当前位置:文档之家› 换热器的传热计算

换热器的传热计算

换热器的传热计算
换热器的传热计算

换热器的传热计算

换热器的传热计算包括两类:一类是设计型计算,即根据工艺提出的条件,确定换热面积;另一类是校核型计算,即对已知换热面积的换热器,核算其传热量、流体的流量或温度。这两种计算均以热量衡算和总传热速率方程为基础。

换热器热负荷Q 值一般由工艺包提供,也可以由所需工艺要求求得。Q=W c p Δt ,若流体有相变,Q=c p r 。

热负荷确定后,可由总传热速率方程(Q=K S Δt )求得换热面积,最后根据《化工设备标准系列》确定换热器的选型。

其中总传热系数K=

0011

h Rs kd bd d d Rs d h d o m i i i i ++++ (1)

在实际计算中,总传热系数通常采用推荐值,这些推荐值是从实践中积累或通过实验测定获得的,可以从有关手册中查得。在选用这些推荐值时,应注意以下几点:

1. 设计中管程和壳程的流体应与所选的管程和壳程的流体相一致。

2. 设计中流体的性质(粘度等)和状态(流速等)应与所选的流体性质和

状态相一致。

3. 设计中换热器的类型应与所选的换热器的类型相一致。

4. 总传热系数的推荐值一般范围很大,设计时可根据实际情况选取中间的

某一数值。若需降低设备费可选取较大的K 值;若需降低操作费用可取较小的K 值。

5. 为保证较好的换热效果,设计中一般流体采用逆流换热,若采用错流或

折流换热时,可通过安德伍德(Underwood )和鲍曼(Bowman )图算法对Δt 进行修正。

虽然这些推荐值给设计带来了很大便利,但是某些情况下,所选K 值与实际值出入很大,为避免盲目烦琐的试差计算,可根据式(1)对K 值估算。

式(1)可分为三部分,对流传热热阻、污垢热阻和管壁导热热阻,其中污垢热阻和管壁导热热阻可查相关手册求得。由此,K 值估算最关键的部分就是对流传热系数h 的估算。

影响对流传热系数的因素主要有:

1.流体的种类和相变化的情况

液体、气体和蒸气的对流传热系数都不相同。牛顿型和非牛顿型流体的也有区别,这里只讨论牛顿型对流传热系数。

流体有无相变化,对传热有不同的影响。

2.流体的性质

对h影响较大的流体物性有比热、导热系数、密度和粘度等。对同一种流体,这些物性又是温度的函数,而其中某些物性还和压强有关。

3.流体的流动状态

当流体呈湍流时,随着Re数的增加,滞流内层的厚度减薄,故h就增大。而当流体呈滞流时,流体在热流方向上基本没有混杂流动,故h就较湍流时为小。

4.流体流动的原因

自然对流是由于流体内部存在温度差,因而各部分的流体密度不同,引起流体质点的相对位移。设ρ1和ρ2分别代表温度为t1和t2两点的密度,则流体因密度差而产生的升力为(ρ1-ρ2)g。若流体的体积膨胀系数为β,单位为1/℃,并以代表Δt温度差(t2- t1),则可得ρ1=ρ2(1+βΔt),于是每单位体积的流体所产生的升力为:

(ρ1-ρ2)g=[ρ2(1+βΔt)-ρ2]g=ρ2βgΔt或(ρ1-ρ2)/g=βΔt

强制对流是由于外力的作用,如泵、搅拌器等迫使流体的流动。

5.传热面的形状、位置和大小

传热管、板、管束等不同的传热面的形状;管子的排列方式,水平或垂直放置;管径、管长或板的高度等,都影响h值。

目前解决对流传热问题的方法主要有量纲分析法和类比法。常用的量纲分析法有雷莱法和伯金汉法(Buckingham Method),前者适合于变量数目较少的场合,而当变量数目较多时,后者较为简便,由于对流传热过程的影响因素较多,故需采用伯金汉法。

强制对流(无相变)传热过程

根据理论分析及实验研究,对流传热系数h的影响因素有传热设备的尺寸l、流体密度ρ、粘度μ、定压质量热容c p、导热系数k及流速u等物理量,可用

h=f(l,ρ、μ、c p、k、u)表示,式中涉及到的基本量纲只有四个。最后可得强制对流(无相变)传热时的无量纲数群关系式Nu=φ(Re,Pr)。

自然对流传热过程

同样可得,自然对流传热时准数关系式为Nu=φ(Gr,Pr)。

各准数名称、名称和含义列于表1。

表1 准数的名称、符号和含义

各准数中的物理量的意义为:

h —对流传热系数,W/(m2℃);

u —流速,m/s;

ρ—流体的密度,kg/m3;

l —传热面特性尺寸,可以是管径(内径、外径或平均直径)或平板长度,m;k —流体的导热系数,W/(m2℃);

μ—流体的粘度,Pa s;

c p—流体的定压比容,J/(kg ℃);

Δt—流体与壁面间的温度差,℃;

β—流体的体积膨胀系数,1℃/或1/K;

g —重力加速度,m/s2。

上述关系式仅为Nu与Re、Pr或Gr、Pr的原则关系式,而各种不同情况下

的具体关系式则需通过实验确定。在使用由实验数据整理得到的关系式时,应注意:

①应用范围 关系式中Re 、Pr 等准数的数值范围等; ②特性尺寸 Nu 、Re 等准数中的l 应如何确定; ③定性温度 各准数中的流体物性应按什么温度查取。

总之,对流传热系数是流体主体中的对流和层流内层的热传导的复合现象。任何影响流体流动的因素(引起流动的原因、流动状态和有无相变化等)都必然影响对流传热系数。以下分流体无相变和有相变两种情况来讨论对流传热系数的关系式,其中前者包括强制对流和自然对流,后者包括蒸汽冷凝和液体沸腾。 ? 流体无相变时的强制对流传热 1. 流体在管内做强制对流

1) 流体在光滑圆形直管内做强制湍流 a) 低粘度流体

可应用迪特斯(Dittus )-贝尔特(Boelter )关联式,即:

n

p b i i k c u d d k h ???

? ?????

?

??=μμρ8

.0023.0 (2) 式中n 值视热流方向而定,当流体被加热时,n=0.4,当流体被冷却时,n=0.3。 应用范围:Re>10000,0.7

i d L >60(L 为管长)。若i

d L

<60,需考虑传热进口段对h 的影响,此时可将求得的h 值乘以????

???

???? ??+7.01L d i 进行校正。

特性尺寸:管内径d i 。

定性温度:流体进出口温度的算术平均值。 b) 高粘度流体

可应用西德尔(Sieder )-泰特(Tate )关联式,即:

14

.03

/18

.0027.0???

?

?????

? ??????

??=w p b i i k c u d d k h μμμμρ (3)

式中14

.0???

? ??w

μ

μ

也是考虑热流方向的校正项,w μ为壁面温度下流体的粘度。

应用范围:Re>10000,0.7

d L

>60(L 为管长)。 特性尺寸:管内径d i 。

定性温度:除w μ取壁温外,均取流体进出口温度的算术平均值。 一般而言,由于壁温未知,计算时往往要用试差法,很不方便,为此可取近

似值。液体被加热时,取14

.0???

? ??w

μ

μ

≈1.05,液体被冷却时,取14

.0???

? ??w

μ

μ

≈0.95;对

气体,则不论加热或冷却,均取14

.0???

? ??w

μ

μ

≈1.0。

2) 流体在光滑圆形直管内作强制层流

流体在管内作强制层流时,一般流速较低,故应考虑自然对流的影响,此时由于在热流方向上同时存在自然对流和强制对流而使问题变得复杂化,因此,强制层流时的对流传热系数关联式其误差要比湍流的大。

当管径较小,流体壁面间的温度差也较小且流体的μ值较大时,可忽略自然对流对强制层流传热的影响,此时可应用西德尔(Sieder )-泰特(Tate )关联式,即:

14

.03

/1Pr Re 86.1???

