当前位置:文档之家› 锂电池性能对比2

锂电池性能对比2

锂电池性能对比2
锂电池性能对比2

XXXXX新能源科技有限公司

二零一六年五月

目录

一、XXXXX公司简介 (3)

二、其它材料电池产品 (3)

<一>、铅酸电池 (3)

<二>、镍镉电池 (4)

<三>、镍氢电池 (4)

<四>、钴酸锂电池 (5)

<五>、磷酸铁锂电池 (5)

<六>、镁基电池优势介绍 (5)

三、电池产品之间综合对比 (6)

一、XXXXX公司简介

二、其它材料电池产品

(一)、铅酸电池

1.铅酸电池基本介绍

铅酸蓄电池,又称铅蓄电池,是蓄电池的一种,电极主要由铅制成,电解液是硫酸溶液的一种蓄电池。一般分为开口型电池及阀控型电池两种。前者需要定期注酸维护,后者为免维护型蓄电池。

1.镍镉电池基本介绍

镍镉电池(Ni-Cd,Nickel-Cadmium Batteries, Ni-Cd Rechargeable Battery)是最早应用于手机、超科等设备的电池种类,它具有良好的大电流放电特性、耐过充放电能力强、维护

简单,其内部抵制力小,既内阻很小,可快速充电,又可为负载提供大电流,而且放电时电压变化很小,是一种非常理想的直流供电电池。

(三)、镍氢电池

1.镍氢电池基本介绍

镍氢电池的诞生应该归功于储氢合金的发现。储氢合金在一定的温度和压力条件下可吸放大量的氢,因此被人们形象地称为“吸氢海绵”。其中有些储氢合金可以在强碱性电解质溶液中,反复充放电并长期稳定存在,从而为我们提供了一种新型负极材料,并在此基础上发明了镍氢电池。

(四)、钴酸锂电池

1.钴酸锂电池基本介绍

钴酸锂电池指的正极使用钴酸锂的锂离子电池,应用还是比较少的,小电池用钴锂的技术很成熟,但现在钴锂的成本太高,主要用于中小型号电芯,另外应用于动力电池方面也有一定的难度。

2.钴酸锂电池比较

(五)、磷酸铁锂电池

1.磷酸铁锂电池基本介绍

磷酸铁锂电池,是指用磷酸铁锂作为正极材料的锂离子电池。锂离子电池的正极材料主要有钴酸锂、锰酸锂、镍酸锂、三元材料、磷酸铁锂等。锂离子电池的正极为磷酸铁锂材料,其安全性能与循环寿命有较大优势,这些也正是动力电池最重要的技术指标之一。

(六)、镁基电池优势介绍

1.使用寿命:镁基宽温锂电池循环寿命达到2000次以上,标准充电(0.2C)使用,可达到3000次。同容量铅酸电池寿命大概在3-5年,而镁基宽温锂电池在同样条件下使用,将达到10-15年。性能价格比为铅酸电池的3倍以上;

2.高倍率充放电:镁基宽温锂电池支持高倍率充放电,瞬间放电电流能达到10C以上,而铅酸电池在电流波动较大时电压会有明显的跌落,影响设备正常工作。

3.耐高低温性能:在冬季,若无保暖措施铅酸电池变会失去放电性能,甚至冻裂报废。而室内环境温度过高时将造成蓄电池正极板腐蚀速率加剧、极板变形膨胀、电池外壳鼓胀甚至

开裂等,最后导致电池容量快速下降,电池寿命缩短。根据相关资料表明,当环境温度超过40℃时,每升高10℃,电池使用寿命将缩短1/2。而镁基宽温锂电池在-43℃和65℃使用时使用容量仅下降5%。能够在此温度范围内正常工作。

4.能量密度:镁基宽温锂电池其理论能量比重量为110-180(wh/kg),产品实际比容量可达到甚至超过180;铅酸能量比重量30-35,同容量是铅酸重量的1/3-1/4,体积是铅酸的1/5;

5.记忆效应:镁基宽温锂电池无记忆效应,铅酸电池虽无记忆性,但长期不充放电就会产生硫化现象。即平时需要定期的小电流充放电。

6.绿色环保:镁基宽温锂电池不含任何重金属与稀有金属,无毒,无污染,符合欧洲RoHS 规定,为绝对的绿色环保电池。铅酸电池中却存在着大量的铅,在其废弃后若处理不当,仍将对环境够成二次污染,而镁基宽温锂电池材料无论在生产及使用中,均无污染。

三、电池产品之间综合对比

各种电池优缺点

各种电池优缺点 The Standardization Office was revised on the afternoon of December 13, 2020

一、铅酸电池 主要优点: 1、原料易得,价格相对低廉; 2、高倍率放电性能良好; 3、温度性能良好,可在-40~+60℃的环境下工作; 4、适合于浮充电使用,使用寿命长,无记忆效应; 5、废旧电池容易回收,有利于保护环境。 主要缺点: 1、比能量低,一般30~40Wh/kg; 2、使用寿命不及Cd/Ni电池; 3、制造过程容易污染环境,必须配备三废处理设备。 二、镍氢电池 主要优点: 1、与铅酸电池比,能量密度有大幅度提高,重量能量密度65Wh/kg,体积能量密度都有所提高200Wh/L; 2、功率密度高,可大电流充放电; 3、低温放电特性好; 4、循环寿命(提高到1000次); 5、环保无污染; 6、技术比较锂离子电池成熟。 主要缺点:

1、正常工作温度范围-15~40℃,高温性能较差; 2、工作电压低,工作电压范围~; 3、价格比铅酸电池、镍氢电池贵,但是性能比锂离子电池差。 三、锂离子电池 主要优点: 1、比能量高; 2、电压平台高; 3、循环性能好; 4、无记忆效应; 5、环保,无污染;目前是最好潜力的电动汽车之一。 四、超级电容 主要优点: 1、功率密度高; 2、充电时间短。 主要缺点: 能量密度低,仅1-10Wh/kg,超级电容续航里程太短,不能作为电动汽车主流电源。 电池储能的优缺点(九种储能电池解析) 五、燃料电池 主要优点: 1、比能量高,汽车行驶里程长;

2、功率密度高,可大电流充放电; 3、环保,无污染。 主要缺点: 1、系统复杂,技术成熟度差; 2、氢气供应系统建设滞后; 3、对空气中二氧化硫等有很高要求。由于国内空气污染严重,在国内的燃料电池车寿命较短。 六、钠硫电池 优势: 1、高比能量(理论760wh/kg;实际390wh/kg); 2、高功率(放电电流密度可达200~300mA/cm2); 3、充电速度快(充满30min); 4、长寿命(15年;或2500~4500次); 5、无污染,可回收(Na,S回收率近100%); 6、无自放电现象,能量转化率高; 不足: 1、工作温度高,其工作温度在300~350度,电池工作时需要一定的加热保温,启动慢; 2、价格昂贵,万元/每度; 3、安全性差。 七、液流电池(钒电池)

