当前位置:文档之家› 神经网络个基本的学习算法

神经网络个基本的学习算法

神经网络个基本的学习算法
神经网络个基本的学习算法

五个基本的学习算法:误差—修正学习;基于记忆的学习;Hebb 学习;竞争学习和Boltzmann 学习。误差修正学习植根于最优滤波。基于记忆的学习通过明确的记住训练数据来进行。Hebb 学习和竞争学习都是受了神经生物学上的考虑的启发。Boltzmann 学习是建立在统计学力学借来的思想基础上。

1. 误差修正学习

神经元k 的输出信号)(n y k 表示,

)(n d k 表示的是期望响应或目标

输出比较。由此产生)(n e k 表示的误差信号,有

)()()(n y n d n e k k k -= 这一目标通过最小化代价函数或性能指标

)(n ξ来实现。定义如下

)(2

1)(2

n e n k =

ξ 也就是说)(n ξ是误差能量的瞬时值。这种对神经元k 的突触权值步步逼近的调节将持续下去,直到系统达到稳定状态。这时,学习过程停止。根据增量规则,在第n 时间步作用于突触权值的调节量)(n w kj ?定义如下:

)()()(n x n e n w j k kj η=? 2. 基于记忆的学习

在一个简单而有效的称作最近邻规则的基于记忆的学习类型中,

局部邻域被定义为测试向量test X 的直接邻域的训练实例,特别,向量 {}N N X X X X ,,,21'

???∈

被称作test X 的最邻近,如果

),(),(min '

test N test i i

X X d X X d = 这里,),(test i X X d 是向量i X 和test X 的欧几里德距离。与最短距离相关的类别,也

就是向量'N X 被划分的类别。

3. Hebb 学习

我们定义Hebb 突触为这样一个突触,它使用一个依赖时间的、

高度局部的和强烈交互的机制来提高突触效率为前突触和后突触活动间的相互关系的一个函数。可以得出Hebb 突触特征的4个重要机制:时间依赖机制;局部机制;交互机制;关联或相关机制。

4. 竞争学习

获胜神经元k 的输出信号k y 被置

为1;竞争失败的所有神经元

输出信号被置为0。这样,我们有

??

?≠>=否则对于所有如果,

0,,1k j j v v y j k k

其中,诱导局部域k v 表示结合所有达到神经元k 的前向和反馈输入的动作。 令kj w 表示连接输入节点j 到神经元k 的突触权值。假定每个神经元被分配固定

量的突触权值,权值分布在它的节点之中;也就是

k w kj j

对于所有的

,1=∑ 然后神经元通过将突触权值从它的不活跃

输入移向活跃输入来进行学习。如果神经元对一个特定输入模式不响应,那么没有学习发生在那个神经元上。如果一个特定神经元赢得了竞争,这个神经元的每个输入节点经一定的比例释放它的突触权值,释放的权值然后平均分布到活跃输入节点上。作用于突触权值kj w 的改变量kj w ?定

义为

???-=?竞争失败如果神经元竞争成功如果神经元k k w x w kj j kj ,0),(η

5. Boltzmann 学习

令+

kj ρ表示网络在钳制条件下神经元j 和k 的状态间的相关量。

令-

kj ρ表示网络在其自由运作条件下神经元j 和k 的状态间的相关量。作用于神经元j 到神经元k 的突触权值的改变量由

)(-

+-=?kj kj kj w ρρη, k j ≠

定义,其中η是学习率参数。

五种学习算法的区别:

误差-修正学习和Boltzmann 学习是有监督学习;而Hebb 学习和竞争学习是无监督学习。

在误差-修正学习中,作用于神经元突触权值的调节量正比于本次学习中误差信号的突触的输入的乘积,它实际上带有局部性质,这仅仅是说由增量规则计算的突触调节局部于神经元k 周围。同时,对η的选择对学习过程的准确及其它方面也有深刻的影响。

基于记忆的学习中的最邻近规则,基于两个假设;分类实例(i i d X ,)按照实例(d X ,)的联合概率分布是独立同分布的;样本大小N 是无限大的,它的分类错误率同贝叶斯误差概率的关系为

**)1

2(P C C

P P --

≤≤ 其中*

P 为贝叶斯误差概率,C 是分类的类别数目。

Hebb 学习中如果在突触(连接)每一

边的两个神经元同时(即同步)激活,那么那个突触的强度被选择性增强;如果在突触每一边的两个神经元被异步激活,那

么那个突触被选择性地减弱或消除。

竞争学习中突触权值的改变取决于前

突触j x 和当前的突触权值,与后突触权值

k y 无关。

神经网络可以通过竞争学习来进行聚类。然而,开始时输入模式必须落入

充分分离的分组中。否则,网络可能不稳定,因为它将不再以同样的输出神经元响应给定的输入模式。

Boltzmann 学习中突触权值的改变实

质上取决于前突触j x 和后突触k y 之间的

相关量。并同时考虑在钳制条件和自由运行条件下的相关量,且-

+

kj kj ρρ和的值数都在-1和+1范围内。

对此题分别采用MLP 网络拟合,RBF 网络拟合。 1. MLP 网络拟合 % Example4_17BP

% 用于曲线拟合的BP 网络 clear all;

% n 为隐藏的神经元个数

n=input('请输入隐藏的神经元个数 n='); t=[15 15 15 18 28 29 37 37 44 50 50 60 61 64 65 65 72 75 75 82 85 91 91 97 98 125 142 142 147 147 150 159 165 183 192 195 218 218 219 224 225 227 232 232 237 246 258 276 285 300 301 305 312 317 338 347 354 357 375 394 513 535 554 591 648 660 705 723 756 768 860];

y0=[21.66 22.75 22.3 31.25 44.79 40.55 50.25 46.88 52.03 63.47 61.13 81 73.09 79.09 79.51 65.31 71.9 86.1 94.6 92.5 105 101.7 102.9 110 104.3 134.9 130.68 140.58 155.3 152.2 144.5 142.15 139.81 153.22 145.72 161.1 174.18 173.03 173.54 178.86 177.68 173.73 159.98 161.29 187.07 176.13 183.4 186.26 189.66 186.09 186.7 186.8 195.1 216.41 203.23 188.38 189.7 195.31

202.63 224.82 203.3 209.7 233.9 234.7 244.3 231 242.4 230.77 242.57 232.12 246.7];

net=newff(minmax(t),[n,1],{'tansig'

'purelin'},'trainlm');

% 未经训练的模拟输出y1

y1=sim(net,t);

net.trainParam.epochs=250;

net.trainParam.goal=9.0;

net=train(net,t,y0);

% 训练后的模拟输出y2

y2=sim(net,t);

y3=233.84*(1-exp(-0.006042*t));

figure;

plot(t,y0,'-',t,y1,'--',t,y2,'--',t,y3,':');

title('训练后的网络仿真结果');

xlabel('时间/天数');

ylabel('晶状体重量/克');

legend('原始数据','初始化值','训练后曲线','模型曲线');

1.在MLP网络拟合中,进行了三次试验,

隐藏神经元的个数分别是8,12,15,结

果显示在隐藏神经元的个数大的时候

有更好的拟合能力,尤其在数据间变

化快(上下波动大)的时候可以很好

的拟合,比原来的最小平方模型更好。

2.在RBF网络拟合中,拟合结果显示,

在数据变化快(上下波动大)的时候

能完全拟合,但是在数据变化慢(上

下波动小)的时候的拟合结果相当差,证明它的网络推广能力不强。

3.当MLP网络和RBF网络比较时,它

们的误差曲线分别如图3,图5可以看

出他们的误差之间相差不大,但是

RBF网络的迭代步数明显要少于MLP

网络。虽然MLP网络不能很好的对数

据变化快的点进行拟合,但从整体数

据看它的适应能力好。RBF网络在数

据变化慢的点的拟合效果明显比MLP

网络差。

function C=make_data_4_8()