?

???

?

? ??

?=w i i L d d k h μμ (4)

应用范围:Re<2300,0.710(L 为管长) 特性尺寸:管内径d i 。

定性温度: 除w μ取壁温外,均取流体进出口温度的算术平均值。 上式适用于管长较小时的情况,当管子极长时则不再适用,因为此时求得的h 趋于零,与实际不符。

当参数Nu ∞、k 1、k 2和n 已知时,选用下列关联式结果较为准确:

n

i i L d k L d k Nu Nu )/Pr (Re 1)

/Pr (Re 21??+??+

=∞ (5)

Nu —不同条件下努塞尔数的平均值或局部值; Nu ∞—热边界层在管中心汇合后的努塞尔数; k 1、k 2、n —常数,其值可由2表查得;

L —管长,m ; d i —管内径,m 。

表2 式(5)中的各常数值

各物理量的定性温度为管子进出口流体主体温度的算术平均值。 除表2所述情况外,一般采用式(4)计算h 。

应当指出,由于强制对流时对流传热系数很低,故在换热器设计中,应尽量避免在强制层流条件下进行换热。

3) 流体在光滑圆形管内呈过渡流

当Re=2300~10000时,对流传热系数可先用湍流时的公式计算, 然后把算得结果乘以校正系数φ

8.15Re 1061-?-=φ (5) 4) 流体在弯管内作强制对流

流体在弯管内流动时,由于受离心力的作用,增大了流体的湍动程度,使对流传热系数较直管的大,此时可用下式计算对流传热系数,即:

??? ?

?

+=R d h h i 77.11' (6)

'h —弯管中的对流传热系数,W/(m 2 ℃);

h —直管中的对流传热系数,W/(m 2 ℃)

; i d —管内径,m ;

R —管子的弯曲半径,m 。 5) 流体在非圆形管内作强制对流

此时,只要将管内径改为当量直径d e ,则仍可采用上述各关联式。但有些资料中规定某些关联式采用传热当量直径。例如,在套管换热器环形截面内传热当

量直径为:

2

2

2212

2

221')

(4

4d d d d d d d e

-=-?=

ππ

(7)

d 1—套管换热器的外管内径,m ; d 2—套管换热器的内管外径,m 。

传热计算中,究竟采用哪个当量直径,由具体的关联式决定。但无论采用哪个当量直径均为一种近似的算法,而最好采用专用的关联式,例如在套管环隙中用水和空气进行对流传热实验,可得h 的关联式:

3/18.053

.02

1Pr Re 02

.0???

? ??=d d d k

h e

(8)

应用范围:Re=12000~220000,d 1/d 2=1.65~17。 特性尺寸:当量直径d e 。

定性温度:流体进出口温度的算术平均值。

此式亦可用于计算其他流体在套管环隙中作强制湍流时的传热系数。 2. 流体在管外作强制对流

1) 流体在管束外作强制垂直流动

通常管子的排列有正三角形、转角正三角形、正方形及转角正方形四种。如图1所示:

流体在管束外流过时,平均对流传热系数可分别用式(9)、(10)计算: 对于a 、d 33.06.0Pr Re 33.0=Nu (9) 对于b 、c 33.06.0Pr Re 26.0=Nu (10) 应用范围:Re>3000。 特性尺寸:管外径d o 。

流速:取流体通过每排管子中最狭窄通道处的速度。 定性温度:流体进出口温度的算术平均值。 管束排数应为10,否则应乘以表3的系数。

表3 式(9)和式(10)的校正系数

2) 流体在换热器的管间流动

对于常用的列管式换热器,由于壳体是圆筒,管束中各列的管子数目并不相同,而且大都装有折流板,使得流体的流向和流速不断地变化,因而在Re>100时即可达到湍流。此时对流传热系数的计算,要视具体结构选用相应的计算公式。

列管式换热器折流挡板的形式较多,其中以弓形挡板最为常见。当换热器内装有圆缺形挡板(缺口面积约为25%的壳体内截面积)时,壳方流体的对流传热系数关联式如下:

a) 多诺呼(Donohue )法

14

.03

/16

.023

.0???

?

?????

?

?????

? ??=w p o o

k c u d d k h μμμμρ (11)

应用范围:Re=2~3×104。 特性尺寸:管外径d o 。

定性温度:除w μ取壁温外,均取流体进出口温度的算术平均值。 流速:取换热器中心附近管排中最狭窄通道处的速度。 b) 凯恩(Kern )法

14

.03

/155

.0'36.0???

?

?????

?

?????

?

??=w p e e k c u d d k h μμμμρ (12)

应用范围:Re=2×103~1×106。 特性尺寸:传热当量直径'e d 。

定性温度:除w μ取壁温外,均取流体进出口温度的算术平均值。 传热当量直径'e d 根据管子排列情况分别用不同的公式进行计算。 管子为正方形排列时:

o

o e d d t d ππ?

?

? ?

?

-=22'44 (13)

管子为正三角形排列

o

o e d d t d ππ???? ??-=225.0'

4234 (14)

t —相邻两管的中心距,m ; d o —管外径,m 。

式(12)中的流速可根据流体流过管间最大截面积A 计算,即:

???

??-=t d zD A o 1 (15)

z —两挡板间的距离,m ; D —换热器的外壳内径,m 。

当液体被加热时,14

.0???

? ??w

μ

μ

=1.05;当液体被冷却时,14

.0???

? ??w

μ

μ

=0.95;对气

体,则无论被加热还是冷却,14

.0???

? ??w

μ

μ

=1.0。这些假设值与实际情况相当接近,

一般可不再校核。

此外,若换热器的管间无挡板,则管外流体将沿管束平行流动,此时可采用管内强制对流的公式计算,但需将式中的管内径改为管间的当量直径。 ? 流体有相变时的对流传热系数 1. 蒸汽冷凝传热

蒸汽冷凝主要有膜状冷凝和珠状冷凝两种方式:若凝液润湿表面,则会形成一层平滑的液膜,此种冷凝称为膜状冷凝;若凝液不润湿表面,则会在表面上杂乱无章地形成小液珠并沿壁面落下,此种冷凝称为珠状冷凝。虽然珠状冷凝的传热系数比膜状冷凝的高十倍左右,但要保持珠状冷凝非常困难,所以进行冷凝计算时,通常总是将冷凝视为膜状冷凝。

1) 垂直壁面上膜状冷凝时的对流传热系数 凝液膜的流型可采用液膜雷诺数Re f 判断:

μ

ρ

b e f u d =

Re

d e —当量直径,m ;

u b —凝液的平均流速,m/s 。

以A 表示凝液的流通面积,P 表示润湿周边长,w 表示凝液的质量流率,则有

μ

μ

ρρP w

A

w

P A f 44Re =

=

(16) 当Re f <1800时,液膜为层流状态,但事实上,当Re f =30~40时,液膜已出现波动,由于此种现象非常普遍,麦克亚当斯(McAdams )建议采用关联式:

4

/132)(13.1?

???

?

?-=w s t t L k g h μλρ (17)

λ—蒸汽在饱和温度下的汽化热,J/kg ; L —垂直管或板的高度; t s —蒸汽饱和温度; t w —壁面温度;

ρ—冷凝液的密度,kg/m 3;

k —冷凝液的导热系数,W/(m 2 ℃)。

当Re f >1800时,液膜呈现湍流流动,此时可应用柯克柏瑞德(Kirkbride )经验式来计算h :

4.03

/122Re 0076.0f g k h ?

??

?

??=μρ (18)

2) 水平管外膜状冷凝时的对流传热系数

对于水平管束,若水平管束在垂直列上的管数为n ,可采用关联式:

4

/132)(725.0?

