当前位置:文档之家› 基本不等式的各种求解方法和技巧

基本不等式的各种求解方法和技巧

基本不等式

一、知识梳理

二、极值定理

(1)两个正数的和为常数时,它们的积有 ;

若0,0,a b a b M >>+=,M 为常数,则ab ≤ ;当且仅当 ,等号成立.简述为,当0,0,a b a b M >>+=

,M 为常数,max ()ab = .

(2)两个正数的积为常数时,它们的和有 ;

若0,0,a b ab P >>=,P 为常数,则a b +≥ ;当且仅当 ,等号成立.简述为,当0,0,a b ab P >>=

,M 为常数,min ()a b += .

(,)2

a b a b R ++≤

∈,求最值时应注意以下三个条件:

应用基本不等式的经典方法

方法一、直接利用基本不等式解题

例1、(1)若0,0,4a b a b >>+=,则下列不等式恒成立的是( )

A .1

1

2ab > B .1

1

1a b +≤ C 2≥

D. 2211+8a b ≤

(2)不等式2162a b

x x b a +<+对任意(),0,a b ∈+∞ 恒成立,则实数x 的取值范围是(

) A .(2,0)? B .(,2)(0,)?∞?+∞ C .(4,2)?

D .(,4)(2,)?∞?+∞

(3)设,,1,1x y R a b ∈>>,若3,x y a b a b +,则11

x y +的最大值为 ( )

A .2

B .32

C .1

D .12

方法二:凑项(增减项)与凑系数(利用均值不等式做题时,条件不满足时关键在于构造条件,通过乘或除常数、拆因式、平方等方式进行构造) 例2、(1)已知54x <,求函数1

445y x x =+?的最大值;

(2)已知,则的取值范围是(

) A . B . C

. D .

方法三:“1”的巧妙代换

命题点1、“1”的整体代换

例3、(1)若正数,x y 满足35x y xy +=,则34x y +的最小值是(

) A .245 B .285 C .5

D .6

(2)已知0,0,x y >>且21x y +=,求1

1

x y +的最小值.

0,2b a ab >>=2

2

a b a b +?(],4?∞?(),4?∞?(],2?∞?(),2?∞?

命题点2、“1”的部分代换

(3)已知0,0,x y >>且21x y +=,求

1x x y +的最小值.

(4)(2013·天津高考理科)设a + b = 2, b >0, 则当a = 时,

1||2||a a b +取得最小值.

命题点3、“1”的变形代换

(5)设0,1a b >>,若3121a b a b +=+?,则

的最小值为 .

(6)已知实数,x y 满足102x y x y >>+=,且,则

213x y x y

++?的最小值为________.

(7)设10<

2的最小值为 .

方法四: 消元(转化为函数最值,此时要注意确定变量的范围)

例4、(1)已知,,x y z R +

∈,230x y z ?+=,则2

y xz 的最小值 .

(2)设正实数,,x y z 满足22340x xy y z ?+?=,则当xy z 取得最大值时, 212x y z +?的最大值为 .

方法五:“之和”与“之积”的互化

例5、(1)已知a ,b 为正实数,2b +ab +a =30,则

1ab

的最小值 .

(2)已知0x >,0y >,228x y xy ++=,则2x y +的最小值是 .

方法六、连续两次使用基本不等式求最值

例6、(1)(2009重庆卷)已知0,0a b >>,则11a b

++ )

A .2

B .

C .4

D .8

(2)已知22log log 1+≥a b ,则39a b

+的最小值为__________

(3)若 的最小值为 .

方法七、利用基本不等式求分式函数最值

例7、(1)当1x >?时,求1

()2

1f x x x =++的最小值.