% 产生用于BP,RBF,SVM试验数据

pats=input('产生数据的个数pats=');

if floor(pats/2)*2 ~= pats,

disp('Number of patterns should be equal - try again!');

return

end

f=pats/2;

% 生成第一类数据

C1=randn(f,2);

C1(:,3)=ones(f,1)*.95;

C1(:,4)=ones(f,1)*.05;

C1(:,5)=zeros(f,1);

for i=1:f

RC1(i,i)=(1/2*pi)*exp((-1/2*pi)*(norm(C1(i ,1:2)-zeros(1,2)))^2);

end

% 第一类数据的概率密度函数

mesh(C1(:,1),C1(:,2),RC1(:,:));

%生成第二类数据

C2=randn(f,2);

C2=C2*2;

C2(:,1)=C2(:,1)+2;

C2(:,3)=ones(f,1)*.05;

C2(:,4)=ones(f,1)*.95;

C2(:,5)=ones(f,1)*1;

for i=1:f

RC2(i,i)=(1/2*pi*4)*exp((-1/2*pi)*(norm(C 2(i,1:2)-[2 0])^2));

end

figure

%第二类数据的概率密度函数

mesh(C2(:,1),C2(:,2),RC2(:,:));

figure

plot(C1(:,1),C2(:,2),'*');

axis([-4 10 -5.5 5.5])

figure

plot(C2(:,1),C2(:,2),'o');

axis([-4 10 -5.5 5.5])

figure

plot(C1(:,1),C2(:,2),'*');

axis([-4 10 -5.5 5.5])

hold on

plot(C2(:,1),C2(:,2),'o');

axis([-4 10 -5.5 5.5])

% shuffle them up

H=[C1' C2']';

[y i]=sort(rand(f*2,1));

C=H(i,:);

用上面的程序画出两类数据的Guass分布三维图

P=mk_data(500);%产生数据用来训练神经网络,两类高斯分布的训练数据分别为250 hN=2;oN=2;lr=0.1;mom=0;epochs=32 0;

[w1,b1,w2,b2,ep_err,a]=bpm_train(P,hN,oN, 2,lr,mom,epochs,0,0,0,0,0);%训练神经网络,hN是隐藏神经元个数,oN是输出层神经元个数,lr是学习率,mom动量参数,epochs是训练回合数目。w1,b1分别是返回训练所得的权值的偏移量。

bpm_dec_bnds(w1,b1,w2,b2,0.1);%产生分类边界

%测试

T=mk_data(10000);%产生10000个测试数据

[cor,uncor]=bpm_test(w1,b1,w2,b2,T);

c=pl_circ([-2/3 0],2.34,0.01,1);%确定Bayes 分界面

%hN=2;lr=0.1;mom=0;epochs=320; oN=2

1.在神经元数目,学习率参数η,动量

常数α,都不变,试验时只改变训练

集数目和回合数的时候,从表1,表2

分别可以看出均方误差和正确分类概

率没有必然的联系,均方误差和正确

分类概率不会随着训练集数目和回合

数的增加而增加,也不会随着训练集

数目和回合数的减少而减少。

2.在学习率参数η=0.1,动量常数α=0

的时候,比较神经元个数对试验结果

的影响,从表1,表2及图12,图13可

以看出当隐藏神经元个数是4的时候

比隐藏神经元个数是2的时候,试验结

果中:均方误差小,正确分类概率大。

说明含有4个隐藏神经元的网络得出

的结果优于2个隐藏神经元的网络。3.学习率参数η和动量常数α的选择。

从表3,表4,表5,表6及图14,图15,图16,图17可以看出:当隐藏神经元

的个数固定(在试验中为2),学习率参

数η分别为0.01,0.1,0.5,0.9时,改

变动量常数α,均方误差和正确分类

概率同动量常数α没有一个线性关

系,这就要求我们选择一个最佳的组

合。从试验结果看,当学习率参数η为

0.01,动量常数α为0.1时,正确分类

概率最高为80.46%。

4.从16中组合中挑出最优的学习曲线(图

18),试验结果(表7),明显看出学习率

参数η=0.01,动量常数α=0.1时,

它的学习曲线衰减很快,证明它有较

小的均方误差。

5.均方误差与分类概率没有必然联系,

一个BP算法的均方收敛的误差非常

小,同时也可能牺牲了它的泛化能力,在实验中我们可以发现:分类概率好

的结果其均方误差并非最小的。

% Example_5_14利用SVM工具。对n个点进行训练。

clear all;

n=input('请输入测试的次数n=');

lr=input('请输入正则化参数lr=');

cs=input('请输入隐藏层中心大小cs=')

for i=1:n

P=mk_data(200);

w = rbf(P(1:100,1:2), P(:,1:2), P(1:100,3:4), cs, lr);

T=mk_data(500);

rbfout=rbf_test(w,T(:,1:2),P(:,1:2),cs);

rbfcor(i,:) =rbf_correct(rbfout,T(:,5));

figure(i);

rbf_db(w,P(:,1:2),cs,0.2);

end

avecorrect=mean(rbfcor)

mincorrect=min(rbfcor)

maxcorrect=max(rbfcor)

stdcorrect=std(rbfcor)

P = mk_data(500);

cw=4;lr=0.01;c=0.1

[pesos,vect,b] = svm_rbf(P, cw, 1000, lr, c);%cw是宽度,lr是学习率参数,c是正则化常数

T = mk_data(32000);

[c u] = svm_test(T, pesos, vect, b, cw);

svm_dec_bnd(pesos, vect, b, cw)

对于每次试验用500个点进行训练,并用32000个数据点进行测试。五次试验宽度cw为4,正则化常数c都为0.1,并固定学习率参数lr为0.01。

两维分布驱动的一维网格:

hN=200;

p=rand(1000,2);%输入数据分布

plot(p(:,1),p(:,2));%画出数据的分布图

[w1s P1]=som_1d(p,hN,10,[0.1 18]);%hN 是隐藏神经元个数

[w2s P2]=som_1d(p,hN,50,[P1(1) 0.001 P1(2) 0],w1s);

当隐藏神经元个数越大,对原始离散数据的逼近更好,在排序阶段和收敛阶段都比隐藏神经元为100的要好。但是,我们对离散数据进行逼近时,不能把隐藏神经元个数选取的太大,如果选取的过大的话,网络会出现过拟合现象,这样以来它的网络推广性就会下降;同时,隐藏神经元个数越大,运行的时间也会相应的增加。所以适当的选取隐藏神经元个数越大是很重要的。

function [NN_w1 NN_w NN_w1_1 NN_w_1]=Som_912()

clf %--设置符号代码的值

a=0.2;

%--训练数据集

P=[a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,

0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,

0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 ,

0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 ,

0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 ,

0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 ,

0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 ,

0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 ,

0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 ,

0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 ,

0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 ,

0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 ,

0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 ,

0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 ,

0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 ,

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a ,

1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 ,

0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 ,

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 ,

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 ,

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 ,

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 ,

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 ,

0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 ,

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 ,

0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 0 ,

0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 ,

1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 ,

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0]';

