一、中考数学压轴题
1.如图1,已知点B (0,9),点C 为x 轴上一动点,连接BC ,△ODC 和△EBC 都是等边三角形.
(1)求证:DE =BO ;
(2)如图2,当点D 恰好落在BC 上时. ①求点E 的坐标;
②在x 轴上是否存在点P ,使△PEC 为等腰三角形?若存在,写出点P 的坐标;若不存在,说明理由;
③如图3,点M 是线段BC 上的动点(点B ,点C 除外),过点M 作MG ⊥BE 于点G ,MH ⊥CE 于点H ,当点M 运动时,MH +MG 的值是否发生变化?若不会变化,直接写出MH +MG 的值;若会变化,简要说明理由. 2.已知:如图,AB 为
O 的直径,弦CD AB ⊥垂足为E ,点H 为弧AC 上一点.连接
DH 交AB 于点F ,连接HA 、BD ,点G 为DH 上一点,连接AG ,HAG BDC ∠=∠. (1)如图1,求证:AG HD ⊥;
(2)如图2,连接HC ,若HC HF =,求证:HC HA =;
(3)如图3,连接HO 交AG 于点K ,若点F 为DG 的中点,HC 2HG =,求
KG
AK
的值.
3.如图,AB ∥CD ,定点E ,F 分别在直线AB ,CD 上,平行线AB ,CD 之间有一动点P . (1)如图1,当P 点在EF 的左侧时,∠AEP ,∠EPF ,∠PFC 满足数量关系为 ,如图2,当P 点在EF 的右侧时,∠AEP ,∠EPF ,∠PFC 满足数量关系为 . (2)如图3,当∠EPF =90°,F P 平分∠EFC 时,求证:EP 平分∠AEF ;
(3)如图4,QE,QF分别平分∠PEB和∠PFD,且点P在EF左侧.
①若∠EPF=60°,则∠EQF=.
②猜想∠EPF与∠EQF的数量关系,并说明理由;
4.已知.在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=23,若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内,将Rt△OAB沿OB
折叠后,点A落在第一象限内的点C处.
(1)求经过点O,C,A三点的抛物线的解析式.
(2)若点M是抛物线上一点,且位于线段OC的上方,连接MO、MC,问:点M位于何处时三角形MOC的面积最大?并求出三角形MOC的最大面积.
(3)抛物线上是否存在一点P,使∠OAP=∠BOC?若存在,请求出此时点P的坐标;若不存在,请说明理由.
5.如图1,已知,⊙O是△ABC的外接圆,AB=AC=10,BC=12,连接AO并延长交BC于点H.
(1)求外接圆⊙O的半径;
(2)如图2,点D是AH上(不与点A,H重合)的动点,以CD,CB为边,作平行四边形CDEB,DE分别交⊙O于点N,交AB边于点M.
①连接BN,当BN⊥DE时,求AM的值;
②如图3,延长ED交AC于点F,求证:NM·NF=AM·MB;
③设AM=x ,要使2ND -22DM <0成立,求x 的取值范围.
6.已知,在Rt △ABC 和Rt △DEF 中,∠ACB=∠EDF=90°,∠A=30°,∠E=45°,AB =EF =6,如图1,D 是斜边AB 的中点,将等腰Rt △DEF 绕点D 顺时针方向旋转角α(0°<α<90°),在旋转过程中,直线DE ,AC 相交于点M ,直线DF ,BC 相交于点N . (1)如图1,当α=60°时,求证:DM =BN ; (2)在上述旋转过程中,
DN
DM
的值是一个定值吗?请在图2中画出图形并加以证明; (3)如图3,在上述旋转过程中,当点C 落在斜边EF 上时,求两个三角形重合部分四边形CMDN 的面积.
7.如图①,四边形ABCD 中,//,90AB CD ADC ∠=?.
(1)动点M 从A 出发,以每秒1个单位的速度沿路线A B C D →→→运动到点D 停止,设运动时间为a ,AMD ?的面积为,S S 关于a 的函数图象如图②所示,求AD CD 、的长.