(2)求函数y =的值域。

高中数学解不等式方法+练习题

不等式 要求层次 重难点 一元二次不等式 C 解一元二次不等式 (一) 知识容 1.含有一个未知数,且未知数的最高次数为2的整式不等式,叫做一元二次不等式. 一元二次不等式的解集,一元二次方程的根及二次函数图象之间的关系如下表(以0a >为例): 有关含有参数的一元二次不等式问题,若能把不等式转化成二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得到顺利解决.其方法大致有:①用一元二次方程根的判别式,②参数大于最大值或小于最小值,③变更主元利用函数与方程的思想求解. 判别式 24b ac ?=- 0?> 0?= 0?< 二次函数 2y ax bx c =++ (0)a >的图象 一元二次方程 2 0ax bx c ++= (0)a ≠的根 有两相异实根 12,x x = 242b b ac a -±- 12()x x < 有两相等实根 122b x x a ==- 没有实根 一元二次不等式的解集 2 0ax bx c ++> (0)a > {1 x x x < 或}2x x > {R x x ∈,且 2b x a ?≠- ?? 实数集R 20ax bx c ++< (0)a > {}1 2x x x x << ? ? 例题精讲 高考要求 板块一:解一元二次不等式 解不等式

(二)主要方法 1.解一元二次不等式通常先将不等式化为20ax bx c ++>或20 (0)ax bx c a ++<>的形式,然后求出对应方程的根(若有根的话),再写出不等式的解:大于0时两根之外,小于0时两根之间; 2.分式不等式主要是转化为等价的一元一次、一元二次或者高次不等式来处理; 3.高次不等式主要利用“序轴标根法”解. (三)典例分析: 1.二次不等式与分式不等式求解 【例1】 不等式 1 12 x x ->+的解集是 . 【变式】 不等式2230x x --+≤的解集为( ) A .{|31}x x x -或≥≤ B .{|13}x x -≤≤ C .{|31}x x -≤≤ D .{|31}x x x -或≤≥ 【变式】 不等式 25 2(1)x x +-≥的解集是( ) A .132? ?-??? ? , B .132??-????, C .(]11132??????U ,, D .(]11132?? -???? U ,, 2.含绝对值的不等式问题 【例2】 已知n *∈N ,则不等式 220.011 n n -<+的解集为( ) A .{}|199n n n *∈N ≥, B .{}|200n n n *∈N ≥, C .{}|201n n n *∈N ≥, D .{}|202n n n *∈N ≥, 【例3】 不等式 1 11 x x +<-的解集为( ) A .{}{}|01|1x x x x <<>U B .{}|01x x << C .{}|10x x -<< D .{}|0x x < 【变式】 关于x 的不等式2121x x a a -+-++≤的解集为空集,则实数a 的取值围是 _. 【例4】 若不等式1 21x a x + -+≥对一切非零实数x 均成立,则实数a 的最大值是_________. 【例5】 若不等式34x b -<的解集中的整数有且仅有123,,,则b 的取值围为 . 3.含参数不等式问题 【例6】 若关于x 的不等式22840x x a --->在14x <<有解,则实数a 的取值围是( ) A .4a <- B .4a >- C .12a >- D .12a <- 【变式】 ⑴已知0a <,则不等式22230x ax a -->的解集为 . ⑵若不等式897x +<和不等式220ax bx +->的解集相同,则a b -=______.

不等式典型例题之基本不等式的证明

5.3、不等式典型例题之基本不等式的证明——(6例题) 雪慕冰 一、知识导学 1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法). (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法. (2)商值比较法的理论依据是:“若a,b∈R + ,a/b≥1a≥b;a/b≤1a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法. 2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B. 3.分析法:是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”.用分析法证明书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真.这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件. 4.反证法:有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法. 5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新????