%--排序阶段权值

[W1 p1]=som_2d(P,10,10,2000,[.01,8]); figure(1);

subplot(2,1,1);

som_pl_map(W1,1,2)

title('Ordering weights')

%--收敛阶段权值

W=som_2d(P,10,10,5000,[p1(1) 0.001 p1(2) 0],W1);

subplot(2,1,2);

som_pl_map(W,1,2)

title('Convergence weights')

%--测试数据集

T=[a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,

0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,

0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 ,

0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 ,

0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 ,

0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 ,

0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 ,

0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 ,

0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 ,

0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 ,

0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 ,

0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 ,

0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 ,

0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 ,

0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 ,

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a ,

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]';

%==============包含具有最强响应的标定神经元的特征映射============= NN_w1=zeros(10,10);

NN_w=zeros(10,10);

%---计算

for h=1:16

M_w1=0;

M_w=0;

for i=1:10

for j=1:10

M1=0;

M2=0;

for k=1:29

M1=M1+W(i,j,k)*T(h,k); M2=M2+W1(i,j,k)*T(h,k);

end;

if M_w

POS_wi=i;

POS_wj=j;

M_w=M1;

end;

if M_w1

POS_w1i=i;

POS_w1j=j;

M_w1=M2;

end;

end;

end;

NN_w1(POS_w1i,POS_w1j)=h;

NN_w(POS_wi,POS_wj)=h;

end;

NN_w1

NN_w

%--文字显示

figure(2);

text_plot(NN_w1);

title('ordering phase');

figure(3);

text_plot(NN_w); title('Convergence phase')

%=======利用“模拟电极渗透映射”的语义映射===========

NN_w1_1=zeros(10,10);

NN_w_1=zeros(10,10);

%----计算

for i=1:10

for j=1:10

M_w1=0;

M_w=0;

for h=1:16

M1=0;

M2=0;

for k=1:29

M1=M1+W(i,j,k)*T(h,k); M2=M2+W1(i,j,k)*T(h,k);

end;

if M_w

NN_w_1(i,j)=h;

M_w=M1;

end;

if M_w1

NN_w1_1(i,j)=h;

M_w1=M2;

end;

end;

end;

end;

NN_w1_1

NN_w_1

%---文字显示

figure(4);

text_plot(NN_w1_1);

title('ordering phase');

figure(5);

text_plot(NN_w_1);

title('Convergence phase');

function text_plot(z);

[cz rz]=size(z);

s=cell(cz,rz);

for i=1:cz

for j=1:rz

switch z(i,j)

case 0

s(i,j)={' '};

case 1

s(i,j)={' dove '};

case 2

s(i,j)={' hen '};

case 3

s(i,j)={' duck '};

case 4

s(i,j)={' goose '};

case 5

s(i,j)={' owl '};

case 6

s(i,j)={' hawk '};

case 7

s(i,j)={' eagle '};

case 8

s(i,j)={' fox '};

case 9

s(i,j)={' dog '};

case 10

s(i,j)={' wolf '};

case 11

s(i,j)={' cat '};

case 12

s(i,j)={' tiger '};

case 13

s(i,j)={' lion '};

case 14

s(i,j)={' horse '};

case 15

s(i,j)={' zebra '};

case 16

s(i,j)={' cow '};

end;

end;

end;

cellplot(s);

1.基于ICA学习的网络和固定点算法

FastICA_25都能很好的将混合数据分离开来。不过它们分离后的各个信号幅度都以原来的真实数据有很大的不同,虽然信号幅度不同,但是它们分离后的各个信号与原来的真实数据的形状非常相似,说明分离后的信号和真实信号有非常高的相干性。两种方法都达到了,较理想的分离目的。2.不过两种算法的运行时间相差很大,

基于ICA学习的网络运行时间大概是固定点算法FastICA_25的50倍以上,主要是两种算法基于的算法思想大大不同。

最简单的神经网络算法

最简单的人工神经网络实现 人工神经网络算法是模拟人的神经网络的一种算法. 该算法像人一样,具有一定的学习能力。人工神经网络可以学会它所能表达的任何东西. 该算法在模拟人类抽象思维方面较传统的算法具有优势,如图像识别(人脸识别,车牌识别),声音识别方面已经有成熟的运用。 举个简单的例子可以说明人工神经网络和传统算法的差别所在(等会也要实现): 假设要解决这个问题: 写一个程序,判断0, 1, 2, 3 ... 9 这10个数的奇偶性 1. 如果是传统算法,则是模拟人的逻辑思维,对这个问题进行形式化和逻辑化: if (input 模 2 == 零) { input 是偶数 } else { input 是奇数 } 2. 如果是ANN算法,则要提供一组正确的数据对处理这个问题的神经网络ANN进行训练: 未进行训练的神经网络,就像刚出生的婴儿一样,什么都不懂。这个时候, 你要教他0 是偶数,1是奇数...., 教完之后问ANN懂了没有,懂了则停止训练(网络已经形成),不懂则继续训练. while (1) { 训练;

if (测试通过) { 跳出循环; } } 训练完之后,这个ANN以后便能够正确处理奇偶性判断的问题了. 处理上面这个问题,只需要模拟一个神经元即可,再复杂的问题,可能需要多个神经元,再再复杂,需要多层多神经元的配合来实现(以后再研究) 下面是实现: [cpp]view plaincopyprint? 1. /***************************************** 2. * 感知器判断数字奇偶性 3. * 4. * 关键点,阈值应该怎么定? 5. ****************************************/ 6. #include 7. #include 8. #include 9. 10. 11. int M[10]; /** 权值 **/ 12. int X[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; /** 输入向量 **/ 13. int Y[10] = {1, 0, 1, 0, 1, 0, 1, 0, 1, 0}; /** 理想输出向量, 0 表示奇数, 1表示偶 数 **/ 14. int O[10]; /** 保存输出向量 **/ 15. int ST = 52; /** 阈值 **/ 16. 17. 18.

机器学习常见算法分类汇总

机器学习常见算法分类汇总 ?作者:王萌 ?星期三, 六月25, 2014 ?Big Data, 大数据, 应用, 热点, 计算 ?10条评论 机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时的工作中都或多或少会用到机器学习的算法。这里IT经理网为您总结一下常见的机器学习算法,以供您在工作和学习中参考。 机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的类似性。 学习方式 根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结果。 监督式学习:

在监督式学习下,输入数据被称为“训练数据”,每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中“垃圾邮件”“非垃圾邮件”,对手写数字识别中的“1“,”2“,”3“,”4“等。在建立预测模型的时候,监督式学习建立一个学习过程,将预测结果与“训练数据”的实际结果进行比较,不断的调整预测模型,直到模型的预测结果达到一个预期的准确率。监督式学习的常见应用场景如分类问题和回归问题。常见算法有逻辑回归(Logistic Regression)和反向传递神经网络(Back Propagation Neural Network) 非监督式学习: 在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。常见的应用场景包括关联规则的学习以及聚类等。常见算法包括Apriori算法以及k-Means算法。 半监督式学习:

神经网络算法详解

神经网络算法详解 第0节、引例 本文以Fisher的Iris数据集作为神经网络程序的测试数据集。Iris数据集可以在https://www.doczj.com/doc/708382812.html,/wiki/Iris_flower_data_set 找到。这里简要介绍一下Iris数据集: 有一批Iris花,已知这批Iris花可分为3个品种,现需要对其进行分类。不同品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度会有差异。我们现有一批已知品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度的数据。 一种解决方法是用已有的数据训练一个神经网络用作分类器。 如果你只想用C#或Matlab快速实现神经网络来解决你手头上的问题,或者已经了解神经网络基本原理,请直接跳到第二节——神经网络实现。 第一节、神经网络基本原理 1. 人工神经元( Artificial Neuron )模型 人工神经元是神经网络的基本元素,其原理可以用下图表示: 图1. 人工神经元模型 图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值( threshold ),或称为偏置( bias )。则神经元i的输出与输入的关系表示为:

图中yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数( Transfer Function ) ,net称为净激活(net activation)。若将阈值看成是神经元i的一个输入x0的权重wi0,则上面的式子可以简化为: 若用X表示输入向量,用W表示权重向量,即: X = [ x0 , x1 , x2 , ....... , xn ] 则神经元的输出可以表示为向量相乘的形式: 若神经元的净激活net为正,称该神经元处于激活状态或兴奋状态(fire),若净激活net 为负,则称神经元处于抑制状态。 图1中的这种“阈值加权和”的神经元模型称为M-P模型 ( McCulloch-Pitts Model ),也称为神经网络的一个处理单元( PE, Processing Element )。 2. 常用激活函数 激活函数的选择是构建神经网络过程中的重要环节,下面简要介绍常用的激活函数。 (1) 线性函数 ( Liner Function ) (2) 斜面函数 ( Ramp Function ) (3) 阈值函数 ( Threshold Function )

人工神经网络算法

https://www.doczj.com/doc/708382812.html,/s/blog_5bbd6ec00100b5nk.html 人工神经网络算法(2008-11-20 17:24:22) 标签:杂谈 人工神经网络算法的作用机理还是比较难理解,现在以一个例子来说明其原理。这个例子是关于人的识别技术的,在门禁系统,逃犯识别,各种验证码破译,银行预留印鉴签名比对,机器人设计等领域都有比较好的应用前景,当然也可以用来做客户数据的挖掘工作,比如建立一个能筛选满足某种要求的客户群的模型。 机器识别人和我们人类识别人的机理大体相似,看到一个人也就是识别对象以后,我们首先提取其关键的外部特征比如身高,体形,面部特征,声音等等。根据这些信息大脑迅速在内部寻找相关的记忆区间,有这个人的信息的话,这个人就是熟人,否则就是陌生人。 人工神经网络就是这种机理。假设上图中X(1)代表我们为电脑输入的人的面部特征,X(2)代表人的身高特征X(3)代表人的体形特征X(4)代表人的声音特征W(1)W(2)W(3)W(4)分别代表四种特征的链接权重,这个权重非常重要,也是人工神经网络起作用的核心变量。 现在我们随便找一个人阿猫站在电脑面前,电脑根据预设变量提取这个人的信息,阿猫面部怎么样,身高多少,体形胖瘦,声音有什么特征,链接权重初始值是随机的,假设每一个W均是0.25,这时候电脑按这个公式自动计 算,Y=X(1)*W(1)+X(2)*W(2)+X(3)*W(3)+X(4)*W(4)得出一个结果Y,这个Y要和一个门槛值(设为Q)进行比较,如果Y>Q,那么电脑就判定这个人是阿猫,否则判定不是阿猫.由于第一次计算电脑没有经验,所以结果是随机的.一般我们设定是正确的,因为我们输入的就是阿猫的身体数据啊. 现在还是阿猫站在电脑面前,不过阿猫怕被电脑认出来,所以换了一件衣服,这个行为会影响阿猫的体形,也就是X(3)变了,那么最后计算的Y值也就变了,它和Q比较的结果随即发生变化,这时候电脑的判断失误,它的结论是这个人不是阿猫.但是我们告诉它这个人就是阿猫,电脑就会追溯自己的判断过程,到底是哪一步出错了,结果发现原来阿猫体形X(3)这个 体征的变化导致了其判断失误,很显然,体形X(3)欺骗了它,这个属性在人的识别中不是那 么重要,电脑自动修改其权重W(3),第一次我对你是0.25的相信,现在我降低信任值,我0.10的相信你.修改了这个权重就意味着电脑通过学习认为体形在判断一个人是否是自己认识的人的时候并不是那么重要.这就是机器学习的一个循环.我们可以要求阿猫再穿一双高跟皮鞋改变一下身高这个属性,让电脑再一次进行学习,通过变换所有可能变换的外部特征,轮换让电脑学习记忆,它就会记住阿猫这个人比较关键的特征,也就是没有经过修改的特征.也就是电脑通过学习会总结出识别阿猫甚至任何一个人所依赖的关键特征.经过阿猫的训练电脑,电脑已经非常聪明了,这时你在让阿猫换身衣服或者换双鞋站在电脑前面,电脑都可以迅速的判断这个人就是阿猫.因为电脑已经不主要依据这些特征识别人了,通过改变衣服,身高骗不了它.当然,有时候如果电脑赖以判断的阿猫关键特征发生变化,它也会判断失误.我们就

bp神经网络及matlab实现讲解学习

b p神经网络及m a t l a b实现

图1. 人工神经元模型 图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值 ( threshold ),或称为偏置( bias )。则神经元i的输出与输入的关系表示为: 图中 yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数 ( Transfer Function ) ,net称为净激活(net activation)。若将阈值看成是神经元i的一个输入x0的权重wi0,则上面的式子可以简化为: 若用X表示输入向量,用W表示权重向量,即: X = [ x0 , x1 , x2 , ....... , xn ]

则神经元的输出可以表示为向量相乘的形式: 若神经元的净激活net为正,称该神经元处于激活状态或兴奋状态(fire),若净激活net为负,则称神经元处于抑制状态。 图1中的这种“阈值加权和”的神经元模型称为M-P模型 ( McCulloch-Pitts Model ),也称为神经网络的一个处理单元( PE, Processing Element )。 2. 常用激活函数 激活函数的选择是构建神经网络过程中的重要环节,下面简要介绍常用的激活函数。 (1) 线性函数 ( Liner Function ) (2) 斜面函数 ( Ramp Function ) (3) 阈值函数 ( Threshold Function ) 以上3个激活函数都属于线性函数,下面介绍两个常用的非线性激活函数。 (4) S形函数 ( Sigmoid Function ) 该函数的导函数:

BP神经网络算法步骤

B P神经网络算法步骤 SANY GROUP system office room 【SANYUA16H-

传统的BP 算法简述 BP 算法是一种有监督式的学习算法,其主要思想是:输入学习样本,使用反向传播算法对网络的权值和偏差进行反复的调整训练,使输出的向量与期望向量尽可能地接近,当网络输出层的误差平方和小于指定的误差时训练完成,保存网络的权值和偏差。具体步骤如下: (1)初始化,随机给定各连接权[w],[v]及阀值θi ,rt 。 (2)由给定的输入输出模式对计算隐层、输出层各单元输出 (3)计算新的连接权及阀值,计算公式如下: (4)选取下一个输入模式对返回第2步反复训练直到网络设输出误差达到要求结束训练。 第一步,网络初始化 给各连接权值分别赋一个区间(-1,1)内的随机数,设定误差函数e ,给定计 算精度值 和最大学习次数M 。 第二步,随机选取第k 个输入样本及对应期望输出 ()12()(),(),,()q k d k d k d k =o d ()12()(),(),,()n k x k x k x k =x 第三步,计算隐含层各神经元的输入和输出 第四步,利用网络期望输出和实际输出,计算误差函数对输出层的各神经元的偏导数()o k a δ 第五步,利用隐含层到输出层的连接权值、输出层的()o k δ和隐含层的输出计算误差函数对隐含层各神经元的偏导数()h k δ 第六步,利用输出层各神经元的()o k δ和隐含层各神经元的输出来修正连接权值()ho w k 第七步,利用隐含层各神经元的()h k δ和输入层各神经元的输入修正连接权。 第八步,计算全局误差211 1(()())2q m o o k o E d k y k m ===-∑∑ ε