???

?

?-=w s o t t nd k g h μλρ (19)

d o —管外径,m 。

在列管冷凝器中,若管束由互相平行的z 列管子所组成,一般各列管子在垂直方向上的排数不相等,设分别为n 1,n 2,……n z ,则平均的管排数可按下式计算:

????

?????+++???++=75.075.0275.0121z z m n n n n n n n (20)

3) 倾斜表面膜状冷凝时的对流传热系数

如果平板或圆柱与水平面的倾斜角为φ,则对层流流动,仍可采用上述公式,但需将代表重力项的g 用平行于换热面方向上的分量g ’来代替,即:

φsin 'g g =

2. 液体沸腾传热

工业计算中常用的计算式有以下两个: 1) 罗森奥(Rohsennow )公式

6

/13

/1)(/Pr ??

????-??

????=?V L L sf

n

L g S q C t

c ρρσλμλ (21)

q —沸腾传热速率,W ; S —沸腾传热面积,m 2;

c L —饱和液体的定压质量热容,J/(kg ℃)

Δt —壁面温度与液体饱和温度之差,℃,Δt =tw-ts ; λ—汽化热,J/kg ; Pr —饱和液体的普兰德数; μL —饱和液体的粘度,Pa s ;

σ—气-液界面的表面张力,N/m ,可查阅有关手册; g —重力加速度,9.81m/s 2; ρL —饱和液体的密度,kg/m 3; ρV —饱和蒸汽的密度,kg/m 3;

n —常数,对于水,n=1.0,对于其他液体,n=1.7; C sf —由实验数据确定的组合常数,其值可由表4查得。

表4 不同液体-加热壁面的组合常数C sf

-

由式(21)求得q/S 后,可由式(22)求得h 。

)(b s t t hS q -= (22)

t s —壁面温度,℃ t b —沸腾温度,℃。

2) 莫斯听斯基(Mostinski )公式

()()7.010

2.117.069

.04

/1048.11081.910.0105.0S q R R R p h c ???

?????++??? ???= (23) p c —临界压力,Pa ;

c

p p

R =

— 对比压力; p —操作压力,Pa 。

应用条件:p c >3000Pa ,R=0.01~0.9,q/S<(q/S)c (临界热通量)。 临界热通量(q/S)c 可按式(24)估算,即:

()()o i c c S L D R R p S q /138.0/9.035.0π-= (24) D i —管束的直径,m ; L —管长,m ;

S o —管外壁总传热面积,m 2。

附表1 壁面污垢热阻1.冷却水

2.工业用气体

3.工业用液体

4.石油馏分物

附表2某些固体材料的导热系数1.常用金属的导热系数

2.常用非金属材料

有机液体的粘度、比热、密度及导热系数等性质可由Hysys软件查得。

换热器的传热系数K

介质不同,传热系数各不相同我们公司的经验是: 1、汽水换热:过热部分为800~1000W/m2.℃ 饱和部分是按照公式K=2093+786V(V是管流速)含污垢系数0.0003。水水换热为:K=767(1+V1+V2)(V1是管流速,V2水壳程流速)含污垢系数0.0003 实际运行还少有保守。有余量约10% 冷流体热流体总传热系数K,W/(m2.℃) 水水 850~1700 水气体 17~280 水有机溶剂 280~850 水轻油 340~910 水重油60~280 有机溶剂有机溶剂115~340 水水蒸气冷凝1420~4250 气体水蒸气冷凝30~300 水低沸点烃类冷凝 455~1140 水沸腾水蒸气冷凝2000~4250 轻油沸腾水蒸气冷凝455~1020 不同的流速、粘度和成垢物质会有不同的传热系数。K值通常在800~2200W/m2·℃围。

列管换热器的传热系数不宜选太高,一般在800-1000 W/m2·℃。 螺旋板式换热器的总传热系数(水—水)通常在1000~2000W/m2·℃围。 板式换热器的总传热系数(水(汽)—水)通常在3000~5000W/m2·℃围。 1.流体流径的选择 哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例) (1) 不洁净和易结垢的流体宜走管,以便于清洗管子。 (2) 腐蚀性的流体宜走管,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。 (3) 压强高的流体宜走管,以免壳体受压。 (4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。 (5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。 (6) 需要提高流速以增大其对流传热系数的流体宜走管,因管程流通面积常小于壳程,且可采用多管程以增大流速。 (7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。

换热器传热能力计算

换热器传热能力计算 1.计算依据 一级换热器和二级换热器的设计图纸; 文献1《煤气设计手册》 文献2《燃气工程便携手册》 文献3《化工原理》 2.设计参数列表 一级换热器天然气进口温度t 1=23℃,出口温度t 2=60℃,定性温度t c =(23+60)/2=41.5℃。 二级换热器天然气进口温度t 1=20℃,出口温度t 2=35℃,定性温度t c =(20+35)/2=27.5℃。 一级换热器和二级换热器的加热用水进口温度T 1=90℃,出口温度T 2=70℃,定性温度t c =(90+70)/2=80℃。 天然气的物性参数密度,导热系数和定压热容查自《燃气工程便携手册》P7表1-2和表1-3,动力粘度查自《煤气设计手册》P 25图1-1-15。 水查自《化工原理》P325附录5)。 3. 热平衡计算 1)一级换热器工况流量 h m T T P P Q Q /32.1915 .2935 .4115.273201.036003000 =+??==

质量流速m==ρQ 3600 7 .14832.19?=s kg /798.0 总传热量 =-=)12(t t mCp q kW 97.45)2360(557.1798.0=-?? 加热水的质量流量m w = = -)21(T T Cp q w () 7090195.497.45-?=s kg /548.0 加热水的体积流量Q w = = w w m ρ8 .9713600 548.0?=h m /03.23 2)二级换热器的工况流量 h m T T P P Q Q /49.10515 .2935 .2715.2735.31.036003000 =+??== 质量流速m==ρQ 3600 02 .2649.105?=s kg /762.0 总传热量 =-=)12(t t mCp q kW 81.17)2035(557.1762.0=-?? 加热水的质量流量m w = = -)21(T T Cp q w () 7090195.481.17-?=s kg /212.0 加热水的体积流量Q w == w w m ρ8 .9713600 212.0?=h m /786.03 4. 传热计算 1)一级换热器工况流量 对数传热温差为K t T t T t T t T t m 9.37609023 70ln ) 6090()2370(ln )()(2 1122112=-----=-----= ? 取管子规格为φ14×2mm ,材料为20号钢,导热系数λ=45 W/mK , 单管流通截面积为S=5221085.701.04 4-?=?=π πi d m 2 管子根数N=135根 单位长度管束外表面积为S=N πd o =135×π×0.014=5.938m 2 换热管长度1.808m ,换热面积1.808×5.938=10.74 m 2

板式换热器换热面积与传热系数的关系

传热效率高: 板片波纹的设计以高度的薄膜导热系数为目标,板片波纹所形成的特殊流道,使流体在极低的流速下即可发生强烈的扰动流(湍流),扰动流又有自净效应以防止污垢生成因而传热效率很高。 一般地说,板式换热器的传热系数K值在3000~6000W/m2.oC范围内。这就表明,板式换热器只需要管壳式换热器面积的1/2~1/4 即可达到同样的换热效果。 随机应变: 由于换热板容易拆卸,通过调节换热板的数目或者变更流程就可以得到最合适的传热效果和容量。只要利用换热器中间架,换热板部件就可有多种独特的机能。这样就为用户提供了随时可变更处理量和改变传热系数K值或者增加新机能的可能。 热损失小: 因结构紧凑和体积小,换热器的外表面积也很小,因而热损失也很小,通常设备不再需要保温。 使用安全可靠: 在板片之间的密封装置上设计了2道密封,同时又设有信号孔,一旦发生泄漏,可将其排出热换器外部,即防止了二种介质相混,又起到了安全报警的作用。 有利于低温热源的利用: 由于两种介质几乎是全逆 流流动,以及高的传热效果,板式 换热器两种介质的最小温差可达到 1oC。用它来回收低温余热或利用低 温热源都是最理想的设备。