解不等式的方法归纳

一、知识导学
解不等式的方法归纳
1. 一元一次不等式 ax>b
(1)当 a>0 时,解为 x b ; a
(2)当 a<0 时,解为 x b ; a
(3)当 a=0,b≥0 时无解;当 a=0,b<0 时,解为 R.
2. 一元二次不等式:(如下表)其中 a>0,x1,x2 是一元二次方程 ax2+bx+c=0 的两实根,且
x1<x2 (若 a<0,则先把它化正,之后跟 a>0 的解法一样) 3.简单的一元高次不等式:可用区间法(或称根轴法)求解,其步骤是:
①将 f(x)的最高次项的系数化为正数;
类型 解集
ax2+bx+c>0
ax2+bx+c≥0
ax2+bx+c<0
ax2+bx+c≤0
Δ>0
{x|x<x1 或 x> x2}
{x|x≤x1 或 x≥ x2}
{x|x1<x<x2} {x|x1≤x≤x2}
{x|x≠- b ,
Δ=0
2a
R
x R}
Ф
{x|x=- b }
2a
Δ<0
R
R
Φ
Φ
②将 f(x)分解为若干个一次因式的积; ③将每一个一次因式的根标在数轴上,从右上方依次通过每一点画曲线; ④根据曲线显示出的 f(x)值的符号变化规律,写出不等式的解集.
4.分式不等式:先整理成 f (x) >0 或 f (x) ≥0 的形式,转化为整式不等式求解,即:
g(x)
g(x)
f (x) >0 f(x)·g(x)>0 g(x)
f
(x)
≥0
f (x) 0 g(x) 0

f (x) g(x)>0
g(x)
然后用“根轴法”或化为不等式组求解. 二、疑难知识导析 1.不等式解法的基本思路 解不等式的过程,实质上是同解不等式逐步代换化简原不等式的过程,因而保持同解 变形就成为解不等式应遵循的主要原则,实际上高中阶段所解的不等式最后都要转化 为一元一次不等式或一元二次不等式,所以等价转化是解不等式的主要思路.代数化、 有理化、整式化、低次化是解初等不等式的基本思路.为此,一要能熟练准确地解一元 一次不等式和一元二次不等式,二要保证每步转化都要是等价变形.
整理为 word 格式

高考数学 解题方法攻略 不等式放缩 理

证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一 利用重要不等式放缩 1. 均值不等式法 例1 设.)1(3221+++?+?=n n S n Λ求证.2 )1(2)1(2 +<<+n S n n n 解析 此数列的通项为.,,2,1,)1(n k k k a k Λ=+= 2121)1(+ =++<+++=+<∑=n n n k S n k n ,就放过“度”了! ②根据所证不等式的结构特征来选取所需要的重要不等式,这里 n a a n a a a a a a n n n n n n 2211111 1++≤ ++≤ ≤++ΛΛΛΛ 其中,3,2=n 等的各式及其变式公式均可供选用。 例2 已知函数bx a x f 211)(?+= ,若5 4)1(= f ,且)(x f 在[0,1]上的最小值为21,求证:.21 2 1)()2()1(1-+>++++n n n f f f Λ(02年全国联赛山东预赛题) 简析 )221 1()()1()0(22114111414)(?->++?≠?->+-=+=n f f x x f x x x x Λ .21 2 1)21211(41)2211()2211(1 12-+=+++-=?-++?-++-n n n n n ΛΛ 例3 已知b a ,为正数,且 11 1=+b a ,试证:对每一个*∈N n ,1222)(+-≥--+n n n n n b a b a .(88年全国联赛题) 简析 由111=+b a 得b a ab +=,又42)11)((≥++=++a b b a b a b a ,故 4≥+=b a ab ,而n n n r r n r n n n n n n b C b a C b a C a C b a +++++=+--ΛΛ110)(, 令n n n b a b a n f --+=)()(,则)(n f =11 11----++++n n n r r n r n n n ab C b a C b a C ΛΛ,因为i n n i n C C -=,倒序相加得)(2n f =)()()(111111b a ab C b a b a C ab b a C n n n n r n r r r n r n n n n -------+++++++ΛΛ, 而12 1 1 1 1 2422+------=?≥≥+==+==+n n n n n n r n r r r n n n b a b a ab b a b a ab b a ΛΛ,则 )(2n f =) )(22())((1 1r r n r n r n r r n r n r n n r n n b a b a b a b a C C C -----+-=+++++ΛΛ?-≥)22(n 12+n ,所以)(n f ?-≥)22(n n 2,即对每一个*∈N n ,1222)(+-≥--+n n n n n b a b a . 例4 求证),1(2 2 1321N n n n C C C C n n n n n n ∈>?>++++-Λ.