锂离子电池性能测试

华南师范大学实验报告 学生姓名:蓝中舜学号:20120010027 专业:新能源材料与器件勷勤创新班年级、班级:12新能源 课程名称:化学电源实验 实验项目:锂离子电池性能测试 实验类型:验证设计综合实验时间:2014年5月5日-17日 实验指导老师:马国正组员:黄日权郭金海 一、实验目的 1.熟悉、掌握锂离子电池的结构及充放电原理。 2.熟悉、掌握锂离子正极材料的制备过程及工艺。 3.熟悉、掌握锂离子电池的封装工艺及模拟电池测试方法。 二、实验原理 锂离子电池是指正负极为Li+嵌入化合物的二次电池。正极通常采用锂过渡金属氧化物 Li x CoO2,Li x NiO2或Li x Mn2O4,负极采用锂-碳层间化合物Li x C6。电解质为溶有锂盐LiPF6,LiAsF6,LiClO4等的有机溶液。溶剂主要有碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯(DMC)和氯碳酸酯(CIMC)等。在充放电过程中,Li+在两极间往返嵌入和脱出,被形象的称之为“摇椅电池”。 锂离子电池充放电原理和结构示意图如下。 锂离子电池的化学表达式为: -)Cn|LiPF6-EC+DMC|LiM x O y(+ 其电池反应为: LiM x O y+nC Li1-x M x O y+Li x C n 本实验以高温固相法制备的尖晶石型LiMn2O4为正极材料,纯锂片为负极,制备扣式锂离子模拟电池,并对制备的扣式半电池进行充放电测试。 三、仪器与试剂 电化学工作站,蓝点测试系统、手套箱、电子天平、真空干燥箱、切片机、对辊机、鼓风干燥机 LiMn2O4、乙炔黑、PVDF、无水乙醇、电解液(1M LiPF6溶与体积比EC:DEC:EMC=1:1:1

铁锂电池与铅酸对比

铁锂电池与铅酸对比

磷酸铁锂电池和密封阀控式铅酸蓄电池的比较 一、产品性能比较和系统组成比较 磷酸铁锂电池和铅酸电池性能比较详见表4。 表4 磷酸铁锂电池和铅酸电池性能比较 电池性能 说明 磷酸铁锂电池 铅酸电池 单体电压 (V ) 3.2 2 重量比能量 (wh/kg ) 110~130 30~50 体积比能量 (wh/L ) 180~220 80~120 循环寿命 1C100%充放 ≥1000次 250~350次 高温性能 循环寿命变化 45℃为25℃时减半 35℃为25℃时减半 低温性能 -20℃容量保持率 50% 55% 自放电 常温搁置28天 4% 5% 充放电效率 >99% 80% 耐过充性能 一般 好 安全性 优 优 环保 无污染 污染 磷酸铁锂蓄电池与铅酸蓄电池在-48V 直流电源系统的组成比较如表5所示。 表1 磷酸铁锂电池组和铅酸电池组参数比较 组单体组单体组单体组单体浮充均充铅酸电池40~572448243.2 1.854.0 2.2556.4 2.35 1.13 1.18铁锂电池40~571651.2 3.243.2 2.755.2 3.4557.6 3.6 1.08 1.13铁锂电池 40~57 1548 3.243.2 2.88 54.0 3.6 56.4 3.76 1.13 1.18 电池设备工作范围只数 标称电压(V)电压比值放电终止电压(V)浮充电压(V) 均充电压(V) 资料显示: ? 充满电后4.0V 的磷酸铁锂蓄电池静置15分钟后回落到3.4V ,电池开 口电压3.4V 。 ? 单体工作电压为2.0V~4.2V 。 ? 在3.65V 以下可以充电性能稳定。 ? 单体电池放电时,3.0V 以下电压下降很快。 综合以上信息,建议48V 直流系统的蓄电池组只数选择16只的配置方案。 二、基站应用方案比较及投资比较 磷酸铁锂电池应用在基站中,主要考虑到不同放电率对该种电池放电容量的影响较小,以及耐受较宽的环境温度。以下将针对基站的功耗、后备时间进行电池容量选择的分析。

汽车动力电池的基本构成 各种电池的性能对比

汽车动力电池的基本构成各种电池的性能对比 电动汽车,是解决能源、环境、城市交通等问题的一个主流趋势,也是未来汽车产业发展的一个主要方向。 现状当下,家用的混合动力汽车,纯电动汽车已在大地区投入使用;电动公共汽车、巡逻车、接待车、搬运车、摆渡车等,已经在各行业得到广泛普及。燃料电池汽车、生物能源汽车等洁净能源汽车已正在如火如荼的研发设计中,未来必将成为主流。 政策我国新能源汽车的发展前景无限开阔。近10年来,国务院不断加大对其资金的投入,包括对技术进步、技术改造专项基金、支持重点汽车生产企业等。各城市也在不断在政策、发展规划、基础设施建设,消费补贴,等环节积极参与新能源汽车的普及推广中。格局传统汽车产业链涉及一百多个产业,新能源汽车是在传统汽车产业链的基础上进行延伸。当前,多数国家将重点放在发展纯电动车上。上游主要增加了锂离子电池、电机及控制系统、汽车整车控制系统,下游则增加了充电设施、电池回收等产业。核心在纯电动汽车(EV)的成本构成中,电力驱动系统(包括动力电池系统和电机驱动系统),占比达到整车的50%以上。其中,锂电池是关键之一,故有“得锂者得天下”的呼声。而胶粘剂是实现电力驱动系统稳定、高效、持久、安全工作的一个核心因素之一。汽车动力电池的基本构成 汽车动力电池简介 目前主流的汽车动力电池是:三元锂和磷酸铁锂电池。三元锂电池具有能量密度高、低温性能好、可靠性高、寿命长、电池续航也更长等特点,但造价偏高;而磷酸铁锂电池成本低、便于汽车量产且电池易于回收,安全性较三元锂高,但续航上逊于三元锂电池。 各种电池的性能对比 1软包电池 (1)安全性能好:软包电池在结构上采用铝塑膜包装,在发生安全隐患的情况下软包电