冷却水量小: 板式换热器由于其流道的几何形状所致,以及二种液体都又很高的热效率,故可使冷却水用量大为降低。反过来又降低了管道,阀门和泵的安装费用。 占地少,易维护: 板式换热器的结构极为紧凑,在传热量相等的条件下,所占空间仅为管壳式换热器的1/2~1/3。并且不象管壳式那样需要预留出很大得空间用来拉出管束检修。而板式换热器只需要松开夹紧螺杆,即可在原空间范围内100%地接触倒换热板的表面,且拆装很方便。 阻力损失少: 在相同传热系数的条件下,板式换热器通过合理的选择流速,阻力损失可控制在管壳式换热器的1/3范围内。 投资效率高: 在相同传热量的前提下,板式换热器与管壳式换热器相比较,由于换热面积,占地面积,流体阻力,冷却水用量等项目数值的减少,使得设备投资、基建投资、动力消耗等费用大大降低,特别是当需要采用昂贵的材料时,由于效率高和板材薄,设备更显经济。

换热器传热系数测定汇总

化 工 实 验 报 告 姓名: 学号: 报告成绩: 课程名称 化工原理实验 实验名称 换热器传热系数的测定实验 班级名称 组 长 同组者 指导教师 实验日期 教师对报告的校正意见 一、 实验目的 1、了解传气—汽对流热的基本理论,掌握套管换热器的操作方法。 2、掌握对流传热系数 α i 测定方法,加深对其概念和影响因素的理解。 3、应用线性回归分析方法,确定关联式 4 .0Pr Re i m A Nu = 中常数 A 、m 的值。 4、了解强化换热的基本方式,确定传热强化比 0/Nu Nu 。 二、 实验内容与要求 1、测定不同空气流速下普通套管换热器的对流传热系数 α i 。 2、不同空气流速下强化套管换热器的对流传热系数 α i 。 3、分别求普通管、强化管换热器准数关联式4 .0Pr Re i m A Nu =中常数 A 、m 的值。 4、根据准数关联式4 .0Pr Re i m A Nu =,计算同一流量下的传热强化比 0/Nu Nu 。 5、分别求取普通套管换热器、强化套管换热器的总传热系数 0K 。 三、 实验原理 1 、对流传热系数i α的测定: i m i i S t Q ?= α (5-1) 式中:i α—管内流体对流传热系数,w/(m 2·℃); Q i —管内传热速率,w ; 3600 t C V Q m p m i ????= ρ (5-2) 式中:V —空气流过测量段上平均体积,m 3/h ; m P —测量段上空气的平均密度,kg/m ; i S —管内传热面积, m ; 1 页

Re Pr 4 .0-Nu m Cp —测量段上空气的平均比热,J/(kg.g ); m t ?—管内流体空气与管内壁面的平均温度差,℃。 ()() 2 121m ln t t T t T t T t T S S w w -----= ? (5-3) 当 2>1t ? / 2t ? >0.5 时,可简化为 2 2 1t t T t W m +- =? (5-4) 式中:1t ,2t —冷流体(空气)的入口、出口温度,℃; Tw — 壁面平均温度,℃。 2、对流传热系数准数关联式的实验确定: 流体在管内作强制对流时,处于被加热状态,准数关联式的形式为: n i m i A Nu Pr Re = (5-5) 其中,传热准数:i i i i d Nu λ α= (5-6) 雷诺准数: i i i i i u d μ ρ= Re (5-7) 其中:u-测量段上空气的平均流速:3600?= F V u (5-8) 普朗特准数: i i pi i c λ μ= Pr (5-9) 对于管内被加热的空气,普朗特准数i Pr 变化不大,可认为是常数,关联式简化为: 4.0Pr Re i m i A Nu i = (5-10) 通过实验确定不同流量下的i Re 与i Nu 。 3、关联式4 .0Pr Re i m i A Nu i =中的常数A ,m 的确定: 以 4 .0Pr Nu 纵坐标,Re 为横坐标,在对数坐标上绘 关系,作图、回归得到准数关联式4 .0Pr Re i m i A Nu i =中的常数A ,m 。 同理得到强化管准数关联式4 .0Pr Re i m i A Nu i =中的常数A ,m 。 4、强化比的确定 2 页

热交换器设计计算

热交换器设计计算 一、基本参数 管板与管箱法兰、壳程圆筒纸之间的连接方式为e 型 热交换器公称直径DN600,即D i =600mm 换热管规格φ38?2,L 0=3000mm 换热管根数n=92 管箱法兰采用整体非标法兰 管箱法兰/壳体法兰外直径D f =760mm 螺柱孔中心圆直径D b =715mm 壳体法兰密封面尺寸D 4=653mm 二、受压元件材料及数据 以下数据查自GB —2011; 管板、法兰材料:16Mn 锻件 NB/T 47008—2010 管板设计温度取 10℃ 查表9,在设计温度100℃下管板材料的许用应力: =t r σ][178Mpa (δ≤100mm ) 查表,在设计温度100℃壳体/管箱法兰/管板材料的弹性模量: Mpa 197000E E E p f f ===’ ’’ 壳程圆筒材料:Q345R GB 713 壳程圆筒的设计温度为壳程设计温度 查表2,在设计温度100℃下壳程圆筒材料的许用应力: =t c σ][189Mpa (3mm <δ≤16mm ) 查表,在设计温度10℃下壳程圆筒材料的弹性模量Mpa 197000E s = 查表在金属温度20℃~80℃范围内,壳程圆筒材料平均线膨胀系数: ℃)(α??=mm /mm 10137.15-s 管程圆筒材料:Q345R GB 713 管程圆筒的设计温度为壳程设计温度 按GB/T 151—2014 中规定,管箱圆筒材料弹性模量,当管箱法兰采用长颈对焊法兰时,取管箱法兰的材料弹性模量,即Mpa 197000E h = 换热管材料:20号碳素钢管 GB 9948 换热管设计温度取100℃ 查表6,在设计温度100℃下换热管材料的许用应力Mpa 147σ][t t =(δ≤16mm ) 查表,设计温度100℃下换热管材料的屈服强度Mpa 220R t eL =(δ≤16mm ) 查表,设计温度100℃下换热管材料的弹性模量Mpa 197000E t =