神经网络学习算法的过拟合问题及解决方法

神经网络学习算法的过拟合问题及解决方法 李俭川 秦国军 温熙森 胡茑庆 (国防科技大学机电工程与自动化学院 长沙,410073) 摘要 针对反向传播学习算法及其改进算法中出现的过拟合问题,探讨了三种解决方法:调整法、提前停止法和隐层节点自生成法,并用实例对三种方法进行了验证和比较。其中,调整法和提前停 止法针对一个较大的网络可以解决过拟合问题,而隐层节点自生成法的提出既能避免过拟合问 题,又能获得最少神经元网络结构。这三种方法有效地解决了在神经网络学习过程中的过拟合问 题,提高了网络的适应性。它们不仅适合于函数逼近,而且可以推广到其他网络结构等应用领域。关键词 神经网络 计算机 BP 算法 过拟合 均方误差 自生成 故障诊断 中图分类号 T H 165.3神经网络已经在模式分类、机器视觉、机器听觉、智能计算、自动控制、故障诊断、信息处理、地震勘探、通信、雷达和声纳等领域有着十分广泛的应用前景,并随着计算机技术和信号处理技术的发展而发展。应用神经网络必须解决两个问题:模型和算法。现有的神经网络模型已达上百种[1] ,应用最多的是Hopfield 神经网络、多层感知器、自组织神经网络、概率神经网络以及它们的改进型。自Rumellhart D E,H inton 和Williams 提出误差反向传播算法(即BP 算法),解决了神经网络在引入隐层节点后的学习(或训练)问题后,已经发展了许多的改进学习算法[1],如快速下降法、共轭梯度法、一维搜索法及Lev enberg -Mar quardt 法等,其收敛速度很快,能满足实时性要求,但也存在着一些问题。1 学习算法及其过拟合问题 BP 算法及其改进算法是目前应用最广泛的学习算法,尽管不能证明这类算法能象单层感知器一样收敛,但是对许多问题的解决是成功的[2]。实际上,BP 算法是把一组样本的输入输出问题,变为一个非线性优化问题,它使用了优化技术中最普通的一种梯度下降法,用迭代运算求解权值并相应于学习记忆问题,加入隐层节点可使优化问题的可调参数增加,这样可得到更精确的解。要应用学习算法对网络进行训练,首先需要确定网络的结构,即输入、输出层神经元数目和隐层数及其神经元数目。 如何适宜地选取隐含层神经元的数目还没有确定的规律可以指导,但是,隐含层神经元数目是否合适对整个网络是否能够正常工作具有重要的甚至是决定性的意义。隐含层神经元数第22卷第4期2002年12月 振动、测试与诊断Jo ur nal of Vibr ation,M easur em ent &Diag no sis V o l.22No.4 D ec.2002 国家自然科学基金资助项目(编号:59775025)。 收稿日期:2001-07-09;修改稿收到日期:2001-12-03。

人工智能-BP神经网络算法的简单实现

人工神经网络是一种模仿人脑结构及其功能的信息处理系统,能提高人们对信息处理的智能化水平。它是一门新兴的边缘和交叉学科,它在理论、模型、算法等方面比起以前有了较大的发展,但至今无根本性的突破,还有很多空白点需要努力探索和研究。 1 人工神经网络研究背景 神经网络的研究包括神经网络基本理论、网络学习算法、网络模型以及网络应用等方面。其中比较热门的一个课题就是神经网络学习算法的研究。 近年来己研究出许多与神经网络模型相对应的神经网络学习算法,这些算法大致可以分为三类:有监督学习、无监督学习和增强学习。在理论上和实际应用中都比较成熟的算法有以下三种: (1) 误差反向传播算法(Back Propagation,简称BP 算法); (2) 模拟退火算法; (3) 竞争学习算法。 目前为止,在训练多层前向神经网络的算法中,BP 算法是最有影响的算法之一。但这种算法存在不少缺点,诸如收敛速度比较慢,或者只求得了局部极小点等等。因此,近年来,国外许多专家对网络算法进行深入研究,提出了许多改进的方法。 主要有: (1) 增加动量法:在网络权值的调整公式中增加一动量项,该动量项对某一时刻的调整起阻尼作用。它可以在误差曲面出现骤然起伏时,减小振荡的趋势,提高网络训练速度; (2) 自适应调节学习率:在训练中自适应地改变学习率,使其该大时增大,该小时减小。使用动态学习率,从而加快算法的收敛速度; (3) 引入陡度因子:为了提高BP 算法的收敛速度,在权值调整进入误差曲面的平坦区时,引入陡度因子,设法压缩神经元的净输入,使权值调整脱离平坦区。 此外,很多国内的学者也做了不少有关网络算法改进方面的研究,并把改进的算法运用到实际中,取得了一定的成果: (1) 王晓敏等提出了一种基于改进的差分进化算法,利用差分进化算法的全局寻优能力,能够快速地得到BP 神经网络的权值,提高算法的速度; (2) 董国君等提出了一种基于随机退火机制的竞争层神经网络学习算法,该算法将竞争层神经网络的串行迭代模式改为随机优化模式,通过采用退火技术避免网络收敛到能量函数的局部极小点,从而得到全局最优值; (3) 赵青提出一种分层遗传算法与BP 算法相结合的前馈神经网络学习算法。将分层遗传算法引入到前馈神经网络权值和阈值的早期训练中,再用BP 算法对前期训练所得性能较优的网络权值、阈值进行二次训练得到最终结果,该混合学习算法能够较快地收敛到全局最优解;

数学建模bp神经网络讲解学习

数学建模B P神经网 络论文

BP 神经网络 算法原理: 输入信号i x 通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号k y ,网络训练的每个样本包括输入向量x 和期望输出量d ,网络输出值y 与期望输出值d 之间的偏差,通过调整输入节点与隐层节点的联接强度取值ij w 和隐层节点与输出节点之间的联接强度jk T 以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。 变量定义: 设输入层有n 个神经元,隐含层有p 个神经元,输出层有q 个神经元 输入向量:()12,, ,n x x x x = 隐含层输入向量:()12,,,p hi hi hi hi = 隐含层输出向量:()12,,,p ho ho ho ho = 输出层输入向量:()12,,,q yi yi yi yi = 输出层输出向量:()12,,,q yo yo yo yo = 期望输出向量: ()12,, ,q do d d d = 输入层与中间层的连接权值: ih w 隐含层与输出层的连接权值: ho w 隐含层各神经元的阈值:h b 输出层各神经元的阈值: o b 样本数据个数: 1,2, k m =