锂离子电池最新各种性能测试

锂离子电池最新各种性能测试 1 20℃放电性能测试 首先要进行预循环处理,在环境温度20±5℃的条件下,以0.2CA充电,当电池端电压达到充电限制电压4.2V(GB/T18287-2000规定)后,搁置0.5h~1h,再以0.2CA电流放电到终止电压2. 75V(GB/T18287-2000规定)。在20℃放电性能之前进行预循环处理,能有效激活电池的内部组织结构,给以下各项试验做准备。 在环境温度20±5℃的条件下,以0.2CA充电,当电池端电压达到充电限制电压4.2V后,改为恒压充电,直到充电电流小于或等于0.01CA,最长充电时间不大于8h,停止充电,这时,我们可以清晰的看到电脑仪器上显示出的充电示意图形。在充电过程中,一定要注意时间和充电电流的问题,充电电流达到或等于0.01CA即可,时间不易太长,一般都不超过8h。时间过长会造成过度充电,将会对锂离子电池中过多的锂离子硬塞进负极碳结构里去,这样其中一些锂离子再也无法释放出来,严重的会造成电池的损坏,会影响后面的试验数据结果。电池充电结束后,搁置0.5~1h在20±5℃的温度条件下,以0.2CA电流放电到终止电压2.75V,时间应不低于5小时。 上述充放电重复循环5次,当有一次循环符合GB/T18287-2000中4.2.1的规定放电到终止电压2.75V,时间应不低于5小时。该试验即可停止,有些电池在第一个循环放电时间和终止电压没有达到标准要求,这不意味着电池不合格,是因为电池中的一些聚合物质没被充分地激活,待到第二个循环后被激活,可能就会达到标准要求。 2 锂离子电池的高温性能试验(温度55±2℃) 高温性能试验是测试电池在高温的环境条件下的工作状态,由于在高温的条件下锂离子电池中的物质会发生很大变化,主要测试它的放电时间和安全性。电池按GB/T18287-2000中5.3.2.2条规定充电结束后,将电池放入55±2℃的高温箱中恒温2h,然后以1CA电流放电至终止电压,放电时间应符合标准4.3条规定,时间不小于51分钟,电池外观应无变形和爆炸现象,如有爆炸现象立即切断电源,把测试线从测试仪表上取下。此试验要严格控制好箱体温度,注意温度不易太高。 3 恒定湿热性能试验(温度40℃,相对湿度90%~95%,时间48h) 恒定湿热性能试验是测试电池在温度相对偏高,湿度较大的野外环境下的工作状态,电池按GB /T18287-2000中5.3.2.2条规定充电结束后,将电池放入40±2℃,相对湿度90%~95%的恒温恒湿箱中搁置48h后,将电池取出在环境温度20±5℃的条件下搁置2h,目测电池外观,应符合标准4.7.1的规定,再以1CA电流放电至终止电压,放电时间应符合标准4.7.1的规定不低于36mi n,电池外观应无明显变形、锈蚀、冒烟或爆炸。 4 振动试验 振动试验是测试电池在不平稳的有振幅的特殊条件下的工作状态。电池按GB/T18287-2000中5.3.2.2条规定充电结束后,将电池直接安装或通过夹具安装在振动台的台面上,按下面的振动频

锂电池性能测试简介

锂电池性能测试简介 充电及低公害。 各种先进电池中最被重视的商品化电池。所以在此以介绍锂离子电池为主。 可从 压 例。 止电压)又有[CV]的精准。 2.C-V曲线 C-V曲线是描充电池在充电、放电过程中电压及电容量间的关系。充电曲线能让工程师了解如何设计电池充电器,而放电曲线能使工程师在设计电路时正确的掌握电池的特性。例如最佳的工作电压、不同温度C-rate下的电池电容量。

我们也可从电池目前的电压对照C-V曲线:以斜率大小负值概略估算电池的残存容量(Residual Capacity)。因此C-V曲线是了解电池的重要工具。 2、分电池(Cell)性能测试 已组装之分电池,俗称单位电池(以下简称电池)。 在组装后静置8-12小时后为让电解液充份浸润极板,即依下列程序进行测试作 2.) 锂离子电池的化成:除了是使电池作用物质藉第一次充电转成正常电化学作用 钝化膜在锂离子电池的电化 商除将材 料及制程列为机密外化成条件也被列为该公司电池制造的重要机密。 相同于极板测试:将电池实际活化物总量换算理论电容量,以低C-rate C N。因此充、放电电流可以C-rate即C N的系数来表示其大小,关系如下式: I=M* C N I:充、放电电流大小(mA) M:倍率C-rate(hr-1) C N:N小时内完全放电的额定电容量(mAhr)

例如:电池之5小时率容量C5=300mAhr,则C-rate为0.5之充、放电电流大小 将是: I=M* C5=(0.5 hr-1)*(300mAhr)=150mA 电池化成过程中会有大量的能量耗损,最可能是用于钝化膜的形成。 3.电池电容量测试 再依下列步骤 容量在初期会有减少的情形。电池的放电电容量自0.753mA向下减少。待电池电化 有些化成程序亦包含了数十次的充放电 4. 3到520 5.自放电率测试 选取化2到37日放电一 采取积分记录。 于第28

燃料电池与锂电池的性能优劣对比

燃料电池与锂电池的性能优劣对比 传统铅酸电池。铅酸电池比能量低,在新能源车重所需要占用的整体质量以及体积比较大,一次充电可行驶的历程比较短;使用寿命短,且后期使用成本高。此外,铅酸电池充电时间长,铅是重金属,存在污染,与新能源动力车的概念背道而驰。 锂电池在手机、计算机等设备中大量使用。燃料电池则是为了电动/混动车而诞生。利用氢氧化学反应产生电能,其燃烧产物为水和极少量二氧化碳,几乎对环境没有影响。那么对于电动车来说,究竟该选择锂电池还是燃料电池呢?谁也没有定论,不过我们可以通过以下几组对比来对这两类电池有所了解。 成本 成本高、制氢过程复杂成为燃料电池发展的主要障碍。氢气通过电解或蒸汽重组的方法得到。不过这两种方法成本颇高,制造同样质量的天然气所需的成本为制氢的1/2甚至1/3。 锂离子电池生产成本相对较低,此外其重复充电利用非常方便,相比其他可携带能源,其具有更高的成本效益。 环境影响 燃料电池和锂离子电池对环境的影响都很小。前者燃烧产物为水,不会产生汽油/柴油燃烧后生成的温室气体。 锂离子电池的放电产物可能由氧化锂、氢氧化锂等,对环境也不会造成影响。此外,锂离子电池可重复利用。 基于以上几点,这两类电池成为了目前最受欢迎的电动车动力源。 材料 燃料电池中利用聚合物膜作为电极,支持氢氧反应后产生电能。聚合物膜必须经过特殊加工,以承受高温和机械应力。 锂离子电池中的锂离子能够吸附电荷,因此电池才拥有储电能力。锂离子的质量很轻,因此是汽车理想的动力源。 潜力 无论燃料电池还是锂离子电池,相关的技术均还有大量进步的空间。如果燃料电池的成本能够降低,则能够真正作为汽油/柴油燃料的替代能源。 对于锂电池来说,如果其能量密度能够进一步提高,循环寿命能够更长,则也是一种非常优秀的驱动能源。 挑战