板式换热器换热系数或传热系数

板式换热器是一种高效、紧凑的换热设备。尽管其发展已有近百年历史,且在国民经济的少数部门(如食品、制药)有着比较广泛的应用,但是由于耐温、耐压、耐腐蚀能力而制约其在各个部门的全面推广和应用。进入80年代以来,由于制造技术、垫片材料的不断进步以及传热理论的不断完善,板式换热器的应用越来越受到工业生产部门的重视。 要确定一项强化传热新技术是否先进,必须对其进行评价。但在实际的使用中,出现了多种评价强化传热的方法与评价指标。有人主张采用换热量Q与消耗的泵(或风机)的功率N的比值,即能量系数作为评价指标,类似的也广泛采用K/ΔP以及无因次化的Nu/ζ来进行评价,为了更准确地反映强化传热的性能,进一步也可以使用K/ΔP1/3及Nu/ζ1/3作为指标。随着传热技术的发展,换热器日益向体积小、重量轻的方向发展,同时在提高效率的前提下,要求操作费用降低。在综合分析的基础上,提出了一套较为完整的性能评价数据,即维持输送功率、传热面积、传热负荷3因素中的两因素不变,比较第3因素的大小以评定传热性能的好坏。 这些评价都只是分析换热器的能量在数量上转换、传递、利用和损失的情况,即以热力学第一定律为基础。为了更准确地反映热量交换过程能量在质量上的损失,在理论研究中也提出了许多基于热力学第二定律的评价方法,即分析换热器中火用的转换、传递、利用和损失的情况。而进行技术推广应用时,还应考虑采用强化换热技术后管子等价格的增加和运行费用的变化,运用经济核算的方法进行评价,即热经济学的评价方法。 而在实际的使用过程中,进行强化传热新技术、新方法的研究更多采用简单易用的单一参数K,ΔP以及单一参数组合而成的K/ΔP,K/ΔP1/3来进行评价[9~11]。而基于热力学第二定律的方法在设计过程中可用来判断换热器的性能,作为进一步改善的依据,但在工程上缺乏实用性。 a.提高板片的表面传热系数 由于板式换热器的波纹能使流体在较小的流速下产生湍流( 雷诺数一1 5 0时 ),因此能获得较高的表面传热系数,表面传热系数与板片波纹的几何结构以及介质的流动状态有关。板片的波形包括人字形、平直形、球形等。经过多年的研究和实验发现,波纹断面形状为三角形 ( 正弦形表面传热系数最大,压力降较小,受压时应力分布均匀,但加工困难…) 的人字形板片具有较高的表面传热系数,且波纹的夹角越大,板间流道内介质流速越高,表面传热系数越大。 b.减小污垢层热阻 减小换热器的污垢层热阻的关键是防止板片结垢。板片结垢厚度为1mm时,传热系数降低约10%。因此,必须注意监测换热器冷热两侧的水质,防止板片结垢,并防止水中杂物附着在板片上。有些供热单位为防止盗水及钢件腐蚀,在供热介质中添加药剂,因此必须注意水质和黏性药剂引起杂物沾污换热器板片。如果水中有黏性杂物,应采用专用过滤器进行处理。选用药剂时,宜选择无黏性的药剂。 c.选用热导率高的板片 板片材质可选择奥氏体不锈钢、钛合金、铜合金等。不锈钢的导热性能好,热导率约14.4W/( m·K),强度高,冲压性能好,不易被氧化,价格比钛合金和铜合金低,供热工程中使用最多,但其耐氯离子腐蚀的能力差。 d.减小板片厚度 换热器板片的设计厚度与其耐腐蚀性能无关,与换热器的承压能力有关。板片加厚,能提高换热器的承压能力。采用人字形板片组合时,相邻板片互相倒置,波纹相互接触,形成了密度大、分布均匀的支点,板片角孑L及边缘密封结构已逐步完善,使换热器具有很好的承压能力。国产可拆式板式换热器最大承压能力已达到了2.5M P a 。板片厚度对传热系数影响很大,厚度减小 0.1mm,对称型板式换热器的总传热系数约增加 6 0 0W/( m ·K),

4-4-传热过程计算

知识点4-4 传热过程计算 【学习指导】 1.学习目的 通过本知识点的学习,掌握换热器的能量衡算,总传热速率方程和总传热系数的计算。在传热计算的两种方法中,重点掌握平均温度差法,了解传热单元数法及应用场合。 2.本知识点的重点 换热器的能量衡算,总传热速率方程和总传热系数的计算,用平均温度差法进行传热计算。 3.本知识点的难点 传热单元数法。 4.应完成的习题 4-4 在某管壳式换热器中用冷水冷却热空气。换热管为φ25×2.5 mm的钢管,其导热系数为45 W/(m·℃)。冷却水在管程流动,其对流传热系数为2600 W/(m2·℃),热空气在壳程流动,其对流传热系数为52 W/(m2·℃)。试求基于管外表面积的总传热系数以及各分热阻占总热阻的百分数。设污垢热阻可忽略。 4-5 在一传热面积为40m2的平板式换热器中,用水冷却某种溶液,两流体呈逆流流动。冷却水的流量为30000kg/h,其温度由22℃升高到36℃。溶液温度由115℃降至55℃。若换热器清洗后,在冷、热流体量和进口温度不变的情况下,冷却水的出口温度升至40℃,试估算换热器在清洗前壁面两侧的总污垢热阻。假设: (1)两种情况下,冷、热流体的物性可视为不变,水的平均比热容为4.174 kJ/(kg·℃); (2)两种情况下,αi、αo分别相同;

(3)忽略壁面热阻和热损失。 4-6 在套管换热器中用水冷却油,油和水呈并流流动。已知油的进、出口温度分别为140℃和90℃,冷却水的进、出口温度分别为20℃和32℃。现因工艺条件变动,要求油的出口温度降至70℃,而油和水的流量、进口的温度均不变。若原换热器的管长为1m,试求将此换热器管长增至若干米后才能满足要求。设换热器的热损失可忽略,在本题所涉及的温度范围内油和水的比热容为常数。 4-7 冷、热流体在一管壳式换热器中呈并流流动,其初温分别为32℃和130℃,终温分别为48℃和65℃。若维持冷、热流体的初温和流量不变,而将流动改为逆流,试求此时平均温度差及冷、热流体的终温。设换热器的热损失可忽略,在本题所涉及的温度范围内冷、热流体的比热容为常数。 4-8 在一管壳式换热器中,用冷水将常压下的纯苯蒸汽冷凝成饱和液体。已知苯蒸汽的体积流量为1600 m3/h,常压下苯的沸点为80.1℃,气化潜热为394kJ/kg。冷却水的入口温度为20℃,流量为35000kg/h,水的平均比热容为4.17 kJ/(kg·℃)。总传热系数为450 W/(m2·℃)。设换热器的热损失可忽略,试计算所需的传热面积。 4-9 在一传热面积为25m2的单程管壳式换热器中,用水冷却某种有机物。冷却水的流量为28000kg/h,其温度由25℃升至38℃,平均比热容为4.17 kJ/(kg·℃)。有机物的温度由110℃降至65℃,平均比热容为1.72 kJ/(kg·℃)。两流体在换热器中呈逆流流动。设换热器的热损失可忽略,试核算该换热器的总传热系数并计算该有机物的处理量。 4-10 某生产过程中需用冷却水将油从105℃冷却至70℃。已知油的流量为6000kg/h,水的初温为22℃,流量为2000kg/h。现有一传热面积为10 m2的套管式换热器,问在下列两种流动型式下,换热器能否满足要求: (1)两流体呈逆流流动; (2)两流体呈并流流动。 设换热器的总传热系数在两种情况下相同,为300 W/(m2·℃);油的平均比热容为1.9 kJ/(kg·℃),水的平均比热容为4.17kJ/(kg·℃)。热损失可忽略。

翅片换热器热系数

翅片换热器传热系数 ABRAHAM LAPIN and W. FRED SCHURIG I Polytechnic Institute of Brooklyn, Brooklyn 1, N. Y. 许多方程来源于实验数据,同时提出了有交叉流动的热交换器的设计。对关于换热器行数 的总传热影响,进行了图示作为参考. 翅片管在热交换器中的使用有了迅速增长。当内部传热系数比外面的系数极大时,它经常被实际增加一定数量的外表面来为低外系数进行补偿。许多研究人员都对翅片管的传热进行研究。因为对可能的翅片类型的安排有非常大的数量,大多数研究都局限于特定条件。 实验设备与程序 设备金属板材风管横截面为 30x12 3/4 英寸。上部是固定的,但较低的部分,可提高或降低 容纳一个可变数目的排。这下部分(进口)进行拟合有5英寸空气校正叶片可助均匀分布的空气线圈。 传热表面(台风的空气调节股份有限公司)。每个单元有八个翅片管manifolded 在一起以并行方式进行。 5 / 8英寸 0.dx0.025英寸铜管 11/2英寸 0.dx0.018英寸轧花 8每英寸,30英寸翅翅片长度 Ao/Ai=16.30,Ao=2.44平方英尺 翅片管直径= 2.4 1.248平方英尺,空气流面积最小 这些铝管的用途,则被关在一个长方形的30×12 3/4英寸的帧。一个3/4设备橡胶障板安放在沿 一侧的框架。翅片管相邻本遮光罩一个侧和框架本身上另一边。该框架结构允许一个交错管的安排通过简单地转弯连续排对单位180度的另一个。

