当前位置:文档之家› 抽象不等式的解法

抽象不等式的解法

抽象不等式的解法
抽象不等式的解法

抽象不等式的解答方法

一、利用单调性、奇偶性等函数的性质

模型1:()f x 在区间上单调递增,若()()f a f b >,则a b >。

模型2:奇函数()f x 在区间上单调递增,若()()0f a f b +>,则可得()()f a f b >-,∴a b >-。

例题:已知函数()sin f x x x =-,则2(2)(3)0fx x f -+->

的解集为______.

解析:()f x 为奇函数,求导得'()1cos 0f x x =-≥,()f x ∴在R 上单调递增,

由2(2)(3)0f x x f -+->得,2(2)(3)f x x f -> ,

223x x ∴->, 解得,1x <-,或3x >。

总结:1、将目标写成具体不等式,则得到超越不等式,无法解答。没有具体解析式的不等式问题,结合函数的单调性、奇偶性解答。

2、考查条件函数的性质(单调性、奇偶性)和目标不等式的特点,由模型2可解答。

二、构造函数法: ——利用新函数单调性、奇偶性特殊点等性质画出图像,结合图像得不等式的解集。

这类问题的主要思想是,用x 、x e 、()f x 通过四则运算(主要是乘、除)的组合得到新函数。

模型1:()f x x

,求导得?2'()()xf x f x x -,结构特点?'()()xf x f x -。 说明:由求导法则,可知是由两个函数相除求导的结果。

模型2:()xf x ,求导得?'()()xf x f x +。

模型3:2()x f x ,求导得?22'()()xf x x f x +。

特点:求导的结果是,(),'()x f x f x 的组合,只有两个简单项。

模型4:()x e f x ,求导得?()'()(()'())x x x e f x e f x e f x f x +=+。

模型5:()x f x e ,求导得?2'()()'()()()x x x x

e f x e f x f x f x e e --=。 特点:求导的结果是(),'()f x f x 的组合,只有两个简单项。

模型6:(1)()x xe f x ,求导得

?(1)()'()((1)()'())x x x x e f x xe f x e x f x xf x ++=++。

(2)()x xf x e

,求导得 ?2(()'())()()'()()()x x x x

f x xf x e xe f x f x xf x xf x e e +-+-=。 (3)()x e f x x

,求导得 ?2(()'()())x

xf x xf x f x e x

+-。

特点:求导的结果是,(),'()x f x f x 的组合,只有三个简单项。

例1、()f x 是R 上的可导函数,且满足(1)()'()0x f x xf x ++>,则()_____0f x 。 分析:条件中不等式是,(),'()x f x f x 3个组合,故函数应是,,()x x e f x 三个简单函数组合的结果。

令()()x h x xe f x =,则'()[(1)()'()]0x h x e x f x xf x =++>,

()h x 在R 上递增,又(0)0h =,

()h x ∴图像如图所示:

()()0x h x xe f x =>时,x 与()f x 同号,()0f x ∴>;

()()0x h x xe f x =<时,x 与()f x 异号,()0f x ∴>;

综上()0f x >。

例2、已知函数()f x 在R 上的导函数为'()f x ,若'()()01

f x f x x ->-,()x f x y e =关于直线1x =对称,则不等式22()(0)x x f x x f e

--<的解集是( ) A 、(1,0)(1,2)- B 、(,0)(1,)-∞+∞ C 、

(1,2)- D 、(1,2) 分析:有条件,1x >时,'()()0f x f x ->

条件中不等式是(),'()f x f x 2个组合,故函数应是,()x e f x 2个简单函数组合的结果。 令()()x f x h x e =,则2'()()'()()'()()x x x x

e f x e f x f x f x h x e e --==, 1x ∴>时,'()0h x > ,

()h x 在(1,)+∞上递增,再由()h x 关于直线1x =对称。如图,

()h x ∴图像如图所示:

不等式22()

(0)x x f x x f e --<解集,即2()(0)h x x h -<的解集,

由图,202x x <-<

解得,10x -<<,或12x <<

例3、定义在R 上的偶函数()f x 的导函数为'()f x ,若对任意0x >,都有2()'()2f x xf x +<恒成立,则使22()(1)1x f x f x -<-的解集是( )

A 、(,1)(1,1)(1,)-∞--+∞

B 、(,1)(1,)-∞-+∞

C 、(1,1)-

D 、(1,0)(0,1)-

分析: 根据条件和目标不等式的特点,应是2x 与()f x 组合而成的函数。

目标不等式化为22()(1)1x f x x f -<-,

令22()()h x x f x x =-,()f x 为偶函数,()h x ∴为偶函数,

下面解不等式()(1)h x h <,

又0x >时,'()[2()'()2]0h x x f x xf x =+-<

()h x ∴在(0,)+∞上递减,(0)0h =,如图

1x ∴<-,或1x >

例4、已知函数()f x 在R 上的导函数为'()f x ,若()'()f x f x <恒成立,且(ln 2)2f =,则不等式()x f x e >的解集是( )

A 、(1,)+∞

B 、(0,1)

C 、(ln 2,)+∞

D 、(0,ln 2)

分析:条件中不等式是(),'()f x f x 2

个组合,故函数应是,()x e f x 2个简单函数组合

的结果。 令()()x f x h x e =,则2'()()'()()'()0()x x x x e f x e f x f x f x h x e e

--==>, ()h x 在R 上递增,又ln2(ln 2)(ln 2)1f h e =

=, ()h x ∴图像如图所示:

由图,ln 2x >时,()1h x >,即不等式解集为(ln 2,)+∞。

(同类题训练)已知函数()f x 在R 上的导函数为'()f x ,若(

)'()f x f x <恒成立,且(0)2f =,则不等式()2x f x e >的解集是( )

A 、(2,)+∞

B 、(0,)+∞

C 、(,0)-∞

D 、(,2)-∞

分析:条件中不等式是(),'()f x f x 2

个组合,故函数应是,()x e f x 2个简单函数组合

的结果。 令()()x f x h x e =,则2'()()'()()'()0()x x x x e f x e f x f x f x h x e e

--==>, ∴()h x 在R 上递增,又0(0)(0)2f h e =

=, ()h x ∴图像如图所示:

由图,0x >时,()2h x >,即不等式解集为(0,)+∞。

12. 已知定义在R 上的奇函数()f x 满足()1(f e e =为自然对数的底数),且当0x ≥时,有()()()1'x f x xf x -<,则不等式()0x

xf x e ->的解集是 ( ) A .()(),11,-∞-+∞ B .()()1,00,1-

C.()1,1- D .()()1,01,-+∞

分析:根据条件中不等式目标不等式的特点,故函数应是,,()x

x e f x 三个简单函数组合的结果,且是两个函数相除。 令||

()()x xf x h x e =,()f x 为奇函数,()h x ∴为偶函数。 0x ≥时,()()x xf x h x e =

,求导,得 2(()'())()()'()()'()0()x x x x f x xf x e xe f x f x xf x xf x h x e e

+-+-==>,

()h x ∴在[0,)+∞上单调递增,又(0)0h =,(1)1h =如图,

由图,1x >或1x <-时, ()1h x >,

其他不等式的解法

主 题 其他不等式的解法 教学内容 1. 掌握分式不等式的解法; 2. 掌握含绝对值不等式的解法。 一、分式不等式: 解一元二次不等式0)1)(4(<-+x x ,我们还可以用分类讨论的思想来求解 因为满足不等式组???<->+0104x x 或???>-<+0 104x x 的x 都能使原不等式0)1)(4(<-+x x 成立,且反过来也是对的,故原不等式的解集是两个一元二次不等式组解集的并集. 试着用这种方法解下列三个不等式,你发现和我们用图像解的答案一样吗? (1)0)3)(2(>-+x x (2)0)2(<-x x (3))(0))((b a b x a x >>-- 让学生说说是怎么讨论的,最终大家会发现,无论是哪种理解方法,最终的结论是一样的,当二次项系数为正时,小于零是两根之间,大于零是两根之外。 (1) ()()303202 x x x x ->-->-与解集是否相同,为什么? (2)()()303202x x x x -≥--≥-与解集是否相同,为什么? 通过转化为一元一次不等式组,进而进行比较。会发现(1)的解集是相同的,(2)的解集是不同的,由于分母不能为零,分式的不等式端点2不能取等。

练习:解不等式 (1) 073<+-x x (2)025152≤+-x x 解:(1)07 3<+-x x 与(3)(7)0x x -+<的解集相同, 解(3)(7)0x x -+<得:73x -<< 所以原不等式解集为:(7,3)- (2)025152≤+-x x 与(215)(52)0520x x x -+≤??+≠? 的解集相同 解(215)(52)0520x x x -+≤?? +≠? 得:51522x -<≤ 二、绝对值不等式: 1. a x >与a x <型的不等式的解法。 当0>a 时,不等式x a >的解集是 {},x x a x a ><-或 不等式a x <的解集是 {}x a x a -<<; 引导学生结合绝对值的几何意义,通过数轴求解 当0的解集是 R 不等式 a x <的解集是 ; φ 用绝对值的非负性很容易理解 2. c b ax >+与c b ax <+型的不等式的解法。 把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。 当0>c 时,不等式c b ax >+的解集是{}c b ax c b ax x -<+>+或, 不等式c b ax <+的解集是{}c b ax c x <+<-; 当0+的解集是{}R x x ∈

一元一次不等式组的解法常考题型讲解

一元一次不等式组的解法 一、知识点复习 1.一元一次不等式组的概念: 几个 一元一次不等式 合在一起就组成一个一元一次不等式组. 2.一元一次不等式组的解集: 一般地,几个不等式的解集的 公共部分 ,叫做由它们组成的不等式组的解集. 2.一元一次不等式组解集四种类型如下表: 二、经典题型分类讲解 题型1:考察一元一次不等式组的概念 1. (2017春雁塔区校级月考)下列不等式组:①???<->32x x ,②???>+>420 x x ,③???>+<+4 2122x x x , ④???-<>+703x x ,⑤? ??<->+010 1y x 。其中一元一次不等式组的个数是( ) A 、2个 B 、3个 C 、4个 D 、5个

题型2:考察一元一次不等式组的解法 2.(2018春天心区校级期末)不等式组?? ???>+≤-6 1213312 x x 的解集在数轴上表示正确的是( ) 3.解下列不等式组,并在数轴上表示解集: ! (1)?? ? ??<--+->++-021331215)1(2)5(7x x x x (2)?????≥-+->-154245 3312x x x x (3)?????≤--+<--+-1213128)3()1(3x x x x (4)?? ? ??< -+≤+321)2(352x x x x —

(5)?????-<+-<-2322125.05.7x x x x (6)?????->≥----62410 2.05.05.04 .073x x x x x ! 4. 解下列不等式21 153 x --< ≤ \