钛酸锂材料的结构特点

钛酸锂材料的结构特点 Li4Ti5012是一种由金属铿和低电位过渡金属钦的复合氧化物,属于AB2X4系列,它可以被描述成尖晶石固溶体。 其空间点群为Fd3m空间群,晶胞参数a为0.836nm,为不导电的白色晶体,在空气中可以稳定存在。结构类似于反尖晶石:在一个晶胞中,32个氧负离子O2.按立方密堆积排列,占总数3/4的铿离子Li+被四个氧离子紧邻作正四面体配体嵌入空隙,其余的锂离子和所有钛离子Ti4+(原子数目1:5)被六个氧离子紧邻作正八面体配体嵌入空隙,因此其结构可以表示为 Li[Li1/3Ti5/3]O4,Li4Ti5012稳定致密的结构可以为有限的锂离子提供进出的通道。Li4Ti5012固有的电子电导率为10-9S/CM 钛酸锂负极材料 钛酸锂材料理论比容量为175 mAh g-1,实际比容量大于160mAh g-1。钛酸锂材料有独特的优势如: 1 具有循环寿命长,高稳定性能; 2. 放电平台可达1.55V; 3 Li4Ti5O12 是一种“零应变材料”,锂离子具有很好的迁移性。 4. 这种零应变材料使其在锂电池负极材料中倍受关注。 钛酸锂产品的技术指标: 项目 单位 测量值 检查械器型式 D10 μm 0.63 Malvern Instruments Ltd MASTERSIZER2000 D50 μm 1.44 D90 μm 2.43 振实密度 g/ml 1.68 Quantachrome UPYC1000

首次容量 mAh/g 166.34 半电池测试柜 首次效率 % 98 钛酸锂材料的优点 1、它为零应变材料,循环性能好; 2、放电电压平稳,而且电解液不致发生分解,提高锂电池安全性能; 3、与炭负极材料相比,钛酸锂具有高的锂离子扩散系数(为2 *10-8cm2/s),可高倍率充放电等。 4、钛酸锂的电势比纯金属锂的高,不易产生锂晶枝,为保障锂电池的安全提供了基础。

锂离子电池隔膜的性能要求

锂离子电池由正、负极材料、电解液、隔膜以及电池外壳组成。隔膜作为电池的“第三极”,是锂离子电池中的关键内层组件之一。隔膜吸收电解液后,可隔离正、负极,以防止短路,同时允许锂离子的传导。在过度充电或者温度升高时,隔膜通过闭孔来阻隔电流传导,防止爆炸。隔膜性能的优势决定电池的界面结构和内阻,进而影响电池的容量、循环性能,充放电电流密度等关键特性。性能优异的隔膜对提高电池的综合性能起着有重要的作用。 锂离子电池隔膜生产材料目前还是以聚烯烃为首选,聚烯烃材料具有强度高、防火、耐化学试剂、耐酸碱腐蚀性好、生物相容性好、无毒等优点,在众多领域得到了广泛的应用。聚烯烃化合物可以提供良好的机械性能和化学稳定性,具有高温自闭性能,确保锂离子二次电池在日常使用上的安全性。 1 、厚度均匀性 隔膜的厚度均匀性与所有薄膜生产企业要求是一样的,是一个永远追求的重要的质量指标,它直接影响隔膜卷的外观质量以致内在性能,是生产过程严加控制的质量指标之一。锂电池用户对隔膜的分切有其特殊的要求,除了有特殊的隔膜分切机、专业培训的专业分切人员外,与隔膜自身的厚度均匀性关系最为密切。 在自动化程度很高的隔膜生产线上,隔膜厚度都是采用精度很高的在线非接触式测厚仪及快速反馈控制系统进行自动检测和控制的。隔膜的厚度均匀性包括纵向厚度均匀性和横向厚度均匀性。其中横向厚度均匀性尤为重要。一般均要求控制在+1微米以内。“南通天丰”公司厚度现已控制在+0.5微米以内。 2、力学性能 隔膜的力学性能是影响其应用的一个重要因素,如果隔膜破裂,就会发生短路,降低成品率,因此要求隔膜在电池组装和充放电结构使用过程中,需要自身具有一定的机械强度。隔膜的机械强度可用抗穿刺强度和拉伸强度来衡量。 拉伸强度,隔膜的拉伸强度与制膜的工艺相关联。采用单轴拉伸,膜在拉伸方向上与垂直方向强度不同;而采用双轴拉伸时,隔膜在两个方向上一致性会相近。一般拉伸强度主要是指纵向强度要达到100MP以上,横向强度不能太大,过大会导致横向收缩率增大,这种收缩会加大锂电池厂家正、负极接触的几率。 抗穿刺强度,抗穿刺强度是指施加在给定针形物上用来戳穿隔膜样本的质量,用它来表示隔膜在装配过程中发生短路的趋势。因隔膜是被夹在凹凸不平的正、负极片间,需要承受很大的压力。为了防止短路,所以隔膜必须具备一定的抗穿刺强度。抗穿刺强度值一般在300-500g。 3、透过性能 透过性能可用在一定时间和压力下,通过隔膜气体的量的多少来表征,主要反映了锂离子透过隔膜的通畅性。隔膜透过性的大小是隔膜孔隙率、孔径、孔的形状及孔曲折度等隔膜内部孔结构综合因素影响的结果。 作为锂电池隔膜材料,本身具有微孔结构,微孔在整个隔膜材料中的分布应当均匀。孔径一般在0.03-0.12um。孔径太小增加电阻,孔径太大易使正负极接触或被枝晶刺穿短路。 隔膜厂家现在基本以透气度、孔隙度指标来衡量透气性。透气率是指特定的空气在特定的压力下通过特定面积隔膜所需要的时间,用Gurley值来表示。根据隔膜厚度,一般在300-700s/100ml。孔隙率是单体膜的体积中孔的体积百分率,它与原料树脂及膜的密度有关。现有锂离子电池隔膜的孔隙率在40%-50%之间。 4、理化性能 润湿性和润湿速度:较好的润湿性有利于提高隔膜与电解液的亲和性,扩大隔膜与电解液的接触面,从而增加离子导电性,提高电池的充放电性能和容量。隔膜对电解液的润湿