一台吹风机提供空气供给在逆流而上空调管道内结束。 测量 水流量用校准过的转子流量计。空气流量是用一个托马斯米测量,其中包括四个帧开口用1.134 镍铬合金 欧姆/英尺,有一个总电阻每一个约25欧姆。流动的空气用仪表测量通过一系列的圆盘和圆环折流板顺流混合。温度进行了测量精确温度计刻度为0.1 C 。每一个温度计的位置了经过精心挑选的,确保读出正确的总体温度。 一系列的运行是由1到8步骤在一个单元中。这在试管被水平和安排一个三角形的场地:1 1/2-inch 水平和垂直距离管-Le. 1.5X1.677英寸,三角形场地。所有的管道都是相连的,所以只有一个水程。水联系之间是这样的空气和水逆向流动。 程序 热水用泵送进管中,同时冷空气穿过翅片。水流量和温度维持在恒定的9000(磅/小时)和50度,它给出一种管程雷诺数超过20000。 管外的空气流速各在1100 - 5000英镑每小时之间,给人们提供了一种基于最小的通流面积3至15英尺/秒。在室温下空气进入导管。两个完全独立的流动进行着。所有实验结果可再生的有4%。一系列等温压力损耗测量使用一至八行被独立的传热。流动的空气温度通过翅片管时68度。和流量从1200到4500磅每小时。给雷诺数范围2200到8500。 压力损失用一个倾斜的水压计测量。 计算和结果 p 12p 2l m WC (T - T ) = c (t - t ) =UA t ω? 12p 2l () c (t - t )p m m WC T T U A t A t ω-==?? 111'11i i si i av so o o o L UA h A h A kA h A h A =++++ 111'11U o o o i i si i av so o A A A L h A h A k A h h =++++ 0.80.3 0.0225()(Re)(Pr)i h k D = 0.8 0.2 (10.01)160()i i t V h d +=

换热器的传热计算

换热器的传热计算 换热器的传热计算包括两类:一类是设计型计算,即根据工艺提出的条件,确定换热面积;另一类是校核型计算,即对已知换热面积的换热器,核算其传热量、流体的流量或温度。这两种计算均以热量衡算和总传热速率方程为基础。 换热器热负荷Q 值一般由工艺包提供,也可以由所需工艺要求求得。Q=W c p Δt ,若流体有相变,Q=c p r 。 热负荷确定后,可由总传热速率方程(Q=K S Δt )求得换热面积,最后根据《化工设备标准系列》确定换热器的选型。 其中总传热系数K= 0011 h Rs kd bd d d Rs d h d o m i i i i ++++ (1) 在实际计算中,总传热系数通常采用推荐值,这些推荐值是从实践中积累或通过实验测定获得的,可以从有关手册中查得。在选用这些推荐值时,应注意以下几点: 1. 设计中管程和壳程的流体应与所选的管程和壳程的流体相一致。 2. 设计中流体的性质(粘度等)和状态(流速等)应与所选的流体性质和 状态相一致。 3. 设计中换热器的类型应与所选的换热器的类型相一致。 4. 总传热系数的推荐值一般范围很大,设计时可根据实际情况选取中间的 某一数值。若需降低设备费可选取较大的K 值;若需降低操作费用可取较小的K 值。 5. 为保证较好的换热效果,设计中一般流体采用逆流换热,若采用错流或 折流换热时,可通过安德伍德(Underwood )和鲍曼(Bowman )图算法对Δt 进行修正。 虽然这些推荐值给设计带来了很大便利,但是某些情况下,所选K 值与实际值出入很大,为避免盲目烦琐的试差计算,可根据式(1)对K 值估算。 式(1)可分为三部分,对流传热热阻、污垢热阻和管壁导热热阻,其中污垢热阻和管壁导热热阻可查相关手册求得。由此,K 值估算最关键的部分就是对流传热系数h 的估算。

换热器的传热系数

1 介质不同,传热系数各不相同我们公司的经验是:1、汽水换热:过热部分为800~1000W/m2.℃饱和部分是按照公式K=2093+786V(V是管内流速)含污垢系数0.0003。水水换热为:K=767(1+V1+V2)(V1是管内流速,V2水壳程流速)含污垢系数0.0003 实际运行还少有保守。有余量约10% 冷流体热流体总传热系数K,W/(m2.℃) 水水850~1700 水气体17~280 水有机溶剂280~850 水轻油340~910 水重油60~280 有机溶剂有机溶剂115~340 水水蒸气冷凝1420~4250 气体水蒸气冷凝30~300 水低沸点烃类冷凝455~1140 水沸腾水蒸气冷凝2000~4250 轻油沸腾水蒸气冷凝455~1020 不同的流速、粘度和成垢物质会有不同的传热系数。K值通常在 2 800~2200W/m2·℃范围内。列管换热器的传热系数不宜选太高,一般在800-1000 W/m2·℃。螺旋板式换热器的总传热系数(水—水)通常在1000~2000W/m2·℃范围内。板式换热器的总传热系数(水(汽)—水)通常在3000~5000W/m2·℃范围内。1.流体流径的选择哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例) (1) 不洁净和易结垢的流体宜走管内,以便于清洗管子。 (2) 腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。 (3) 压强高的流体宜走管内,以免壳体受压。(4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。(5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。(6) 需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。(7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100) 下即可达到湍流,以提高对流传热系数。在选择流体流径时,上述各点常不能同时兼顾,应视具体情况抓住主要矛盾,例如首先考虑流体的压强、防腐蚀及清洗等要求,然后再校核对流传热系数和压强降,以便作出较恰当的选择。 2. 流体流速的选择增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减小换热器的传热面积。但是流速增加,又使流体阻力增大,动力消耗就增多。所以适宜的流速要通过经济衡算才能定出。此外,在选择流速时,还需考虑结构上的要求。例如,选择高的流速,使管子的数目减少,对一定的传热面积,不得不采用较长的管子或增加程数。管子太长不易清洗,且一般管长都有一定的标准;单程变为多程使平均温度差下降。这些也是选择流速时应予考虑的问题。 3. 流体两端温度的确定若换热器中冷、热流体的温度都由工艺条件所规定,就不存在确定流体两端温度的问题。若其中一个流体仅已知进口温度,则出口温度应由设计者来确定。例如用冷水冷却某热流体,冷水的进口温度可以根据当地的气温条件作出估计,而换热器出口的冷水温度,便需要根据经济

传热过程分析与换热器的热计算(杨世铭,陶文栓,传热学,第四版,答案)