(2)如图③动点P 从点A 出发,以每秒2个单位的速度沿路线A D C →→运动到点C 停止,同时,动点Q 从点C 出发,以每秒5个单位的速度沿路线C D A →→运动到点A 停止,设运动时间为t ,当Q 点运动到AD 边上时,连接CP CQ PQ 、、,当CPQ ?的面积为8时,求t 的值.
8.如图,在菱形ABCD 中,AB a ,60ABC ∠=?,过点A 作AE BC ⊥,垂足为E ,
AF CD ⊥,垂足为F .
(1)连接EF ,用等式表示线段EF 与EC 的数量关系,并说明理由;
(2)连接BF ,过点A 作AK BF ⊥,垂足为K ,求BK 的长(用含a 的代数式表示); (3)延长线段CB 到G ,延长线段DC 到H ,且BG CH =,连接AG ,GH ,AH . ①判断AGH 的形状,并说明理由; ②若1
2,(33)2
ADH
a S
==
+,求sin GAB ∠的值.
9.在平面直角坐标系xOy 中,对于点A 和图形M ,若图形M 上存在两点P ,Q ,使得
3AP AQ =,则称点A 是图形M 的“倍增点”.
(1)若图形M 为线段BC ,其中点()2,0B
-,点()2,0C ,则下列三个点()1,2D -,
()1,1E -,()0,2F 是线段BC 的倍增点的是_____________;
(2)若O 的半径为4,直线l :2y x =-+,求直线l 上O 倍增点的横坐标的取值范
围;
(3)设直线1y x =-+与两坐标轴分别交于G ,H ,OT 的半径为4,圆心T 是x 轴上的动点,若线段GH 上存在T 的倍增点,直接写出圆心T 的横坐标的取值范围. 10.对于平面直角坐标系xOy 中的图形W 1和图形W 2.给出如下定义:在图形W 1上存在两点A ,B (点A ,B 可以重合),在图形W 2上存在两点M ,N ,(点M 于点N 可以重合)使得AM=2BN ,则称图形W 1和图形W 2满足限距关系
(1)如图1,点C(1,0),D(-1,0),E(03,点P 在线段DE 上运动(点P 可以与点D ,E 重合),连接OP ,CP .
①线段OP 的最小值为_______,最大值为_______;线段CP 的取值范直范围是_____; ②在点O ,点C 中,点____________与线段DE 满足限距关系;
(2)如图2,⊙O 的半径为1,直线3y x b =+(b>0)与x 轴、y 轴分别交于点F ,G .若线段
FG 与⊙O 满足限距关系,求b 的取值范围;
(3)⊙O 的半径为r(r>0),点H ,K 是⊙O 上的两个点,分别以H ,K 为圆心,1为半径作圆得到⊙H 和 K ,若对于任意点H ,K ,⊙H 和⊙K 都满足限距关系,直接写出r 的取值范围.
11.如图,平面上存在点P 、点M 与线段AB .若线段AB 上存在一点Q ,使得点M 在以PQ 为直径的圆上,则称点M 为点P 与线段AB 的共圆点. 已知点P (0,1),点A (﹣2,﹣1),点B (2,﹣1).
(1)在点O (0,0),C (﹣2,1),D (3,0)中,可以成为点P 与线段AB 的共圆点的是 ;
(2)点K 为x 轴上一点,若点K 为点P 与线段AB 的共圆点,请求出点K 横坐标x K 的取值范围;
(3)已知点M (m ,﹣1),若直线y =1
2
x +3上存在点P 与线段AM 的共圆点,请直接写出m 的取值范围.
12.注意:为了使同学们更好地解答本题的第(Ⅱ)问,我们提供了一种分析问题的方法,你可以依照这个方法按要求完成本题的解答,也可以选用其他方法,按照解答题的一般要求进行解答即可.
如图,将一个矩形纸片ABCD ,放置在平面直角坐标系中,()0,0A ,()4,0B ,
()0,3D ,M 是边CD 上一点,将ADM 沿直线AM 折叠,得到ANM .