解不等式的方法归纳

解不等式的方法归纳 一、知识导学1. 一元一次不等式ax>b(1)当a>0时,解为a b x >; (2)当a <0时,解为a b x <;(3)当a =0,b ≥0时无解;当a =0,b <0时,解为R .2. 一元二次不等式:(如下表)其中a >0,x 1,x 2是一元二次方程ax 2+bx+c=0的两实根,且x 1<x 2(若a <0,则先把 它化正,之后跟a >0的解法一样) 3.简单的一元高次不等式:可用区间法(或称根轴法)求解,其步骤是: ①将f(x)的最高次项的系数化为正数; ②将f(x)分解为若干个一次因式的积; ③将每一个一次因式的根标在数轴上,从右上方依次通过每一点画曲线; ④根据曲线显示出的f(x)值的符号变化规律,写出不等式的解集. 4.分式不等式:先整理成)()(x g x f >0或) ()(x g x f ≥0的形式,转化为整式不等式求解,即: )()(x g x f >0?f(x)·g(x)>0 ) ()(x g x f ≥0?0)x (g )x (f 0)x (g 0)x (f >或????≠= 然后用“根轴法”或化为不等式组求解.二、疑难知识导析1.不等式解法的基本思路解不等式的过程,实质上是同解不等式逐步代换化简原不等式的过程,因而保持同解变形就成为解不等式应遵循的主要原则,实际上高中阶段所解的不等式最后都要转化为一元一次不等式或一元二次不等式,所以等价转化是解不等式的主要思路.代数化、有理化、整式化、低次化是解初等不等式的基本思路.为此,一要能熟练准确地解一元一次不等式和一元二次不等式,二要保证每步转化都要是等价变形.2.不等式组的解集是本组各不等式解集的交集,所以在解不等式组时,先要解出本组内各不等式的解集,然后取其交集,在取交集时,一定要利用数轴,将本组内各不等式的解集在同一数轴上表示出来,注意同一不等式解的示意线要一样高,不要将一个不等式解集的两个或几个区间误看成是两个或几个不等式的解集. 3.集合的思想和方法在解不等式问题中有广泛的应用,其难点是区分何时取交集,何时取并集.解不等式的 另一个难点是含字母系数的不等式求解—注意分类.三、经典例题导讲[例1] 如果kx 2+2kx -(k+2)<0恒成立,则实数k 的取值范围是___.A. -1≤k ≤0 B. -1≤k<0 C. - 类型解 集 ax 2+bx+c >0 ax 2+bx+c ≥0 ax 2+bx+c <0 ax 2+bx+c ≤0 Δ>0 {x |x <x 1或x > x 2} {x |x ≤x 1或x ≥x 2} {x |x 1<x <x 2} {x |x 1≤x ≤x 2} Δ=0 {x |x ≠-a b 2,x ∈R} R Ф {x |x=- a b 2} Δ<0 R R Φ Φ

基本不等式应用-解题技巧归纳

基本不等式应用解题技巧归纳 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x 技巧一:凑项 例1:已知54x <,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 技巧三: 分离 例3. 求2710(1)1 x x y x x ++=>-+的值域。 技巧四:换元 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。例:求函数2 y = 练习.求下列函数的最小值,并求取得最小值时,x 的值. (1)231,(0)x x y x x ++=> (2)12,33y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈

2.已知01x <<,求函数y = 的最大值.;3.203x <<,求函数y =. 条件求最值 1.若实数满足2=+b a ,则b a 33+的最小值是 . 变式:若44log log 2x y +=,求11x y +的最小值.并求x ,y 的值 技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。 2:已知0,0x y >>,且 191x y +=,求x y +的最小值。 变式: (1)若+∈R y x ,且12=+ y x ,求y x 11+的最小值 (2)已知+∈R y x b a ,,,且1=+y b x a ,求y x +的最小值 技巧七、已知x ,y 为正实数,且x 2 +y 22 =1,求x 1+y 2 的最大值. 技巧八:已知a ,b 为正实数,2b +ab +a =30,求函数y =1ab 的最小值. 变式:1.已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值。 2.若直角三角形周长为1,求它的面积最大值。