第10章 传热过程分析与换热器的热计算 课堂讲解 课后作业 【10-3】一卧式冷凝器采用外径为25mm ,壁厚1.5mm 的黄铜管做成热表面。已知管外 冷凝侧的平均传热系数 )/(700520K m W h ?=,管内水侧平均的表面传热系数)/(30042K m W h i ?=。试计算下列两种情况下冷凝器按管子外表面面积计算的总传热系数 (1) 管子内外表面均是洁净的 (2) 管内为海水,流速大于1m/s ,结水垢,平均温度小于50℃,蒸汽侧有油。 【解】 【10-13】一台1-2型壳管式换热用来冷却11号润滑油。冷却水在管内流动,C t C t ?="?='502022,,流量为3kg/s ;热油入口温度为600C ,)/(3502K m W k ?=。试计算: (1) 油的流量; (2) 所传递的热量; (3) 所需的传热面积。 【10-17】在一逆流式水-水换热器中,管内为热水,进口温度100,=t ℃出口温度为 80,,=t ℃;管外流过冷水,进口温度20,2=t ℃,出口温度70,,2=t ℃;总换热量KW 350=Φ, 共有53根内径为16mm 、壁厚为1mm 的管子。管壁导热系数()k m w */40=λ,管外流体的表面传热系数()k m w h */15000=,管内流体为一个流程。假设管子内、外表面都是洁净的。试确定所需的管子长度。 【解】计算管内平均换热系数。 ()908010021=+=f t ℃ ()()95.1Pr ,*/68.0,*/109.3146==?=-k m w s m Kg u λ ()()()28.4330/60ln 701002080=---=?m t ℃, ,38.8,2dL n A m A π== 本题中冷热流体总温差为43.3℃,管外冷流体侧占68﹪,管内侧约占32﹪,故不必考虑温差的修正。 【10-22】欲采用套管式换热器使热水与冷水进行热交换,并给出s kg q C t s kg q C t m m /0233.0,35,/0144.0,2002211=?='=?='。取总传热系数为2225.0),/(980m A K m W k =?=,试确定采用顺流与逆流两种布置时换热器所交换的热量、冷却水出口温度及换热器的效能。 【10-27】一台逆流式换热器刚投入工作时在下列参数下运行:360,1=t ℃,300,, 1=t ℃,

换热器的传热计算.

换热器的传热计算.

换热器的传热计算 换热器的传热计算包括两类:一类是设计型计算,即根据工艺提出的条件,确定换热面积;另一类是校核型计算,即对已知换热面积的换热器,核算其传热量、流体的流量或温度。这两种计算均以热量衡算和总传热速率方程为基础。 换热器热负荷Q 值一般由工艺包提供,也可以由所需工艺要求求得。Q=W c p Δt ,若流体有相变,Q=c p r 。 热负荷确定后,可由总传热速率方程(Q=K S Δt )求得换热面积,最后根据《化工设备标准系列》确定换热器的选型。 其中总传热系数K=0 0011h Rs kd bd d d Rs d h d o m i i i i ++++ (1) 在实际计算中,总传热系数通常采用推荐值,这些推荐值是从实践中积累或通过实验测定获得的,可以从有关手册中查得。在选用这些推荐值时,应注意以下几点: 1. 设计中管程和壳程的流体应与所选的管程和壳程的流体相一致。 2. 设计中流体的性质(粘度等)和状态(流速等)应与所选的流体性质和 状态相一致。 3. 设计中换热器的类型应与所选的换热器的类型相一致。 4. 总传热系数的推荐值一般范围很大,设计时可根据实际情况选取中间的 某一数值。若需降低设备费可选取较大的K 值;若需降低操作费用可取较小的K 值。 5. 为保证较好的换热效果,设计中一般流体采用逆流换热,若采用错流或 折流换热时,可通过安德伍德(Underwood )和鲍曼(Bowman )图算法对Δt 进行修正。 虽然这些推荐值给设计带来了很大便利,但是某些情况下,所选K 值与实际值出入很大,为避免盲目烦琐的试差计算,可根据式(1)对K 值估算。 式(1)可分为三部分,对流传热热阻、污垢热阻和管壁导热热阻,其中污垢热阻和管壁导热热阻可查相关手册求得。由此,K 值估算最关键的部分就是对流传热系数h 的估算。

第五章 传热过程分析和换热器计算

第九章 传热过程分析和换热器计算 在这一章里讨论几种典型的传热过程,如通过平壁、圆筒壁和肋壁的传热过程通过分析 得出它们的计算公式。由于换热器是工程上常用的热交换设备,其中的热交换过程都是一些典型的传热过程。因此,在这里我们对一些简单的换热器进行热平衡分析,介绍它们的热计算方法,以此作为应用传热学知识的一个较为完整的实例。 9-1传热过程分析 在实际的工业过程和日常生活中存在着的大量的热量传递过程常常不是以单一的热量传递方式出现,而多是以复合的或综合的方式出现。在这些同时存在多种热量传递方式的热传递过程中,我们常常把传热过程和复合换热过程作为研究和讨论的重点。 对于前者,传热过程是定义为热流体通过固体壁面把热量传给冷流体的综合热量传递过程,在第一章中我们对通过大平壁的传热过程进行了简单的分析,并给出了计算传热量的公式 t kF Q ?=, 9-1 式中,Q 为冷热流体之间的传热热流量,W ;F 为传热面积,m 2;t ?为热流体与冷流体间的某个平均温差,o C ;k 为传热系数,W/(?2m o C)。在数值上,传热系数等于冷、热流体间温差t ?=1 o C 、传热面积A =1 m 2时的热流量值,是一个表征传热过程强烈程度的物理量。在这一章中我们除对通过平壁的传热过程进行较为详细的讨论之外,还要讨论通过圆筒壁的传热过程,通过肋壁的传热过程,以及在此基础上对一些简单的包含传热过程的换热器进行相应的热分析和热计算。 对于后者,复合换热是定义为在同一个换热表面上同时存在着两种以上的热量传递方式,如气体和固体壁面之间的热传递过程,就同时存在着固体壁面和气体之间的对流换热以及因气体为透明介质而发生的固体壁面和包围该固体壁面的物体之间的辐射换热,如果气体为有辐射性能的气体,那么还存在固体壁面和气体之间的辐射换热。这样,固体壁面和它所处的环境之间就存在着一个复合换热过程。下面我们来讨论一个典型的复合换热过程,即一个热表面在环境中的冷却过程,如图9-1所示。由热表面的热平衡可知,表面的散热热流应等于其与环境流体之间的对流换热热流加上它与包围壁面之间的辐射换热热流,即r c Q Q Q +=,式中 图9-1热表面冷却过程

第10章 传热过程分析与换热器的热计算(杨世铭,陶文栓,传热学,第四版,答案)

第10章 传热过程分析与换热器的热计算 课堂讲解 课后作业 【10-3】一卧式冷凝器采用外径为25mm ,壁厚1.5mm 的黄铜管做成热表面。已知管外冷凝 侧的平均传热系数)/(700520K m W h ?=,管内水侧平均的表面传热系数 )/(30042K m W h i ?=。试计 (1)(2)【流动,t ?='202 (1)(2)(3)【80,,=℃; 根内径 为h 15000=度。 ?m t 的修正。 【10-22】欲采用套管式换热器使热水与冷水进行热交换,并给出s kg q C t s kg q C t m m /0233.0,35,/0144.0,2002211=?='=?='。取总传热系数为2225.0),/(980m A K m W k =?=,试确定采用顺流与逆流两种布置时换热器所交换的热量、冷却水出口温度及换热器的效能。 【10-27】一台逆流式换热器刚投入工作时在下列参数下运行:360,1=t ℃,300,,1=t ℃,30,2=t ℃,200,,2=t ℃,11c q m =2500W/K ,K=800() k m W ?2。运行一年后发现,在11c q m 、22c q m 、

及,1t 、, 2t 保持不变的情形下,冷流体只能被加热到162℃,而热流体的出口温度则高于300℃。试确定此情况下的污垢热阻及热流体的出口温度。 【解】不结垢时, ()2.210160/270ln 160270=-=?m t ℃,()2892.02.2108003003602500m t k A m =?-?=?Φ= K W c q c q m m /4.882170602500302003003601122==--=. 结垢后,()W t c q m 116471301624.882222=-?==Φδ。 又 1255030162,,,2,,211--t t q c q m ?m t k ,,1【r i 条件 即 由此得 【T ∞的气流 ε,∞=300K , mc 解得T

换热器计算步骤..