各类电池性能对比

锂离子电池的安全特性 2010-8-24 15:40:21 对于锂离子电池安全性能的考核指标,国际上规定了非常严格的标准,一只合格的锂离子电池在安全性能上应该满足以下条件: (1)短路:不起火,不爆炸 (2)过充电:不起火,不爆炸 (3)热箱试验:不起火,不爆炸(150℃恒温10min) (4)针剌:不爆炸(用Ф3mm钉穿透电池) (5)平板冲击:不起火,不爆炸(10kg重物自1M高处砸向电池) (6)焚烧:不爆炸(煤气火焰烧烤电池) 几类数码相机电池介绍 1、碱性电池(Zinc-MnO2) 这类电池全称为碱性锌锰电池。它是以锌粉为负极,电解二氧化锰为正极,以氢氧化钾为电解液制成的电池。它的优点有电量大、电流强、寿命长、输出稳定、低温特性良好,保存时间长等,广泛应用于卷片器、闪光灯等相机附件中。但是,一般情况下大多数碱性电池都不能充电,一次使用完就没用了,比较昂贵的使用代价不用说,对环境也会造成一定的污染.其实,碱性电池幷不适合作为数码相机的驱动电源,这是因为:数码相机的LCD预览、影像数据处理、镜头变焦、连拍等都需要消耗大量的电力, 这常常导致一些使用者在使用新买的碱性电池时,拍不了几张照片就出现

电量报警了。 2、镍镉电池(Ni-Cd) 镍镉电池是以镍的氧化物作为正极,氧化镉作为负极,碱液(主要为氢氧化钾)作为电解质制成的电池,这种电池最早应用于手机、笔记本计算机等设备的电池种类,也常用于闪光灯及照相机的马达卷片器中。虽然价格相对较高,但由于它用完后可以充电再次使用,因此对于长期使用来说还是很经济的。这种电池具有良好的大电流放电特征、低温特性好等优点。镍镉电池最致命的缺点是:在充放电过程中如果处理失当会出现严重的“记忆效应”,使得电池寿命大大缩短。所谓“记忆效应”是指在电池充电前,电池里的电量没有完全放尽,久而久之引起的电池容量的降低。当然,我们可以掌握合理的充放电方法来减轻“记忆效应”,但是,一般来说充电次 数为300次—700次的镍镉电池,在充放电达500次后电池容量就会下 降约20%,另外,该电池内阻很小,有些照相机和闪光灯注明不能使用 该电池,因此必须注意,以免烧毁电子线路的元器件。除此之外,镍镉电池中的镉是有毒的重金属,不利于生态环境的保护。众多的缺点使镍镉电池已基本上被淘汰出了数码相机电池的行列。 3、镍氢电池(Ni-Mh) 镍氢电池是以镍氧化物作为正极,储氢金属作为负极,碱液(主要为氢氧化钾)作为电解液制成的电池。这种电池是早期镍镉电池的替代产品,相对于镍镉电池来说,镍氢电池具有更加引人注目的优势。它大大减少了镍镉电池中存在的“记忆效应”,这使镍氢电池的使用更加方便,循环使用寿

钛酸锂电池技术及其产业发展现状

钛酸锂电池技术及其产业发展现状 一、钛酸锂电池技术在国内外的发展状况 自从锂离子电池在1991年产业化以来,电池的负极材料一直是石墨(包括人造及天然石墨)在一统天下。尖晶石型钛酸锂(Li4Ti5O12,LTO) 自从1971年Deschanvres等报道了其合成方法与晶体结构之后,Colbow等和Ohzuku等对其进行了比较系统的电化学性能测试。然而钛酸锂作为新型锂离子电池的负极材料由于其多项优异的性能而受到重视开始于20世纪90年代后期。比如钛酸锂材料在锂离子的鑲嵌及脱嵌过程中晶体结构能够保持高度的稳定性,晶格常数变化很小(体积变化< l%)。这个“零应变”电极材料极大地延长了钛酸锂电池的循环寿命。钛酸锂具有尖晶石结构所特有的三维锂离子扩散通道,具有功率特性优异和高低温性能佳等优点。与碳负极材料相比,钛酸锂的电位高(比金属锂的电位高1.55V),这就导致通常在电解液与碳负极表面上生长的固液层(SEI)在钛酸锂表面基本上不形成。更重要的是在正常电池使用的电压范围内锂枝晶在钛酸锂表面上难以生成。这就在很大程度上消除了由锂枝晶在电池内部形成短路的可能性。所以钛酸锂为负极的锂离子电池的安全性是目前笔者见到的各种类型的锂离子电池中最高的。业内人士大多数都听说过由钛酸锂取代石墨作为锂电负极材料的锂电循环寿命可达数万次,远高于常见的传统锂离子电池,仅循环几千次就寿终正寝了。 由于多数专业锂电人士从来没有真正动手制作过钛酸锂电池产品,或者只是做过几次遇到困难(如胀气)就草草收场。所以他们没能静下心来仔细思考一下,为什么大部分制作完美的传统锂离子电池通常只能完成1千~2千次充放电循环寿命?传统锂离子电池循环寿命短的根本原因中是否源于其中的某一个基本组件 - 石墨负极难堪重负呢?一旦将石墨负极替换成尖晶石型钛酸锂负极之后,基本相同的锂离子电池化学体系就能循环到几万乃至几十万次。另外,在很多人津津乐道地谈论钛酸锂电池的能量密度偏低时,却忽略了一个简单而重要的事实:那就是钛酸锂电池超长的循环寿命、不同凡响的安全性、优异的功率特性以及良好的经济性。这些特性却将会是成就目前正在崛起的大规模锂电储能产业的重要基石。 近10多年来,国内外对钛酸锂电池技术的研究可谓是风起云涌。其产业链可分为钛酸锂材料制备、钛酸锂电池生产与钛酸锂电池系统的集成及其在电动车及储能市场的应用。 1.钛酸锂材料 国际上对钛酸锂材料研究及产业化方面比较领先的有美国奥钛纳米科技公司(以下简称“美国奥钛”)、日本石原产业株式会社(简称“石原产业”)、英国庄信万丰公司(简称“庄信万丰”)等。其中美国奥钛生产的钛酸锂材料无论在倍率、安全性、长寿命及高低温等方面性能优异。但是由于生产方法过于冗长精细导致生产成本偏高,使其在商业化推广上难度较大。石原产业是亚洲最大的钛白