激活函数: ()f ? 误差函数:21 1(()())2q o o o e d k yo k ==-∑ 算法步骤: Step1.网络初始化 。给各连接权值分别赋一个区间(-1,1)内的随机数,设定误差函数e ,给定计算精度值ε和最大学习次数M 。 Step2.随机选取第k 个输入样本()12()(),(), ,()n x k x k x k x k =及对应期望输出 ()12()(),(),,()q d k d k d k d k =o Step3.计算隐含层各神经元的输入()1 ()()1,2, ,n h ih i h i hi k w x k b h p ==-=∑和输出 ()()(())1,2, ,h h ho k f hi k h p ==及输出层各神经元的输入 ()1 ()()1,2, p o ho h o h yi k w ho k b o q ==-=∑和输出()()(())1,2, ,o o yo k f yi k o p == Step4.利用网络期望输出和实际输出,计算误差函数对输出层的各神经元的偏导数()o k δ。 o ho o ho yi e e w yi w ???=??? (()) () ()p ho h o o h h ho ho w ho k b yi k ho k w w ?-?==??∑ 2 1 1((()()))2(()())()(()())f (()) () q o o o o o o o o o o o o d k yo k e d k yo k yo k yi yi d k yo k yi k k δ=?-?'==--??'=---∑ Step5.利用隐含层到输出层的连接权值、输出层的()o k δ和隐含层的输出计算误差函数对隐含层各神经元的偏导数()h k δ。

浅谈神经网络分析解析

浅谈神经网络 先从回归(Regression)问题说起。我在本吧已经看到不少人提到如果想实现强AI,就必须让机器学会观察并总结规律的言论。具体地说,要让机器观察什么是圆的,什么是方的,区分各种颜色和形状,然后根据这些特征对某种事物进行分类或预测。其实这就是回归问题。 如何解决回归问题?我们用眼睛看到某样东西,可以一下子看出它的一些基本特征。可是计算机呢?它看到的只是一堆数字而已,因此要让机器从事物的特征中找到规律,其实是一个如何在数字中找规律的问题。 例:假如有一串数字,已知前六个是1、3、5、7,9,11,请问第七个是几? 你一眼能看出来,是13。对,这串数字之间有明显的数学规律,都是奇数,而且是按顺序排列的。 那么这个呢?前六个是0.14、0.57、1.29、2.29、3.57、5.14,请问第七个是几? 这个就不那么容易看出来了吧!我们把这几个数字在坐标轴上标识一下,可以看到如下图形: 用曲线连接这几个点,延着曲线的走势,可以推算出第七个数字——7。 由此可见,回归问题其实是个曲线拟合(Curve Fitting)问题。那么究竟该如何拟合?机器不

可能像你一样,凭感觉随手画一下就拟合了,它必须要通过某种算法才行。 假设有一堆按一定规律分布的样本点,下面我以拟合直线为例,说说这种算法的原理。 其实很简单,先随意画一条直线,然后不断旋转它。每转一下,就分别计算一下每个样本点和直线上对应点的距离(误差),求出所有点的误差之和。这样不断旋转,当误差之和达到最小时,停止旋转。说得再复杂点,在旋转的过程中,还要不断平移这条直线,这样不断调整,直到误差最小时为止。这种方法就是著名的梯度下降法(Gradient Descent)。为什么是梯度下降呢?在旋转的过程中,当误差越来越小时,旋转或移动的量也跟着逐渐变小,当误差小于某个很小的数,例如0.0001时,我们就可以收工(收敛, Converge)了。啰嗦一句,如果随便转,转过头了再往回转,那就不是梯度下降法。 我们知道,直线的公式是y=kx+b,k代表斜率,b代表偏移值(y轴上的截距)。也就是说,k 可以控制直线的旋转角度,b可以控制直线的移动。强调一下,梯度下降法的实质是不断的修改k、b这两个参数值,使最终的误差达到最小。 求误差时使用累加(直线点-样本点)^2,这样比直接求差距累加(直线点-样本点) 的效果要好。这种利用最小化误差的平方和来解决回归问题的方法叫最小二乘法(Least Square Method)。 问题到此使似乎就已经解决了,可是我们需要一种适应于各种曲线拟合的方法,所以还需要继续深入研究。 我们根据拟合直线不断旋转的角度(斜率)和拟合的误差画一条函数曲线,如图:

一种快速神经网络路径规划算法概要

文章编号 2 2 2 一种快速神经网络路径规划算法α 禹建丽? ∏ √ 孙增圻成久洋之 洛阳工学院应用数学系日本冈山理科大学工学部电子工学科 2 清华大学计算机系国家智能技术与系统重点实验室日本冈山理科大学工学部信息工学科 2 摘要本文研究已知障碍物形状和位置环境下的全局路径规划问题给出了一个路径规划算法其能量函数 利用神经网络结构定义根据路径点位于障碍物内外的不同位置选取不同的动态运动方程并针对障碍物的形状设 定各条边的模拟退火初始温度仿真研究表明本文提出的算法计算简单收敛速度快能够避免某些局部极值情 况规划的无碰路径达到了最短无碰路径 关键词全局路径规划能量函数神经网络模拟退火 中图分类号 ×°文献标识码 ΦΑΣΤΑΛΓΟΡΙΤΗΜΦΟΡΠΑΤΗΠΛΑΝΝΙΝΓ ΒΑΣΕΔΟΝΝΕΥΡΑΛΝΕΤ? ΟΡΚ ≠ 2 ? ? ≥ 2 ≥ ∏ ΔεπαρτμεντοφΜατηεματιχσ ΛυοψανγΙνστιτυτεοφΤεχηνολογψ Λυοψανγ

ΔεπαρτμεντοφΕλεχτρονιχΕνγινεερινγ ΦαχυλτψοφΕνγινεερινγ ΟκαψαμαΥνι?ερσιτψοφΣχιενχε 2 Ριδαι2χηο 2 ?απαν ΔεπαρτμεντοφΧομπυτερΣχιενχε Τεχηνολογψ ΣτατεΚεψΛαβοφΙντελλιγεντΤεχηνολογψ Σψστεμσ ΤσινγηυαΥνι?ερσιτψ Βει?ινγ ΔεπαρτμεντοφΙνφορματιον ΧομπυτερΕνγινεερινγ ΦαχυλτψοφΕνγινεερινγ ΟκαψαμαΥνι?ερσιτψοφΣχιενχε 2 Ριδαι2χηο 2 ?απαν Αβστραχτ ∏ √ √ √ × ∏ ∏ ∏ ∏ ∏ ∏ 2 ∏ √ × ∏ ∏ ∏ ∏ √ ∏ Κεψωορδσ ∏ ∏ ∏ 1引言Ιντροδυχτιον 机器人路径规划问题可以分为两种一种是基于环境先验完全信息的全局路径规划≈ 另一种是基于传感器信息的局部路径规划≈ ?后者环境是未知或者部分未知的全局路径规划已提出的典型方法有可视图法 ! 图搜索法≈ ! 人工势场法等可视图法的优点是可以求得最短路径但缺乏灵活性并且存在组合爆炸问题图搜索法比较灵活机器人的起始点和目标点的改变不会造成连通图的重新构造但不是任何时候都可以获得最短路径可视图法和图搜索法适用于多边形障碍物的避障路径规划问题但不适用解决圆形障碍物的避障路径规划问题人工势场法的基本思想是通过寻找路径点的能量函数的极小值点而使路径避开障碍物但存在局部极小值问题且不适于寻求最短路径≈ 文献≈ 给出的神经网络路径规划算法我们称为原算法引入网络结构和模拟退火等方法计算简单能避免某些局部极值情况且具有并行性及易于从二维空间推广到三维空间等优点对人工势场法给予了较大的改进但在此算法中由于路径点的总能量函数是由碰撞罚函数和距离函数两部分的和构成的而路径点 第卷第期年月机器人ΡΟΒΟΤ? α收稿日期