第2章工艺计算 2.1设计原始数据 表2—1 名称设计压力设计温度介质流量容器类别设计规范单位Mpa ℃/ Kg/h / / 壳侧7.22 420/295 蒸汽、水III GB150 管侧28 310/330 水60000 GB150 2.2管壳式换热器传热设计基本步骤 (1)了解换热流体的物理化学性质和腐蚀性能 (2)由热平衡计算的传热量的大小,并确定第二种换热流体的用量。 (3)确定流体进入的空间 (4)计算流体的定性温度,确定流体的物性数据 (5)计算有效平均温度差,一般先按逆流计算,然后再校核 (6)选取管径和管内流速 (7)计算传热系数,包括管程和壳程的对流传热系数,由于壳程对流传热系数与壳径、管束等结构有关,因此,一般先假定一个壳程传热系数,以计算K,然后再校核 (8)初估传热面积,考虑安全因素和初估性质,常采用实际传热面积为计算传热面积值的1.15~1.25倍 (9)选取管长 l (10)计算管数 N T (11)校核管内流速,确定管程数 (12)画出排管图,确定壳径 D和壳程挡板形式及数量等 i (13)校核壳程对流传热系数 (14)校核平均温度差 (15)校核传热面积 (16)计算流体流动阻力。若阻力超过允许值,则需调整设计。

第2章工艺计算 2.3 确定物性数据 2.3.1定性温度 由《饱和水蒸气表》可知,蒸汽和水在p=7.22MPa、t>295℃情况下为蒸汽,所以在不考虑开工温度、压力不稳定的情况下,壳程物料应为蒸汽,故壳程不存在相变。 对于壳程不存在相变,其定性温度可取流体进出口温度的平均值。其壳程混合气体的平均温度为: t=420295 357.5 2 + =℃(2-1) 管程流体的定性温度: T=310330 320 2 + =℃ 根据定性温度,分别查取壳程和管程流体的有关物性数据。 2.3.2 物性参数 管程水在320℃下的有关物性数据如下:【参考物性数据无机表1.10.1】 表2—2 密度ρ i- =709.7 ㎏/m3 定压比热容c pi =5.495 kJ/㎏.K 热导率λ i =0.5507 W/m.℃ 粘度μ i =85.49μPa.s 普朗特数Pr=0.853 壳程蒸气在357.5下的物性数据[1]:【锅炉手册饱和水蒸气表】 表2—3

换热器的换热面积计算

换热器热量及面积计算 一、热量计算 1、 一般式 Q=Wh(Hh,1- Hh,2)= Wc(Hc,2- Hc,1) 式中: Q为换热器的热负荷,kj/h或kw; W为流体的质量流量,kg/h; H为单位质量流体的焓,kj/kg; 下标c和h分别表示冷流体和热流体,下标1和2分别表示换热器的进口和出口。 2、无相变化 Q=Whcp,h(T1-T2)=Wccp,c(t2-t1) 式中 cp为流体平均定压比热容,kj/(kg.℃); T为热流体的温度,℃; T为冷流体的温度,℃ 二、面积计算 1、总传热系数K 管壳式换热器中的K值如下表 冷流体热流体总传热系数K,w/(m2.℃) 水水850-1700 水气体17-280 水有机溶剂280-850

水轻油340-910水重油60-280 有机溶剂有机溶剂115-340水水蒸气冷凝1420-4250气体水蒸气冷凝30-300 水低沸点烃类冷凝455-1140水沸腾水蒸气冷凝2000-4250轻油沸腾水蒸气冷凝455-1020 注: 1w=1J/s=3.6kj/h=0.86kcal/h 1kcal=4.18kj 2、 温差 (1)逆流 热流体温度T:T1→T2 冷流体温度t:t2←t1 温差△t:△t1→△t2 △tm=(△t2-△t1)/㏑(△t2/△t1) (2)并流 热流体温度T:T1→T2 冷流体温度t:t1→t2 温差△t:△t2→△t1 △tm=(△t2-△t1)/㏑(△t2/△t1) 3、面积计算 S=Q/(K.△tm) 三、管壳式换热器面积计算

S=3.14ndL 其中,S为传热面积m2、n为管束的管数、d为管径,m;L为管长,m。 四、注意事项 冷凝段:潜热(根据汽化热计算) 冷却段:显热(根据比热容计算 【本文档内容可以自由复制内容或自由编辑修改内容期待 你的好评和关注,我们将会做得更好】

换热器计算复习过程

换热器计算的设计型和操作型问题(5.5)-- 传热过程计算与换热器 日期:2005-12-28 18:04:55 来源:来自网络查看:[大中小] 作者:椴木杉热度:944 在工程应用上,对换热器的计算可分为两种类型:一类是设计型计算(或称为设计计算),即根据生产要求的传热速率和工艺条件,确定其所需换热器的传热面积及其他有关尺寸,进而设计或选用换热器;另一类是操作型计算(或称为校核计算),即根据给定换热器的结构参数及冷、热流体进入换热器的初始条件,通过计算判断一个换热器是否能满足生产要求或预测生产过程中某些参数(如流体的流量、初温等)的变化对换热器传热能力的影响。两类计算所依据的基本方程都是热量衡算方程和传热速率方程,计算方法有对数平均温差(LMTD)法和传热效率-传热单元数(e-NTU)法两种。 一、设计型计算 设计型计算一般是指根据给定的换热任务,通常已知冷、热流体的流量以及冷、热流体进出口端四个温度中的任意三个。当选定换热表面几何情况及流体的流动排布型式后计算传热面积,并进一步作结构设计,或者合理地选择换热器的型号。 对于设计型计算,既可以采用对数平均温差法,也可以采用传热效率- 传热单元数法,其计算一般步骤如表5-2所示。 表5-2 设计型计算的计算步骤 例5-4 一列管式换热器中,苯在换热器的管内流动,流量为1.25

kg/s,由80℃冷却至30℃;冷却水在管间与苯呈逆流流动,冷却水进口温度为20 ℃,出口温度不超过50℃。若已知换热器的传热系数为470 W/(m2·℃),苯的平均比热为1900 J/(kg·℃)。若忽略换热器的散热损失,试分别采用对数平均温差法和传热效率-传热单元数法计算所需要的传热面积。 解(1)对数平均温差法 由热量衡算方程,换热器的传热速率为 苯与冷却水之间的平均传热温差为 由传热速率方程,换热器的传热面积为 A = Q/KΔt m = 118.8x1000/(470X18.2) = 13.9 m3 (2)传热效率-传热单元数法 苯侧 (m C ph) = 1.25*1900 = 2375 W/℃ 冷却水侧 (m c C pc) =(m h C ph)(t h1-t h2)/(t c1-t c2) =2375*(80-30)/(50- 20)=3958.3 W/℃ 因此,(m C p)min=(m h C ph)=2375 W/℃ 由式(5-29),可得 Qmax = (m C p)min(t h1-t c1) = 2375*(80-20) = 142.5*10^3 W 由传热效率和热容流量比的定义式 e = Q/Qmax = 118.8/142.5 = 0.83 C Rh=(m h C ph)/(m c C pc)=2375/3958.3=0.6 由式(5-39) 0.83=(1-exp[(1-0.6)*NTU])/(0.6-exp[(1-0.6)*NTU]) 可求出传热单元数NTU=2.71 则换热器的传热面积为 A = (m C p)min/K *NTU = 2375/470 * 2.71 = 13.7 m^2 讨论:由计算结果可见:采用两种方法计算传热面积,由于计算原理相同,计算结果十分接近。而对数平均温差法较为简单。 二、操作型计算 对于换热器的操作型计算,其特点是换热器给定,计算类型主要有以下两种:1.对指定的换热任务,校核给定的换热器是否适用。一般给定换热器的传热面

相关主题
文本预览
相关文档 最新文档