影响锂离子电池低温性能的因素有哪些

影响锂离子电池低温性能的因素有哪些随着锂离子电池在电动汽车及军工领域应用的迅速发展,其低温性能不能适应特殊低温天气或极端环境的缺点也愈发明显。低温条件下,锂离子电池的有效放电容量和有效放电能量都会有明显的下降,同时其在低于-10℃的环境下几乎不可充电,这严重制约着锂离子电池的应用。 锂离子电池主要由正极材料、负极材料、隔膜、电解液组成。处于低温环境的锂离子电池存在着放电电压平台下降、放电容量低、容量衰减快、倍率性能差等特点。制约锂离子电池低温性能的因素主要有以下几点: ◆正极结构 正极材料的三维结构制约着锂离子的扩散速率,低温下影响尤其明显。锂离子电池的正极材料包括商品化的磷酸铁锂、镍钴锰三元材料、锰酸锂、钴酸锂等,也包括处于开发阶段的高电压正极材料如镍锰酸锂、磷酸铁锰锂、磷酸钒锂等。不同正极材料具有不同的三维结构,目前用作电动汽车动力电池的正极材料主要是磷酸铁锂、镍钴锰三元材料和锰酸锂。吴文迪等研究了磷酸亚铁锂电池与镍钴锰三元电池在-20℃的放电性能,发现磷酸铁锂电池在-20℃的放电容量只能达到常温容量的67.38%,而镍钴锰三元电池能够达到

70.1%。杜晓莉等发现锰酸锂电池在-20℃的放电容量可以达到常温容量的83%。 ◆高熔点溶剂 由于电解液混合溶剂中存在高熔点溶剂,锂离子电池电解液在低温环境下黏度增大,当温度过低时会发生电解液凝固现象,导致锂离子在电解液中传输速率降低。 ◆锂离子扩散速率 低温环境下锂离子在石墨负极中的扩散速率降低。向宇系统研究了石墨负极对锂离子电池低温放电性能的影响,提出低温环境下锂离子电池的电荷迁移阻抗增大,导致锂离子在石墨负极中的扩散速率降低是影响锂离子电池低温性能的重要原因。 ◆SEI膜 低温环境下,锂离子电池负极的SEI膜增厚,SEI膜阻抗增大导致锂离子在SEI膜中的传导速率降低,最终锂离子电池在低温环境下充放电形成极化降低充放电效率。 ◆总结 目前多因素影响着锂离子电池的低温性能,如正极的结

各种电池优缺点

一、铅酸电池 主要优点: 1、原料易得,价格相对低廉; 2、高倍率放电性能良好; 3、温度性能良好,可在-40~+60℃的环境下工作; 4、适合于浮充电使用,使用寿命长,无记忆效应; 5、废旧电池容易回收,有利于保护环境。 主要缺点: 1、比能量低,一般30~40Wh/kg; 2、使用寿命不及Cd/Ni电池; 3、制造过程容易污染环境,必须配备三废处理设备。 二、镍氢电池 主要优点: 1、与铅酸电池比,能量密度有大幅度提高,重量能量密度65Wh/kg,体积能量密度都有所提高200Wh/L; 2、功率密度高,可大电流充放电; 3、低温放电特性好; 4、循环寿命(提高到1000次); 5、环保无污染; 6、技术比较锂离子电池成熟。 主要缺点:

1、正常工作温度范围-15~40℃,高温性能较差; 2、工作电压低,工作电压范围1.0~1.4V; 3、价格比铅酸电池、镍氢电池贵,但是性能比锂离子电池差。 三、锂离子电池 主要优点: 1、比能量高; 2、电压平台高; 3、循环性能好; 4、无记忆效应; 5、环保,无污染;目前是最好潜力的电动汽车动力电池之一。 四、超级电容 主要优点: 1、功率密度高; 2、充电时间短。 主要缺点: 能量密度低,仅1-10Wh/kg,超级电容续航里程太短,不能作为电动汽车主流电源。 电池储能的优缺点(九种储能电池解析) 五、燃料电池 主要优点: 1、比能量高,汽车行驶里程长;

2、功率密度高,可大电流充放电; 3、环保,无污染。 主要缺点: 1、系统复杂,技术成熟度差; 2、氢气供应系统建设滞后; 3、对空气中二氧化硫等有很高要求。由于国内空气污染严重,在国内的燃料电池车寿命较短。 六、钠硫电池 优势: 1、高比能量(理论760wh/kg;实际390wh/kg); 2、高功率(放电电流密度可达200~300mA/cm2); 3、充电速度快(充满30min); 4、长寿命(15年;或2500~4500次); 5、无污染,可回收(Na,S回收率近100%); 6、无自放电现象,能量转化率高; 不足: 1、工作温度高,其工作温度在300~350度,电池工作时需要一定的加热保温,启动慢; 2、价格昂贵,万元/每度; 3、安全性差。 七、液流电池(钒电池)

钛酸锂负极锂离子电池

钛酸锂负极锂离子电池1、钛酸锂负极锂离子电池的工作原理简介: 钛酸锂负极锂离子电池主要有正极材料、电解质、隔膜和负极钛酸锂(Li 4Ti 5 O 12 ) 材料组成。锂离子电池正极材料一般由能够可逆脱嵌锂离子的活性物质锰酸锂 (LiMn 2O 4 )组成,锰酸锂具有价格便宜(3-4万元/吨),工作平台电压高的特点; 负极是钛酸锂材料;钛酸锂材料理论比容量为175 mAh/g,实际比容量大于160mAh/g。钛酸锂材料有独特的优势;如具有循环寿命长,高稳定性能;放电 平台可达1.55V,且平台非常平坦;Li 4Ti 5 O 12 是一种“零应变材料”,锂离子具 有很好的迁移性。这种零应变性使其在锂电池负极材料中倍受关注。隔膜是现在以碳作负极的锂电池隔膜;电解液是以碳作负极的锂电池电解液;电池壳是以碳作负极的锂电池壳 钛酸锂负极锂离子电池的工作原理可描述为:锂离子电池在充电时,锂离子从正极中脱出,通过电解质和隔膜,嵌入到负极中;然后放电时,锂离子从负极中脱出,同样通过电解质和隔膜,再嵌入到正极中。如此反复循环,由于锂离子在正、负极中有可以容纳的相对固定的空间和位臵,保证了电池充放电反应具有很好的可逆性,从而也在一定程度上保证了电池的循环寿命和安全性能。钛酸锂负极锂离子电池实质上是一种锂离子浓差电池,正负极材料由两种不同的锂离子嵌入化合物组成。充电时,负极处于富锂态,正极处于贫锂态,同时电子的补偿从外电路供给到碳负极,保证了负极的电荷平衡。放电时则正好相反,正极处于富锂态,负极处于贫锂态。在正常的充放电情况下,锂离子在层状结构的碳材料和层状结构氧化物的层间嵌入和脱出,一般只会引起层面间距的变化,不会破坏晶体的结构;在充放电过程中,负极材料的化学结构基本不变。因而,从充放电的循环可逆性看,锂离子的电池反应是一种理想的可逆反应,锂离子电池的工作电压与构成电极的锂离子嵌入化合物和锂离子的浓度有关。 2.钛酸锂Li4Ti5O12结构及性能 空间群属于Fd3m,尖晶石结构,电位1.55V vs Li+/Li 理论容量175mAh/g 零应变材料 836pm-837pm 合成方法:Li2CO3(稍过量)、TiO2(化学计量比)和活性炭混合,以无水乙醇作为分散剂,混合物用球磨机球磨24h,制得前驱体。前驱体空气中加热到600oC并保温8h,在升温至800oC并保温2h,升温速率为12oC/min,自然冷却,轻度研磨过筛,得