(Ⅰ)当AN 平分MAB ∠时,求DAM ∠的度数和点M 的坐标; (Ⅱ)连接BN ,当1DM =时,求
ABN 的面积;
(Ⅲ)当射线BN 交线段CD 于点F 时,求DF 的最大值.(直接写出答案) 在研究第(Ⅱ)问时,师生有如下对话:
师:我们可以尝试通过加辅助线,构造出直角三角形,寻找方程的思路来解决问题.
△.
小明:我是这样想的,延长MN与x轴交于P点,于是出现了Rt NAP
△.
小雨:我和你想的不一样,我过点N作y轴的平行线,出现了两个Rt NAP
13.已知:如图,在平面直角坐标系中,点 A 的坐标为(6,0),AB=62,点 P 从点 O 出发沿线段 OA 向终点 A 运动,点 P 的运动速度是每秒 2 个单位长度,点 D 是线段 OA 的中点.
(1)求点B 的坐标;
(2)设点P 的运动时间为点t 秒,△BDP 的面积为S,求S 与t 的函数关系式;
(3)当点P 与点D 重合时,连接BP,点E 在线段AB 上,连接PE,当∠BPE=2∠OBP 时,求点E 的坐标.
14.在平面直角坐标系xOy中,点A为x轴上的动点,点B为x轴上方的动点,连接OA,OB,AB.
(1)如图1,当点B 在y 轴上,且满足OAB ∠的角平分线与OBA ∠的角平分线交于点
P ,请直接写出P ∠的度数;
(2)如图2,当点B 在y 轴上,OAB ∠的角平分线与OBA ∠的角平分线交于点P ,点C 在BP 的延长线上,且满足45AOC ∠=?,求
OAB
OCB
∠∠;
(3)如图3,当点B 在第一象限内,点P 是AOB ?内一点,点M ,N 分别是线段OA ,
OB 上一点,满足:1
902
APB AOB ∠=?+
∠,PM PN =,180ONP OMP ∠+∠=?.
以下结论:①OM ON =;②AP 平分OAB ∠;③BP 平分OBA ∠;
④AM BN AB +=.
正确的是:________.(请填写正确结论序号,并选择一个正确的结论证明,简写证明过程).
15.如图,等腰△ABC ,AB =CB ,边AC 落在x 轴上,点B 落在y 轴上,将△ABC 沿y 轴翻折,得到△ADC
(1)直接写出四边形ABCD 的形状:______;
(2)在x 轴上取一点E ,使OE =OB ,连结BE ,作AF ⊥BC 交BE 于点F .
①直接写出AF 与AD 的关系:____(如果后面的问题需要,可以直接使用,不需要再证明);
②取BF 的中点G ,连接OG ,判断OG 与AD 的数量关系,并说明理由; (3)若四边形ABCD 的周长为8,直接写出GE 2+GF 2=____.
16.如图,在矩形ABCD 中,6AB cm =,8AD cm =,连接BD ,将ABD △绕B 点作顺时针方向旋转得到A B D '''△(B ′与B 重合),且点D '刚好落在BC 的延长上,A D ''与
CD 相交于点E .
(1)求矩形ABCD 与A B D '''△重叠部分(如图1中阴影部分A B CE '')的面积; (2)将A B D '''△以每秒2cm 的速度沿直线BC 向右平移,如图2,当B ′移动到C 点时停止移动.设矩形ABCD 与A B D '''△重叠部分的面积为y ,移动的时间为x ,请你直接写出y 关于x 的函数关系式,并指出自变量x 的取值范围;
(3)在(2)的平移过程中,是否存在这样的时间x ,使得AA B ''△成为等腰三角形?若存在,请你直接写出对应的x 的值,若不存在,请你说明理由.
17.如图,四边形AOBC 是正方形,点C 的坐标是(82,0).
(1)正方形AOBC 的边长为 ,点A 的坐标是 ;
(2)将正方形AOBC 绕点O 顺时针旋转45?,点A ,B ,C 旋转后的对应点为A ',
B ',
C ',求点A '的坐标及旋转后的正方形与原正方形的重叠部分的面积;
(3)动点P 从点O 出发,沿折线OACB 方向以1个单位/秒的速度匀速运动,同时,另一动点Q 从点O 出发,沿折线OBCA 方向以2个单位/秒的速度匀速运动,运动时间为t
秒,当它们相遇时同时停止运动,当OPQ △为等腰三角形时,求出t 的值(直接写出结果即可).