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

高中数学竞赛解题方法篇不等式

高中数学竞赛解题方法篇 不等式 The pony was revised in January 2021

高中数学竞赛中不等式的解法 摘要:本文给出了竞赛数学中常用的排序不等式,平均值不等式,柯西不等式和切比雪夫不等式的证明过程,并挑选了一些与这几类不等式相关的一些竞赛题进行了分析和讲解。希望对广大喜爱竞赛数学的师生有所帮助。 不等式在数学中占有重要的地位,由于其证明的困难性和方法的多样性,而成为竞赛数学中的热门题型.在解决竞赛数学中的不等式问题的过程中,常常要用到几个着名的代数不等式:排序不等式、平均值不等式、柯西不等式、切比雪夫不等式.本文就将探讨这几个不等式的证明和它们的一些应用. 1.排序不等式 定理1 设1212...,...n n a a a b b b ≤≤≤≤≤≤,则有 1211...n n n a b a b a b -+++(倒序积和) 1212...n r r n r a b a b a b ≤+++(乱序积和) 1122 ...n n a b a b a b ≤+++(顺序积和) 其中1,2,...,n r r r 是实数组1,2,...,n b b b 一个排列,等式当且仅当12...n a a a ===或 12...n b b b ===时成立. (说明:本不等式称排序不等式,俗称倒序积和乱序积和顺序积和.) 证明:考察右边不等式,并记1212...n r r n r S a b a b a b =+++。

不等式1212...n r r n r S a b a b a b ≤+++的意义:当121,2,...,n r r r n ===时,S 达到最大值 1122 ...n n a b a b a b +++.因此,首先证明n a 必须和n b 搭配,才能使S 达到最大值.也即,设n r n <且n b 和某个()k a k n <搭配时有 .n n k n n r k r n n a b a b a b a b +≤+(1-1) 事实上, 不等式(1-1)告诉我们当n r n <时,调换n b 和n r b 的位置(其余n-2项不变),会使和S 增加.同理,调整好n a 和n b 后,再调整1n a -和1n b -会使和增加.经过n 次调整后,和S 达到最大值1122 ...n n a b a b a b +++,这就证明了1212...n r r n r a b a b a b +++1122 ...n n a b a b a b ≤+++. 再证不等式左端, 由1211...,...n n n a a a b b b -≤≤≤-≤-≤≤-及已证明的不等式右端, 得 即1211...n n n a b a b a b -+++1212...n r r n r a b a b a b ≤+++. 例1(美国第3届中学生数学竞赛题)设a,b,c 是正数,求证:3 ()a b c a b c a b c abc ++≥. 思路分析:考虑两边取常用对数,再利用排序不等式证明. 证明:不妨设a b c ≥≥,则有lg lg lg a b c ≥≥ 根据排序不等式有: 以上两式相加,两边再分别加上lg lg lg a a b b c c ++

必修5--基本不等式几种解题技巧及典型例题

均值不等式应用(技巧)技巧一:凑项 1、求y = 2x+ 1 x - 3 (x > 3)的最小值 2、已知x > 3 2 ,求y = 2 2x - 3 的最小值 3、已知x < 5 4 ,求函数y = 4x – 2 + 1 4x - 5 的最大值。 技巧二:凑系数 4、当0 < x < 4时,求y = x(8 - 2x)的最大值。 5、设0 < x < 3 2 时,求y = 4x(3 - 2x)的最大值,并求此时x的值。 6、已知0 < x < 1时,求y = 2x(1 - x) 的最大值。 7、设0 < x < 2 3 时,求y = x(2 - 3x) 的最大值 技巧三:分离 8、求y = x2 + 7x + 10 x + 1 (x > -1)的值域; 9、求y = x2 + 3x + 1 x (x > 0)