制约锂离子电池低温性能的因素主要有哪些

制约锂离子电池低温性能的因素主要有哪些 锂离子电池主要由正极材料、负极材料、隔膜、电解液组成。处于低温环境的锂离子电池存在着放电电压平台下降、放电容量低、容量衰减快、倍率性能差等特点。制约锂离子电池低温性能的因素主要有以下几点: 正极结构 正极材料的三维结构制约着锂离子的扩散速率,低温下影响尤其明显。锂离子电池的正极材料包括商品化的磷酸铁锂、镍钴锰三元材料、锰酸锂、钴酸锂等,也包括处于开发阶段的高电压正极材料如镍锰酸锂、磷酸铁锰锂、磷酸钒锂等。不同正极材料具有不同的三维结构,目前用作电动汽车动力电池的正极材料主要是磷酸铁锂、镍钴锰三元材料和锰酸锂。吴文迪等研究了磷酸亚铁锂电池与镍钴锰三元电池在-20℃的放电性能,发现磷酸铁锂电池在-20℃的放电容量只能达到常温容量的67.38%,而镍钴锰三元电池能够达到70.1%。杜晓莉等发现锰酸锂电池在-20℃的放电容量可以达到常温容量的83%。 高熔点溶剂 由于电解液混合溶剂中存在高熔点溶剂,锂离子电池电解液在低温环境下黏度增大,当温度过低时会发生电解液凝固现象,导致锂离子在电解液中传输速率降低。 锂离子扩散速率 低温环境下锂离子在石墨负极中的扩散速率降低。向宇系统研究了石墨负极对锂离子电池低温放电性能的影响,提出低温环境下锂离子电池的电荷迁移阻抗增大,导致锂离子在石墨负极中的扩散速率降低是影响锂离子电池低温性能的重要原因。 SEI膜 低温环境下,锂离子电池负极的SEI膜增厚,SEI膜阻抗增大导致锂离子在SEI膜中的传导速率降低,最终锂离子电池在低温环境下充放电形成极化降低充放电效率。 总结 目前多因素影响着锂离子电池的低温性能,如正极的结构、锂离子在电池各部分的迁移速

锂离子电池材料的制备和电化学性能表征

锂离子电池材料的制备和电化学性能表征(24学时) 一、实验目的 1.了解尖晶石化合物的组成和结构特点。 2.了解无机材料制备方法-共沉淀制备前驱体、高温固相煅烧制备的反应原理和反应过程中影响产物性质的一般因素。 3.了解嵌入-脱嵌反应和锂离子电池的工作原理。 4.了解电池性能的主要参数和测试的主要方法。 二、实验原理 由于具有电压高、容量高、无污染、安全性好、无记忆效应等优异性能,锂离子电池自1991年实现商品化以来,其种类、性能和应用领域都得到了巨大的发展,已经成为最重要的二次电池之一,在手机、笔记本电脑、摄像机、便携式DVD、电动汽车甚至核潜艇上都得到了广泛应用。而锂离子电池的相关研究也成为当前化学电源研究的重要领域。 锂离子电池性能的优劣主要取决于电池的正极。锰酸锂LiMn2O4是重要的锂离子电池正极活性材料之一,其结构见图1。该结构为锂离子的迁移提供了三维通道。 图1 尖晶石晶体结构图 在充电过程中,锂离子从正极脱出,嵌入负极活性物质;而放电过程中,是锂离子的回嵌的过程,因此锂离子电池又称为“摇椅式”电池。电池充放电时,正极活性材料中Li+的迁移过程可用下式表示。 充电时:LiMn2O4→ xLi+ + Li1-x Mn2O4 + xe- 放电时:Li1-x Mn2O4 + yLi++ ye-→ Li1-x+y Mn2O4(0≤x≤1,0≤y≤x)

LiMn2O4的制备方法很多,常用的有高温固相法、低温固相法和液相法等。其中,低温固相法和液相法(溶胶-凝胶法)虽然反应温度低,但产物的电化学性能不能令人满意,且不适合工业化生产的需要。所谓高温固相法,就是在高温下使锰源化合物与锂源化合物反应生成LiMn2O4。 由于LiMn2O4在高温下容量衰减较快,需通过钴离子掺杂进行改性制备LiMn1.85Co0.15O4. 对固相反应而言,原料的分散状态(粒度)、孔隙度、装填密度、反应物的接触面积等对固-固反应速度有很大的影响。必须将反应物粉碎并混合均匀以使原子或离子的扩散比较容易进行。就本实验所制LiMn1.85Co0.15O4,采用共沉淀制备锰钴碳酸盐前驱体以达到离子程度的均匀混合,然后混锂后再进行高温煅烧制备出目标化合物。 三、仪器和试剂 1.仪器 X射线衍射仪,充放电测试仪,箱式电阻炉(马弗炉,Mufflefurnace),磁力搅拌器,陶瓷坩埚, 电子分析天平,恒温鼓风干燥箱,研钵,压力机,手套箱。 2.试剂 2 mol·L-1硝酸锰钴(Mn/Co=1.85:0.15)溶液,碳酸钠,碳酸锂,金属锂片,Celgard 2400隔膜,PVDF粘合剂(13%),导电炭黑,石墨,电解液(1.15mol·L-1LiPF6的碳酸乙烯酯(EC)-碳酸二甲酯(DMC)-碳酸二乙酯混合溶液(质量比:EC:DMC:DEC=3:1:1),电池壳。所有试剂均为分析纯。 四、实验步骤 1.Mn0.925Co0.075CO3的制备 取2mol·L-1的硝酸锰钴溶液40mL(约0.08mol), 至于烧杯中。称取8.9g碳酸钠(MW105.99)(0.084mol)至于另一烧杯中,然后加去离子水约80mL,摇动至完全溶解。将搅拌磁子至于硝酸锰钴溶液中,然后置于电磁搅拌器上进行搅拌,并开动加热,待温度升至约50℃,用滴管将碳酸钠溶液缓慢加入到硝酸锰钴溶液中(约半小时加完),控制溶液最终pH值约7.5~8,持续搅拌1h,将沉淀抽滤并用蒸馏水洗涤5~6次,而后置于恒温鼓风干燥箱中于110℃烘干。 2.锂锰钴复合氧化物LiMn1.85Co0.15O4的制备 将干燥的Mn0.925Co0.075CO3(MW 115.24)与摩尔比1:0.27的碳酸锂(MW 73.89)在研钵中研磨混匀(约需45~60min),转入陶瓷坩埚中,压实,开口放置在马弗炉中,于600℃下反应4h,然后升温至850℃反应12h,自然冷却到室温。 3.结构表征 将反应产物从马弗炉中取出,用研钵研细,装袋,标明合成人和合成条件,然后进行XRD表征。 4.电极的制备 将LiMn2O4粉末、石墨、乙炔黑以及作为粘合剂的PVDF(13%)按质量分数比86:2:6:6的比例混合均匀,加入适量的溶剂N-甲基吡咯烷酮(NMP)后,