机器学习及其算法发展分析

机器学习及其算法发展分析 发表时间:2019-07-18T10:00:54.027Z 来源:《科技尚品》2019年第1期作者:赵明刘复星 [导读] 随着当今社会的发展和科技的进步,机器智能化在各个领域的应用越来越广泛。由于当下机器学习还处于初始阶段,主要依赖监督学习,且并未完全攻克弱人工智能,相关人员需要不断完善机器学习理论基础和实践。在对应科学范畴和计算机技术发展中,应为机器学习提供良好的环境,机器学习的发展前景十分广阔。要积极吸取发达国家的经验和教训,在人工智能技术上不断创新发展。 中国汽车技术研究中心有限公司 引言 在现代化信息技术的支持下,计算机技术为智能人工技术发展奠定良好基矗以计算机技术为支持的智能计算技术涉及了统计学、逼近论、算法复杂论以及凸分论等学科知识,可通过计算机技术,利用自身的学习经验,在自我系统中不断完善自身性能。以计算机规律性信息数据为支持,在计算机中找到规律性信息,获取知识经验,实现计算机技术的智能化,使得计算机向人工智能方向发展。 1概述 机器学习是AI人工智能的一个分支,在人工智能的时代机器学习作为一门重要的分支越来越受到学术界以及社会的关注,机器学习是一门涉及多领域的交叉学科,涉及统计学、凸分析、概率论、算法复杂度等多学科多门类,通过研究计算机相关模拟性能以及人类学习习惯和行为来获得新的技能或者新知识,并且根据自身框架结构不断优化完善自身体系性能。在此基础上持续优化模型,使得后续工作执行得更好。机器学习是令计算机不呈现程序即可显示获得某些功能的学习领域,也是计算机自身获取知识并逐步反馈逐步改进提示的过程。机器学习的研究需要以神经网络,统计分类等统计学,生物学为基础,让机器模拟人类学习过程。对此需要输入巨量的数据和学习样本以形成人类所知的"经验",不断重复拆分、回归、聚合,最终得到元素间的关系并可依此形成类似经历的判断和预测。因此也应用于数据挖掘,大数据处理等基于海量数据的预测,应用领域十分广泛,涉及大数据分析、数据深度挖掘、自然语言处理、搜索引擎、语音识别、机器人控制应用等。 机器学习的本质在于数据的整合归纳,模型的建立和算法的改进。在整个学习过程中,最基本的条件是持续的外界反馈,以某种方式形成的外界信息源,运用算法将获取的外部信息加工成为"经验",并储备在内在的数据库里。数据库根据建立的原则和规律提供执行的行动,而行动过程中获得的外界信息又成为了新的反馈来源,对下一次的行为提供新的指导信息。 2机器学习分类内容 机器学习中数据处理以人为标注为标准判断机器学习,主要有监督和无监督两种形式。监督学习是将学习目标采取具有标签的数据辅助完成学习,这种学习方式在实践中效果显著。但是,采取监督学习方式成本较大,价格昂贵。采用先进无监督学习则通过计算机自身自动化技术学习,以多种数据完善先验式知识吸收,整体上成本可控,不需要大量资金投入;但是,这种学习方式的实际效率较低。 2.1监督学习 监督学习以人为方式标注目标,初始训练数据是监督学习中需收集的必然数据。监督学习能够将机器自身泛化能力充分发挥出来,可以有效解决分类和回归问题。这种监督学习经典算法为卷积神经网络、多层感知机和逻辑回归等。经典方式由BN、SVN、KNN以及CBR等组成。由标注特征对机器展开数据集训练,使其能够学习对不同事物的合理划分,以学习的方式对规则、规律数据进行预测。 2.2无监督学习 无监督学习中,机器在未标记样本数据时,不进行的训练,开展无监督学习。无监督学习可以在机器学习中及时区分一些原理相似性概念,无监督学习可以和人类一样学习需要的知识。这种无监督的学习经典性算法分为深度置信网络、受限玻尔兹曼机、自动编码器等内容,在解决聚类问题上有广泛的应用。 3机器学习的经典算法 机器学习目标是在一定的网络结构基础上,构建符合要求的数学模型,选择合理的学习方式和数据训练方法,学习输入数据的内在模式和数据结构,不断调整内部参数,通过数学工具求解模型最优化的预测反馈,提高泛化能力、防止过拟合进行半独立甚至独立的繁琐性工作。机器学习算法主要是指通过数学及统计方法求解最优化问题的步骤和过程,下面以机器学习领域经典的BP算法、卷积神经网络和深度学习算法来介绍。 3.1BP算法 BP算法属于有监督学习,该算法的基本原理如为浅层前向型神经网络计算模型,包含输入层、隐藏层和输出层,由大量神经元作为网络节点彼此连接,每个神经元通过激励函数处理作为网络权值的连接强度信号,通过调整这些连接强度,将输入数据中包含的模式信息映射到输出层。 3.2卷积神经网络 本质上,卷积神经网络是一种带有卷积结构的多层前馈神经网络,但区别于传统的全连接前馈神经网络,CNN具有局部连接和参数共享的重要特征,从而减少了连接和权值的数量,降低了网络模型的复杂度,提高了计算效率,特别是网络规模越大、效果越显著。另外,CNN通过层叠的卷积和下采样操作自动提取具有平移不变性的局部特征。 3.3深度学习算法 深度学习是机器学习的一个最新分支。Hinton等人于2006年提出基本概念,是机器学习基于数据辩表征学习的方法,用半监督式或非监督式的特征学习和分层特征提取高效算法来替代手工获取特征。人们一直在研究数字神经网络与人类大脑间的关系,随着对生物神经科学和计算机技术深入研究及它们的发展与应用,人们逐渐认识到神经网络的分层计算模型与人类大脑结构的特定区域相对应。近年来,深度学习模型的研究与应用成果也进一步证明了这个事实。因此,深度学习网络模型是最接近人类大脑的智能学习方法和认知过程,这也是其实践应用的理论依据。 4机器学习未来与发展 4.1非监督学习 非监督学习,目前还未是一门成熟的学科,主要关注统计数据密度问题,在训练中所需的已标识数据是经人工处理而成,且需由相关