不等式知识点详解

考试内容: 不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式. 考试要求: (1)理解不等式的性质及其证明. (2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用. (3)掌握分析法、综合法、比较法证明简单的不等式. (4)掌握简单不等式的解法. (5)理解不等式│a │-│b │≤│a+b │≤│a │+│b │ §06. 不 等 式 知识要点 1. 不等式的基本概念 (1) 不等(等)号的定义:.0;0;0b a b a b a b a b a b a ?>- (2) 不等式的分类:绝对不等式;条件不等式;矛盾不等式. (3) 同向不等式与异向不等式. (4) 同解不等式与不等式的同解变形. 2.不等式的基本性质 (1)a b b a (对称性) (2)c a c b b a >?>>,(传递性) (3)c b c a b a +>+?>(加法单调性) (4)d b c a d c b a +>+?>>,(同向不等式相加) (5)d b c a d c b a ->-?<>,(异向不等式相减) (6)bc ac c b a >?>>0,. (7)bc ac c b a 0,(乘法单调性) (8)bd ac d c b a >?>>>>0,0(同向不等式相乘) (9)0,0a b a b c d c d >><(异向不等式相除) 11(10),0a b ab a b >>? <(倒数关系) (11))1,(0>∈>?>>n Z n b a b a n n 且(平方法则) (12))1,(0>∈>?>>n Z n b a b a n n 且(开方法则) 3.几个重要不等式 (1)0,0||,2≥≥∈a a R a 则若 (2))2||2(2,2222ab ab b a ab b a R b a ≥≥+≥+∈+或则、若(当仅当a=b 时取等号) (3)如果a ,b 都是正数,那么 .2 a b +≤(当仅当a=b 时取等号) 极值定理:若,,,,x y R x y S xy P +∈+==则: ○ 1如果P 是定值, 那么当x=y 时,S 的值最小; ○2如果S 是定值, 那么当x =y 时,P 的值最大. 利用极值定理求最值的必要条件: 一正、二定、三相等.

常见不等式通用解法

常见不等式通用解法总结 一、基础的一元二次不等式,可化为类似一元二次不等式的不等式 ①基础一元二次不等式 如2260x x --<,2210x x -->,对于这样能够直接配方或者因式分解的基础一元二次不等式,重点关注解区间的“形状”。 当二次项系数大于0,不等号为小于(或小于等于号)时,解区间为两根的中间。 2260x x --<的解为3 (,2)2 - 当二次项系数大于0,不等号为大于(或大于等于号)时,解区间为两根的两边。 2210x x --> 的解为(,1(1)-∞?+∞ 当二次项系数小于0时,化成二次项系数大于0的情况考虑。 ②可化为类似一元二次不等式的不等式(换元) 如1392x x +->,令3x t =,原不等式就变为2320t t -+<,再算出t 的范围,进而算出x 的范围 又如243 2 x ax >+ ,令2t x =,再对a 进行分类讨论来确定不等式的解集 ③含参数的一元二次不等式 解法步骤总结: 如不等式210x ax ++>,首先发现二次项系数大于0,而且此不等式无法直接看出两根,所以,讨论24a ?=-的正负性即可。 此不等式的解集为0,0,{|}20,()R a x R x ? ??-∞?+∞? 又如不等式223()0x a a x a -++>,发现其可以通过因式分解化为2()()0x a x a -->,所 以只需要判定2a 和a 的大小即可。 此不等式的解集为22 01,{|}01,(,)(,)01,(,)(,) a or a x R x a a a a a or a a a ==∈≠?? <<-∞?+∞??<>-∞?+∞?

一元一次不等式及其解法常考题型讲解

一元一次不等式及其解法 一、知识点复习 1.一元一次不等式的概念: 只含有一个未知数,且未知数的次数是1且系数不为0的不等式,称为一 元一次不等式。 2.解一元一次不等式的一般步骤: 去分母、去括号、移项、合并同类项、系数化为1. 3. 注意事项: ①去分母时各项都要乘各分母的最小公倍数,去分母后分子是多项式时,分子要加括号。 ②系数化为1时,注意系数的正负情况。 二、经典题型分类讲解 题型1:考察一元一次不等式的概念 1. (2017春昭通期末)下列各式:①5≥-x ;②03<-x y ;③05<+πx ;④ 32≠+x x ; ⑤x x 333≤+;⑥02<+x 是一元一次不等式的有( ) A 、2个 B 、3个 C 、4个 D 、5个 2.(2017春启东市校级月考)下列不等式是一元一次不等式的是( ) A 、 67922-+≥-x x x x B 、01=+x C 、0>+y x D 、092≥++x x 3.(2017春寿光市期中)若03)1(2>-+m x m 是关于x 的一元一次不等式,则m 的值为( ) A 、1± B 、1 C 、1- D 、0 题型2:考察一元一次不等式的解法 4. (2016秋太仓市校级期末)解不等式,并把解集在数轴上表示出来: (1))21(3)35(2x x x --≤+ (2)2 2531-->+ x x

5.解不等式 10 1.0)39.1(10 2.06.035.05.12?->---x x x 。 6.(2016秋相城区期末)若代数式 123-+x 的值不大于6 34+x 的值时,求x 的取值范围。 7. (2017春开江县期末)请阅读求绝对值不等式3x 的解集的过程: 因为3x ,从如图2所示的数轴上看:小于3-的数和大于3的数的绝对值是大于3,所以3>x 的解集是3-x 。 解答下列问题: (1)不等式a x <(0>a )的解集为, 不等式a x >(0>a )的解集为; (2)解不等式42<-x ; (3)解不等式75>-x 。