的值域 10、已知x > 2,求y = x2 - 3x + 6 x - 2 的最小值 11、已知a > b > c,求y = a - c a - b + a - c b - c 的最小值 12、已知x > -1,求y = x + 1 x2 + 5x + 8 的最大值 技巧四:应用最值定理取不到等号时利用函数单调性 13、求函数y = x2 + 5 x2 + 4 的值域。 14、若实数满足a + b = 2,则3a + 3b的最小值是。 15、若 + = 2,求1 x + 1 y 的最小值,并求x、y的值。 技巧六:整体代换 16、已知x > 0,y > 0,且1 x + 9 y = 1,求x + y的最小值。

17、若x、y∈R+且2x + y = 1,求1 x + 1 y 的最小值 18、已知a,b,x,y∈R+ 且a x + b y = 1,求x + y的最小值。 19、已知正实数x,y满足2x + y = 1,求1 x + 2 y 的最小值 20、已知正实数x,y,z满足x + y + z = 1,求1 x + 4 y + 9 z 的最小值 技巧七:取平方 21、已知x,y为正实数,且x2 + y2 2 = 1,求x 1 + y2的最大值。 22、已知x,y为正实数,3x + 2y = 10,求函数y = 3x + 2y的最值。 23、求函数y = 2x - 1 + 5 - 2x(1 2 < x < 5 2 )的最大值。 技巧八:已知条件既有和又有积,放缩后解不等式 24、已知a,b为正实数,2b + ab + a = 30,求函数y = 1 ab 的最小值。

高中数学基本不等式证明

不等式证明基本方法 例1 :求证:221a b a b ab ++≥+- 分析:比较法证明不等式是不等式证明的最基本的方法,常用作差法和作商法,此题用作差法较为简便。 证明:221()a b a b ab ++-+- 2221[()(1)(1)]02 a b a b =-+-+-≥ 评注:1.比较法之一(作差法)步骤:作差——变形——判断与0的关系——结论 2.作差后的变形常用方法有因式分解、配方、通分、有理化等,应注意结合式子的形式,适当选 用。 例2:设c b a >>,求证:b a a c c b ab ca bc 2 22222++<++ 分析:从不等式两边形式看,作差后可进行因式分解。 证明:)(222222b a a c c b ab ca bc ++-++ =)()()(a b ab c a ca b c bc -+-+- =)()]()[()(a b ab c b b a ca b c bc -+-+-+- =))()((a c c b b a --- c b a >>Θ,则,0,0,0<->->-a c c b b a ∴0))()((<---a c c b b a 故原不等式成立 评注:三元因式分解因式,可以排列成一个元的降幂形式: =++-++)(222222b a a c c b ab ca bc )())(()(2a b ab b a b a c a b c -++-+-,这样容易发现规律。 例3 :已知,,a b R +∈求证:11()()2()n n n n a b a b a b ++++≤+ 证明:11()()2()n n n n a b a b a b ++++-+ 11n n n n a b ab a b ++=+-- ()()n n a b a b a b =-+- ()()n n a b b a =--

解不等式的方法归纳

解不等式的方法归纳 (总5页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

解不等式的方法归纳 一、知识导学 1. 一元一次不等式ax>b (1)当a>0时,解为a b x >; (2)当a <0时,解为a b x <; (3)当a =0,b ≥0时无解;当a =0,b <0时,解为R . 2. 一元二次不等式:(如下表)其中a >0,x 1,x 2是一元二次方程ax 2+bx+c=0 的两实根,且x 1<x 2(若a <0,则先把它化正,之后跟a >0的解法一样) 3.简单的一元高次不等式:可用区间法(或称根轴法)求解,其步骤是: ①将f(x)的最高次项的系数化为正数; ②将f(x)分解为若干个一次因式的积; ③将每一个一次因式的根标在数轴上,从右上方依次通过每一点画曲线; ④根据曲线显示出的f(x)值的符号变化规律,写出不等式的解集. 4.分式不等式:先整理成 )()(x g x f >0或)()(x g x f ≥0的形式,转化为整式不等式求解,即: ) ()(x g x f >0?f(x)·g(x)>0 ) ()(x g x f ≥0?0)x (g )x (f 0)x (g 0)x (f >或????≠= 然后用“根轴法”或化为不等式组求解. 类型 解集 ax 2+bx+c >0 ax 2+bx+c ≥0 ax 2+bx+c <0 ax 2+bx+c ≤0 Δ>0 {x |x <x 1或x > x 2} {x |x ≤x 1或x ≥x 2} {x |x 1<x <x 2} {x |x 1≤x ≤x 2} Δ=0 {x |x ≠-a b 2,x ∈R} R Ф {x |x=-a b 2} Δ<0 R R Φ Φ