18.已知抛物线2
y ax bx c =++过点(6,0)A -,(2,0)B ,(0,3)C -. (1)求此抛物线的解析式;
(2)若点H 是该抛物线第三象限的任意一点,求四边形OCHA 的最大面积; (3)若点Q 在y 轴上,点G 为该抛物线的顶点,且45GQA ∠=?,求点Q 的坐标. 19.如图,在?ABCD 中,对角线AC ⊥BC ,∠BAC =30°,BC =23,在AB 边的下方作射线AG ,使得∠BAG =30°,E 为线段DC 上一个动点,在射线AG 上取一点P ,连接BP ,使得∠EBP =60°,连接EP 交AC 于点F ,在点E 的运动过程中,当∠BPE =60°时,则AF =_____.
20.阅读材料:等腰三角形具有性质“等边对等角”.事实上,不等边三角形也具有类似性质“大边对大角”:如图1.在△ABC 中,如果AB >AC ,那么∠ACB >∠ABC .证明如下:将AB 沿△ABC 的角平分线AD 翻折(如图2),因为AB >AC ,所以点B 落在AC 的延长线上的点B '处.于是,由∠ACB >∠B ',∠ABC =∠B ',可得∠ACB >∠ABC .
(1)灵活运用:从上面的证法可以看出,折纸常常能为证明一个命题提供思路和方法.由此小明想到可用类似方法证明“大角对大边”:如图3.在△ABC 中,如果∠ACB >∠ABC ,那么AB >AC .小明的思路是:沿BC 的垂直平分线翻折……请你帮助小明完成后面的证明过程.
(2)拓展延伸:请运用上述方法或结论解决如下问题:
如图4,已知M 为正方形ABCD 的边CD 上一点(不含端点),连接AM 并延长,交BC 的延长线于点N .求证:AM +AN >2BD .
21.如图1,在ABC 中,BD 平分ABC ∠,CD 平分ACB ∠. (1)若80A ∠=?,则BDC ∠的度数为______; (2)若A α∠=,直线MN 经过点D .
①如图2,若//MN AB ,求NDC MDB ∠-∠的度数(用含α的代数式表示); ②如图3,若MN 绕点D 旋转,分别交线段,BC AC 于点,M N ,试问在旋转过程中
NDC MDB ∠-∠的度数是否会发生改变?若不变,求出NDC MDB ∠-∠的度数(用含α的代数式表示),若改变,请说明理由:
③如图4,继续旋转直线MN ,与线段AC 交于点N ,与CB 的延长线交于点M ,请直接写出NDC ∠与MDB ∠的关系(用含α的代数式表示).
22.发现来源于探究.小亮进行数学探究活动,作边长为a 的正方形ABCD 和边长为b 的正方形AEFG (a>b ),开始时,点E 在AB 上,如图1.将正方形AEFG 绕点A 逆时针方向旋转.
(1)如图2,小亮将正方形AEFG 绕点A 逆时针方向旋转,连接BE 、DG ,当点G 恰好落在线段BE 上时,小亮发现DG ⊥BE ,请你帮他说明理由.当a=3,b=2时,请你帮他求此时DG 的长.
(2)如图3,小亮旋转正方形AEFG ,点E 在DA 的延长线上,连接BF 、DF .当FG 平分∠BFD 时,请你帮他求a :b 及∠FBG 的度数.
(3)如图4,BE的延长线与直线DG相交于点P,a=2b.当正方形AEFG绕点A从图1开始,逆时针方向旋转一周时,请你帮小亮求点P运动的路线长(用含b的代数式表示).23.问题一:如图①,已知AC=160km,甲,乙两人分别从相距30km的A,B两地同时出发到C地.若甲的速度为80km/h,乙的速度为60km/h,设乙行驶时间为x(h),两车之间距离为y(km).
(1)当甲追上乙时,x=.
(2)请用x的代数式表示y.
问题二:如图②,若将上述线段AC弯曲后视作钟表外围的一部分,线段AB正好对应钟表上的弧AB(1小时的间隔),易知∠AOB=30°.