基本不等式求最值的类型与方法,经典大全

专题:基本不等式求最值的类型及方法 一、几个重要的基本不等式: ①,、)(2 22 22 2 R b a b a a b ab b a ∈+≤ ?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链: b a 11 2 +2 a b +≤≤≤2 2 2b a +。 二、函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+=b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ; ②单调递增区间:(,-∞ ,)+∞ ;单调递减区间:(0, ,[0). 三、用均值不等式求最值的常见类型 类型Ⅰ:求几个正数和的最小值。 例1、求函数2 1 (1)2(1) y x x x =+ >-的最小值。 解析:21(1)2(1)y x x x =+ >-21(1)1(1)2(1)x x x =-++>-2 111 1(1)222(1)x x x x --=+++>- 1≥312≥+52=, 当且仅当 2 11 (1) 22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型Ⅱ:求几个正数积的最大值。 例2、求下列函数的最大值: ①2 3 (32)(0)2 y x x x =-<< ②2sin cos (0)2y x x x π=<< 解析:① 3 0,3202 x x <<->∴, ∴2 3(32)(0)(32)2y x x x x x x =-<<=??-3(32)[ ]13 x x x ++-≤=, 当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。 ② 0,sin 0,cos 02 x x x π << >>∴,则0y >,欲求y 的最大值,可先求2y 的最大值。 2 4 2 sin cos y x x =?2 2 2 sin sin cos x x x =??222 1(sin sin 2cos )2x x x =??22231sin sin 2cos 4( )2327 x x x ++≤?=, 当且仅当22 sin 2cos x x =(0)2 x π < < tan x ?=tan x arc =时 “=”号成立,故 评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。通常要 通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。 类型Ⅲ:用均值不等式求最值等号不成立。 例3、若x 、y + ∈R ,求4 ()f x x x =+ )10(≤、图象及性质知,当(0,1]x ∈时,函数 4 ()f x x x =+是减函数。证明:任取12,(0,1]x x ∈且1201x x <<≤,则

各类不等式的解法

一、不等式的基本性质 不等式的基本性质有: (1) 对称性或反身性: a>b bb , b>c ,则 a>c ; (3)可加性: a>b a+c>b+c , 此法则又称为移项法则; (4) 可乘性: a>b , 当 c>0 时, ac>bc ;当 c<0 时, acb , c>d , 则 a+c>b+d ; (2)正数同向相乘:若 a>b>0, c>d>0,则 ac>bd 。 特例: (3)乘方法则:若 a>b>0,n ∈N +,则 a n b n ; 11 (4)开方法则:若 a>b>0,n∈N +,则 a n b n 11 (5)倒数法则:若 ab>0,a>b ,则 。 ab 例 1: 1)、 8 6 与 7 5 的大小关系为 . 2)、设 n 1,且 n 1, 则 n 3 1与 n 2 n 的大小关系是 1≤ ≤1 3)已知 , 满足 , 试求 3 的取值范围 1≤ 2 ≤ 3 例 2. 比较 a 1 2与 2 aa 1的大小。 例 3.解关于 x 的不等式 m(x 2) x m 二、一元二次不等式的解法 过二次函数与二次不等式的联系从而推证出任何一元二次不等式的解集 各类不等式的解法 元二次不等式 ax 2 bx c 0(a 0) 或 ax 2 bx c 0(a. 0) 的求解原理: 利用二次函数的图 象通

4 1)(x+1)(x-1)(x-2)>0 2)(-x-1)(x-1)(x-2)<0 三、分式不等式与高次不等式的解法 1.分式不等式解法 2.高次不等式解法:数轴标根法(奇穿偶切) 典型例题 例 1 解下列不等式 x - 3 2 (1) x + 7 <0 (2)3+ x <0 3) x -3 2-x > 3-x -3 3 4) x > 1 【例题讲解】 1.解下列不等式: (1)2x 2 3x 20 (2)9x 2 6x 1 0 (3)4x 2 x 5 (4)2x 2 x 1 0 2.解不等式组 3x 2 7x 10 0 2 x 2x 30 (1) 2 (2) 2 2x 2 5x 20 5 x 4x 3.若不等式 ax 2 bx c 0的解集为 (-2,3), 求不等式 2 cx ax b 0的解集. 2 3 4.当 k 为何值时,不等式 2kx 2 kx 38 0对于一切实数 x 都成立?

高中数学 考前归纳总结 常见基本不等式的解法

常见基本不等式的解法 一、简单的一元高次不等式的解法:标根法: 其步骤是: (1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正; (2)将每个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意 奇穿过偶弹回; (3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。 如(1)解不等式2 (1)(2)0x x -+≥。(答:{}|12x x x ≥=-或); (2)不等式(0x -的解集是____(答:{}|31x x x ≥=-或); (3)设函数()()f x x ,g 的定义域都是R ,且()0f x ≥的解集为{}|12x x ≤<, ()0g x ≥的解集为?,则不等式()()0f x g x ?>的解集为______ (答:()[),12,-∞+∞U ; (4)要使满足关于x 的不等式2290x x a -+<(解集非空)的每一个x 的值至少满足 不等式2430x x -+<和2680x x -+<中的一个,则实数a 的取值范围是______. (答:81[7,)8 ) 二、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子 分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式 不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。 如(1)解不等式25123 x x x -<---(答:()()1,12,3-U ); (2)关于x 的不等式0ax b ->的解集为()1,+∞,则关于x 的不等式 02ax b x +>-的 解集为____________(答:()(),12,-∞-+∞U ). 三、绝对值不等式的解法: (1)零点分段讨论法(最后结果应取各段的并集): 如解不等式312242 x x -++≥(答:x R ∈); (2)利用绝对值的定义;(3)数形结合; 如解不等式13x x +->(答:()(),12,-∞-+∞U ) (4)两边平方:如若不等式322x x a +≥+对x R ∈恒成立,则实数a 的取值范围