锂电池保护板比较完整的性能测试

锂电池保护板比较完整的性能测试 一、管理IC(如TI、O2,MCU等)数据写入部份的: 1、I2C资料写入及核对,如O 2、DS、TI、及各家MCU方案等 2. 写入生产日期(当天日期)和系列号--- Write Serial Number and Manu date 备注:SMBUS,I2C,HDQ通信口等; A.Current/Voltage Offset 校正 B.Voltage Gain 校正及读值比较Voltage Calibration C.Temperature 校正及读值比较Temperature Calibration D. Current Gain 校正及读值比较--- Current Calibration ※二、基体特性部份: 3.开路电压测试:测量加载电压后,MOS管是否能正常打开; 4. 带载电压测试:测量保护板的带载能力,从而反应保护直流阻抗 5. VCC电压测量(芯片的工作电压是否正常) 6. 芯片的工作频率测量(芯片的工作晶振频率) 7. 导通电阻测量(MOS管及FUSE阻值测量); 8. 识别电阻—IDR测量; 9. 热敏电阻---THR; 10. 正常状态的静态功耗电流&休眠静态功耗(sleep) 11、关断状态的(Shout Down)静态功耗电流; 三:保护特性部分测试: 12. 单节电池过充保护测试(COV), A、保护下限:测试保护板是否提前保护,影响电池容量值; B、保护上限:测试保护板是否有保护,影响电池的安全性; C、保护延时间上、下限:保护延时间是否在设计范围; D、恢复测试:保护后,是否能恢复,关系电池能否再次使用问题。 13. 单节电池过放保护测试(CUV); A、保护值上下限:一个是,电池能否放到最底值,容量能否完全放出来,一个是一定要保护,否则影响电池的寿命; B、保护延时间:保护延时间是否在设计范围, C、恢复值、恢复时间:保护后,是否能恢复,关系电池能否再次使用问题。 14. PACK电池过压保护测试(POV)保护值、保护延时间、恢复值、恢复时间(如果有测COV,POV不用测,一般比较不建议只测POV,因为总组的POV即使有保护,并不代表每一节的都能够保护,万一有某一节不保护了,那就很危险。) 15. PACK电池低压保护测试(PUV);保护值、保护延时间、恢复值、恢复时间;原理同CUV,CUV有测CUV,可不测PUV,理由同POV; 16. 充电过流保护(OCCHG); A、保护值上下限:电流太小,关系充电时间,电流过大,关系电池寿命; B、保护延时间:关系电池发热堪至烧保护板问题; C、恢复值、恢复时间:电池的再次使用; 17. 放电过流保护(OCDSG); A、保护值上下限:显得优为重要,下限,不能提前保护,否则影响功率,车跑不快、电动工具转不动等,上限一定保护,不保护导至烧电机、电池发热等问题; B、保护延时间上下限:这个也比较重要,下限不保护,如果提前保护了,电动工具,会导致旋不紧;上限不保护,可能导致烧电机、电池发热等问题;

天康钛酸锂单体电池规格书

2.4V/16Ah钛酸锂电池规格书 1、适用范围 本产品主要用于电动轿车、电动巴士、电动叉车、特种装置等高功率动力应用领域;光伏/风力发电储能系统、通信基站、家用/工业UPS、储能电站、电网调频等储能领域;以及军工、船舶运输、航空航天等领域。 2、技术参数 项目参数 产品型号13110216 体系LMO/LTO 标称容量16Ah 标称电压 2.4V 单体电量38.4Wh(0.038度电) 外形尺寸110mm*13.1mm*216mm 重量650g±10 工作电压充电截止电压 2.7V 放电截止电压 1.5V 标准充放电电流充电电流1C(16A)放电电流1C(16A) 最大充电电流5C(80A) 最大放电电流10C(160A) 循环寿命≥20000次(0.2C,25℃工况) 工作温度-30℃-55℃(特殊温度要求可定制)3、外形图

4、电极图 5、成组结构方式 6、特性曲线 常温充放电曲线 55℃高温放电曲线

-20℃低温放电曲线 不同倍率放电曲线 循环寿命曲线

2.4V/26Ah钛酸锂电池规格书 1、适用范围 本产品主要用于电动轿车、电动巴士、电动叉车、特种装置等高功率动力应用领域;光伏/风力发电储能系统、通信基站、家用/工业UPS、储能电站、电网调频等储能领域;以及军工、船舶运输、航空航天等领域。 2、技术参数 项目参数 型号32115170 体系LMO/LTO 标称容量26Ah 标称电压 2.4V 单体电量62.4Wh(0.062度电) 外形尺寸115.5mm*32.6mm*170mm 重量1080g±10 工作电压充电截止电压 2.7V 放电截止电压 1.5V 标准充放电电流充电电流1C(26A)放电电流1C(26A) 最大充电电流4C(100A) 最大放电电流7C(180A) 循环寿命≥20000次(0.2C,25℃工况) 工作温度-30℃-55℃(特殊温度要求可定制)3、外形图

相关主题
文本预览
相关文档 最新文档