(3)分针OD指向圆周上的点的速度为每分钟转动km,时针OE指向圆周上的点的速度为每分钟转动°;
(4)若从2:00起计时,求几分钟后分针与时针第一次重合?
24.在菱形ABCD中,点P是对角线BD上一点,点M在CB的延长线上,且=,连接PA.
PC PM
()1如图①,求证:PA PM
=;
()2如图②,连接,
AM PM与AB交于点,120
PC AM;
∠=求证 =
O ADC?
()3连接AM ,当 90ADC ?∠=时,PC 与AM 的数量关系是
25.如图一,矩形ABCD 中,AB=m ,BC=n ,将此矩形绕点B 顺时针方向旋转θ(0°<θ<90°)得到矩形A 1BC 1D 1,点A 1在边CD 上.
(1)若m=2,n=1,求在旋转过程中,点D 到点D 1所经过路径的长度;
(2)将矩形A 1BC 1D 1继续绕点B 顺时针方向旋转得到矩形A 2BC 2D 2,点D 2在BC 的延长线上,设边A 2B 与CD 交于点E ,若
161A E EC
=-,求n
m 的值.
(3)如图二,在(2)的条件下,直线AB 上有一点P ,BP=2,点E 是直线DC 上一动点,在BE 左侧作矩形BEFG 且始终保持
BE n
BG m
=,设AB=33,试探究点E 移动过程中,PF 是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.
【参考答案】***试卷处理标记,请不要删除
一、中考数学压轴题 1.E
解析:(1)见解析;(2)①E(63,9);②存在,点P的坐标为(-33,0)或(93,0);③不变化,MH+MG=9
【解析】
【分析】
(1)根据等边三角形的性质得到BC=CE,OC=CD,∠OCD=∠BCE=60°,求得
∠OCB=∠DCE,根据全等三角形的性质即可得到结论;
(2)①由点B(0,9),得到OB=9,根据全等三角形的性质得到∠CDE=∠BOC=90°,根
CE=,过E作EF⊥x轴于F,角三角形即据等边三角形的性质得到∠DEC=30°,求得63
可得到结论;
②存在,如图,当63
==时,当CE=PE,根据等腰三角形的性质即可得到结
CE CP
论;③不会变化,连接EM,根据三角形的面积公式即可得到结论.
【详解】
(1)∵△ODC和△EBC都是等边三角形
∴OC=DC,BC=CE,∠OCD=∠BCE=60°
∴∠BCE+∠BCD=∠OCD+∠BCD
即∠ECD=∠BCO
∴△DEC≌△OBC(SAS)
∴DE=BO
(2)①∵点B(0,9),
∴OB=9,
由(1)知△BCO≌△ECD,
∴∠CDE=∠BOC=90°,
∴DE⊥BC,
∵△EBC是等边三角形,
∴∠DEC=30°,
∴∠OBC=∠DEC=30°,
∴333
==,63
OC OB
BC=,
∴63
CE=,
过E作EF⊥x轴于F,
∵∠DCO=∠BCE=60°,
∴∠ECF=60°, ∵63CE BC ==, ∴33CF =,3
92
EF CE ==, ∵33CO = , ∴63OF =, ∴E (63,9); ②存在,如图,
当63CE CP ==时, ∵33OC =,
∴133OP =,293OP =, ∴1233030P P -(,),(9,); 当CE=PE , ∵∠ECP=60°, ∴△CPE 是等边三角形, ∴P 2,P 3重合,
∴当△PEC 为等腰三角形时,点P 的坐标为(-33,0)或(93,0); ③不会变化,如图,连接EM ,
∵111
???222
BCE
S
BC DE BE GM CE MH =
=+ ∵BC=CE=BE , ∴GM+MH=DE=9,
∴MH+MG 的值不会发生变化. 【点睛】
本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定,三角形面积的计算,熟练掌握等边三角形的性质是解题的关键.