基本不等式的各种求解方法和技巧

基本不等式 一、知识梳理 二、极值定理 (1)两个正数的和为常数时,它们的积有 ; 若0,0,a b a b M >>+=,M 为常数,则ab ≤ ;当且仅当 ,等号成立.简述为,当0,0,a b a b M >>+= ,M 为常数,max ()ab = . (2)两个正数的积为常数时,它们的和有 ; 若0,0,a b ab P >>=,P 为常数,则a b +≥ ;当且仅当 ,等号成立.简述为,当0,0,a b ab P >>= ,M 为常数,min ()a b += . (,)2 a b a b R ++≤ ∈,求最值时应注意以下三个条件:

应用基本不等式的经典方法 方法一、直接利用基本不等式解题 例1、(1)若0,0,4a b a b >>+=,则下列不等式恒成立的是( ) A .1 1 2ab > B .1 1 1a b +≤ C 2≥ D. 2211+8a b ≤ (2)不等式2162a b x x b a +<+对任意(),0,a b ∈+∞ 恒成立,则实数x 的取值范围是( ) A .(2,0)? B .(,2)(0,)?∞?+∞ C .(4,2)? D .(,4)(2,)?∞?+∞ (3)设,,1,1x y R a b ∈>>,若3,x y a b a b +,则11 x y +的最大值为 ( ) A .2 B .32 C .1 D .12

方法二:凑项(增减项)与凑系数(利用均值不等式做题时,条件不满足时关键在于构造条件,通过乘或除常数、拆因式、平方等方式进行构造) 例2、(1)已知54x <,求函数1 445y x x =+?的最大值; (2)已知,则的取值范围是( ) A . B . C . D . 方法三:“1”的巧妙代换 命题点1、“1”的整体代换 例3、(1)若正数,x y 满足35x y xy +=,则34x y +的最小值是( ) A .245 B .285 C .5 D .6 (2)已知0,0,x y >>且21x y +=,求1 1 x y +的最小值. 0,2b a ab >>=2 2 a b a b +?(],4?∞?(),4?∞?(],2?∞?(),2?∞?

不等式的解法典型例题及详细答案

不等式的解法·典型例题 【例1】?(x+4)(x+5)2(2-x)3<0. 【例2】?解下列不等式: 【例3】?解下列不等式 【例4】?解下列不等式: 【例5】?|x 2-4|<x+2. 【例6】?解不等式1)123(log 2122<-+-x x x . 不等式·典型例题参考答案 【例1】?(x+4)(x+5)2(2-x)3<0. 【分析】?如果多项式f(x)可分解为n 个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)可用“区间法”求解,但要注意处理好有重根的情况. 原不等式等价于(x+4)(x+5)2(x-2)3>0 ∴原不等式解集为{x|x <-5或-5<x <-4或x >2}. 【说明】?用“穿针引线法”解不等式时应注意: ①各一次项中x 的系数必为正; ②但注意“奇穿偶不穿”.其法如图(5-2). 【例2】?解下列不等式: 解:(1)原不等式等价于 用“穿针引线法” ∴原不等式解集为(-∞,-2)∪〔-1,2)∪〔6,+∞). (2) 【例3】?解下列不等式 解:(1)原不等式等价于 ∴原不等式解集为{x|x ≥5}. (2)原不等式等价于 【说明】?解无理不等式需从两方面考虑:一是要使根式有意义,即偶次根号下被开数大于或等于零;二是要注意只有两边都是非负时,两边同时平方后不等号方向才不变. 【例4】?解下列不等式: 解:(1)原不等式等价于 令2x =t(t >0),则原不等式可化为 (2)原不等式等价于 ∴原不等式解集为(-1,2〕∪〔3,6). 【例5】?|x 2-4|<x+2. 解:原不等式等价于-(x+2)<x 2-4<x+2. 故原不等式解集为(1,3). 这是解含绝对值不等式常用方法. 【例6】?解不等式1)123(log 2122<-+-x x x . 解:原不等式等价于 (1)当a >1时,①式等价于 ② (2)当0<a <1时,②等价于 ③

