技术和手段。 关键词 WDM;光纤通信;传输系统;大容量系统

Abstract Recently communication industry develop very fast,a large new communication services appered,the world is now building Cyber-high way. All these bring the need for larger and larger communication capacity,which stimulate fiber communication system develop towards adaptive,high speed,large capacity data transmission. Wavelength division multiplexing (WDM) system developed following the trend. The system can greatly increase the transmission capacity by increasing th channels in a single fiber. But multi-wavelength transmission and thd employment of Erbiumdoped Droped Fiber Amplifier (EDFA) will cause a number of new problems,such as chromatic dispersion,gain fluctuation,fluctuation and non-linear effects etc. Ths problems should be solved in building WDM fiber transmission system. In this paper,the key technologeis in WDM system are discussed. The main parts in this project are as follows: 1.Based on the widely studing of references,the development on the theory and experiments of WDM system is reviewed. The degradation of the performance of the system,which is caused by chromatic dispersion,gain fluctuation and fluctuation and non-linear effects in fiber,is analysed and some scenarios are suggested to solve them. 2.Based on the revelant standards of ITU-T and related references,is designed. The general scheme of 32 X 10Gbit/s 480km WDM transmission system are designed for the most systems which fiber are model G.652. The parameters of the system are defined,and the performance is calculated. Key words WDM;Optical fiber communication;Transmission system;Large capacity system;

相关主题
文本预览
相关文档 最新文档