解绝对值不等式的方法总结(1)

解绝对值不等式题根探讨 题根四 解不等式2|55|1x x -+<. [题根4]解不等式2 |55|1x x -+<. [思路]利用|f(x)|0) ?-a-??求解。 [解题]原不等式等价于21551x x -<-+<, 即2 2 551(1)551 (2) x x x x ?-+-?? 由(1)得:14x <<;由(2)得:2x <或3x >,所以,原不等式的解集为{|12x x <<或34}x <<. [收获]1)一元一次不等式、一元二次不等式的解法是我们解不等式的基础,无论是解高次不等式、绝对值不等式还是解无理根式不等式,最终是通过代数变形后,转化为一元一次不等式、一元二次不等式组来求解。 2)本题也可用数形结合法来求解。在同一坐标系中画出函数2551y x x y =-+=与的的图象,解方程 2551x x -+=,再对照图形写出此不等式的解集。 第1变 右边的常数变代数式 [变题1]解下列不等式:(1)|x +1|>2-x ;(2)|2x -2x -6|<3x [思路]利用|f(x)|g(x) ?f(x)>g(x)或f(x)<-g(x)去掉绝对值后转化为我们熟悉的一元一次、一元二次不等式组来处理。 解:(1)原不等式等价于x +1>2-x 或x +1<-(2-x ) 解得x > 12或无解,所以原不等式的解集是{x |x >12 } (2)原不等式等价于-3x <2x -2x -6<3x 即22 2 226360(3)(2)032(1)(6)016263560x x x x x x x x x x x x x x x x x ??-->-+->+-><->???????????+-<-<<--<--()g x 型不等式 这类不等式的简捷解法是等价命题法,即: ①|()f x |<()g x ?-()g x <()f x <()g x ②|()f x |>()g x ?()f x >()g x 或()f x <-()g x 1.解不等式(1)|x-x 2-2|>x 2 -3x-4;(2) 2 34 x x -≤1

不等式解题技巧

不等式解题技巧 【基本知识】 1、若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取 “=”) 2、(1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈, 则ab b a 2≥+(当且仅当b a =时取“=”) 3、0x >若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 4、, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a =b =c 时,“=”号成立; )(333 3 + ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号 成立. 5、若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注意: (1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可 以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)熟悉一个重要的不等式链: b a 2 +2 a b +≤≤2 2 2b a + 【技巧讲解】 技巧一:凑项(增减项)与凑系数(利用均值不等式做题时,条件不满足时关键在于构造条件。通常要通过乘以或除以常数、拆因式、平方等方式进行构造) 1、 已知5 4x < ,求函数14245 y x x =-+-的最大值。 2、当04x <<时,求(82)y x x =-的最大值。

基本不等式常考解题技巧

基本不等式 令狐采学 一、基础知识 1.(1)若R b a ∈,,则ab b a 222≥+; (2)若R b a ∈,,则222b a ab +≤(当且仅那时b a =取“=”). 2.(1)若00a ,b >>,则ab b a ≥+2 ; (2)若00a ,b >>,则ab b a 2≥+(当且仅那时b a =取“=”); (3)若00a ,b >>,则22?? ? ??+≤b a ab (当且仅那时b a =取“=”). 3.若0x >,则12x x +≥(当且仅那时1x =取“=”); 若0x <,则12x x +≤-(当且仅那时1x =-取“=”); 若0x ≠,则1 2x x +≥,即12x x +≥或12x x +≤-(当且仅那时b a =取“=”). 4.若0>ab ,则2≥+a b b a (当且仅那时b a =取“=”); 若0ab ≠,则2a b b a + ≥,即2a b b a +≥或2a b b a +≤-(当且仅那时b a =取“=”). 5.若R b a ∈,,则22222b a b a +≤??? ??+(当且仅那时b a =取“=”). 二、拓展