高中数学不等式的分类、解法讲解学习

高中数学不等式的分 类、解法

精品文档 收集于网络,如有侵权请联系管理员删除 高中数学简单不等式的分类、解法 一、知识点回顾 1.简单不等式类型:一元一次、二次不等式, 分式不等式,高次不等式,指数、对数不等 式,三角不等式,含参不等式,函数不等式, 绝对值不等式。 2.一元二次不等式的解法 解二次不等式时,将二次不等式整理成首 项系数大于0的一般形式,再求根、结合图像 写出解集 3三个二次之间的关系: 二次函数的图象、一元二次方程的根与一元二次不等式的解集之间的关系(见复习教材P228) 二次函数的零点---对应二次方程的实根----对应二次不等式解集区间的端点 4.分式不等式的解法 法一:转化为不等式组;法二:化为整式不等式;法三:数轴标根法 5.高次不等式解法 法一:转化为不等式组;法二:数轴标根法 6.指数与对数不等式解法 a>1时)()()()(x g x f a a x g x f >?>; 0)()()(log )(log >>?>x g x f x g x f a a 0; ) ()(0)(log )(log x g x f x g x f a a < 7.三角不等式解法 利用三角函数线或用三角函数的图像求解 8.含参不等式解法 根据解题需要,对参数进行分类讨论 9.函数不等式解法 利用函数的单调性求解,化为基本不等式 (有时还会结合奇偶性) 10.绝对值不等式解法(后面详细讨论) 二、练习: (1)23440x x -++>解集为 (2 23x -<< )(一化二算三写) (2)213 022 x x ++>解集为 (R ) (变为≤,则得?)(无实根则配方) 三、例题与练习 例1已知函数)()1()(b x ax x f +?-= ,若不等式0)(>x f 的解集为)3,1(-,则不等式 0)2(<-x f 的解集为 ),2 1 ()23,(+∞--∞Y 解法一:由根与系数关系求出3,1-=-=b a ,得32)(2++-=x x x f ,再得出新不等式,求解

常见不等式的解法归纳总结

常见不等式的解法归纳总结 知识点精讲 一.一元一次不等式(ax b >) (1)若0a >,解集为|b x x a ??> ????. (2) 若0a <,解集为|b x x a ??< ??? ? (3)若0a =,当0b ≥时,解集为?;当0b <时,解集为R 二、一元一次不等式组(αβ<) (1)x x αβ>??>?,解集为{}|x x β>.(2)x x αβ?? ??≠,其中24b ac ?=-,12,x x 是方程2 0(0)ax bx c a ++>≠的两个根,且12x x < (1)当0a >时,二次函数图象开口向上. (2)①若0?>,解集为{} 21|x x x x x ><或. ②若0?=,解集为|2b x x R x a ??∈≠- ???? 且. ③若0?<,解集为R . (2) 当0a <时,二次函数图象开口向下. ①若0?>,解集为{}12|x x x x << ②若0?≤,解集为? 四、简单的一元高次不等式的解法 简单的一元高次不等式常用“穿根法”求解,其具体步骤如下. 例如,解一元高次不等式()0f x > (1)将()f x 最高次项系数化为正数 (2)将()f x 分解为若干个一次因式或二次不可分因式(0?<) (3)将每一个一次因式的根标在数轴上,从右上方依次通过每一点画曲线(注意重根情况,偶次方根切而不过,奇次方根既穿又过,简称“奇穿偶切”).

高中数学常见题型解法归纳 不等式的解法

高中数学常见题型解法归纳 不等式的解法 【知识要点】 一、一元一次不等式的解法 任何一个一元一次不等式经过不等式的同解变形后,都可以化为(0)ax b a >≠的形式. 当0a >时,不等式的解集为b x x a ? ?>????;当0a <时,不等式的解集为b x x a ??)的解法:最好的方法是图像法,充分体现了数形结合 的思想.也可以利用口诀(大于取两边,小于取中间)解答. 2、当二次不等式()f x =2 0(0)ax bx c a ++≥<时,可以画图,解不等式,也可以把二次项的系数a 变成正数,再利用上面的方法解答. 3、温馨提示 (1)不要把不等式20ax bx c ++>看成了一元二次不等式,一定邀注意观察分析2x 的系数. (2)对于含有参数的不等式注意考虑是否要分类讨论. (3)如果运用口诀解一元二次不等式,一定要注意使用口诀必须满足的前提条件. (4)不等式的解集必须用集合或区间,不能用不等式,注意结果的规范性. 三、指数不等式和对数不等式的解法 解指数不等式和对数不等式一般有以下两种方法 (1)同底法:如果两边能化为同底的指数或对数,先化为同底,再根据指数、对数的单调性转化为代数不等式,底数是参数时要注意观察分析是否要对其进行讨论,并注意到对数真数大于零的限制条件. ①当1a >时, ()()()()f x g x a a f x g x >?>; ()0log ()log ()()0 ()()a a f x f x g x g x f x g x >??>?>??>? ②当01a <<时, ()()()()f x g x a a f x g x >?<; ()0log ()log ()()0 ()()a a f x f x g x g x f x g x >??>?>??

不等式解法15种典型例题

不等式解法15种典型例题 典型例题一 例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(3 2<-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根 3,2 5,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为? ????? ><<-3025x x x 或 (2)原不等式等价于 0)2()5)(4(32>-++x x x ???>-<-≠????>-+≠+?2 450)2)(4(05x x x x x x 或 ∴原不等式解集为 {}2455>-<<--