2.A
解析:(1)详见解析;(2)详见解析;(3)1
5
KG AK = 【解析】 【分析】
(1)根据同弧所对的圆周角相等,进行角度计算,得90AHG HAG ∠+∠=?,进而得到
90AGH ∠=?,即可证明AG HD ⊥;
(2)连接AC 、AD 、CF ,根据同弧所对的圆周角相等,进行角度计算,得
HFA HAF ∠=∠,进而得到HF HA =,再根据已知HC HF =,得到HC HA =; (3)在DH 上截取DT HC =,过点C 作CM HD ⊥于点M ,通过证明
AHC ≌ATD 得到AH AT =,进而得到HG CH GD +=,再根据F 为DG 中点,得到GF DF =,通过勾股定理逆用,证明90HCF ∠=?,再通过解ACE △得
1
tan 3CAB ∠=
,解△CDH 得1tan 2
CDF ∠=,求得OF 、OH ,逆用勾股定理证明90HOF ∠=?,易求1
tan 2
KHG ∠=,1tan 3
HAG ∠=,最后求得
KG
AK
的值. 【详解】
(1)证明:如图,设HAG ∠为α,
∵HAG BDC ∠=∠, ∴HAG BDC α∠=∠=, ∵CD AB ⊥,
∴90BDC DBE ∠+∠=? ∴90DBE α∠=?-,
∵AHG ∠与ABD ∠为同对弧AD 所对的圆周角, ∴90AHG ABD α∠=∠=?-, ∴90AHG HAG ∠+∠=?,
∴18090AGH AHG HAG ∠=?-∠-∠=? ∴AG HD ⊥
(2)如图,连接AC 、AD 、CF ,
∵AB 为直径,AB CD ⊥, ∴CE DE =, ∴AB 垂直平分CD , ∴AC AD =,FC FD =,
∴ACD ADC ∠=∠,FCD FDC ∠=∠,
∴ACD FCD ADC FDC ∠-∠=∠-∠,即ACF ADF ∠=∠, 设FCD FDC α∠=∠=,ACF ADF β∠=∠=, ∵ADH ∠与ACH ∠为同对弧AH 所对的圆周角, ∴ADH ACH β∠=∠=, ∴2HCF HCA ACF β∠=∠+∠=, ∵HFC FCD FDC ∠=∠+∠, ∴2HFC α∠=, ∵HC HF =, ∴HCF HFC ∠=∠, ∴22αβ=, ∴αβ=, ∵AB 为直径, ∴90ADB ∠=?, ∴90HDB β∠=?-,
∵HAB ∠与为HDB ∠同对弧BH 所对的圆周角, ∴90HAB HDB β∠=∠=?-, ∵AB CD ⊥,
∴9090BFD αβ∠=?-=?-, ∵9090HFA BFD αβ∠=∠=?-=?-, ∴HFA HAF ∠=∠, ∴HF HA =, ∴HC HA =;
(3)如图,在DH 上截取DT HC =,
∵ADH ∠与ACH ∠同对弧AH 所对的圆周角, ∴ADH ACH ∠=∠, ∵AB 为直径,且AB CD ⊥ ∴AC =AD , ∴AC AD =, ∴AHC ≌ATD , ∴AH AT =, ∵AG HT ⊥, ∴HG TG =,
∴HG CH GT DT GD +=+=, 设2HG k =,则4CH k =,GD 6k =, ∵F 为DG 中点, ∴3GF DF k ==,
∴5HF HG GF k =+=,FD =CF =3k ,
在HCF 中,由勾股定理逆定理得90HCF ∠=?, 过点C 作CM HD ⊥于点M , 由△HCF 面积,可求CM =
12
5k , ∴22
9
=5
MF CF CM k -=
, ∴1
tan 2
CM CM CDF MD MF FD ∠=
==+, 解ACE △得1tan 3
CAB ∠=, 易求OF ,OH ,
由勾股定理逆定理得90HOF ∠=?, 易求1tan 2KHG ∠=,1tan 3
HAG ∠=, ∴
1
5
KG AK =. 【点睛】
本题考查圆与三角形综合,主要考查知识点有同弧所对的圆周角相等,垂径定理,三角形全等的判定与性质,勾股定理的逆用,解直角三角形,锐角三角函数等,知识点跨度大,计算量多;熟练掌握圆的性质和三角形相关知识是解决本题的关键.