1.一个重要的不等式链:2221122a b a b ab a b ++≤≤≤+. 2.函数()()0,0b f x ax a b x =+>>图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如右图所示: (2)函数()0)(>+=b a x b ax x f 、性质: ①值域:()22,ab ab,??-∞-+∞??; ②单调递增区间:,,,b b a a ????-∞- +∞ ??? ?? ???;单调递加区间:0, ,,0b b a a ????- ??? ?????. 注: (1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的 最小值,正所谓“积定和最小,和定积最年夜”; (2)求最值的条件“一正,二定,三相等”; (3)均值定理在求最值、比较年夜小、求变量的取值规模、证明不等式、解决实际问题方面有广泛的应用. 三、基本类型 对称性: “1”的代换: 四、利用基本不等式求最值经常使用技巧 技巧一:凑项

4 基本不等式的证明(1)

4、基本不等式的证明(1) 目标: (,0)2 a b a b +≥的证明过程,并能应用基本不等式证明其他不等式。 过程: 一、问题情境 把一个物体放在天平的一个盘子上,在另一个盘子上放砝码使天平平衡,称得物体的质量为 a 。如果天平制造得不精确,天平的两臂长略有不同(其他因素不计) ,那么a 并非物体的实际质量。不过,我们可作第二次测量:把物体调换到天平的另一个盘上,此时称得物体的质量为b 。那么如何合理的表示物体的质量呢? 把两次称得的物体的质量“平均”一下,以2 a b A +=表示物体的质量。这样的做法合理吗? 设天平的两臂长分别为12,l l ,物体实际质量为M ,据力学原理有1221,l M l a l M l b == ,有2,M ab M == ,0a b >时,2 a b +叫,a b ,a b 的几何平均数 2 a b + 二、建构 一般,判断两数的大小可采用“比较法”: 02a b +-=≥ 2 a b +≤(当且仅当a b =时取等号) 说明:当0a =或0b =时,以上不等式仍成立。 从而有 2 a b +≤(0,0)a b ≥≥(称之“基本不等式” )当且仅当a b =时取等号。 2 a b +≤的几何解释: 如图,,2 a b OC CD OC CD +≥== 三、运用 例1 设,a b 为正数,证明:1(1)2(2)2b a a a b a +≥+≥ 注意:基本不等式的变形应用 2,2a b a b ab +??≤+≤ ???

例2 证明: 22(1)2a b ab +≥ 此不等式以后可直接使用 1(2)1(1)1 x x x + ≥>-+ 4(3)4(0)a a a +≤-< 2 2≥ 2 2> 例3 已知,0,1a b a b >+=,求证:123a b +≥+ 四、小结 五、作业 反馈32 书P91 习题1,2,3

(完整版)不等式与不等式组小结与解含参数问题题型归纳

第九章不等式与不等式知识点归纳 一、不等式及其解集和不等式的性质 用不等号表示大小关系的式子叫做不等式。常见不等号有:“<” “>” “≤” “≥” “ ≠ ”。含有未知数的不等式的所有解组成这个不等式的解集,解不等式就是求不等式的解集。 注:①在数轴上表示不等式解集时,有等号用实心点,无等号用空心圈。 ②方向:大于向右画,小于向左画。 不等式的三个性质:①不等式两边同时加(或减)同一数或式子,不等号不变; ②不等式两边同时乘(或除)同一正数,不等号不变; ③不等式两边同时乘(或除)同一负数,不等号改变。 作差法比较a 与b 的大小:若a-b>0,则a>b;若a-b<0;则a<b;若a-b=0, 则a=b。例1 、下列式子中哪些是不等式? ①0a+b=b+a; ②a<b-5; ③-3>-5;④x≠1 ;⑤2x-3。 例2、若a 1可得a ;②由ax

相关主题
文本预览
相关文档 最新文档