几种常见不等式的解法

题目高中数学复习专题讲座几种常见解不等式的解法 高考要求 不等式在生产实践和相关学科的学习中应用广泛,又是学习高等数学的重要工具,所以不等式是高考数学命题的重点,解不等式的应用非常广泛,如求函数的定义域、值域,求参数的取值范围等,高考试题中对于解不等式要求较高,往往与函数概念,特别是二次函数、指数函数、对数函数等有关概念和性质密切联系,应重视;从历年高考题目看,关于解不等式的内容年年都有,有的是直接考查解不等式,有的则是间接考查解不等式 重难点归纳 解不等式对学生的运算化简等价转化能力有较高的要求,随着高考命题原则向能力立意的进一步转化,对解不等式的考查将会更是热点,解不等式需要注意下面几个问题 (1)熟练掌握一元一次不等式(组)、一元二次不等式(组)的解法 (2)掌握用零点分段法解高次不等式和分式不等式,特别要注意因式的处理方法 (3)掌握无理不等式的三种类型的等价形式,指数和对数不等式的几种基本类型的解法 (4)掌握含绝对值不等式的几种基本类型的解法 (5)在解不等式的过程中,要充分运用自己的分析能力,把原不等式等价地转化为易解的不等式 (6)对于含字母的不等式,要能按照正确的分类标准,进行分类讨论 典型题例示范讲解 例1已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若m 、n ∈[- 1,1],m +n ≠0时 n m n f m f ++) ()(>0 (1)用定义证明f (x )在[-1,1]上是增函数; (2)解不等式 f (x + 21)<f (1 1-x ); (3)若f (x )≤t 2-2at +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,求 实数t 的取值范围 命题意图 本题是一道函数与不等式相结合的题目,考查学生的分析能力与化归能力 知识依托 本题主要涉及函数的单调性与奇偶性,而单调性贯穿始终,把所求问题分解转化,是函数中的热点问题;问题的要求的都是变量的取值范围,不等式的思想起到了关键作用 错解分析 (2)问中利用单调性转化为不等式时,x + 21∈[-1,1],1 1-x ∈[-1,1]必不可少,这恰好是容易忽略的地方

常见不等式的解法

常见不等式的解法 【知识要点】 一、一元一次不等式的解法 任何一个一元一次不等式经过不等式的同解变形后,都可以化为(0)ax b a >≠的形式. 当0a >时,不等式的解集为b x x a ??> ????;当0a <时,不等式的解集为b x x a ? ? < ???? . 二、一元二次不等式20(0)ax bx c a ++≥≠的解法 1、二次不等式2 ()0f x ax bx c =++≥(0a >)的解法:最好的方法是图像法,充分体现了数形结合 的思想.也可以利用口诀(大于取两边,小于取中间)解答. 2、当二次不等式()f x =2 0(0)ax bx c a ++≥<时,可以画图,解不等式,也可以把二次项的系数a 变成正数,再利用上面的方法解答. 3、温馨提示 (1)不要把不等式2 0ax bx c ++>看成了一元二次不等式,一定邀注意观察分析2x 的系数. (2)对于含有参数的不等式注意考虑是否要分类讨论. (3)如果运用口诀解一元二次不等式,一定要注意使用口诀必须满足的前提条件. (4)不等式的解集必须用集合或区间,不能用不等式,注意结果的规范性. 三、指数不等式和对数不等式的解法 解指数不等式和对数不等式一般有以下两种方法 (1)同底法:如果两边能化为同底的指数或对数,先化为同底,再根据指数、对数的单调性转化为代数不等式,底数是参数时要注意观察分析是否要对其进行讨论,并注意到对数真数大于零的限制条件. ①当1a >时, ()() ()()f x g x a a f x g x >?>; ()0log ()log ()()0 ()()a a f x f x g x g x f x g x >?? >?>??>? ②当01a <<时, ()() ()()f x g x a a f x g x >?<; ()0log ()log ()()0 ()()a a f x f x g x g x f x g x >?? >?>??

常见不等式的解法

常见不等式的解法(教师版) 一、一元一次不等式 解下列关于x 的不等式 1、2x+3>5 2、-2x+5<6 3、ax>1 4、不等式3(x +1)≥5x -9的正整数解是_________ 5、已知关于x 的不等式(3a -2)x +2<3的解集是41 - >x ,则a =______. 二、一元二次不等式 1、2 2x ≥ 2、2(1)2x -< 3、x 2+x -2≤4 4、若0<a <1,则不等式(x -a )(x -a 1)<0的解是______.a <x <a 1 5、已知不等式022>++bx ax 的解集为??? ? ??<<-3121 x x ,则b a +的值为______.-14 6、不等式2x 2-3|x |-35>0的解为______..x <-5或x >5 7、方程实数根,有两个不相等的 0122 =+++m x m mx )(则实数m 的取值范围是______.0 41 ≠->m m 且 8、不等式02 ≤++n mx x 的解集是{}32≤≤-x x |,则m = __,n = __.-1;-6 9、函数的定义域为22--= x x x f )(______________{2≥x x 或}1-≤x 10、对于任意实数x ,一元二次不等式(2m -1)x 2+(m +1)x +(m -4)>0恒成立,则实数m 的取值范围是______. m >5 11、函数()f x =R ,则a 的取值范围是_________ 【0,8】

1)标准化:移项通分化为 () () f x g x >(或 () () f x g x <); () () f x g x ≥(或 () () f x g x ≤)的形式, 2)转化为整式不等式(组) ()()0 ()() 0()()00 ()0 ()() f x g x f x f x f x g x g x g x g x ≥ ? >?>≥?? ≠ ? ; 1. 不等式 2 2 231 372 x x x x ++ > -+ 的解集是 2. 不等式 31 1 3 x x + >- - 的解集是 3. 不等式 2 2 237 1 2 x x x x +- ≥ -- 的解集是 4. 不等式 11 11 x x x x -+ < +- 的解集是 5. 不等式 2 29 1 52 x x x -- < + 的解集是 6. 不等式 2 2 32 712 x x x x -+ > -+ 的解集是 7. 不等式 2 1 21 x x x + ≤ + 的解集是 8. 不等式 21 1 2 x x - > -+ 的解集是 9. 不等式23 2 34 x x - ≤ - 的解集是 10. 不等式 2 2 1 2 (1)(1) x x x - < +- 的解集是 答案 1. 2. (-2,3)3. 4. 5. 6. 7. 8. (1,2) 9. 10.