3.E
解析:(1)∠EPF=∠AEP+∠PFC,∠AEP+∠EPF+∠PFC=360°;(2)见解析;(3)
①150°,∠EQF=180°-1
2
∠EPF
【解析】
【分析】
(1)如下图,过点P作AB的平行线,根据平行线的性质可推导出角度关系;
(2)如下图,根据(1)的结论,可得∠AEP+∠PFC=∠EPF=90°,利用△EPF内角和为180°可推导得出∠PEF+∠PFE=90°,从而得出∠PEF=∠AEP;
(3)①根据(1)的结论知:∠AEP+∠PFC=∠EPF=60°,再利用角平分线的性质得出
∠PEQ+∠PFQ=150°,最后在四边形EPFQ中得出结论;
②根据(1)的结论知:∠AEP+∠PFC=∠EPF°,再利用角平分线的性质得出
∠PEQ+∠PFQ=180°-1
EPF
2
,最后在四边形EPFQ中得出结论.
【详解】
(1)如下图,过点P作PQ∥AB
∵PQ∥AB,AB∥CD,∴PQ∥CD
∴∠AEP=∠EPQ,∠QPF=∠PFC
又∵∠EPF=∠EPQ+∠QPF
∴∠EPF=∠AEP+∠PFC
如下图,过点P作PQ∥AB
同理,AB∥QP∥CD
∴∠AEP+∠QPE=180°,∠QPF+∠PFC=180°
∴∠AEP+∠EPF+∠PFC=∠AEP+∠EPQ+∠QPF+∠PFC=360°
(2)根据(1)的结论知:∠AEP+∠PFC=∠EPF=90° ∵PF 是∠CFE 的角平分线,∴∠PFC=∠PFE 在△PEF 中,∵∠EPF=90°,∴∠PEF+∠PFE=90° ∴∠PEF+∠PFE=∠AEP+∠PFC
∴∠PEF=∠AEP ,∴PE 是∠AEF 的角平分线
(3)①根据(1)的结论知:∠AEP+∠PFC=∠EPF=60° ∴∠BEP+∠PFD=180°-∠AEP+180°-∠PFC=300° ∵EQ 、QF 分别是∠PEB 和∠PFD 的角平分线 ∴∠PEQ=QEB ,∠PFQ=∠QFD ∴∠PEQ+∠PFQ=150°
在四边形PEQF 中,∠EQF=360°-∠EPF -(∠PEQ+∠PFQ)=360°-60°-150°=150° ②根据(1)的结论知:∠AEP+∠PFC=∠EPF
∴∠BEP+∠PFD=180°-∠AEP+180°-∠PFC=360°-∠EPF ∵EQ 、QF 分别是∠PEB 和∠PFD 的角平分线 ∴∠PEQ=∠QEB ,∠PFQ=∠QFD ∴∠PEQ+∠PFQ=
()1360EPF 2∠?-=180°-1
EPF 2
∠ ∴在四边形PEQF 中:
∠EQF=360°-∠EPF -(∠PEQ+∠PFQ)=360°-EPF ∠-(180°-1EPF 2∠)=180°-1
EPF 2
∠ 【点睛】
本题考查“M ”型模型,解题关键在过两条平行线中间的点作已知平行线的平行线,然后利用平行线的性质进行角度转化可推导结论.
4.C
解析:(1)y=﹣x 2
;(2)??
3)存在,53)或(﹣
73)
【解析】 【分析】
(1)根据折叠的性质可得OC=OA ,∠BOC=∠BAO=30°,过点C 作CD ⊥OA 于D ,求出OD 、CD ,然后写出点C 的坐标,再利用待定系数法求二次函数解析式解答;
(2)求出直线OC 的解析式,根据点M 到OC 的最大距离时,面积最大;平行于OC 的直线与抛物线只有一个交点,利用根的判别式求出m 的值,利用锐角三角函数的定义求解即可;
(3)分两种情况求出直线AP 与y 轴的交点坐标,然后求出直线AP 的解析式,与抛物线解析式联立求解即可得到点P 的坐标. 【详解】
解:(1)∵Rt △OAB 沿OB 折叠后,点A 落在第一象限内的点C 处,