神经网络个基本的学习算法

五个基本的学习算法:误差—修正学习;基于记忆的学习;Hebb 学习;竞争学习和Boltzmann 学习。误差修正学习植根于最优滤波。基于记忆的学习通过明确的记住训练数据来进行。Hebb 学习和竞争学习都是受了神经生物学上的考虑的启发。Boltzmann 学习是建立在统计学力学借来的思想基础上。 1. 误差修正学习 神经元k 的输出信号)(n y k 表示, )(n d k 表示的是期望响应或目标 输出比较。由此产生)(n e k 表示的误差信号,有 )()()(n y n d n e k k k -= 这一目标通过最小化代价函数或性能指标 )(n ξ来实现。定义如下 )(2 1)(2 n e n k = ξ 也就是说)(n ξ是误差能量的瞬时值。这种对神经元k 的突触权值步步逼近的调节将持续下去,直到系统达到稳定状态。这时,学习过程停止。根据增量规则,在第n 时间步作用于突触权值的调节量)(n w kj ?定义如下: )()()(n x n e n w j k kj η=? 2. 基于记忆的学习 在一个简单而有效的称作最近邻规则的基于记忆的学习类型中, 局部邻域被定义为测试向量test X 的直接邻域的训练实例,特别,向量 {}N N X X X X ,,,21' ???∈ 被称作test X 的最邻近,如果 ),(),(min ' test N test i i X X d X X d = 这里,),(test i X X d 是向量i X 和test X 的欧几里德距离。与最短距离相关的类别,也 就是向量'N X 被划分的类别。 3. Hebb 学习 我们定义Hebb 突触为这样一个突触,它使用一个依赖时间的、 高度局部的和强烈交互的机制来提高突触效率为前突触和后突触活动间的相互关系的一个函数。可以得出Hebb 突触特征的4个重要机制:时间依赖机制;局部机制;交互机制;关联或相关机制。 4. 竞争学习 获胜神经元k 的输出信号k y 被置 为1;竞争失败的所有神经元 输出信号被置为0。这样,我们有 ?? ?≠>=否则对于所有如果, 0,,1k j j v v y j k k 其中,诱导局部域k v 表示结合所有达到神经元k 的前向和反馈输入的动作。 令kj w 表示连接输入节点j 到神经元k 的突触权值。假定每个神经元被分配固定 量的突触权值,权值分布在它的节点之中;也就是 k w kj j 对于所有的 ,1=∑ 然后神经元通过将突触权值从它的不活跃 输入移向活跃输入来进行学习。如果神经元对一个特定输入模式不响应,那么没有学习发生在那个神经元上。如果一个特定神经元赢得了竞争,这个神经元的每个输入节点经一定的比例释放它的突触权值,释放的权值然后平均分布到活跃输入节点上。作用于突触权值kj w 的改变量kj w ?定

机器学习算法汇总:人工神经网络、深度学习及其它

学习方式 根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结果。 监督式学习: 在监督式学习下,输入数据被称为“训练数据”,每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中“垃圾邮件”“非垃圾邮件”,对手写数字识别中的“1“,”2“,”3“,”4“等。在建立预测模型的时候,监督式学习建立一个学习过程,将预测结果与“训练数据”的实际结果进行比较,不断的调整预测模型,直到模型的预测结果达到一个预期的准确率。监督式学习的常见应用场景如分类问题和回归问题。常见算法有逻辑回归(Logistic Regression)和反向传递神经网络(Back Propagation Neural Network) 非监督式学习:

在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。常见的应用场景包括关联规则的学习以及聚类等。常见算法包括Apriori算法以及k-Means算法。 半监督式学习: 在此学习方式下,输入数据部分被标识,部分没有被标识,这种学习模型可以用来进行预测,但是模型首先需要学习数据的内在结构以便合理的组织数据来进行预测。应用场景包括分类和回归,算法包括一些对常用监督式学习算法的延伸,这些算法首先试图对未标识数据进行建模,在此基础上再对标识的数据进行预测。如图论推理算法(Graph Inference)或者拉普拉斯支持向量机(Laplacian SVM.)等。 强化学习:

(完整word版)神经网络学习算法matlab仿真(word文档良心出品).docx

东南大学自动化学院 智能控制概论 神经网络学习算法研究 学院: 姓名: 学号: 日期:

目录 1任务要求叙述 .....................................................错误!未定义书签。2系统分析及设计原理 .........................................错误!未定义书签。3设计实现 ..............................................................错误!未定义书签。 4 仿真验证 (6) 5讨论与分析 ..........................................................错误!未定义书签。

一.任务要求叙述 ( 1)任务 (a)运行算法,观察和分析现有学习算法的性能; clear all;close all; nu=20;pi=3.1415926; for i=1:nu p(i)=2*pi*i/nu; t(i)=0.5*(1+cos(p(i))); end minmax=[min(p(:)) max(p(:))] net = newff([ 0 7],[6 1],{'logsig' 'purelin'},'traingd');% traingd traingdm trainlm net.trainParam.epochs = 10000; net.trainParam.goal = 0.0001; net.trainParam.show=200; net.trainParam.lr=0.1; net.trainParam.mc=0.6; %0.9 default value; available for momentum net = train(net,p,t); y1 = sim(net,p); figure(2); plot(p,t,'*-',p,y1,'r--') %************** test data ****************** nu2=nu*3/2; for i=1:(nu2) p2(i)=2*pi*i/(nu2); t2(i)=0.5*(1+cos(p2(i))); end y2 = sim(net,p2); figure(3); plot(t2,'*-');hold on; plot(y2,'r'); xlabel('times');ylabel('outputs'); figure(4); plot(t2-y2); xlabel('times');ylabel('error'); (b)为了进一步提高学习逼近效果,可以采取那些措施,调节规律如何?根据所提的每种措 施,修改算法程序,给出仿真效果验证、过程以及相应的曲线图,给出适当的评述; (c)联系、结合前向神经网络的算法样本学习、测试等过程,谈谈本人对神经网络系统的一 些认识和看法。 ( 2)要求 提交完整的报告,包括:封面( 题目、个人学号姓名等信息)、目录、任务要求叙述、系

机器学习之人工神经网络算法

机器学习中有一个重要的算法,那就是人工神经网络算法,听到这个名称相信大家能够想到 人体中的神经。其实这种算法和人工神经有一点点相似。当然,这种算法能够解决很多的问题,因此在机器学习中有着很高的地位。下面我们就给大家介绍一下关于人工神经网络算法 的知识。 1.神经网络的来源 我们听到神经网络的时候也时候近一段时间,其实神经网络出现有了一段时间了。神经网络 的诞生起源于对大脑工作机理的研究。早期生物界学者们使用神经网络来模拟大脑。机器学 习的学者们使用神经网络进行机器学习的实验,发现在视觉与语音的识别上效果都相当好。 在BP算法诞生以后,神经网络的发展进入了一个热潮。 2.神经网络的原理 那么神经网络的学习机理是什么?简单来说,就是分解与整合。一个复杂的图像变成了大量 的细节进入神经元,神经元处理以后再进行整合,最后得出了看到的是正确的结论。这就是 大脑视觉识别的机理,也是神经网络工作的机理。所以可以看出神经网络有很明显的优点。 3.神经网络的逻辑架构 让我们看一个简单的神经网络的逻辑架构。在这个网络中,分成输入层,隐藏层,和输出层。输入层负责接收信号,隐藏层负责对数据的分解与处理,最后的结果被整合到输出层。每层

中的一个圆代表一个处理单元,可以认为是模拟了一个神经元,若干个处理单元组成了一个层,若干个层再组成了一个网络,也就是”神经网络”。在神经网络中,每个处理单元事实上 就是一个逻辑回归模型,逻辑回归模型接收上层的输入,把模型的预测结果作为输出传输到 下一个层次。通过这样的过程,神经网络可以完成非常复杂的非线性分类。 4.神经网络的应用。 图像识别领域是神经网络中的一个著名应用,这个程序是一个基于多个隐层构建的神经网络。通过这个程序可以识别多种手写数字,并且达到很高的识别精度与拥有较好的鲁棒性。可以 看出,随着层次的不断深入,越深的层次处理的细节越低。但是进入90年代,神经网络的发展进入了一个瓶颈期。其主要原因是尽管有BP算法的加速,神经网络的训练过程仍然很困难。因此90年代后期支持向量机算法取代了神经网络的地位。 在这篇文章中我们大家介绍了关于神经网络的相关知识,具体的内容就是神经网络的起源、 神经网络的原理、神经网络的逻辑架构和神经网络的应用,相信大家看到这里对神经网络知 识有了一定的了解,希望这篇文章能够帮助到大家。

相关主题
文本预览
相关文档 最新文档