不等式分类型的解法全

不等式 题型一、一元二次不等式的解法:1、解下列不等式 (1)-10;(2)x2-mx-m<0。 题型三、利用根与系数的关系解不等式 3、(1)若x2-ax-b<0的解集为{x/20的解集。 (2)若不等式ax2+bx+c>0的解集为{x/2

题型四、不等式恒成立问题 4、(1)已知不等式2≤3x2+px+6 对任意的x∈R都成立,求实数p的值; x2-x+1≤6 a的取值范围。 (2)若x∈R,ax2+4x+4≥-2x2+1恒成立,求 5、(1)已知不等式2x-1>m(x2-1),若对于m∈[-2,2],不等式恒成立,求实数x的求职范围。 a的取值范围。(2)函数f(x)=(2-a2)x+a在区间[0,1]上恒为正,求实数 题型五:作二元一次不等式表示平面区域 6、画出下列不等式表示的平面区域 (1)2x-3y+1>0;(2)2x+y+4≤0; (3)2y-x>0;(4)y≤1;(5)x<-3。

?3x + 2 y ≥ 6 ?3x + 4 y - 12 < 0 ( ( 题型六:平面区域内的点与不等式 7、若直线 ax + y + 2 = 0 与连接点 A(-2,3) 和 B(3,2) 的线段有公共点,求 a 的取值范围。 变式:给出下列命题:1)原点和点(3,1)在直线 2 x + y - 6 = 0 的两侧;2)原点和点 (-3,1) 在直线 2 x + y - 6 = 0 的同侧;(3)点 (3,2)和(2,3) 在直线 2 x + y - 3 = 0 的两侧;(4)点 (-2,3) 和点 (-3,2) 在直线 2 x + y - 3 = 0 的同侧。其中正确的有 。 题型七:作出二次不等式组所表示的平面区域 8、用平面区域表示下列不等式组: ?x < 3 ?2 y ≥ x ?x ≥ y (1) ? (2) ? ??3 y < x + 9 题型八:绝对值、二元二次不等式表示的平面区域 9、画出下列不等式表示的平面区域 (1) x - 2 + y - 2 ≤ 2 (2) y ≤ x ≤ 2 y (3) (x - 2 y + 2)( x + y - 3) < 0 题型九:平面区域面积问题

几种特殊不等式(组)的解法

几种特殊不等式(组)的解法 一、连环不等式组的解法 例1:解不等式组22 231≤-≤ -x . 分析:不等式组表示的含义是2 23x -的值不小于-1且不大于2,可转化为两个常见的不等式1223-≥-x 和2223≤-x ,然后联立求解不等式组. 解法1:原不等式组转化为???????≤--≥-.22 23,1223x x 解得.2125??? ????-≥≤x x 原不等式组的解集为.2 521≤≤-x 解法2:对原不等式组中间和两边同时乘以2,得-2≤3-2x ≤4, 两边都减去3,得-5≤-2x ≤1, 两边都除以-2,得 2 125-≥≥x , 原不等式组的解集为.2521≤≤-x 说明:采用解法2将原不等式变形时,每一步变形其实都是在变两个不等式,如两边除以-2这一步,那么-5,-2x ,1三式都要除以-2,不要错写成215-≥≥x 或12 5≥≥x ,当然这里同除以-2,注意不等号的方向要改变. 二、“绝对不等式”和“矛盾不等式”的解法. 设b >0,不等式x ?0>-b 或x ?0<b 在x 取任何值时总成立,这种不等式通常称为“绝对不等式”; 设b ≥0,不等式x ?0<-b 或x ?0>b 在x 取任何值时均不成立,这种不等式通常称为“矛盾不等式”,不等式无解.

例2:解不等式3 163121++--x x x . 分析:先按照不等式的基本步骤逐步求解,到系数化1时再讨论. 解:由原不等式得 3(x -1)-2(x+1)<x+2, 3x -3-2x -2<x+2, x ?0<7, 因为零乘以任何数均为零,即x 取任何数时,0.x <7总能成立,所以原不等式的解集是一切实数. 三、简单字母系数不等式的解法 例3:解不等式a (x -1)>x -2. 解:ax -a >x -2,ax -x >a -2,(a -1)x >a -2, 当a >1时,x > .1 2--a a 当a <1时,x <.12--a a 当a=1时, x ?0>-1,这时解集为一切实数. 说明:这里的字母是指未知数系数中含有字母,不代表常数字母,如解3x >a -1时,a 就不需要讨论,可直接得解集).1(3 1-a x 当题目没有指明系数取值范围,又不能确定未知数系数的正、负或零时,就要分类讨论,分类按系数为正、为负、为零三类进行. 四、绝对不等式的解法 例4:解不等式|2x -1|-1<0. 分析:首先将|2x -1|-1<0变为|2x -1|<1,然后根据绝对值的意义去掉绝对值符号得-1<2x -1<1,最后仿照例1的解法2可求x. 解:由原不等式得|2x -1|<1, -1<2x -1<1, 0<2x <2, 0<x <1. 总结:几类特殊的不等式(组)求解时,首先要依据它涉及到的其他知识将其转化为常见的不等式(组),然后按常见方法解之.

相关主题
文本预览
相关文档 最新文档